
ll-613E 
no. 95-04 
c 2 	 Statistics 	Stat!stique 

Canada 	Canada 

Methodology Branch 
Social Survey 
Methods Division 

Direction de la mthodo1ogie 
Division des méthodes 
d'enquêtes sociales 

AiTIC 	tt!lOJ 
CANADA 	CANADA 

MAY r' toos 
L I BR A ; V 

I BL iOr 	U E 
- 

111 uanaua 





WORKING PAPER NO. SSMD 95-04 E 

13  I DO V ; (.) 111ita 

Time Serim Methods for Postceasal Estimation of Household Counts 

SSMD 95-04 E 

Social Survey Methods Division, Statistics Canada 	 April, 1995 



Introduction 	 .1 

Considerations for Modelling 	 . 5 

93. Models for the Current Number of Households: Empirical Results 	. 8 

4. 	Estimation of the Number of Households by Size and Calibration ..........13 
4.1 	Ffim2f ion .......................................13 
42 	Calibration of Domain Estimators ........................14 
4.3 	OptirnalMethod ...................................19 
4.4 	Sub-optimal method .................................20 
43 	Emplrkal Rilts ...................................20 

Appendix I: State Space Representation and Estimation ................22 

Appendix II: Modified Kalman Filter Algorithm to fit the pseudo model .....24 



Abstract 

We are concerned with the estimation of a population characteristic Y which changes 
over time, using data from a repeated sample survey carried out at regular time intervals. We 
propose to achieve accuracy by careful modelling of the survey error, acknowleging a bias 
component in the direct survey estimator, and the use of auxiliary information represented by 
a 'known' survey error in estimating another characteristic X. We will use state space models 
and the Kalman Filter for the estimation. We also address the problem of internal consistency 
between the sum of the published estimates of individual domains and the estimate of the 
aggregate. We impose calibration conditions which can be expressed in state space form. We 
present an application to postcensal estimation of the current number of households: the 
calibration equations induce a 'joint model' which effectively reduce the variability of the 
estimators. A measure of the model bias is obtained by the relative error in estimation at June 
1991 when the corresponding census counts are available. 

Résumé 

Dans cet article, nous utilisons lea données d'unc enqu&c répétée a intervalles réguliers pour 
estimer une caractéristique d'une population qui évolue avec le temps. Pour obtenir des 
estimations plus précises, nous modélisons l'crreur d'échantillonnage, en reconnaissant 
explicitement un biais d'échantillonnage dana les estimés dc l'enqu&e, Ct nous utilisons 
l'information auxiliaire sur Ia vraie valeur de l'erreur d'échantillonnage dans l'estimation d'une 
autre caractéristique. Nous utilisons lea vecteurs d'etat et le filtrage de Kalman pour 
l'estimation. Dc plus, nous proposons des solutions an problème de l'accord entre la somme 
des estimés des domaines et l'estimC de l'agrégation des domaines. Nous imposons des 
conditions d'étalonnagc que nous exprimons sous forme de vecteur d'Ctats. Nous présentons une 
application a l'estimation post-censitaire du nombre ponctuel de ménages: les equations 
d'étalonnage introduisent un modle conjoint qui réduit Ia variabilité des estimés. Une mesure 
du biais de modélisation s'obtient en calculant l'erreur relative de l'estimation du mois de Juin 
1991, quand les comptes du recensement deviennent disponibles. 
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'1. 	Introduction 

The Canadian Census of Population produces, among other things, counts on the 
distribution of the population and houstho4ds. During the five-year period between censuses, 
the Population Estimates Program of Statistics Canada piovides population counts by province, 
and these estimates are constructed from the previous census by adding the components of 
change (births, deaths and migration) obtained from administrative records. Unlike postcensal 
estimates of population, estimates of the number of households cannot be obtained from a 
combination of census counts and administrative data, since there are no administrative records 
complete enough for this task. 

However, reliable posicensal estimates of the number of households (or occupied private 
dwellings) are very much in demand for the production of statistics on housing, marketing 
research, etc. Also, good estimates of the number of households by number of persons could 
be used for developing sampling weights for household surveys. 

We have to turn to other sources to construct such estimates. One possible source is the 
Canadian Labour Force Survey (CLFS). The CLFS yields monthly estimates of both the current 
number of households and the LFS population, but the estimators are subject to sampling 
variability and bias and therefore model-based smoothing and benchmarking with census data 
may produce more efficient and less biased estimators. 

The provincial estimators of the number of households have small coefficients of 
variation. For example, from July to September 1993 they ranged between 0.5% and 1.2%. 
Even so, the estimates are not reliable enough for our purpose: we seek for estimators with a 
degree of accuracy comparable to the Postcensal Estimates of Population. Hence we resort to 
borrow information from other time periods. Most available techniques assume that direct 
survey estimators are approximately unbiased; but we will acknowledge a bias component in the 
direct survey estimator because of the accuracy demanded. 

In general, we are concerned with the estimation of some population characteristic 1, 
such as the population total, which changes over time. Suppose that the data available are from 
partially overlapping repeated sample surveys carried out on the population of interest at regular 
time intervals. Let y, represent a direct sample survey estimate of Y, based on the sample at 
time t alone, so that 

y,.-yt +IEt 

where E1  denotes the survey error at time t. Suppose further, that as a by-product, the survey 



yields the estimate x, of an auxiliary characteristic for which we know the true value X,. For 
example, we lety  be the monthly CLFS estimate of the number of households, x1  the monthly 
estimate of the population count and X, the corresponding population count produced by the 
Postcensal Population Estimates Program of Statistics Canada. 

Here y, and x, are subweighted estimators (design based estimators before any 
postratification is done) of households and population counts respectively. Postratification (or 
calibration) is done in an effort to deal with the coverage error. Calibration of y, to the 
distribution of the population obtained from the Postcensal Estimates yields both the combined 
ratio estimator y,2 - y • X 1x1  and the separate ratio (or 'final weight') estimator Yft. 

The postcensal estimates of the population are considered very accurate and could be 
treated as the true counts of the population. Hence, the data can be viewed as a bivariate series 
of estimates 

xt 
I Yt 

- x 
where the first component is the survey estimate of the characteristic of interest and the other 
component could represent the survey error in estimating the auxiliary quantity X - 

In order to improve the estimation, modelling different responses could be considered. 
The bivariate series in (1.2) can be modelled taking advantage of its correlation structure if we 
assume that there is an association between the survey error in estimating the number of 
households and the survey error in estimating the population count, x,-X. Among the 
univariate responses we can look at the CLFS subweighted estimator y,, at the combined ratio 
estimator YR2  or at the final weight (poststratified) estimator Yft. 

Previous proposals to solve this problem considered the headship rateh, = y/x 
(Lemaitre, 1989) or the ratio estimate y  (Ghangurde, 1991) as a response and used global 
models (e.g. a deterministic polynominal); they did not obtain satisfactory results probably due 
to the lack of flexibility of the models. 

The CLFS is a rotating monthly panel survey in which five-sixths of the sample (five 
panels out of six) is retained from one month to the next. A detailed description of the design 
of the CLFS and the calculation of the survey estimators can be found in Singh, Drew, Gambino 
and Mayda (1990). The partial overlapping of the CLFS creates serial correlations between the 
errors of the survey estimators. 

(1.2) 
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We propose to obtain accurate estimators by means of a time series method that 

uses structural modelling, that is, the main components of the series are modelled 
explicitly and have a direct interpretation, 

accounts for the serial correlations of the survey estimators over time, 

corrects for bias by benchmarking with previous census counts (the benchmarking 
equation makes the model identifiable when we introduce a bias term in the survey 
error), 

uses the available auxiliary information, represented by the CLFS and Postcensal 
Estimates of Population at month:, 

and 

calibrates the sum of domain estimates to coincide with the model-based estimate of the 
aggregate in order to achieve of internal consistency. 

Point c) is a modelling feature not usually found in the analysis of survey data and 
point e) represents a new technique of calibration with a model-based estimator. 

We consider only models with a state space configuration and obtain the model-based 
estimators via the Kalman Filter algorithms. This approach yields estimators of the unobserved 
components of interest (the population parameter Y, the survey errors ç, etc.), their mean 
square errors and easily computed measures of goodness of fit. If, in addition, the model 
includes benchmarking conditions, the state space framework and the Kalman Filter provide a 
most natural way to incorporate them. 

In order to measure the error in estimation, variance alone may be misleading and we 
need to have as well an estimate of the bias (when the model does not hold). The bias here 
refers to the model bias and should not be confused with the bias of the survey estimator, which 
will be accounted for in the model. In general, the magnitude of the model bias is difficult to 
estimate. When more accurate estimates exist at specified time periods, these can be used to 
estimate the bias in the model-dependent estimators. In our case, not only can we estimate the 
variability of the estimator under different models, but also we can obtain an overall measure 
of the error in estinialion at the time period of the last census, June 1991, because we know the 
true value of the number of households in June 1991 (the estimators incorporate data until May 
1991, including previous census counts). 

So the model-based methods will be evaluated in terms of goodness of fit statistics and 
of the relative error in estimation (error of closure) at June 1991. 
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The population targets of the CLFS and the Census of Population and Households do not 
coincide, and hence the census figures were modified to account for this. The Postcensal 
Estimates of Population used in the calculation of the CLFS estimates and the modified census 
counts were adjusted using the appropriate census net undercoverage rates (cf. Bleuer and 
Declos, (1995) Appendix II). 

Section 2 describes the design considerations that lead us to the class of models that we 
propose for the postcensal estimation of the current number of houstholds. 

In section 3 we present the empirical results obtained when fitting the models to the ten 
provinces of Canada, we show that a pragmatic method of estimation is a simple univariate 
approach that models the 'poststratifled' CLFS estimate yft : it is 'good" in terms of model bias 
and (model-based) variance and from the perspective of production, it is rather straightforward 
in its implementation. We also summarize our recommendations. 

Section 4 describes a method for the estimation of the current number of households by 
size and the issues associated with internal consistency of domain estimators: calibration of the 
sum of the separate domain estimates to the model-based estimate of the aggregate (number of 
households of all sizes) implies that the error resulting from the (model-based) estimation has 
to be appropriately expressed; optimal and sub-optimal (binding) methods of calibration are 
presented. The separate domain estimators are not as reliable as the aggregate estimators but 
the optimal method of calibration proposed yields domain estimators that have lower variability. 
Empirical results verify that the optimal method yield internally consistent and more efficient 
estimators than the estimators before calibration. 
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'2. Conslderatloa for Modelling 

We follow the approach of Pfcffermann and Bleuer (1993) who look at time series 
models for survey data as a combination of two distinct models: the model describing the 
evolution of the characteristics of interest, and the survey errors model representing the time 
series relationships between the errors of the survey estimators. 

The responses considered here are the bivariate series (y, ,x -X)' and the univariate 
series of the final weight estimators Yft•  At previous census times r, the census valuesç 
coincide with the number of households Y,; hence not only iç but also the survey errors ç in 
estimating households are known: 

- c,, €, - y, - 	- 3', - cv 	 (2.1) 

Figure 2.1 below shows the series of estimates of the current number of households in the 
provinces of Prince Edward Island (P.E.I.), Quebec, Saskatchewan and British Columbia (B.C.) 
from March 1985 to May 1991. 

[Insert Figure 2.1] 

We observe an increasing trend and a variability that can be due to sampling errors and 
perhaps to seasonal movements. This is typical of most provinces. Thus, the model postulated 

for the population parameters Y1  is the following structural model: Y, is described as the sum 

of a trend component, a seasonal effect and an irregular factor: 

Yr  - L, + 5, + I, 	 (2.2) 

where L, is the trend level, assumed to be locally linear, St  is the seasonal effect and I, is the 

irregular term, assumed to be white noise with zero mean and variance a,; i represents the sum 

of errors left over in the population value Y, after accounting for trend and seasonal effects. 

The trend level and seasonal effects are also allowed to vary stochastically with time: 
L,=L 1  +R1  

R, = 	+ 11R1 

St  - 

where R, is the stochastic slope of the trend L1  and {} and {i} areassumedtobewhite 
noise with means zero and respective variances qR2  and o. 
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Structural models are simple and flexible and have performed well when fitted to 
numerous empirical series. Moreover, this model was used successfully when analyzing data 
from labour force surveys by Pfeffermann (1991), and Pfeffermann and Bleuer (1993), among 
others. 

Let us assume for now that x, - X represents the survey error in the CLFS estimation 
of the population. This error contains the sampling error, which exists by design, and the non-
sampling error, which is difficult to control. 

In order to understand the nature of the non-sampling error, the CLFS looks at the 
slippage (that is, the relative error in the estimation of the population with respect to the 
postcensal estimates, 100 x (r, -X)/X. The observed monthly sample slippages in the last few 
years show that the estimates are subject to large negative bias or undercoverage: Figure 2.2 
depicts the slippages from March 1985 to May 1991 for the provinces of P.E.I., Quebec, 
Saskatchewan and B.C. 

[Insert Figure 2.2] 

The CLFS has historically undercovered its target population by four to six percent 
relative to the Canadian Census (Clark, Kennedy and Wysocki, 1993). The slippages depicted 
in Figure 2.2 are larger because they are relative to the Postcensal Estimates of Population X,, 
which are adjusted for net undercoverage rate. This coverage euor is induced by many factors 
(missing households, missing persons within a household, misclassification of vacant dwellings, 
etc.) and is not constant; for example, seasonal and census effects may be important in its make-
up; also in a recent study Clark et al. (1993) concluded that most of the large fluctuations in the 
slippage over time are due to the rotation of clusters that have experienced large growth, thus 
suggesting the presence of random variation in the bias over time. 

Hence it is reasonable to suspect that the subweighted estimators of any characteristic of 
the CLFS are subject to significant bias due to undercoverage. 

Indeed, when we compare the subweighted and final weight estimators of the household 
counts with previous census values, we observe that the subweighted estimators Y,  are negatively 
biased and that the final weight estimators Yft  are positively biased though this bias is 
considerably smaller. 

Therefore this bias must be accounted for when modelling any direct survey estimator. 
However, the components of the survey error process and their interactions are difficult to 
understand and model. Since five sixths of the households remain in the sample from one month 

am 



to the next, the series of survey errors from the CLFS over time are usually assumed to follow 
a stationary process or a process of the form E1  * e, where k is a constant proportional to 
the level of the series and e is stationary (see for example Binder and Dick (1989) or 
Pfeffermann and Bleuer (1993)). However, the design-based standard errors of the survey 
estimators of the number of households, which may be used in the calculation of k,, are not 
available. Hence we will assume that the survey error in the CLFS estimation of the population 
can be expressed as the sum of 2 uncorrelated processes: 

c,+d, 	 (2.3) 

where d, is stationary and c, is non-stationary. 

Similarly, let {ç} denote the series of survey errors in the CLFS estimation of the 
number of households at month :, whether the corresponding direct estimator is y or Yft; we 
assume that 

IES  - b1 +e,, 	 (2.4) 

where, as above, e, is a stationary process and b, is non-stationary. 

Thus it is reasonable to assume that the processes d, and e have a stationary and 
invertible autoregressive moving-average (ARMA) representation: 

d,, e, — ARMA (p, q). 	 (2.5) 

A random walk model for the processes c and b1  could account for large variations only 
a few months after the events but it is the simplest model we can impose with our present 
knowledge. Therefore we assume 

c - c, + i,, and b - b,1 +'Ibe 	 (2.6) 

where {},{'1j,}  are white noise with mean zero and variance o' and O'b  respectively. 
Equations (2.3) and (2.4) do not imply that d, and e, contain only the sampling errors; {c,} and {b} 
will be referred to as bias processes and represent only part of the non-sampling errors. 

We should remark that usually, we do not know the initial value for the trend level 
component of the model L0 , and hence it is confounded with the initial bias b0 . However the 
model becomes identifiable at the first census time r, when the constraint (2.1) is incorporated 
in the model. 
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.3. ModeLs for the Current Number of Households: 
Empirical Results 

Our aim is to reduce the bias and the variability present in the direct survey estimators 
by means of a model that is simple and consistent throughout the provinces and perhaps also 
throughout subprovincial regions. The class of models proposed can be expressed in a compact 

State space configuration and the estimators are obtained via the Kalman Filter Algorithms. The 

model parameters are assumed unknown and are estimated from the data by the method of 

maximum likelihood (see Appendix I). 

If the model bias is reasonably small, we could estimate the variability of the resulting 
estimators by the model-based estimates of the mean square errors obtained from the Kalman 
Filter algorithms. For the purpose of comparison we will use the series of coefficients of 
variation, (the c.v. is defined by the square root of the estimated mean square error divided by 
the corresponding estimate of the number of households). The error of closure is defined by 
100 - c,)Ic and will give an indication of the bias incurred in the estimation by assessing 
the overall error at the time point of June 1991. 

We used the series of estimates from Saskatchewan to illustrate our search for an 
appropriate model for this problem. 

Figure 3.1 shows the series of subweighted and poststratified CLFS estimates of the 
number of households in the province of Saskatchewan from June 1986 to October 1992. The 
horizontal lines represent the respective census values in 1986 and 1991. 

[Insert Figure 3.1] 

Postratification incorporates the auxiliary information contained in x, -x; and not only 
reduces the bias but the variability as well. We want to improve upon the poststratified 
estimates Yft  by borrowing strength across time and by accounting for the left over bias. The 
question remains if one could obtain better results by using the auxiliary information at timet 
and the extra information across time simultaneously, for example by directly modelling the 
bivariate series (y,,  x,  -)' 

In Bleuer and Declos (1995) we showed that simple models describing the association 
between the survey errors ç  and x, - X yield poor estimators. Indeed, Table 3.1 lists measures 
of model bias and variability (maximum coefficient of variation over the period of analysis) 
resulting from fitting four models to the series of estimates from Saskatchewan. In all four 



models the process Y, of the number of households at month t follows the structural model and 
the CenSUS constraint defined in the previous section. The first 3 models are nested; the bivariate 
models 1 and 2 assume a non-zero constant correlation between the stationary components of the 
survey errors ç and x1 -X, but model 2 relaxes this condition to a shorter period of time: 

d1  - 0d, 1  +t,, 

- 

p - corr(u,, v) and , - corr(, ,) 	V t, 

where 0 and so are fixed constants and {u,} and {v} are assumed white noise with zero mean 
and variances a and u respectively and {,p,} and {i1j are the residual errors of the random 
walks {c1} and {b,} respectively. 

Model 3 fits the univariate subweighted estimates y, with no utilimtion of the auxiliary 
information (p = to =0) and model 4 fits the postratified estimate Yft. 

Tabl. 3.11  Co.fficionts of Variation and Irrors of Closur 
by M.thod of Istination 

Modal 
iaxiaua 

C.V. 

B.O.C. 
(Jun. 1991) 

 aivariata (p/'0,w#0,March85:5t:5May9l) 0.50 2.23 

 Bivariata (pø'O,(0, March 85 :5t!-. Aug 1990) 0.75 1.98. 

 univariat. Iubw.ight.d (p0,(ii3O) 1.10 0.25 

 Univariats, Poststratifi.d (Ak(3) model for 0.43 1.71 
the surv.y •rror)  

The numbers above show that as the amount of auxiliary information used increases, the 
model-based variability of the estimators decreases, as we expected; the model bias, however, 
increases. 

Ideally, the correlation between the sampling error processes in the estimation of the 
number of households and population should be positive and fairly constant, but in practice it 
is not so. Models 1 and 2 impose a constant correlation between the stationary elements of the 
survey errors for a fixed period of time and this is a very strong assumption. 

The absence of model bias depends on how well the model explains the processes 
underlying the production of the estimates, that is, the consequences of the design and the 
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operations; the results above give an indication of how sensitive the estimators are to a deviation 
from the model. 

Any attempt to relax the constant correlation assumption and still use the auxiliary 
information contained in x, - .74 would complicate the model and would not necessarily yield a 
better proposition. 

Figure 3.1 shows that the subweighted estimates of the nwnber of households are closer 
to the census values than the final weight estimates arc. This is not true in general but it may 
explain the low error of closure obtained by the uthvariate model with the subweighted response. 

The univariate models defined by the subweightul and final weight (poststratified) series 
respectively are approximately equivalent (in terms of bounds for bias 2  + variance) for the 
province of Saskatchewan. But we can argue that a response that is less variable and biased in 
general, and that yields a smoother time series, is the better response for an estimation method. 
And indeed this is shown when we fit the series of subweighted and poststratified estimates of 
household counts for every province. Not only the coefficients of variation yielded by the final 
weight model were considerably smaller but the error of closure as well. The errors of closure 
are comparable to those of the Postcensal Estimates of Population. Table 3.2 below lists the 
results of fitting model 4 to the ten provincial series. 

Tablo 3i Mimimi CoVk4ents of Variatioii and Enin of CIoure 

Houho1d 
Counti 

PoatcenBal 
Population EatimateB 

Province MCV % EOC % EOC % 

Newfoundland 0.70 0.89 1.32 

PEI 3.00 1.55 2.15 

Nova Scotia 0.60 1.26 0.52 

New Brunewick 0.40 -0.01 -0.17 

Quebec 0.50 0.73 0.10 

Ontario 050 -0.95 -0.06 

Manitoba 0.80 -0.14 0.90 

Saskatchewan 0.40 1.71 1.30 

Alberta 1.20 0.93 0.59 

British Columbia 1 	0.70 1 	0.24 0.22 

All of this suggests the adoption of the univariate model that fits the poststratified estimator 
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for the Postcensal Estimation of the Current Number of Households and assumes a structural 
model for the number of households and a survey error that contains an autoregressive process 
and a bias component. 

When fitting this model to each of the ten provincial series of survey estimates, we 
observed some common features that could suggest a simpler method for this type of data. 

The trend level in the number of households was approximately (globally) linear in most 
provinces but the assumption of local linear trend remains important to capture change. 

There was little evidence of seasonal effects and when they were present they could be 
considered as part of the survey errors. This is reasonable: people may move from province 
to province in a seasonal pattern but households are usually stable; and the undercoverage errors 
represented in e, are sometimes suspect of having a seasonal component in their make up. To 
investigate this theory we fitted a model where the seasonal term was included as a component 
of the survey error rather than the current number of households (see Bleuer and Declos (1995), 
Appendix II). The provincial errors of closure (in %) at June 1991 remained unchanged up to 
2 decimals. Hence whether the seasonal effects were components of the parameter of interest 
or of the survey errors, they seemed to be negligible. 

The model assumes that the direct survey estimator is affected by bias. We then look at 
the bias ratios (bias of the survey estimator over the number of households), from 1986 to June 
1991. The estimated bias ratios yielded by the model were relatively small and varied from a 
maximum (over the months) of 1% in Nova Scotia to 4% in Manitoba. However we aimed at 
a much higher accuracy than 4% (the past errors of closure corresponding to the Postcensal 
Estimates of Population were 2% and under). By accounting for this bias we could obtain errors 
of closure ranging from 0.1% to 1.71% in June 1991 for the proposed estimates of the 
provincial number of households. 

The variance of the bias process was relatively small compared with the level of the number 
of households in all provinces, while the variance of the stationary process was quite large. A 
significant variance component in the non-stationary part (assumed to be a random walk) of the 
survey error would imply that the variation in the non-sampling error increased with time. The 
resulting estimates of variability meant that if there was variation, it has been under control as 
part of the stationary process (this is compatible with the current wisdom on the Canadian 
Labour Force Survey). 

The incorporation of the random walk term in the survey error has played a role in the 
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validation of the model, as a kind of verilicalion that the model does indeed describe a survey 
process under control. But we may set the variance of the bias process to zero in a further 
simplification of the model as long as we are confident that the non-sampling errors remain 
stable. 

Finally, the estimate to be published at month t should be based on all of the available data 
until time :, including the previous census counts. 
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94. 	Esthnatlon of the Number of Households by Size and Calibration 

4.1 Eimf1on 

Once we decide upon a model and obtain accurate estimators of the current number of 
households Y, our next conn is that of obtaining reliable estimators of the number of 
households by size and by province Y. and such that the sum of the estimates over the sizes 
coincide with the provincial aggregate 2. 

Figure 4.1 is a plot of the CLFS estimates of the number of households of size 1 from 
March 1985 to June 1991. The horizontal lines represent the respective census values in June 
1986 and June 1991. We can observe that the CLFS figure overestimates the number of 
households of size 1 and that the series of estimates {yj becomes widely variable from 
sometime in 1989 on. 

[Insert Figure 4.1] 

The true number of households of size 1 changes more than the number of households 
of all sizes and the survey &or becomes more erratic. Since five sixths of the households of 
size 1 remains in the sample from one month to the next, the sampling error might depend on 
the previous error in the same manner than for the aggregate. Now contact with households of 
size 1 is more difficult and hence the survey error model might be inadequate to explain the 
monthly variations of this process. 

We fitted the model proposed in Section 2 to the series {yg}  of CLFS final weight 
estimates of the number of households of size I at month I in Canada1 , for sizes 1,2 and 3 + 
(3 or more persons in the household). 

The series of the domain estimates {y1} are in general more variable and this is reflected 
in the numbers shown in Table 4.1. 

' by Canada we mean the union of the 10 provinces since there is no Labour Force data 
from the territories. 
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Taba Li! Diaainfica for n 1.2 and 3+ 

Size M,xmim E.O.C. 
Coeffid (1991) MB MARE 

ofVariatioc% 

1 3.92 -2.68 324 0.75 

2 2.65 0.67 -539 0.52 

3+ 1 	 1.65 1 	0.73 1 	453 1 	0.34 

The variability of the resulting estimators and the mean bias (MB) and mean absolute 
relative bias (MARE, see Appendix I) suggest a fit not as good as we obtained for the provincial 
estimates of the aggregate number of households. The large error of closure for size 1 reflects 
the inability of the model to explain the survey error in the months before closure. However 
for the sake of consistency and simplicity we will adopt this model for the estimation of the 
household counts by size. 

Next we compare the sum of the separate estimators E 2'g with the aggregate estimator 2 
in terms of the series of estimated coefficients of variation 'and errors of closure. Figures 4.2 
and 4.3 show that the series of estimates corresponding to the sum of the separate domains 
coincides with the aggregate estimates (relative difference oscillating between -0.2% and 0.1%) 
but that the variability of the first series substantially larger. This is due to the relative poor fit 
of the separate models. The aggregate model {} series is more reliable and we should choose 
it for publication. Our next section deals with the problems associated with this situation. 

[Insert Figures 4.2 and 4.3] 

4.2 Calibration of Domain Estimators 

Whenever we produce model-based estimates for different areas or domains we have to 
deal with the problem of internal consistency between the published estimates for the larger 
domain and the sum of the estimates of the individual domains within it. 

This is a common problem in the application of small area and seasonal adjustment 
techniques. But the main body of solutions proposed so far lie in the field of small area methods. 
Among these we have methods proposed by Battese, Harter and Fuller (1988), Pfeffermann and 
Burck (1990) and Rao and Choucthry (1993). 

Since usually the direct survey estimator for a large area is reliable and this is what will 
eventually be published, the individual small area estimates are constrained to add up to the 
direct survey estimator of the larger area. In the field of seasonal adjustment the problem is 
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slightly different: the seasonally adjusted estimators of the large area and the separate small area 
within the larger one are all model based estimators. So often before we deal with internal 
consistency of the estimates to be published we have to decide which is the better estimator: 
the one derived from fitting the aggregate survey estimator or the sum of the separate small area 
estimators. In some eases both estimators are statistically alike and we do not have a problem. 
However, if the seasonally adjusted estimator of the aggregate is more accurate then we resort 
to calibration of the separate estimators. 

Now, the method we use for the Postcensal Estimation of the Number of Households 
yields the estimates of the number of households and of the mean square errors of the 
corresponding estimators. So we can evaluate which estimator is better, the aggregate estimator 
or the sum of the separate estimators E t, by looking at the coefficients of variations of the 
estimators at month 1 and at the error of closure at I = june 1991 (census time). 

If we decide for t and we have to calibrate there are two issues to be concerned with: 

to obtain calibrated estimators such that 

(jig,,nal consistency) 

and i is good in terms of bias and variance. 
the individual benchmarked estimators t should compare well with the separate model 
estimators t. 

Within the framework of the proposed model-based estimators, state-space modelling 
offer a natural extension to calibration. Pfeffermann and Burck (1990) used this technique for 
small area estimators to add up to the reliable design-based estimator of the large area, thus 
providing a robust mechanism to guard against model failure. 

The method that we propose is similar to that of Pfeffermann and Burck (1990) in that 
we consider the joint model of the domain estimators but we constrain them to add up to the 
model-based estimator of the union of domains rather than the design estimator. The expression 
of this model in state-space form is not straightforward because the model-based estimator for 
the aggregate is a contrast of the design-based estimators for all the previous time periods up to 
the current time I inclusive. 

With this set up, we derive two different calibration models, a wnonbindingw  model 
which yields optimal estimators under the model and a 'bindings model, which yields sub-
optimal estimators. 
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The following are the sameconsiderations for both methods. We assume that there ared 
individual domains which add up to the aggregate domain. The model for each individual 
domain i, I - 1,2,..., d, is 	

YYg +eg, 	 (.) 

where Y is the true number of households in domain I at month t, and for every domain 

. {d} follows a structural model; E represents the survey error in the design-based estimator 
of the number of households in domain i at month t. For every domain i, the survey error 
is assumed to be the sum of a random walk process and an autoregressive model of order 3. 
Thus, 	

(4.2) 

where L, S,, and i follow the same laws established for the trend levels, seasonal components 
and irregular terms in (2.2). 

The survey error model is given by 	
- b, + e. 	 (4.3) 

where bg  is as in (2.6) and e is an autoregressive process of order 3. At census times, the 
model has the added constraints, for every domain i, 

011  = 	 (4.4) 

The model for the aggregate is the following: let 

= It, + ... + yed 

be the true number of households in the union of all domains at time t; we assume that the sum 
of the separate trends L +... +L, separate seasonal effects S, +... 5M  and separate irregular 
factors I, + ... + I, represent the corresponding structural components for the aggregate process 
Y; and at census times we assume 

c1  = Y,, (4.5) 

where 
c, - C11  + ... + 	 (4.6) 

The aggregate survey estimate will be denoted by y,, and we do not necessarily assume that 

y, coincides with the sum of the individual domain survey estimates. As with the separate 

domains we assume 
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y11p41  - 	 (4.7) 

Let the state-space model for the individual domains be expressed as 

y - 

= 	 + 

with 
I 

Q1 - E(q1 . 

The state-space model for the aggregate estimator is 

V 
Jt 	t It 

yg  = T° y,_1  + ii,• 

with 
I 

Q• - E(i. iL) 

Note: for the estimation of the number of households, Z. and Z, are 1 xp vectors at regular 
months t ,and 2xp matrices at census times .t, whenthemeasurementvectorisy, 1  = 

where y 1  denotes the direct survey estimator of the number of households in domain i at month v 
and c 1  denotes the census number of households in domain i at month r. 

We propose a joint model consisting in the separate domain models plus a calibration 
equation: 

y - YgI  + Ed 	 (4.10) 

i=1,2,...,d, and either 

(4.11) 

or 
(4.12) 

where t, is the model-based estimator obtained from fitting (4.5) and (4.6) given the data 
(y1 , y2 , ... , y), and 6 represents the error in the model-based estimation of the true 

(4.8) 

(4.9) 
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number of households at time t. At census times r, the usual benchmarking equations (4.4) 
and (4.5) are satisfied. 

The model given by (4.10) and (4.11) yields optimal estimators and is non-binding; the 
model determined by (4.10) and (4.12) is binding and yields suboptimal estimators. 

We should note that (4.10) assumes zero correlation between the different domain 
components. This assumption does not necessarily hold. For example, given an approximate 
stable population, as the number of households of size larger than one decreases, the number of 
households of size 1 may increase. But when we have more than two domains (e.g. sizes 1, 
2 and 3 or more), the correlation structure could be intractable and thus is simpler to assume 
independence of domain estimators. 

In general, a linear constraint like equations (4.11) or (4.12) derived from adding up the 
information contained in the separate models, does not provide more information; but in our case 
equations (4.11) and (4.12) induce a correlation between the components of the separate domains 
and thus establishes effectively a "joint model" with implicit extra information about the 
relationships between domains. Hence the variability of the resulting estimators should decrease. 

In order to express the joint models in state-space form we let 
P E(y,D,) 

under (4.5) and (4.6), that is, 9, is the predictor of the state-space vector y, given the data 
D. under the aggregate model. Hence, 

•91 - Ti = U,0  T(9,_1 -Ti_i) - U,.ii,. 	 (4.13) 

where 
U,, Ii:p) -K1 ,Z,, 

and 

K,• = p,;,_ 1  2,0  iç' 

is the Kalman Gain matrix for the aggregate model. ffh isthe lxpvectorofzerosandones 
defined such that Y, h a. , where a. is the pxp state-vector corresponding to the model for 
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domain I, then 

- hig 	 (4.14) 

is the model-based estimator of Yg , with & - 	 Similarly, the model-based 
estimator of Y, under the aggregate model is given by 

(4.15) 

The state-vector for the joint models (4.10) and (4.11) or (4.10) and (4.12) is defined as the 
(d+1)pxl vector composed by the d state vectors . corresponding to the separate models 
plus the vector t, - 

	

/ 	/ 	I 	Ii 	 (4.16) 

The transition matrix T, is the (d+1)p x (d+1)p time-varying matrix defined by the separate 
transition matrices T' in the block diagonals and the matrix U,0  T°  in the last pxp elements. 
The transition error i, is defined by the (dp+2) x I vector including the d transition errors 
plus the transition errors of the aggregate model that correspond only to the survey error: 

- (q 1,..., ILig, hI.' i,•)'; 

and R, is an (d+1)px(dp+2) matrix such that Ri,[4+1: t+d] = -U, ii and 
Q = E[,.i] is assumed diagonal. 

The transition equation is the same for both models: 

	

at a 	
+ kqt 
	 (4.17) 

for every month:. 

43 OptImal Method 

The non-binding model (4.10) and (4.11) differ from the binding model in its 
measurement equation: 

(4.18) 
where 

and Z, isa (d+1)x(d+1)p matrix with the matrixes Z in the block diagonals, i=1,2,...,d and 
the last row, the 1 x (d+1)p vector defined by 
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- (h,h,_,k) 

where h was defined in (4.14). Let 	, denote the joint data set until time t, i.e., 
= D,u{y, ...,yg, i•!,..., i-1,_,d}. Equations (4.17) and (4.18) define a state-space model 

and the Kalman-Filter applied to this model will yield 
- E(cç/b,) 

that are Empirical Best Linear Unbiased Predictors (EBLUP's) under the model. 

4.4 Sub-optimal method 

The binding model defined by (4.10) and (4.12) can be expressed in state-space form 
and the measurement equation is written as 

YI - Z,oz, 	 (4.20) 
where y1  is as in (4.19) and Z 1  coincides with Z, except in the last p elements of the last row, 
which are set to zero. The difference between the two measurement matrices will be denoted 
by ZD  and it is a (d+1) x (d+l)p matrix whose elements are all zeros except in the 
last row, the 1 x (d+1)p vector defined by 

h,, - (0, 0, ... ,0, h), 

where h is the lxp vector defined in (4.14) and 0 represents the lxp zero vector. We should 
remark that even though the subscript t is not explicit in this measurement matrix, Z, also 
depends on time, being constant for regular months t and at census times r it coincides 
with Z. 

In order to fit the binding model defined by (4.20) and obtain unbiased predictors and 
correct estimators of their mean square errors we have to modify the Kalman Filter. The 
modified equations are described in Appendix H. 

4.5 Fmpirical Results 

We fitted the joint series of separate domain estimates using the optimal method. Table 
4.2 lists the range of coefficients of variation and errors of closure for each size. 
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Table 4.2 Ccnarion between the asoarate and loint modela 

Size XCV % XCV % soc % soc % 
(u.pa.rat.) (joint) (aeparate) (joint) 

1 3.92 3.00 -2.68 -2.73 
2 2.65 2.20 0.67 0.51 
3+ 1 	1.65 1 	1.40 1 	0.73 1 	0.70 

The estimates of the household counts by size obtained from the joint model are almost 
the same as those produced by the separate models but the coefficients of variation are much 
lower for the joint model. This indicates that in our problem calibration is advantageous not 
only for the sake of internal consistency and as a robust constraint that protects against model 
failure but for improved efficiency of the resulting estimators. 

The sum of the separate domain estimates E f- fr,, produced by the joint model is not 
exactly equal to the aggregate estimate 2;, since the optimal method is not binding. However 
the difference between the series {t} and {2;} is negligible and its respective series of 
coefficients of variation are also similar. Figure 4.4 is a plot of the estimated coefficients of 
variation for the three models yielding estimates E 2;, 2; and . 

A binding model would produce domain estimates that add up to the aggregate: 
Y 2;, and this would be convenient. However we seek accurate estimators and the 

binding condition introduces more variability in the resulting estimators. The formulas in 
Appendix II show the extra variance terms associated with the corresponding predictors. Hence 
the use of the suboptimal method is not advised. 

[Insert Figure 4.4] 
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Appendix 1 State Space Representation and Esthuation 

Li 	The State Space Model and the regular Kahn2n fliter 

Theclassofmodelsgivnby(l.l)and(2.1)to(2.6),canbeexpressedinacompact 
state space model, similarly to the model representation in Pfeffermann (1991). 

The series of observations will consist in vectors y of time varying dimension r,; T:  will 
usually double its size at census times when we add the constraining equations. The 
measurement matrix will therefore be of time varying dimensions, r1  X m where m is the 
dimension of the state vector and in all applications we will assume, without loss of generality, 
that the measurement errors are zero: any errors expressed in the model will be included in the 
state vector even if they are uncorrelaled over time, as done with the irregular terms I. The 
bias b, will also be included as part of the state vector. 

The state space representation of the models enables us to update, smooth or predict the 
state vectors at any given time: by means of the Kalman Filter. By NupdgN  wemeanthe 
prediction of the state vector at time r, based on all the data until time t. uSmoothingTM refers 
to the prediction of the state vector based on all the available data before and after time t. 
"I'rediction applies to postsample periods. 

We will refer to Harvey (1989) for the recursive Kalman Filter equations. The 
components of the state vector, the measurement matrix and the transition matrix are described 
with detail in Bleuer and Declos (1995), Appendix I. 

1.2 	Estimation of the model parameters and adjustments to the covariance matrix of 
the estimation error 

The coefficients of the transition matrix, the measurement matrices and the variance-
covariance matrix are usually unknown and have to be estimated from the available data. 
Assuming that the error terms in the model for {Y,} and the survey errors {E, } have a normal 
distribution, the unknown model paiameters are estimated by the method of maximum 
likelihood. 

Once the unknown model parameters have been estimated, the Kalman Filter is applied 
with the true parameter values replaced by the parameter estimates. Then the covariance 
matrices of the estimation error produced by the Kalman Filter underestimate the true variances 
because they ignore the extra variation implied by the parameter estimation. 

In order to correct for this under estimation, a modification of the Monte Carlo method 
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developed by Hamilton (1986) could be used. Recently Singh, Stukel and Pfeffermann (1993) 
pointed out that there is an imporlant term missing from the Hamilton (1986) approximation. 
The corrections based on Singh et al. (1993) should be considered. 

1.3 	Measures to Ev2h1fe the Model Performance 

Once the hyperparameters are estimated and the model is defined we fit the model to the 
different data series. The goodness of fit of the models is assessed with plots and diagnostic 
statistics based on the innovations or one-step ahead prediction errors in predicting the survey 
estimator y, at time r. Among them, the mean bias (MB) refers to the average of the 
innovations and the mean absolute relative (MARE) refers to the mean absolute relative error 
in predicting the survey estimators. For more details see Bleuer and Declos (1995), Appendix I. 
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Appendix IOU Modified Kbnn FUter Algorithm to fit the psido model (4.20) 

In an argument similar to that of Pfefferman and Burck (1990), let a denote the 
constrained predictor of a, •  as obtained at time t-1 using the pseudo model and let P, 1  denote 
the variance-covariance matrix of the errors 41 - 

We define 4-1  T, .i.  Hence the unconditional expectation of 	- a, is zero: 

E(4-a,) = E(T,a' 1 -T,ç..1 -R,i,) 

= 	- a,. 1 ) - R,E(q,) 

= 0, 

by the definition of a and the model assumptions on ,. The unconditional M.S.E. of 
- a, is given by 

= E((s_ - ç)(4_1 - 

= T,P,..1 7' + RQR,'. 

Now consider the innovation 

er  

Given that the utrueu model (4.18) holds rather than (4.20), we have 

e, = 

= Z,(a,-4_1) + ZDa, 

Where ZD = Z, - as defined above. Hence the unconditional expectation of the innovation 
is zero: 

E(e) = E(ZD Z,) - (0,E[h(t,-y,)]) 0, 

since by definition 9, is the EBLUP of y, under the aggregate model. 

We write 
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at = 4_ + (a-4..i) 

yt = Z 4j,.., + e. 

Hence the vector 

a, 

yt  

has mean 

4 ' 

Z, 4.. 
with covariance matrix 

It-I 
	Pt11_ 1 zp' + w,zi' 

Z, P,11., + jD 	F, 

where F. is the covariance matrix of the innovation 

F, - E(e,.e') 

= Z,P,,Z,' + ZD W ' ZP'  + Z,W,ZD  + I,, 

with X, defined as a (d+1) x (d+l) matrix whose elements are all zeros except the element 
(d+l, d+1) which is the variance of t, under (4.18): 

wzragg: 

and W, =E[(ç-4.,)s1. 
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Since 

W,-P,1,..1  

we have 

F, - ZP, 1 z,' +PtIt-I + x,, 	 (11.2) 

and hence the mean of a, conditional on y, or updated predictor of a, is 

= 	+ 

= 	+ Kilt. 

The covariance of a, conditional on 7,  or mean square error matrix of is 

Pt =  

= P, 1,_1  - K, Z, P 1,_1 	 (11.4) 

= (I - A; Z,) 

Thus the method yields unconditionally unbiased estimators but not optimal since the pseudo-

model (4.20) is not the correct model; we impose it in order to obtain domain estimators t,, that 

add up to the original estimator t, obtained from the aggregate model. 
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Figure 4.1: LFS Number of Households of Size 1 and Census Counts 
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Figure 4.3: Coefficients of Variation, Aggregate & Sum of Separate Domains 
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