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Abstract

Longitudinal survey data may comprise of ordinal polytomous repeated observations and a set
of multi-dimensional covariates, for a large number of individuals. One of the main goals of the
longitudinal survey is to see what happens to individuals or households over time. More precisely,
one may like to describe the marginal expectation of the ordinal polytomous outcome variable as a
function of the covariates while accounting for the structural (cross-sectional) as well as longitudinal
correlations. The structural correlations arise because of the polytomous nature of the response
variable, and the longitudinal correlations arise because of the repeatation of the structurally cor-
related responses over time. In this report, we develop a robust longitudinal correlations structure
based generalized estimating equations approach to deal with multivariate polytomous survey data.
This we do to analyze longitudinal survey data, such as SLID data collected by Statistics Canada.
Details are given for the construction of the mean vector and structural and longitudinal correla-
tions that are used in the development of the estimating equations. The regression estimates, that
is, the estimates of the covariate effects, are shown to be consistent for the corresponding regression

parameters.



Résumé

Les données d’enquétes longitudinales peuvent comprendre des observations répétées polytomiques
ordinales et un ensemble de covariables multidimensionnelles pour un grand nombre d’individus.
L’un des principaux objectifs de 'enquéte longitudinale est de voir ce qui arrive aux individus ou aux
ménages avec le temps. Plus précisément, une telle analyse peut décrire I'espérance mathématique
marginale de la variable de résultat polytomique ordinale en tant que fonction des covariables,
tout en représentant les corrélations structurelles (transversales) aussi bien que longitudinales. Les
corrélations structurelles apparaissent en raison de la nature polytomique de la variable de réponse,
alors que les corrélations longitudinales surviennent en raison de la répétition des réponses struc-
turellement corrélées avec le temps. Nous développons ici une approche généralisée des équations
d’estimation basée sur une structure robuste de corrélations longitudinales pour traiter les données
d’enquetes polytomiques multivariables. Cela nous permet d’analyser des données d’enquétes lon-
gitudinales comme les données de 'EDTR recueillies par Statistique Canada. Sont présentés des
détails sur la construction du vecteur des moyennes et les corrélations structurelles et longitudinales
qui sont utilisées dans le développement des équations d’estimation. Les estimations de régression,
c’est-a-dire les estimations des effets des covariables, s’avérent cohérentes pour les parametres de

régression correspondants.
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1 Introduction

Over the last few years, Statistics Canada has been conducting a number of large-scale longitudi-
nal surveys including the Survey of Labour and Income Dynamics (SLID), the National Population
Health Survey (NPHS). and the National Longitudinal Survey of Children and Youth (NLSCY).
In general, these longitudinal data are comprised of multi-dimensional repeated observations of a
vector outcome and a set of multi-dimensional covariates under each of many independent house-
holds or individuals. One of the main goals of the longitudinal survey is to see what happens to
households and families or individuals over time. More precisely, one of the main objectives is to
describe the marginal expectation of the outcome variable as a function of the covariates while ac-
counting for the structural as well as longitudinal correlations. In the multivariate set-up, there are
two types of structural correlations. First, at a given point of time, the multivariate responses for
an individual are correlated; and second, the responses of the individuals in a household or fam-
ily may be correlated. Next. the longitudinal correlations arise because of the repeatation of the
structurally correlated responses over a period of time. But, as there is no unique way to model
such structural and longitudinal correlations, the regression analysis becomes extremely complicated.
Further problems may be mounted because of the nature of the complex design used to collect such
multi-dimensional longitudinal responses, mainly under the situations when the composition of a
household or family changes over time.

In this report, we develop multivariate regression approaches for two types of longitudinal survey
data. In the first case, it will be assumed that a cluster or household is selected as the unit of
interest based on a suitable survey design. The data collected from the individuals of the cluster at
different points of time will be considered as a single multi-dimensional response. For simplicity, it
will, however, be assumed that the composition of the household remains the same over the period
of time, although the household sizes may be different. In the second case, the individual will be
treated as the unit of interest from the longitudinal point of view, and the data collected from the

individual over a period of time will be considered as a single multi-dimensional response. Further, it



will be assumed that the longitudinal survey data is complete. The problems of variable households
composition over the period of time, as well as the problems of missing data, if any, will be dealt
with in the next report.

The specific plan of the report is as follows. An overview of the recent longitudinal surveys
conducted by Statistics Canada is given in Section 2. The weighting issues for the longitudinal
surveys is described in Section 3, necessarily in a brief, overview format. In order to analyze the
longitudinal survey data, Section 4 deals with the formulation of the problems in a regression set-up,
in the context of SLID data, for example. Survey weights based estimation steps are provided in
the same section. The computational formula for the standard error of the estimator is also given in
Section 4. In Section 5, we provide the rationale for the estimating equations that we have used in
Section 4. Details are given for the construction of the mean vector and structural and longitudinal
correlations that are used in the development of the estimating equations. We conclude the report

in Section 6.

2 Longitudinal Surveys by Statistics Canada

A few years ago, Statistics Canada has begun several large-scale longitudinal surveys, such as
SLID in 1993/1994, NPHS in 1994/1995, and NLSCY also in 1994/1995. The basic objectives of
these longitudinal surveys is to see what happens to households and families or individuals over time
in different contexts.

More specifically, the Survey of Labour and Income Dynamics (SLID), for example, is a longitu-
dinal survey of households or individuals designed by Statistics Canada, to measure the changes that
take place in the level of socio-economic well-being of the individuals. The sample for this survey
was selected in 1993, which is divided into two ovelapping panels that remain in place for a period of
six years each. The collection of the first wave of data (i.e., from the first panel) began in 1994 and

the second wave was introduced in 1997. Each panel consists of 15000 households (approximately



40000 individuals). A new panel will be subsequently selected every three years to replace the older
of the two panels. Every year, information is collected on the panel members’ labour market activity
and income during the preceeding year. In this problem, it may be of interest to determine (1) the
causes of movement between unemployment and employment by looking at the spells of unemploy-
ment and characteristics that one may relate to the length of those spells; (2) what are the measured
variables that explain marriage duration; and (3) the distribution of lengths of welfare spells and to
determine what factors do affect such spells. Some common characteristics those may be related to
the unemployment spells, the marriage duration, and the welfare spells are age, sex, income, and
the education level. The main purpose of such longitudinal study is to examine the effect of the
characteristics or covariates on the responses, namely, on the unemployment spells, the marriage
duration, and the welfare spells.

Another large-scale longitudinal survey undertaken by Statistics Canada is the National Popu-
lation Health Survey (NPHS). This survey is designed to collect data from a longitudinal sample of
respondents about their health status, the use of health services and medications, and their life style
as well as their demographic and economic information. The results from this survey will help to
understand, among other things, the relationship between health status and health care utilization,
including alternative as well as traditional services. The first 12-month cycle of data collection began
in 1994 from a sample of about 26000 households. From each household, one person aged twelve
vears and over was selected for an in depth study and became part of the longitudinal panel. It
was decided that the data will be collected from this panel every two years for two decades. Thus,
Statistics Canada currently has two waves of data under this NPHS.

As far as the National Longitudinal Survey of Children and Youth (NLSCY) is concerned, Statis-
tics Canada has already conducted two waves of survey in 1994-95 and 1996-97. The sample consists
of 23000 children. Their age range from newborn to eleven years old. The survey will be repeated
at two-year intervals to follow these children as they grow to reach adulthood. This survey covers a

braod range of characteristics and factors affecting the growth of children and development



For an overall idea about the nature of the SLID, NPHS and NLSCY and other longitudinal
survey data, we refer to Statistics Canada reports, for example, prepared by Lawless (1997), Latouche
and Michaud (1995), Hapuarachci (1996), and Tambay and Catlin (1995). Latouche and Michaud
(1995), in particular, discuss different steps involved in collecting SLID data, which is helpful in
developing both cross-sectional and longitudinal survey weights. Similarly, Tambay and Catlin
(1995) discuss the data collection steps for the National Population Health Survey (NPHS). But,
there does not appear any adequate discussion to analyse such longitudinal survey data. This
report is one step toward the methodological developments for analyzing the longitudinal survey
data collected by Statistics Canada. More specifically, in this report, we develop a multivariate
polytomous ordinal regression approach to analyze the longitudinal survey data, for example the

SLID data.

3 Weighting Issues for the Longitudinal Surveys

The SLID, for example. follow individuals and households, tracking their labour market activities
and changes in income and family circumstances. To begin with, SLID sample was a subsample of the
Canadian Labour Force Survey (LFS). The LFS uses a multi-stage stratified sample design based on
an area frame with dwellings as ultimate sampling units. SLID actually follows individuals through
time, but household characteristics are also of interest. Consequently, the use of a complex survey
design combined with cross-sectional expectations complicate the different steps in the weighting
process. Lavallee and Hunter (1992) have addressed the problem of making the SLID longitudinal
sample representative for cross-sectional estimation. These authors have discussed the determina-
tion of the basic weights for the SLID sample, as well as their nonresponse and post-stratification
adjustments. The problem of determining the basic weights, for the purpose of cross-sectional esti-
mation, is complicated by the fact that cohabitants and new entrants can be part of the sample at

any wave of interviewing by joining a longitudinal household.



In the present report. we. however, concentrate mainly to the longitudinal estimation. Thus.
we consider those individuals who are assumed to be in the sample for the complete duration of
the survey, with some possiblities that some of the individuals may be missing from the survey
oceassionally or for ever. This later problem of missing responses will be dealt in the next report.
IFor simplicity, we now assume that the survey weights for the longitudinal individuals are known,
jor example, from Lavallee and Hunter. Let w;,- denote the survey weight for the ith (i = 1,...,71)
individual, which may depend on the sample s*. say, from an appropriate finite population. In
the present approach, the information collected from an individual over the period of time will be
¢considered as a single piece of multi-dimensional information.

Inn some situations, it may be convenient to deal with the longitudinal households as the units of
irtarest. In such cases. the information obtained from the individuals of the household over a period
of time will be considered as a single piece of multi-dimensional information. Here, in general, the
mmmber of individuals may vary from household to household. Let wy,- be the survey weight for
the hth (h = 1,..., H) household, which may depend on the sample s*.

We note here that the longitudinal survey weights are usually choosen in such way that the
smnupling design provides consistent and asymptotically normal estimators of certain population

torale, and associated standard errors.

4 Analyzing Longitudinal Survey Data

We now proceed to develop a regression methodology to analyze the longitudinal survey data
described in the previous secions. For convenience, we discuss the methodology in the context of
SLID data. Note that each of the responses of this SLID data can be categorized into more than two
ordinal groups. For example, the unemployment spells can be divided into ordinal groups such as
(13 months, 3-6 months, 6-9 months, .... and so on. The individual response at a given year will fall

into any of thess ordinal groups. As the data are collected longitudinally, the responses of the sanie



individual for another year may fall into the same or any other group. This clearly demonstrates
the need for the development of multivariate regression methods for polytomous ordinal data, which
we describe below.

4.1 A Multivariate Regression Approach

Suppose that, attached to all units of a finite population of size I, we have measurements (z,,y;)
made on a matrix of covariates, X, and a response vector, Y*. More specifically, at a given year t,

&7

73 T
i L - »
BEYS = [V ... Y ... .Y,

i1, |7 represent the response vector for the ith individual, where Y}, is
a (J, — 1)-dimensional polytomous response vector for the ith individual, corresponding to the rth
(r =1,...,s) variable. For SLID data, consider ‘unemployment spell’ as the first response variable
(r = 1). Now, if the response of the 50th individual, for example, at year t = 2, is considered to fall
into any of the 10 ordinal groups (say), then Yy, ; is the J, — 1 = 9 dimensional response vector
containing one 1 and 8 zeros, and so on.

Next, suppose that Y;" = ( ,-'IT, S g ,-:T, G ,-}-:)T is the combined response vector for the ith
individual collected from Tp number of years. Further, let X,;, denote a p-dimensional possibly
time dependent marginal covariate corresponding to the tth (¢ = 1,...,Tp) time and rth (r =
1,...,s) variable for the #th (z = 1,...,I) individual. Let 3. be the covariate effect of X;;, on the
(J» — 1)-dimensional response vector Y;;, and 8 = (37 ,...,87,...,87)T denote the p}_>_,(J, — 1)-
dimensional vector of all regression parameters.

Let pu; = (u;l‘r,..u#{:,-..,u;-’;o)'r denote the expectation vector of ¥;*. Also let X}; denote
a working covariance matrix that represents both of the structural (due to the multi-dimensional
nature of the response) as well as the longitudinal (due to the repeatation of the response over
time) correlations for the ith individual. The purpose of the proposed regression methodology is to
estimate the regression effects 3 after taking the sampling design (discussed in Section 3), as well as

the above structural and longitudinal correlations of the responses, into account. The construction

of the u}(3) vector and the ¥} matrix is discussed in details in Section 5.



4.2 Estimating Equations

Note that in the present set-up, we do not observe values for all the population units but only for
those in a sample drawn from the finite population according to some well-defined sampling scheme.
We are interested in estimating 3 and testing certain hypotheses about 3.

Suppose that, if we had values for the whole finite population, we could obtain a consistent

estimator of 3 by solving the estimating equations
5*(8)=) uj(8)=0 (4.1)

wlere u!(3) has kth (k = 1,...,p. say) component u;,, say. Further suppose that the sample design
provides consistent, asymptotically normal estimators of population totals, and associated standard
errors. Then, since S*(3) is a vector of population totals for fixed 3, similar to Rao, Scott and
Skinner (1997), we can produce an estimator of S*(3) as

§*(8) = Y_ wipeuf (8), (4.2)

1€8*

where the survey weights, w;,., may depend on the sample s*. This approach was suggested by
Binder (1983) for generalized linear models and any survey design. Note that although it is not
essential, it is helpful to have some ideas about u}; in the finite population level. We show in
Section 5.1.2 that under the special covariance structure X ., the u, (3) vector in (4.1) or (4.2) may
be expressed as

ui(8) = W B (Y - 11 (8)), (43)
with W,»‘T = 9(Y;* — ul(3))T /33, showing u}, (3) as the kth component of the ith individual, at
finite population level.

Finally, the sample estimator, B, is obtained by solving S“(,@) = 0, where

5(8)

Z Wige u: (B

ies®

= 3w WS (45 - w5 (). (4.4)

1E8F



Note that it is customary to obtain 3 from S$*(3) = 0 by using the well-known Newton Raphson

iteration method. Given the value 3(m) at the mth iteration, ﬁ(m + 1) is obtained as

Blm +1) = fm) + [FAIL" | 3w WSV = uiB)] (4.5)
where
a8* duz(B)
FiB)srer = Zw"‘W

tex®

= 3w W TTIW;, (4.6)

with W* = Bu:T(ﬂ)/Bﬁ as in (4.3), and [.],, denotes that the expression within the brackets is

evaluated at 3(m).

4.3 Asymptotic Properties of 3

Under suitable conditions [cf. Binder (1983) for details, see also Rao, Scott and Skinner (1997)], 3

is asymptotically normal with mean 3, and cov([?) can be consistently estimated by
V(B) = [FB)" Ve (BIF(B)) ", (4.7)

where F(3) is given by (4.6), and V,.(3) is the estimated covariance of $*(3) under the specified
survey design evaluated at 3 = 3. Note that V,. (B) may be obtained from the standard survey
variance estimator for a total since $*(3), given in (4.2), is the estimator of the total §*(3) given

by (4.1).

5 Details on Methodological Development

In this section, we describe in details how to compute the vector and matrix components necessary
to contruct the estimating equations (4.2), for example. We, however, first, discuss the rationale for

the use of such estimating equations in the context of longitudinal survey data.



5.1 Estimating Equations

In this section, we discuss the rationale for the estimating equations for two types of sampling units
from longitudinal point of view. Although, in Section 4, we have introduced the estimating equations
for 3 for the case when individuals are units of interest, we, however, first, consider a general case
where a household is the unit of interest from longitudinal point of view. In this case, information
obtained from the individuals of the household over a period of time is considered to be a single
multi-dimensional information. Second, we consider individuals themselves as the units of interest
from longitudinal point of view. In this approach, the information collected from an individual
over the period of time will be considered as a single piece of multi-dimensional information. The
second case was discussed in Section 4, which may be obtained from the first case by using the single

membered household in place of the households with variable sizes.

5.1.1 Cluster or household as the unit of interest

Suppose that. attached to all units of a finite population of size H, we have measurements (z, ys)
made on a matrix of covariates, X, and a response vector, Y. We assume that for a given value of

X, Y is generated by a random process described in Section 5.2 and 5.3, with mean vector

E(Y) = pin = p(Xn, 8) (5.1)

and suppose that we have in mind some working model for the covariance matrix, say
Var(Yh) = Buh = 2-:u'(ll'h) (‘52)

fan he="1% SH
Now by similar arguments as in Section 4.2, we could obtain a consistent estimator of 3 by

solving the estimating equations

H
S(8) =Y un(B) =0, (5.3)
h=1



provided usyx, the kth component of u,(3), is a distinct component for the hth household at the
finite population level. Further, since S(3) is a vector of population totals for fixed 3, similar to

(4.2), we can produce an estimator of S(3) as
S58) = whe-un(B), (5.4)

hes*
where the survey weights, wy,-, may depend on the sample s*. We now explore the nature of the
components of u,(3) at the finite population level. In the next section, we will similarly explore the
in depth nature of u}, (3) at the finite population level. This v}, () was used in (4.3) to construct the
estimating equations for 3. for the case when individuals aresconsidered to be the units of interest.
s

Suppose that form = 1,....nx, phm is the Z(J, —1) % Z(‘]’” — 1) structural correlation matrix
for the mth individual of the hth household.r:}llere we ha\rr:lassumed that the rth (r = 1,...,s)
ordinal variable has J, categories. The modelling for the p,, matrix is discussed in Section 5.3.
We further assume that ¢ is the cross correlation between any two individuals in a given household.
This structural correlation is usually referred to as the familial correlation. Next, suppose that «
denotes the correlation between any two values collected at two different time points for the mth

individual of the hth household. If the data is collected for Ty times for a household, then the
L] 8

nnTo Z(Jf - 1) x npTp Z(‘I’ — 1) working correlation matrix for the Y} vector defined in (5.1),
=l r-1
can be written as

@ = conn(y )

B M . g
» IR SR T L (5.5)
0 0 Dy,

where d = n; Ty Z(J, —1), 1, is the d-dimensional unit vector, and for all t = 1,...,Tp, Dy, is the

r=1

10



"y Z(Jr - 1) % ny Z(J, — 1) matrix given by

res| riem|
pmy 9la, 15 o @117
o .
D= Al Olals, | _ a1,17, (5.6)
Phn,,

s S
with dy = Z(J, <llida = 4 > (Jo = 1) = npdye In (6.5) Yy = {Y.,.. ;Y7,... .V |F with
F=l r=1
R o Bl i Y | Wilhiete Yo = (Yoot oo Yiimr - oo+ Viemals Wikh Yiem, as the
i./, — 1)-dimensional polytomous responses for the rth (r = 1,...,s) variable. It now follows from
Bl

('_‘l“’,: = D;] - {o/n(a)}D;'ld]ZD;l,

whare n(a) = {1 +a1] Dy1,}. and where D;' = &Dp}! (t=1,...,Tp).

Next write,

S = Yne — pne(B)
: T T
S < lghl""’sht""'shlo] 0

=y I 2 ek
‘\“uh = Ahzcu'hAh »
where A, = @4, with 4, = cov(Yy). Also write

- -3 -1
S = Ah}Dht’

W 23_{_)
as

= ("VhTi,...,‘V;‘I;y-"vw;xr'ro)'

where W/ is the p x ny, Z(.], — 1) matrix. Now using u,(3) = VV,T}:;,’,S,,. the estimating equation

ras|



(5.3) may be written as

[\j]:

S(8) ()

>
Il

H
= Z VVZZ;,}'S;,
h=1

To

> Wilisn =0, (5.7)

L ¢l

™=

-
Il

To
where §p; = B,:,’ Sht — als 4 Z B,:Ulshv , yielding
n(a) &=
To
unk(B) = Z W/likShes (5.8)
t=1

s
where W/, is the kth (k = 1,...,p) row of the p x np, E(J, — 1) matrix, W[,

The above computations show that in order to use trh:f'] design weights for the inference about 3,
it is essential to assume that for given 3 at the finite population level, there exists p-components of
a vector u,(3), where the kth component is defined by (5.8). One then includes the u,(3) vector in

the sample s* with weight wpe- as in (5.4).

5.1.2 Individual as the unit of interest

In many Statistics Canada longitudinal survey data, in particular in the SLID data, the individuals
are considered as the units of interest from the longitudinal point of view. This is because due to its
dynamic nature over time, the household is difficult to use as a tool for longitudinal analysis, even
if it corresponds quite closely to the sampling unit [cf. Latouche and Michaud (1995)]. Moreoever,
the individuals in the longitudinal sample help create new households by leaving or welcoming new
members into their original households. Consequently, it is much better to use the individual as
the unit of interest from the longitudinal point of view. Note, however, that over the duration of

the longitudinal survey, the individual may not be available at certain points of time, which may

12



introduce missing observation. If this happens, the estimating equations should be constructed
by taking this missing nature of the data into account. But, in the present report we develop
the estimating equations under the assumptions that the longitudinal data is complete. Thus, if
the 7th individual is assigned design weights w;,. say for his/her inclusion in the sample s*, then
ihz individual stays in the sample over the whole duration of the longitudinal survey. We now
eapcentrate back to the construction of the estimating equations for 3 in this case when individuals
wr¢ units of interest.

I fact the estimating equations in this case follow from the estimating equations (5.6) and (5.7)

H

b =onsidering ¢ as a redundant parameter, and substituting h by 7 and H = Z ny for ny = 1 by
/. This means that the estimating equations developed in the last section rm{tile« to the required
estimating equations for this case when household is treated as the individual, and the number of
ndividuals is denoted by I instead of H.

Sinilor o (8.3), we e write the astirnaling equations for 3 as

S =N ul(B) =0, (5.9)
|

and develop a suitable estimator of S*(3) as

STEY = \ u‘,.-u_'(‘.f"), (5.10)
o
where wg,- 18 tha surver waight for tae #ih Individual, which may depend on the sample s*. These

sguations (5.9) and (5.10) are the same as (4.1) and (4.2), respectively.

Following (5.7}, the estimating equations (5.9) may be re-written as

I
§°(8) =Y W BL (Y - ui(B) =0, (5.11)
=1
whare Y,* is now given by ¥," : .’Y,';Z ..... Y,;r ..... \,',I )T, with Y} = )',;,T ..... X;, ..... ):::“r.

where Y3, is the (J, —1)-dimensional polytomous response vector for the ith individual, correspond-

ing to the rth (r = 1,...,s) variable.

13



In (531), 5 is the d* = d" working covariance matrix with (° =

may be expressed as

whare Cop = &Dy + ol 415 is obtained from (5.5) by putting ny,

is the d| x d; matrix with o,

L

reduces to dy as iy, = 1. Also in (5.12)

12 Ve (U

o O 0
0 0 1‘]

where V3 is assumed to be the d; x d; covariance matrix for the 2th individual at time §

To )

=1

L il s,

ISRANE RAERET)

construction of the V3 matrices for ¢ T 1o is shown in the next section
Now by similar arguments as in the last section, one ¢an uge the o
5°(13) SO R
V’ !V
BN ; =
L ST
1=1 1}
I
= ; g (97,
.
i=1
\’:L‘?(iillﬁ
T¢ .
* = e
u, (3) = E W, s*u
t=1
where
To
A o LR
% . =
w1t Sit — 7 [}.1 Tiu
n* &) ;

b

cm redundant

yAal I

1). This matrix

(’Fl. 12)

d =d". Waie

wer and de
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el

with B, = V,;"§D,-';1. st =yl — uh(B), and s} = [sly ..., s ,.,,.s,‘;o]r. In (5.15), W3 is the
s

p X Z(J' — 1) matrix obtained from

real
7
n ds?
WA = -
i

—u rtT ‘T *
= (M) ;... . W ).

Hence, in order to use the sampling design based estimating equations approach, it is essential to
assume that for given 3, there exists p-components of a vector u}(3) at the finite population level,
where the kth component is defined by (5.15). One then includes the u} (3) vector in the sample s*

with weight w,,.. for the ith individual, as in (5.10).

5.2 Construction of Marginal Expectation and Covariance Matrix

As mentioned earlier, in this section we concentrate only to the case where individuals are
units of interest from the longitudinal point of view. Thus, we discuss the construction of the
marginal expectation, u!(3), and the covariance matrix X7,. Note that the construction of the
working covariance matrix 7., requires only the construction of p,; matrix in (5.13) and consequently
V;; = A,; matrix in (5.14).

5.2.1 Construction of the expectation

Recall from (5.11) that y; is a Tp Z(J, — 1)-dimensional response vector for the ith individual.
=1

= -T i T 5 ‘T T ‘T ‘T & .
Bhatis gt SR Ul o tin s with ¥ = fuky s Ul e - - o Yits]T s U, Deing the
(Jq — 1)-dimensional polytomous response vector corresponding to the gth (g = 1,...,s) variable.

The expectation of Y;* is denoted by uf(3) in (5.11), which may be expressed as

- ‘T ‘T
u(B8) = oo i) (5.16)
aghiexe. ‘for ti="1. ¥ T,
)T

"y _ & ‘T ‘T ‘T
By = (B3, - - “rtargr 1 Pigs
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with
Bitg = (Bitris - -y Bitgigr s Ilitq(_]q_.]))T

In the present set-up, Yiq;, is an indicator variable such that Yiiq;, = 1, if the gth (g =1,...,5)
response of the ith (z = 1,...,7) individual at tth (¢ = 1,...,Tp) time falls into the jsth (j; =
1....,Jq — 1) category and zero otherwise.

Note here that although we observe the response ysq;,, this response is, however, made based
on the outcome of an ordinal categorical variable which we will denote by z;,4. More specially, for
o= . 0,0,

Pr(Yitq;, = 1) = Pr(zisqg = Jg)» (5.17)

which, for j, = 2,...,J;, will be obtained as
Pr(zttq = ]q) = Pr(zitq < ]q) T Pr(zitq = jq o1 1)= (5']8)

where ‘Pr’ stands for the probability. The probability given by (5.17) will be denoted by 145, and
the cumulative probability, Pr(ziq < jq), will be denoted by P4(..., jg,...) which in the present

case will be obtained as

Pilq("'squ'”) ‘i Pr(zitlSle---yZu(q_l)SJq-l,

Zitqg < qu Zit(q+1) < Jq+1v~~szizs < Js). (519)

For convenience, we denote this cumulative probability in (5.19) by Pi¢g(J,).

Further note that in order to construct the estimating equations in the multivariate set-up, we
will require the correlation matrix for these s variables, which in fact is computed based on all
possible collapsed bivariate frequency tables. For the purpose, let us denote the joint cumulative

probability for the two variables, say ¢ and r, (g # ) by Pi¢(¢r){(Jq,Jr). That is
Pyl dr) = Pr(Zus £ ..., Zigq-1) < Jg-1:Zitqg < Jo»
Ziigr) g1 5 Dy~ TS Ir Nodir < Jirs
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Ztt(r+l) S Jr+lv---yzits < Js) (520)

We now concentrate back to the modelling of the marginal probability ji.4;,. Since the logistic
regression is most frequently employed to model the relationship between a binary outcome variable
and a set of covariates [cf. Pregibon (1980), Prentice (1976)|, after some modifications, we may also
use it for modelling the polytomous response variable. Similar to Williamson et al (1995), we consider
two types of covariates, say marginal and association covariate. Let X, denote a p-dimensional
possibly time dependent marginal covariate corresponding to the tth (f = 1,...,7p) time and qth
(g = 1,...,1) variable for the ith (¢ = 1,...,7) individual or subject. The analogous association
covariate will be denoted by X, (say). It is assumed here that the association covariates are not
dependent on the variables, rather they depend on the individual and the time when the responses
are collected.

We first model the cumulative probability Pq(jg) for the gth (¢ = 1,...,s) variable by using

the polytomous logistic regression

P:tq(jq) = PT(Zuq = jq)
2q J.,
= Y exp{XioBei}/ Y expiX].0, ) (5.21)
Jq= Je=1
for jo = 1,...,J,, where 8,;. (jo = 1,...,J;) is a p-dimensional regression parameter vector. Note

that without any loss of generality, we may assume that 3,y = 0, for all ¢ = 1,...,s. Now the

marginal probabilities or expectations for the gth variable may be written as

Hitql = Puq(l);
Hitqjq = Pitq(jq) o Pitq(jq ¥ 1),
for jo=2,...,J5—1, and
Hitq, — L= th(']q = l)y (5'22)

7



where the cumulative probabilities are as in (5.21).

Next let

1 T T R o
Bg = [ﬁql7‘“7/3qqu"'v3q(Jq—1)] s

and

8. = [aRe .

s
where 3, and 3 are the p(J, —1) and pZ(Jq — 1) dimensional parameter vectors, respectively. The
g=1
purpose of the report is to obtain the estimates for 3, say 3 and the estimate of the variance of 3,

say v(,é), which we have already given in Sections 4.2 and 4.3.

5.3 Structural covariance (at a given time)

In this section, we construct the covariance matrix of Y} = | ,},T,....Y,;:,...,YJ:,...,YJ:]T,
where Y;j, (¢ = 1,...,s) is the (J; — 1)-dimensional random vector corresponding to the gth variable,

at time t. Let V;}, as in (5.14), denote this covariance matrix, i.e.,
Vii = cov(Y}) (5.23)

s S
which is a Z(Jq —1)x Z(Jq — 1) positive definite matrix. For convenience, we first construct the

g=1 q=1
covariance matrix between any two variables, say g and r. Denote this covariance matrix by

] n:q
it(qr) = COV v
itr

Vit(qq) Vit(qr)

V,"{iqr) Vit(rr)

(5.24)
Here Viy(4q) is the (J; — 1) x (J; — 1) covariance matrix for the gth variable, which is given by
Vitey =  diaglpitqrs. .., Mitgjes- - - s Bitg(sy—1)]
~Bioghiegs (5.25)
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where pj,, = [Bitq1y - - - 1 Mitg( Jv_l)]T is the (J, — 1)-dimensional marginal expectations vector with
its components as in (5.22).

Note that as opposed to Vjy(4q). the construction of the V() matrix, for ¢ # r, is not easy. This
is because, these covariance computations require an extra modelling for the association between two
dichotomized variables. More specifically, we write the (j,, j-)th element of the covariance matrix
Viter) 88

Vit(gr) = Sitigir — Hitqiqbitri, s (5.26)

where
i s = (A, =2 ol =)
Rt(qr)(jQ'j") F Plt(qr)(jq = ],j-,- - l)

= Pi(gryUgs 3r = 1) = Piegry(iq — 1. Jr), (5.27)

by (5.20). Now the modelling of the cumulative probability Piy(qr)(Jq,jr) requires the correlation
structure between a pair of correlated binary variables, say Tiq,, and T, be known. These

correlated binary variables are defined such that
Pr(:ritqjq L lsTitrjr B 1)
bl Pr(zitq S qu Zttr S ]r)

= it(qr)(jq! jr)a

which are easy to interpret based on the 2 x 2 contingency table [cf. Molenberghs and Lasaffre

(1994)]
Titrjy
1 0
Tiqu, 1 Z:tq S jq' Zttr S jr thq < jgy Zt'tr > jr
0 Zatq > ja Zitr S jr Z:tq > jq- Zitr > jr

(5.28)
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obtained by dichotomizing the J,x J, contingency tableat (jq,7-), J¢ = 1,... Jg=1,3, = 1,...,J;=1.

For this g # r case, cumulative probabilities corresponding to the cells in (5.28) are

th(qr) (jq»jr) Ptl-q(jq) = Pit(qr)(jq;jf) (5.29)
Rtf (JT) [— -Pit(qr)(jqxjr) = Pitq(jq) - -Pitr(jr) - Rt(qr)(jq' Jr)
L J4
where Pj,(jq) = Z Pitigry(dgs Jr ), and Py (4:) = Z Piy(qry(Jq, 3r). Many authors [cf. Dale
Ir=1 ],,=l

(1986), Molenberghs and Lesaffre (1994), Williamson et al (1995)] have modelled the association
between Ty, and T, by using the global odds ratios and then computed the joint cumulative
probabilities P;;(4,)(jq. j-) based on known global odds ratios. When global odds ratios are unknown,
which is usually the case, they are estimated through an additional suitable model. In the present
approach, unlike these authors, we model the association between two variables by using the well-
known Pearsonian type correlations. We consider two cases. First, under the assumption that the
correlation structure for the appropriate dichotomized variables remain the same for all individuals
i =1,...,1. We also consider the case when the correlations structures may be different. In the
latter case, we model the correlations by using two approaches as discussed in Section 5.3.2.

In general, it follows from (5.28) and (5.29) that the bivariate cumulative probability Pi(g,)(Jq. Jr)
in (5.27) may be computed by using its relationship with the Pearsonian correlation, p:,jq ;,+ between
the dichotomized variables Tjtq;, and Ti,;,. More specifically, P,y(4r)(Jq,J-) may be obtained from

Pis(gr)(Jq, Jr) — Pitq(Jg) Pitr (Jr)
{Puag ()1 = Pag (i)Y { Prr () (1 = Pas G)}R]

where, for j, = 1,...,Jg — 1; 3, = 1,...,J; — 1, Pyg(j,) and P, (j,) are the marginal cumulative

Pities. = [ (5.30)

probabilities given by (5.21). For known (3, these marginal cumulative probabilities are known.
Therefore, to know the bivariate cumulative probability. one needs to know the correlation structure

through p;‘,jq .- We consider the following two cases.

5.3.1 Identical correlation structure for individuals

Note that the correlations in (5.30) between the two correlated binary variables appear to vary among

individuals (: = 1,...,I). It is, however, common in practice to assume that these correlations
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remain the sanie for all independent individuals. For example, we refer to the cluster regression
analvsis for the repeated discrete or continuous data by Liang and Zeger (1986), and a more recent
study by Lipsitz and Fitzmaurice (1996). In these studies, the association between the repeated
isinary responses, for example, are considered to be the same for all individuals, although their
means and variances are generally different for individuals. In this section, in the spirit of Liang and
Zeger, Lipsitz and Fitzmaurice, we assume that the correlations of the dichotomized variables remain
the same for all / individuals. Consequently, we may pool the information from all I individuals
and estimate the connnon correlations by using the formula

e oo ] i H(Titgsy = 1. Tierj. = 1) = th(jq)’sitr(jr)
S 1P = PagG) Y Par ()1 = Par ()} ]

(5.31)

whicre f-"‘,,,,(jq ) and l-",,( J») are the estimates of their respective cumulative probabilities, which are
computed by using 3 for 3 in Plo [ anid B, [5,), ﬁ being a suitable estimate of 3.

Further note that since E(I(Tq;, = 1, Titr;, = 1)] = Piy(gr)(Ju. Jr). it follows from (5.31) that
for farge I, py; ;, are consistent estimate of p; ;, , provided 3 is a consistent estimate for 3. The
consistency of J for 3 was discussed in Section 4.

We also note that for jo = 1,....Jg -1, j, =1,...,J, = 1, j, ; in (5.31) should satisfy the

rastriction

Lisir < Bligie < Ufiose (5.32)
where
[-'?_;,,_;, = max [—{(Pitq(jq)f)itr(jr))/(éitq(jq)éitr(J'r))}%»
“4(Quaio)Qitr )/ (Prtq Ui Prr G N}
and

(;"‘.’",'_7' . n”“ [{ f).'ll (7/ )((:)r!q(_"q )/ PIY.![(.)(’)Q;LI ()I )}]“:

i}



(Pitq )/ Pur (ir)Qutq i) ¥

with Q,tq( §) =1 - Pu,, (Jg). and Qitr(Jr) = 1 — Pir(jr). Note that these restrictions are necessary

to have the covariance matrix under construction as a positive definite matrix.

Now by using 47, ; from (5.31) for p} in (5.30), we compute the estimate of Pjqr(jg, jr) @s
e BIVE ariJg
. = o 3 e . 4 1
Pityr(0a:3) = Fug0g) P (3:) + py 5, [{Pﬂq(.?q)(] — Pitg(4q))}?
><{[sltr(jr)(l _13121‘(.71'))}%] L] (5.33)

vielding &, 5, by (5.27) and the estimate of covariance in (5.26) as

]-‘.7“\1].7 )f.,}rp Sl = £ftjqu 5 ﬂilqjqﬂitrjr' (5'34)

We have thus constructed a suitable estimate for the covariance matrix Vy(qr) in (5.24). By using
this Vig(gr) and Viy(qq) from (5.25), one may then compute it(gr) DY (5.24), which is the covariance

matrix of [Yi‘T Y,}:]T. By (5.25) and (5.34), one may however directly write the covariance matrix

tq ?
Te = sov(YE) (5.23) as

Viertry Vidwai s <& Visiie)
e Visey - Vgl | (5.35)
":t(ss)

5.3.2 Variable correlation structure for individuals

For the cases when the correlation structures vary for the individuals, one may attempt to model

the correlation structures in different ways. We discuss two approaches below.

Approach 1. In this approach, first, similar to Williamson et al (1995), we separate the association
covariates from the marginal covariates. As mentioned in Section 5.2.1, the association covariates

will be denoted by X, ,). That is, Xj;(,) is the possible time dependent association covariate vector

2
2



of dimension p*, corresponding to the time? for the ith individual. Next, similar to Darlington (1992)

, one may model the correlations of the standardized residuals of the two dichotomized variables as
P:t'jqu = exp{X;{(a)n}/[l + exp{X;‘f(a)n}], (5.36)

which is a simple logistic representation of the correlation with dependence on covariates that vary
from individual to individual, and possibly from time to time. This modelling, therefore, does
not allow any negative correlations between the residuals of the dichotomized variables T;,q;, and
Titr;, . explained in the previous section. In (5.36), n is a p*-dimensional parameter vector. Note,
however, that the marginal and cumulative probabilities are defined as before in terms of the marginal
covariate Xy, For known 3, the correlation of the residuals in (5.36) is the same as the correlation of
the dichotomized variables in (5.30). Consequently, by using (5.36) in (5.30), the bivariate cumulative

probability reduces to
P:-t(qr)(jfhjrln) — P“Q(jv)Pitr(jr)

+{GXP(X“Tt(a)TI)} {1+ exp(X,T,(a,n)} =

x{Putg(Ga)(1 = Putq(3a))Pur (3)(1 = Pier (i)}, (5.37)
yielding the joint probability
itgrlgsdrlm) = PlgryUgsdrin) + Piygry(ig = 1,3r — 1in)
= Piyary(de — L drim) — Piiioryldgs 3r — 1lm). (5.38)

At this stage, we are interested to estimate 5 only. Now for known 3 = [3 (say), we develop
the estimating equation for n as follows. Let Usgr(Jgs Jr) = I(¥itqs, = 1,¥itrj, = 1) be an indicator

variable. It then follows that

E{Uitqr(jq, ]r)} - £;tqr (jq’ Jrim)

and
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Var{Uitqr(qujr)} T ‘S:tqr(qujrln){l—‘S:tqr(jwjr)}' (539)

Next, define

* rad e, ,-’07 i r
B Vs i Bhase - o I L (5.40)
where, for g # r,

U:tqr =5 [Uitqr(lv 1)1"' rUitqr(jusjr)«- 0 intqr(Jq =1 Jr | 1)]T

is a (J; —1)(J, — 1)-dimensional vector of indicator variables. Here U}, is the Z(Jq -1)(J,—1)x1

q#r
vector of unit vectors. It then follows that

- * o7 w7 o7
E(UY) =& =[Gz Elegrr -+ o 'Eu(s..l)s]T- (5.41)

with
gi.tqr - ['E;tqr(lf 1["7)1 ol 0 ,‘E;tqr(qujTlr’)’ ey ‘Ei'tqr(‘]q o 1! J" = 1|"7)]-

Now, by pretending that the indicator variables are independent, we construct a working covariance

matrix of U}, given by

i

Ry, cov(U3)

diag{gitll (1, 1|7))mu11(1, 1n),..., £1tqr(qu jrln)m:tqr(qujrlr))a cee

(g 1[1’!(:—1).9(']5—1 b= lv Js i lln)mit(s—l)s(-]s—l = 11 Js & llfl)], (542)

where igr (Jg, jrin) = 'E::qr(qujrln)y and mitqr(jq,jrm) =1= euqr(qujr’n)-
By combining (5.40), (5.41), and (5.42), we then construct the estimating equations for 5 given
by
] Er
> ChRy (Uh-&) =0, (5.43)

i=1
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where C,, = 9€;,/0n. The solution of (5.43), denoted by 7, may be obtained by the customary

Newton-Raphson method. Given the values 7(ug) at the uth iteration, 7(ug + 1) is obtained as

] “1ry
Auo + 1) = fH(uo) + [Z C.T.R:,"cu] [Z CLRy (U — e:,)] ! (5.44)
=1 up

i slli=i
where [ ], denotes that the expression within the brackets is evaluated at 7j(ug).

Next the estimate 7 is used in (5.37) and (5.38) to compute the (jg, j-)th element of the covariance
matrix Viyqr). as

ﬁit(tvr)(J'th'r) = f:zqr (jqujrlﬁ) o ﬂizq,‘qﬁitrg,-, (5.45)

where fi;1q;, and fi;,;, are as in (5.34). Consequently, by (5.24) we obtain the covariance matrix of

[Yiig . Yii, | given by

g 3
4 Vitgy  Vityar) ( )
L ’ 5.46
(gr) T
v’it(qr) ‘/lt(”‘)
yielding the covariance matrix of Y;; as

Vaian Vu(m) 4. V;z(la)
W= Vieezy -+ Vies | (5.47)
Vit(ss)

Approach 2. A Mixed Effects Approach

In the last section we have modelled the correlations between two variables ¢ and 7 for the ith
individual so that they vary from individual to individual through some association covariates. But
as it is seen from (5.36) that this modelling does not allow any negative values for the correlations
of the dichotomized residuals. As far as the range for correlation is concerned, there is, however, no
problem with the construction of the correlation structure in Section 5.3.1, except that it may be
a strong assumption to consider identical correlation for all individual in the study. To overcome
these two above problems, in this section, we propose a mixed effects approach where the correlations

between two ordinal variables will vary from individual to individual and they may be positive or
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negative as desired. The specific modelling is discussed below. Note that this approach described
here is an alternative approach only to construct a working correlation matrix.

The proposed modelling in fact will be an extension of the modelling for the identical correlations
structure discussed in Section 5.3.1. More specifically. we undertake a simple extension so that when
the variance component of the random effects is zero, the present model will reduce to the model
discussed in approach 1. But, in the positive variance component case, we will adopt an adhoc
estimation approach, where the identical correlation obtained in Section 5.3.1 will be adjusted for
the positive variance of the random effects which can vary from individual to individual.

Let ¢, be a latent random variable such that for given ¢;, the marginal cumulative probabilities
for the gth variable are given by

Pitg(Jg) = Pr(Zig < jq) (5.48)
Jq Jq
= & }: exP{XzfqﬁQJ;}/ Z exp{XIq,ﬁqjq}
J,’,:l ],,:l

for j,=1,..., Jq — 1, with P,(J;) = 1. Consequently, the conditional marginal probability for the

gth variable may be expressed as

fitgg = Pig(l) = € Pg(1)
ﬁitqj., = fi{Pitq(jq) — Pitg(Jg — 139
farger A i, J,' =15 and
I.‘ith,, = 1- E,‘P,‘tq(.]q = 1) (549)

jq Jq
where Pjy,(jy) = Z exp{Xithﬁqj;}/ Z exp{ X By, } as in (5.22).
j;:l Jq=1
Suppose that ¢; ~ (1,02b;(n)), where, for example, b;(n) = exp{XI(a)n}[] +exp{Xsz(a)77}]'l,

which is the same as the variable correlation itself introduced in approach 1. Also suppose that ¢;'s

are independent and o? is a small unknown non-negative quantity so that Ee! is of o(c?) for r > 3.
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Next suppose that in the J, x J, contingency table for the gth and rth variables, the joint
bivariate cumulative probabilities are simply ¢; muiltiple of the joint cumulative probabilities. This

vields the four cell probabilities for the dichotomized variables To; and Ty, ;, defined in (5.28), as

erz(qr)(jq-jr) fi{Pitq(jq) - Rt(qr)(qujr)} (550)
fie{th (Jr) = it(qr)(jgv Jr)} = fiPz'tq(jq) & fipiﬂ(jr) = fipat(qr)(qujr)

The dichotomized probability table in (5.50) is quite similar to that of (5.29). It then follows that
given ¢, the correlation between the dichotomized variables Tiq;, and Ty, for the ith individual

is given by

Pit(qr)(jq:jr) - fz‘Pitq(jq)Puf (J3r)
[{Pﬂq(jq){l € Pltq(Jq)}Pur(Jr {] &P, itq (Jr }]
Note that all the marginal and cumulative probabilities modelled in this section reduce to those

Pitji.(€) = (5.51)

in Section 5.3, when the former probabilities are evaluated at ¢, = E(¢;) = 1. This is also true
for the correlation defined in (5.51) as it reduces to (5.30) when evaluated at ¢, = 1. These two
correlations may be referred to as the correlation between dichotomized variables for the ith person
under mixed and fixed effects models, respectively.

Let ply; ;. = Opity,;./€i, and fly; ; = 8py; ;. /O€l. Then upto o(0?), the correlation in (5.51)
may be expressed as

Pitiei. = Pitggj. + {U?bi(ﬂ)ﬂ}[f’:,th;,]h (5.52)

where [ |; denotes that the expression within the bracket is evaluated at ¢; = 1.

Suppose we now assume that the variable correlations among the individuals occur only through
the variance of the random effects ¢;. It is then reasonable to assume that pf,; . remains the same

for all individuals i = 1,..., 1. Consequently, we write

Pitsei. (W) = 0555, + {o2bi(n)/2} [}, ;. ], (5.53)

where ¢ = (37,02)T. Next for known 3, ¥ may be estimated in the manner similar to that for 7 in

(5.43). For this, we first compute the unconditional joint cumulative probability by
Px.‘.(qr)(.jmjrl'w) = Pntq(jq)P:tr(jr)
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- ﬁrthJv (lllj)[Plthq){l T Pltq(.jq)}Pltr(.jr){l 0 Pztr(jr)}]%s ( .

o
=
s
—4

which yields

Ez.‘:,r(jq~jrh/)) = Pz’t(qr)(qujrl'w) + Pit(qr)(jq =1, —135)
=" Pvf'fqr)(jq - l’jr) o Rt(qr)(jq.'jr g lldj) (555)
Consequently, by using .4, (Jg, - 1€) in an estimating equation similar to (5.43) we can obtain the

estimate of ¥, say ¥, which provides the covariance matrix of [Y7, Y7 |7, say V,,. The computation

itgr Titr
of V;, is quite similar to that of V} in (5.47). This V;, matrix, will be used to update the estimate

of 3 as in the next section.

5.4 Use of the Mean Vector and the Covariance Matrix in Estimating 5

Recall from Section 5.2.1 that

E(Y;?) = u} (), (5.56)
g A - bl TA\T ) : o i
sl (96 limd gl e (Yo 0L, - I .T,) - Here Yj is the Z(Jq — 1)-dimensional response
g=1

vector collected at time ¢, for all s ordinal variables. Now, the covariance matrix of Y;; has been
computed under three different situations. In Section 5.3.1, the covariance matrix of Y;; has been
computed as V,; by (5.35), under the identical correlation structure for all I individuals. Note that
this correlation structure is actually meant for the appropriate dichotomized variables involved in
computing V7. In Section 5.3.2, cov(Y}7) = \7{;, is computed based on a variable correlation structure
for the dichotomized variables involved and modelling the correlations through a fixed effects model.
Finally, mixed effects approach has been used and covariance of Y;} has been computed similar to
V*. This new covariance has been denoted by f/“_
s
We can now compute the correlation matrix p;; based on V3, \",; or \:"lt. This p;¢ 1s a Z(Jq -

q=1
S

)% Z(Jq — 1) symmetric matrix. By using this matrix in (5.13), we compute the D;, matrix as a
q=1



function of a, the longitudinal correlation, and then compute the £} by (5.12). Finally, the sample
estimator, /3, is obtained by solving 5“(3) = 0, as in Section 4, where

$UB) = Y wieuld

i€s°

> wie WS ! - 1 (8)) (5.57)

1€5°

as in (4.4). The asymptotic properties of the 3 estimator is given by (4.7) in Section 4.3.
When o is unknown, we follow Quenouille (1958) and obtain a pooled estimate of the longitudinal

correlation as E
s 4] - *
Zi(s‘ Zr:l Zt;ét’ Wyge ritrrit’r

T
Zus' Z::l Ztil w“s'r;tzr

where 1%, = (u, — 15, )/ {var(ys, )}, and var(y,) is the variance of Y3, obtained from the VI

(5.58)

o =

matrix given in (5.23). When the complex survey design is known, the estimate of this longitudinal
correlation parameter may be computed based on the specific nature of the design (such as stratified

cluster sampling).

6 Remarks and Further Investigation

Analyzing longitudinal survey data is an extremely important topic. One of the main objectives
of such longitudinal analysis is to determine the changes that take place in households and families
or individuals over time. Unfortunately, it is, however, not easy to analyze this types of data. Some
of the issues that complicate the methodological development in this area are : (1) the responses of
an individual collected over a period of time are correlated; (2) multi-dimensional responses make
this issue more complicated as then there will be a structure correlation matrix for the variables
concerned; (3) missing longitudinal responses; (4) variable household composition over the period of

the survey; (5) the use of complex survey along with the expectation of cross-sectional estimation.

29



In this report, we have concentrated to the longtudinal estimation as opposed to the cross-
sectional estimation. We have developed a multivariate regression approach which takes the struc-
tural as well as longitudinal correlations into account. It has been assumed that there is no missing
information over the period of time.

The methodology developed in this report is an important step toward the analysis of longitudinal
survey data, such as SLID data collected by Statistics Canada. In the next report, we will analyse
this data set using the present methodology. The methodology will further be modified to incorporate
the longitudinal missing responses. An attempt will also be made to deal with variable household

composition, which will be useful for the cross-sectional estimation at any given year.
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