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Abstract 

Longitudinal survey data may comprise of ordinal polytomous repeated observations and a set 

of multi-dimensional covariates, for a large number of individuals. One of the main goals of the 

longitudinal survey is to see what happens to individuals or households over time. More precisely, 

one may like to describe the marginal expectation of the ordinal polytornous outcome variable as a 

function of the covariates while accounting for the structural (cross-sectional) as well as longitudinal 

correlations. The structural correlations arise because of the polytomous nature of the response 

variable, and the longitudinal correlations arise because of the repeatation of the structurally cor-

related responses over time. In this report, we develop a robust longitudinal correlations structure 

based generalized estimating equations approach to deal with multivariate polytomous survey data. 

This we do to analyze longitudinal survey data, such as SLID data collected by Statistics Canada. 

Details are given for the construction of the mean vector and structural and longitudinal correla-

tions that are used in the development of the estimating equations. The regression estimates, that 

is, the estimates of the covariate effects, are shown to be consistent for the corresponding regression 

parameters. 



Résumé 

Les données denquêtes longitudinales peuvent comprendre des observations répétées polytomiques 

ordinates et un ensemble de covariables multidimensionnelles pour un grand nornbre d'individus. 

L'un des principaux objectifs de Penquête longitudinale est de voir ce qui arrive aux individus ou aux 

ménages avec le temps. Plus précisément, une telle analyse peut décrire l'espérance mathématique 

marginale de Ia variable de résultat polytomique ordinale en tant que fonction des covariables, 

tout en représentant les correlations structurelles (transversales) aussi bien que longitudinales. Les 

correlations structurelles apparaissent en raison de Ia nature polytomique de Ia variable de réponse, 

alors que les correlations longitudinales surviennent en raison de Ia répétition des réponses struc-

turellement corrélées avec le temps. Nous développons ici une approche generalisee des equations 

d'estimation basée sur une structure robuste de correlations longitudinales pour traiter les données 

d'enquètes polytomiques multivariables. Cela nous permet d'analyser des donndes d'enquêtes Ion-

gitudinales comme les données de l'EDTR recueillies par Statistique Canada. Sont présentés des 

details sur Ia construction du vecteur des moyennes et les correlations structurelles et longitudinales 

qui sont utilisées dans le développernent des equations d'estimation. Les estimations de regression, 

c'est-à-dire les estimations des effets des covariables, s'avérent cohérentes pour les paramètres de 

regression correspondants. 
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1 Introduction 

Over the last few years, Statistics Canada has been conducting a number of large-scale longitudi-

rial surveys including the Survey of Labour and Income Dynamics (SLID), the National Population 

Uealth Survey (NPHS). and the National Longitudinal Survey of Children and Youth (NLSCY). 

In general, these longitudinal data are comprised of multi-dimensional repeated observations of a 

vector outcome and a set of multi-dimensional covariates under each of many independent house-

holds or individuals. One of the main goals of the longitudinal survey is to see what happens to 

households and families or individuals over time. More precisely, one of the main objectives is to 

describe the marginal expectation of the outcome variable as a function of the covariates while ac-

counting for the structural as well as longitudinal correlations. In the multivariate set-up, there are 

two types of structural correlations. First, at a given point of time, the multivariate responses for 

an individual are correlated; and second, the responses of the individuals in a household or fam-

ily may be correlated. Next, the longitudinal correlations arise because of the repeatation of the 

structurally correlated responses over a period of time. But, as there is no unique way to model 

such structural and longitudinal correlations, the regression analysis becomes extremely complicated. 

Further problems may be mounted because of the nature of the complex design used to collect such 

multi-dimensional longitudinal responses, mainly under the situations when the composition of a 

household or family changes over time. 

In this report, we develop multivariate regression approaches for two types of longitudinal survey 

data. In the first case, it will be assumed that a cluster or household is selected as the unit of 

interest based on a suitable survey design. The data collected from the individuals of the cluster at 

different points of time will be considered as a single multi-dimensional response. For simplicity, it 

will, however, be assumed that the composition of the household remains the same over the period 

of time, although the household sizes may be different. In the second case, the individual will be 

treated as the unit of interest from the longitudinal point of view, and the data collected from the 

individual over a period of time will be considered as a single multi-dimensional response. Further, it 
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will be assumed that the longitudinal survey data is complete. The problems of variable households 

composition over the period of time, as well as the problems of missing data, if any, will be dealt 

with in the next report. 

The specific plan of the report is as follows. An overview of the recent longitudinal surveys 

conducted by Statistics Canada is given in Section 2. The weighting issues for the longitudinal 

surveys is described in Section 3, necessarily in a brief, overview format. In order to analyze the 

longitudinal survey data, Section 4 deals with the formulation of the problems in a regression set-up, 

in the context of SLID data, for example. Survey weights based estimation steps are provided in 

the same section. The computational formula for the standard error of the estimator is also given in 

Section 4. In Section 5, we provide the rationale for the estimating equations that we have used in 

Section 4. Details are given for the construction of the mean vector and structural and longitudinal 

correlations that are used in the development of the estimating equations. We conclude the report 

in Section 6. 

2 Longitudinal Surveys by Statistics Canada 

A few years ago, Statistics Canada has begun several large-scale longitudinal surveys, such as 

SLID in 1993/1994, NPHS in 1994/1995, and NLSCY also in 1994/1995. The basic objectives of 

these longitudinal surveys is to see what happens to households and families or individuals over time 

in different contexts. 

More specifically, the Survey of Labour and Income Dynamics (SLID), for example, is a longitu-

dinal survey of households or individuals designed by Statistics Canada, to measure the changes that 

take place in the level of socio-economic well-being of the individuals. The sample for this survey 

was selected in 1993, which is divided into two ovelapping panels that remain in place for a period of 

six years each. The collection of the first wave of data (i.e., from the first panel) began in 1994 and 

the second wave was introduced in 1997. Each panel consists of 15000 households (approximately 
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40000 individuals). A new panel will be subsequently selected every three years to replace the older 

of the two panels. Every year, information is collected on the panel members' labour market activity 

and income during the preceeding year. In this problem, it may be of interest to determine (1) the 

causes of movement between unemployment and employment by looking at the spells of unemploy-

ment and characteristics that one may relate to the length of those spells; (2) what are the measured 

variables that explain marriage duration; and (3) the distribution of lengths of welfare spells and to 

determine what factors do affect such spells. Some common characteristics those may be related to 

the unemployment spells, the marriage duration, and the welfare spells are age, sex, income, and 

the education level. The main purpose of such longitudinal study is to examine the effect of the 

characteristics or covariates on the responses, namely, on the unemployment spells. the marriage 

duration, and the welfare spells. 

Another large-scale longitudinal survey undertaken by Statistics Canada is the National Popu-

lation Health Survey (NPHS). This survey is designed to collect data from a longitudinal sample of 

respondents about their health status, the use of health services and medications, and their life style 

as well as their demographic and economic information. The results from this survey will help to 

understand, among other things, the relationship between health status and health care utilization, 

including alternative as well as traditional services. The first 12-month cycle of data collection began 

in 1994 from a sample of about 26000 households. From each household, one person aged twelve 

years and over was selected for an in depth study and became part of the longitudinal panel. It 

was decided that the data will be collected from this panel every two years for two decades. Thus, 

Statistics Canada currently has two waves of data under this NPHS. 

As far as the National Longitudinal Survey of Children and Youth (NLSCY) is concerned, Statis-

tics Canada has already conducted two waves of survey in 1994-95 and 1996-97. The sample consists 

of 23000 children. Their age range from newborn to eleven years old. The survey will be repeated 

at two-year intervals to follow these children as they grow to reach adulthood. This survey covers a 

hraod range of characteristics and factors affecting the growth of children and development 



For an overall idea about the nature of the SLID. NPHS and NLSCY and other longitudinal 

survey data, we refer to Statistics Canada reports, for example, prepared by Lawless (1997), Latouche 

and Michaud (1995), Flapuarachci (1996), and Tambay and Catlin (1995). Latouche and Michaud 

(1995), in particular, discuss different steps involved in collecting SLID data, which is helpful in 

developing both cross-sectional and longitudinal survey weights. Similarly, Tambay and Catlin 

(1995) discuss the data collection steps for the National Population Health Survey (NPHS). But, 

there does not appear any adequate discussion to analyse such longitudinal survey data. This 

report is one step toward the methodological developments for analyzing the longitudinal survey 

data collected by Statistics Canada. More specifically, in this report, we develop a multivariate 

polytomous ordinal regression approach to analyze the longitudinal survey data, for example the 

SLID data. 

3 Weighting Issues for the Longitudinal Surveys 

The SLID, for example. follow individuals and households, tracking their labour market activities 

and changes in income and family circumstances. To begin with, SLID sample was a subsample of the 

Canadian Labour Force Survey (LFS). The LFS uses a multi-stage stratified sample design based on 

an area frame with dwellings as ultimate sampling units. SLID actually follows individuals through 

time, but household characteristics are also of interest. Consequently, the use of a complex survey 

design combined with cross-sectional expectations complicate the different steps in the weighting 

process. Lavallee and Hunter (1992) have addressed the problem of making the SLID longitudinal 

sample representative for cross-sectional estimation. These authors have discussed the determina-

tion of the basic weights for the SLID sample, as well as their nonresponse and post-stratification 

adjustments. The problem of determining the basic weights, for the purpose of cross-sectional esti-

mation, is complicated by the fact that cohabitants and new entrants can be part of the sample at 

any wave of interviewing by joining a longitudinal household. 
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w I consider those individuals who are assumed to be in the sample for the complete duration of 

tic survey, with some possiblities that some of the individuals may be missing from the survey 

iassionally or for ever. This later problem of missing responses will be dealt in the next report. 

li r simplicity, we now assume that the survey weights for the longitudinal individuals are known. 

iW example, from Lavallee and Hunter. Let w• denote the survey weight for the ith (i = 1,.. . , I) 

individual, which may depend on the sample ?, say, from an appropriate finite population. In 

iiis ,  present approach, the information collected from an individual over the period of time will be 

iisnIvred as a single piece of multi-dimensional information. 

Ii I some situations, it may be convenient to deal with the longitudinal households as the units of 

ii crest. In such cases, the information obtained from the individuals of the household over a period 

time will be considered as a single piece of multi-dimensional information. Here, in general, the 

number of individuals may vary from household to household. Let wh5 be the survey weight for 

I III ,  l,t Ii (h = 1,. ,H) household, which may depend on the sample s. 

We note here that the longitudinal survey weights are usually choosen in such way that the 

uIng design provides consistent and asymptotically normal estimators of certain population 

nsoci;uteui stuuinluird ,'rr!uu. 

4 Analyzing Longitudinal Survey Data 

now proceed to develop a regression methodology to analyze the longitudinal survey data 

hstihed in the previous secions. For convenience, we discuss the methodology in the context of 

LlD data. Note that each of the responses of this SLID data can be categorized into more than two 

rdinal groups. For example, the unemployment spells can be divided into ordinal groups such as 

3 months, 3-6 months, 6-9 months.....and so on. The individual response at a given year will fall 

liv ii tius 	urliriul gru1p. 	\ 	tin ul ni IT 	iiiIited Ltigituilitinfl\. liii osjniriss of tii, 	.utiic 



individual for another year may fall into the same or any other group. This clearly demonstrates 

the need for the development of multivariate regression methods for polytomous ordinal data, which 

we describe below. 

4.1 A Multivariate Regression Approach 

Suppose that, attached to all units of a finite population of size I, we have measurements (x,, y) 

made on a matrix of covariates, X, and a response vector, *• More specifically, at a given year t, 

let = , represent the response vector for the ith individual, where ists 

a (Jr -  1)-dimensional polytomous response vector for the ith individual, corresponding to the rth 

(r = 1, . . . , s) variable. For SLID data, consider 'unemployment spell' as the first response variable 

(r = 1). Now, if the response of the 50th individual, for example, at year t = 2, is considered to fall 

into any of the 10 ordinal groups (say), then Y 21  is the J,. - I = 9 dimensional response vector 

containing one I and 8 zeros, and so on. 

Next, suppose that Y = 
(y T ,•  , y,.. . y ) T is the combined response vector for the ith 

individual collected from To number of years. Further, let Xtr denote a p-dimensional possibly 

time dependent marginal covariate corresponding to the tth (t = 1,. .. , T0) time and rth (r = 

1,. .. , .$) variable for the ith (i = 1,... , I) individual. Let fir  be the covariate effect of X,,,- on the 

(J - 1)-dimensional response vector Y,. and 0 = (/3?' ...... ,/3T)T denote the p>..i(Jr - 0-
dimensional vector of all regression parameters. 

Let /4 = (t4, . . ,/4 ..... /4 0 )T  denote the expectation vector of Y*.  Also let E denote 

a working covariance matrix that represents both of the structural (due to the multi-dimensional 

nature of the response) as well as the longitudinal (due to the repeatation of the response over 

time) correlations for the ith individual. The purpose of the proposed regression methodology is to 

estimate the regression effects /3 after taking the sampling design (discussed in Section 3), as well as 

the above structural and longitudinal correlations of the responses, into account. The construction 

of the /4 (/3) vector and the E matrix is discussed in details in Section 5. 
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4.2 Estimating Equations 

Note that in the present set-up, we do not observe values for all the population units but only for 

those in a sample drawn from the finite population according to some well-defined sampling scheme. 

We are interested in estimating 13 and testing certain hypotheses about $. 

Suppose that, if we had values for the whole finite population, we could obtain a consistent 

estimator of 3 by solving the estimating equations 

S*(13) = >u3) = 0 
	

(4.1) 

where ii(8)  has kth (k = ......p, say) component Uk.  say. Further suppose that the sample design 

provides consistent, asymptotically normal estimators of population totals, and associated standard 

errors. Then, since S(3) is a vector of population totals for fixed /, similar to Rao, Scott and 

Skinner (1997), we can produce an estimator of S(3) as 

	

= 	Wi. 	 (4.2) 

where the survey weights, w., may depend on the sample s. This approach was suggested by 

Binder (1983) for generalized linear models and any survey design. Note that although it is not 

essential, it is helpful to have some ideas about u in the finite population level. We show in ik 

Section 5.1.2 that under the special covariance structure E, the U'k(/3)  vector in (4.1) or (4.2) may 

be expressed as 

1L'(J3) = 145T>(y* 	I1(f3)) 	 (4.3)W . 

with 141ST 	O(Y - 	$))T/0, showing u($) as the kth component of the ith individual, atik 

finite population level. 

Finally, the sample estimator, 1, is obtained by solving S5 (i3) = 0, where 

= >w,.4(3) 
iea 

=(4.4) 
1c8 .  
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Note that it is customary to obtain j3 from 5* (/3) = 0 by using the well-known Newton Raphson 

iteration method. Given the value /3(m) at the mth iteration. 4(m + 1) is obtained as 

+ 1) = (m) + [F(/I)J 1  IE wis.1V?E( 	- 	1', 	(4.5) 

where 

= v'. Ou(/I) 
3/1' 	'-a 

SEX .  

= 	w.Wj' T EW. 	 (4.6) 
1s. 

with w = 
3T(/3)13/3 

as in (4.3), and [•]m denotes that the expression within the brackets is 

evaluated at 13(m). 

4.3 Asymptotic Properties of /3 

Under suitable conditions [cf. Binder (1983) for details, see also Rao, Scott and Skinner (1997)1, /3 

is asymptotically normal with mean 0, and cov(3) can be consistently estimated by 

(47) 

where F(3) is given by (4.6), and V3 . (/3) is the estimated covariance of S (0) under the specified 

survey design evaluated at 3 = 4. Note that 1. (/3) may be obtained from the standard survey 

variance estimator for a total since S*(/I),  given in (4.2), is the estimator of the total S*(/3)  given 

by (4.1). 

5 Details on Methodological Development 

In this section, we describe in details how to compute the vector and matrix components necessary 

to contruct the estimating equations (4.2), for example. We, however, first, discuss the rationale for 

the use of such estimating equations in the context of longitudinal survey data. 
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5.1 Estimating Equations 

In this section, we discuss the rationale for the estimating equations for two types of sampling units 

from longitudinal point of view. Although, in Section 4, we have introduced the estimating equations 

for 0 for the case when individuals are units of interest, we, however, first, consider a general case 

where a household is the unit of interest from longitudinal point of view. In this case, information 

obtained from the individuals of the household over a period of time is considered to be a single 

multi-dimensional information. Second, we consider individuals themselves as the units of interest 

from longitudinal point of view. In this approach, the information collected from an individual 

over the period of time will be considered as a single piece of multi-dimensional information. The 

second case was discussed in Section 4, which may be obtained from the first case by using the single 

membered household in place of the households with variable sizes. 

5.1.1 Cluster or household as the unit of interest 

Suppose that, attached to all units of a finite population of size H. we have measurements (xh,yh) 

made on a matrix of covariates, X, and a response vector, Y. We assume that for a given value of 

X, Y is generated by a random process described in Section 5.2 and 5.3, with mean vector 

E(Ya) = Ph = p(Xh,B) 	 ( 5.1) 

and suppose that we have in mind some working model for the covariance matrix, say 

var(Yh) = 	= E(/2h) 	 (5.2) 

forh=1..... H. 

Now by similar arguments as in Section 4.2, we could obtain a consistent estimator of 0 by 

solving the estimating equations 

S(j3) = 	Uh([3) = 0, 	 (5.3) 
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provided Uhk,  the kth component of Uh(/3),  is a distinct component for the hth household at the 

finite population level. Further, since S(J) is a vector of population totals for fixed 0, similar to 

(4.2), we can produce an estimator of S(3) as 

	

= >2wh3.uh(fl), 
	 (5.4) 

hs 

where the survey weights, 	may depend on the sample s.  We now explore the nature of the 

components of uh(13) at the finite population level. In the next section, we will similarly explore the 

in depth nature of k(/3)  at the finite population level. This 14k(fl)  was used in (4.3) to construct the 

estimating equations for 3, for the case when individuals are considered to be the units of interest. 

Suppose that for m = I ..... h, Phm is the (Jr - I) X (Jr  - I) structural correlation matrix 

for the mth individual of the hth household. Here we have assumed that the rth (r = 1,. . . , s) 

ordinal variable has Jr  categories. The modelling for the Phm  matrix is discussed in Section 5.3. 

We further assume that 0 is the cross correlation between any two individuals in a given household. 

This structural correlation is usually referred to as the familial correlation. Next, suppose that a 

denotes the correlation between any two values collected at two different time points for the mth 

individual of the hth household. If the data is collected for T0 times for a household, then the 

flhTO (J - 1) x flhTO >(Jr - 1) working correlation matrix for the Yh vector defined in (5.1), 

can be written as 

Ch = corr(Yh) 

	

Dhl 	0 	... 	0 

= 	0 	Dh2 	0 	+aIdl'. 	 (5.5) 

	

0 	0 	DhTO 

where d = nhTo(J —1), 1d  is the d-dimensional unit vector, and for all t = 1,... ,T0, Dht  is the 
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"h 	(Jr - 1) X it, 	- 1) matrix given by 

Phi Old,
I T

d i 
	1d 1 l d i  

Ohl 	 Ph2 
	

ld11 	—&1d21;, 	 (5.6) 

Phn,, 

.9 

.iili d 1 	- 1),d2 = flh>(Jr —1) = flhdi. In (5.5) Yh = 	 ., YhTT I T  with 
r=I 	 1=! 

y - [yT 	yT 
ht1'' htm'" 	where Yhm = 	 'i'iit ms ]' with Yhtmr as the 

I - 1)-dimensional polytomous responses for the rth (r = I,. . - , s) variable. It now follows from 

I Fi;it 

= 	- 	 IT 

wherc 	 u ) 	I 	I , jf  D1, 1,j  } . and where _D, ' = eDht (t = I, . . . 

\'xI write, 

Sht = !lht - Pht(13 ) 

- rT 	T 	TiT 
- 	[Shl,. 	' 8ht ..... hto 

' 

I - A 
h 
 r-1 

h uh - 	uh  

her' : 	with :k,, 	(OV(}t). Also write 

= ALIDW  

- 

trx,T 	urT 	
i 

-T \ 
- 	th1'"' '"ht'"' 	hT0I' 

wIiin fl ', is the p x h 	-- I matrix. Now using h (8) = 	the estimating equation 



(5.3) may be written as 

S(3) = 	148) 

= 

H To 

WSht =0, 	 (5.7) 
h=1 t=1 

T. 

 

where Sht = Bht (Sht - - 	BJ shv) yielding 

To 

Uhk(/3) = 	HhkSht, 
	 (5.8) 

where 'k  is the kth (k = I,... ,p) row of the p x nh J>r  - I) matrix, W. 

The above computations show that in order to use the design weights for the inference about , 

it is essential to assume that for given 3 at the finite population level, there exists p-components of 

a vector uh(ø), where the kth component is defined by (5.8). One then includes the uh(3)  vector in 

the sample s  with weight Wh3.  as in (5.4). 

5.1.2 Individual as the unit of interest 

In many Statistics Canada longitudinal survey data, in particular in the SLID data, the individuals 

are considered as the units of interest from the longitudinal point of view. This is because due to its 

dynamic nature over time, the household is difficult to use as a tool for longitudinal analysis, even 

if it corresponds quite closely to the sampling unit [cf. Latouche and Michaud (1995)]. Moreoever, 

the individuals in the longitudinal sample help create new households by leaving or welcoming new 

members into their original households. Consequently, it is much better to use the individual as 

the unit of interest from the longitudinal point of view. Note, however, that over the duration of 

the longitudinal survey, the individual may not be available at certain points of time, which may 
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introduce missing observation. If this happens, the estimating equations should be constructed 

by taking this missing nature of the data into account. But, in the present report we develop 

the estimating equations under the assumptions that the longitudinal data is complete. Thus, if 

the ith individual is assigned design weights w 3 • say for his/her inclusion in the sample s*,  then 

individual stays in the sample over the whole duration of the longitudinal survey. We now 

tentrate back to the construction of the estimating equations for fi in this case when individuals 

units of interest. 

H tact the estimating equations in this case follow from the estimating equations (5.6) and (5.7) 

iiidering 0 as a redundant parameter, and substituting h by i and H = E ii,, for nh = 1 by 

I. This means that the estimating equations developed in the last section reduces to the required 

mating equations for this case when household is treated as the individual, and the number of 

lividuals is denoted by I instead of H. 

civaticm-is for 1 

=0,  

and develop a suitable estimator of S(/3) as 

(5.10) 

H 	 l]:I(lijal, which may depend on the sample s.  These 

1imtions (5.9) and (5.10) are the same as (4.1) and (4.2), respectively. 

win" (•..fl• fin' 'st ittling equations (5.9) may be re-written as 

3) = 	W T FT'('7 —i($)) =0, 	 (5.11) 

• is now given iy 1 	= (YT ..... , . . . , 

Y)', with Y = [)'', . . . , 	. . . 
y*TT IC  

where Y r  is the (Jr  - 1)-dimensional polytomous response vector for the ith individual, correspond-

imig to the rth (r = 1,... ,$) variable. 
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is tin' 1 	I working (oVartititue matrix wit Ii (I' 	7) (Jr - 1). This matrix 

at av 1 e cx pressm I a 
.1 

	

, =ACA 	 (5.12) 

where C, 	= •D,-- a l. I. is ohtaiiied train (5) i 	j)uttmg H = 	hail is. 1 	d. here 

is the (1 1  < ' i matrix with d 1  = 	I. 	. 	 h 	H 	ir htnLit hr i1i .oiI / 

reduces to d 1  as 0 h 	1. Also in (5.12). 

U 	U 

0 	%' 	•.. 	0 

where t 	is assumed to be the d 1  x d 1  covariance matrix for the ith iinIii litI 	liLa '. I lit.  

construction of the Vj matrices for t = 1,... ,T0 is shown in the next sect loll. 

	

Now by siini]ar arguments as in the last secth fl ate 	a -  1 Ii i<' ITLI Ha - 1 I- 

	

S(3) = 	H 

1=1 

	

= 	 .1 ) 

yielding 
To 

	

11 7(0) = 	S 

t=1 

where 

= B1 
(7?*,(

a) 	
) 



7' 
with 	= V'D_ s = 	- 4(i), and s = [s', . .. , s ,..., 	. In (5.15), 1f is the it 	it iTo 

$ 

p X 	- 1) matrix obtained from 
r— 1 

(- 

 --- 

= (14P* T  , . . , 	 . . . ,

WiT 

Hence, in order to use the sampling design based estimating equations approach, it is essential to 

assume that for given 3, there exists p-components of a vector u () at, the finite population level, 

where the kth component is defined by (5.15). One then includes the u() vector in the sample s 

with weight w. for the ith individual, as in (5.10). 

5.2 Construction of Marginal Expectation and Covariance Matrix 

As mentioned earlier, in this section we concentrate only to the case where individuals are 

units of interest from the longitudinal point of view. Thus, we discuss the construction of the 

marginal expectation, p'(/3),  and the covariance matrix E. Note that the construction of the 

working covariance matrix E requires only the construction of Ptt  matrix in (5.13) and consequently 

V = Ait matrix in (5.14). 

5.2.1 Construction of the expectation 
S 

Recall from (5.11) that yi  is a Tü>(Jr - 0-dimensional response vector for the ith individual. 
r=1 

	

S T 	*T T That is, 1/: = (*T 	T 	y*T) with y*t = lt1,''',?J.'•,Yifr ..... Yst s ] 	Ytq being the 

(Jq  - 1)-dimensional polytomous response vector corresponding to the qth (q = 1,. . . , s) variable. 

The expectation of Y, is denoted by p(Ø) in (5.11), which may be expressed as 

•T T 
= (iti . . . '1iTo) , 	 (5.16) 

where,fort=1..... T0 . 

p 	
5 T 	•T 

= Pti ' 	' Ptq' ' ' , Pits) 
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with 

	

Pt q  = (!iitrl,. 	itqj, 	, 

In the present set-up, Ytqjq  is an indicator variable such that Y tqjq  = 1, if the qth (q = 1,. .. , s) 

response of the ith (i = 1,. ,.,I) individual at tth (t = 1,.. .,To) time falls into the jth (jq  = 

1,.. . Jq  - 1) category and zero otherwise. 

Note here that although we observe the response Yztqq,  this response is, however, made based 

on the outcome of an ordinal categorical variable which we will denote by Zzq . More specially, for 

.iq l.....Jq l, 

	

Pr(y;tqjq  = 1) = Pr(zjtq = 2q), 	 (5.17) 

which, for j. = 2,. .. , Jq , will be obtained as 

	

Pr(z1 t = jq ) = Pr(zttq  S jq) - Pr(z tq  :~_ jq  - 1), 	 (5.18) 

where 'Pr' stands for the probability. The probability given by (5.17) will be denoted by tQ3q, and 

the cumulative probability, Pr(ztt q  :5 jq),  will be denoted by Ptq (... , jq ,...) which in the present 

case will be obtained as 

Ptq (. 	, q , 	) = 	Pr(zti 	Ji, . .. , 	 J9 _1 9  

Zii q  <3g,Zjt(g+1) :5 Jq+l,,Zits !~ .18 ). 	 (5.19) 

For convenience, we denote this cumulative probability in (5.19) by Pj tq (jq ). 

Further note that in order to construct the estimating equations in the multivariate set-up, we 

will require the correlation matrix for these s variables, which in fact is computed based on all 

possible collapsed bivariate frequency tables. For the purpose, let us denote the joint cumulative 

probability for the two variables, say q and r, (q r) by Pi t(qr )(3q ,jr ). That is 

	

Pi t ( qr )(jq ,jr ) = Pr(Ztj 	11,...,Zit(9_1) 5 .-1q_i)Zitq 	q' 

	

Zit(q+1) :!~ "q+l' . .. ,Zjt ( r_I) 	Jr-i,Zitr :S .jr, 
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jr+i, .... Z 8 15  J). 	 (5.20) 

We now concentrate back to the modelling of the marginal probability /LItqjg•  Since the logistic 

regression is most frequently employed to model the relationship between a binary outcome variable 

and a set of covariates [cf. Pregibon (1980), Prentice (1976)], after some modifications, we may also 

use it for modelling the polytomous response variable. Similar to Williamson et al (1995), we consider 

two types of covariates, say marginal and association covariate. Let Xjtq  denote a p-dimensional 

possibly time dependent marginal covariate corresponding to the tth (t = 1,.. .. T0) time and qth 

(q = 1,... , 1) variable for the ith (i = 1..... I) individual or subject. The analogous association 

covariate will he denoted by Xit ( a ) (say). It is assumed here that the association covariates are not 

dependent on the variables, rather they depend on the individual and the time when the responses 

are collected. 

We first model the cumulative probability Pjtq (jq ) for the qth (q = 1, . . . , s) variable by using 

the polytomous logistic regression 

Pz tq (jq ) = Pr(Zigq  :S jq ) 

Jq 
= > exp{Xf3}/ 	exp{Xfl}, 	 (5.21) 

for Jq  = 1,... , J, where 13Q)q  (jq  = 1,. ., Jq ) is a p-dimensional regression parameter vector. Note 

that without any loss of generality, we may assume that 3qJq = 0, for all q = 1,... , s. Now the 

marginal probabilities or expectations for the qth variable may be written as 

itq 	= P2t q (l); 

/L itqjq  = 'itq(Jg) - P tq ( - 1), 

for jq =2,...,Jq —1,and 

PitqJq = 1 - P1 (J - 1), 	 (5.22) 
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where the cumulative probabilities are as in (5.21). 

Next let 

	

- raT 	,T 	T 	iT 
- 	1/'q1' 	' -'qj.' 	'q(Jq 1)J 

and 

aaT '• 
' 

QT1T 
s 

where 0 and 0 are the p(Jq  - 1) and p>(Jq  - 1) dimensional parameter vectors, respectively. The 

purpose of the report is to obtain the estimates for 0, say and the estimate of the variance of 3, 

say v(4), which we have already given in Sections 4.2 and 4.3. 

5.3 Structural covariance (at a given time) 

In this section, we construct the covariance matrix of Y = 	. . , Y,f,. . . , 

where Y q  (q = I ,..., s) is the (Jq  - 1)-dimensional random vector corresponding to the qth variable, 

at time t. Let V, as in (5.14), denote this covariance matrix, i.e., 

V LTit -* - cov(Y) 	 (5.23) 

which is a E (J - 1) )< 	(3q  - 1) positive definite matrix. For convenience, we first construct the 

covariance matrix between any two variables, say q and r. Denote this covariance matrix by 

( Y1q 

Vi*t(qr) 	coy 
2 tT 

t(qq) 	''it(qr) 

	

= 	I 	 I. 	 (5.24) 
I ITT 	IT 
L 'it(qr) 	"tt(rr) 

Here Vt(qq) is the (Jq  - 1) X (J - 1) covariance matrix for the qth variable, which is given by 

Vt(qq ) 	= 	diag[z2tqi, ... , /.Litq , . . . 'Ittq(J— I)) 

	

* 	 (5.25) 
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where 	= (j.ttqi,.. . , / tq(Jq _ 1 ))T is the (Jq  - 1)-dimensional marginal expectations vector with 

its components as in (5.22). 

Note that as opposed to Vzt(qg ), the construction of the 	matrix, for q A r, is not easy. This 

is because, these covariance computations require an extra modelling for the association between two 

dichotomized variables. More specifically, we write the (jq , jr )th element of the covariance matrix 

t(qr) as 

Vit(qr) = 	- Pitqjq /.1itrj.., 	 (5.26) 

where 

itjgr = Pr(Z tg  = jq ,Zi r  = jr) 

= Ptt(qr) (jq .jr ) + Pi t(qr)(jq  - 1,Jr - 1) 

Pit(qr)(jq,jr - 1) - P(qr)(jq - 1,jr ), 	 (5.27) 

by (5.20). Now the modelling of the cumulative probability P(qr)( q ,r) requires the correlation 

structure between a pair of correlated binary variables, say T qjq  and Titr3,,  be known. These 

correlated binary variables are defined such that 

Pr(Ttqjq  = 1,T;trj,. - 1) 

= Pr(Z :5 Jq ,Ztr 5 jr) 

= 

which are easy to interpret based on the 2 x 2 contingency table [cf. Molenberghs and Lasaifre 

(1994)] 
T tTr 

1 0 	I 
1 Zttg 	ig ' Z2 tr 15 ir Z1 	g' Zitr 
0 Ztq  > j, Zitr 	jr Zitg  > jq, Zttr > ir 

(5.28) 
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obtained by dichotomizing the Jq  X Jr contingency table at (jq, jr), q  = 1,. . Jq  1, Jr = I,. . . , Jr 1. 

For this q 54 r case, cumulative probabilities corresponding to the cells in (5.28) are 

Pit(gr)(jg ,jr) 	 I Pg(jg) - Pit( gr )(jg ,jr) 
Pitr(jr) - Pi(gr )(jg ,Jr) I 1 - Pttg (jg ) - Pitr (jr ) + .P t(gr) (jg ,jr ) 

Jq  
where Puq(jq) = 	Pi t ( qr )(jq ,Jr ) y  and Pjr(jr) = 	Pit(qr )(jq ,jr). Many authors [cf. Dale 

(1986), Molenberghs and Lesaifre (1994), Williamson et al (1995) have modelled the association 

between Titqjg  and T i,,, by using the global odds ratios and then computed the joint cumulative 

probabilities (qr)( q , j) based on known global odds ratios. When global odds ratios are unknown, 

which is usually the case, they are estimated through an additional suitable model. In the present 

approach, unlike these authors, we model the association between two variables by using the well-

known Pearsonian type correlations. We consider two cases. First, under the assumption that the 

correlation structure for the appropriate dichotomized variables remain the same for all individuals 

= 1 ..... I. We also consider the case when the correlations structures may be different. In the 

latter case, we model the correlations by using two approaches as discussed in Section 5.3.2. 

In general, it follows from (5.28) and (5.29) that the bivariate cumulative probability Pt(qr )(jq , jr) 

in (5.27) may be computed by using its relationship with the Pearsonian correlation, p, 3 , between 

the dichotomized variables Titqjq  and Tttjr  More specifically. Pt(qr)(jq ,3r) may be obtained from 

* 	 .Pit ( 9r )(3q ,jr ) - Pitq (jq )Pitr (jr ) 
Jq3r = [{

Pitq (jq )(l - Pitq (jq )}{Pizr(jr)(1 - Ptr(r))] 	
( 5.30) 

where, for .jq = I,...,Jq  1 ir = 1,... ,J,. 1, Pjtq (jg ) and Pitr  are the marginal cumulative 

probabilities given by (5.21). For known 0 , these marginal cumulative probabilities are known. 

Therefore, to know the bivariate cumulative probability, one needs to know the correlation structure 

through p 3 . We consider the following two cases. 

5.3.1 Identical correlation structure for individuals 

Note that the correlations in (5.30) between the two correlated binary variables appear to vary among 

individuals (i = 1. . . , I). It is, however, common in practice to assume that these correlations 

(5.29) 
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'iiii Ow SiOlit , )I itil lfldepeIRleIU lItdiVi(.IUals. For exarnpl(. we rtler to the c!uter rgressR)n 

tii,tivsis for the repeated discrete or continuous data by Liang and Zeger (1986), and a more recent 

idy by Lipsitz and Fitzmaurice (1996). In these studies, the association between the repeated 

hoary responses, for example, are considered to be the same for all individuals, although their 

means and variances are generally different for individuals. In this section, in the spirit of Liang and 

Zeger, Lipsitz and Fitzmaurice, we assume that the correlations of the dichotomized variables remain 

I ho same for all I individuals. Consequently, we may pool the information from all I individuals 

irul estli tt t i it ,  ollilliol correlations by using the formula 

I 	I(Titq,, = 	= 1)— 	
(531) 

Pz tqq)}{Pitr (3r )(1 - P2 tr Ur))] 

vIir 1,(j, id Prir (jr ) are the estimates of their respective cumulative probabilities, which are 

iimiputed by using for 0 in Pitq(jq)  and P(j), being a suitable estimate of 3. 

Further note that since E[I(Titqjq  = = 1)] = Pit( qr)(ju.jr), it follows from (5.31) that 

'r large I, Ptjqj  are consistent estimate of Ptjq3,  provided 3 is a consistent estimate for 0. The 

iiri.tency of fi for  fi was discussed in Section 4. 

We also note that for Jq = 1..... Jq  — 1, j, = 1,... ,J - 1. 	in (531) should satisfy the 

nt notion 

	

jq .?r <13jqr <Ut qjr 	 (5.32) 

1 ° 	= max :1 

iore 

sIt.I 

U 



{I tq (jg )/F tr (Jr )Q ttq (Jq )}] 

With Qq(jq) = 1 Pzq (jq ). and Qjtr(jr) = 1 - Pjtr (jr ). Note that these restrictions are necessary 

Ii, have the covariance matrix under construction as a positive definite matrix. 

Now bY using p 	from (5.31) for p 	in (.30). we compute the estimate of Pitqr (jq, jr) as 

Hj• Jr 	= P,t q (Jr, 	(Jr 	pj,j, [{Pitq(jq)(1 - Pitq (jq } 

>< {ftr(jr)(1 - 1tr(r))}1 	 (5.33) 

vi(I(Ilfli'. lc,, a by (.27) a n d thr estimate of covariance in (5.26) as 

±j J7 1  = 	- 	qq itr,.• 	 (5.34) 

\\c have thus constructed a suitable estimate for the covariance matrix Vt(qr ) in (5.24). By using 

tins Vji ( qr ) and V (qq)  from (5.25), one may then compute t(qr)  by (5.24), which is the covariance 

nautrix of [}' , Y]T.  By (5.25) and (5.34), one may however directly write the covariance matrix 

= cov() (5.23) as 
' "t(11) 	' "t(12) 	. 	V(j) 

'zt(22) 	- 	zt(2s) 	 (5.35) 

5.3.2 Variable correlation structure for individuals 

For the cases when the correlation structures vary for the individuals, one may attempt to model 

the correlation structures in different ways. We discuss two approaches below. 

Approach 1. In this approach, first, similar to Williamson et a! (1995), we separate the association 

covariates from the marginal covariates. As mentioned in Section 5.2.1, the association covariates 

will be (ielo)le(l by .Y,,. That is. X t ( a ) is the possible time dependent association covariate vector 



of dimension p, corresponding to the time t for the ith individual. Next, similar to Darlington (1992) 

one may model the correlations of the standardized residuals of the two dichotomized variables as 

** 
Pit q3, = exp{X (a)77}/I1 + exp{X ()17}], 	 (5.36) 

which is a simple logistic representation of the correlation with dependence on covariates that vary 

from individual to individual, and possibly from time to time. This modelling, therefore, does 

not allow any negative correlations between the residuals of the dichotomized variables Tuqjq  and 

'tT)r explained in the previous section. In (5.36), 77 is a p-dimensional parameter vector. Note, 

however, that the marginal and cumulative probabilities are defined as before in terms of the marginal 

covariate Xtq . For known fi, the correlation of the residuals in (5.36) is the same as the correlation of 

the dichotomized variables in (5.30). Consequently, by using (5.36) in (5.30), the bivariate cumulative 

probability reduces to 

= Pitq()q )Pitr(jr) 

+ exp(X'(a ) 71)} 

x{P10q(j9)(1 - Pitq(jq))Ptr(jr)(I - Pztr (jr ))}, 	(5.37) 

yielding the joint probability 

tqr(jq,ir171) = 	't(qr)(3q.JrI 71) + 	- l,j - 

—P * t(qr)(3q - 1,j7) - ?t(qr)(3q,Jr - lIij). 	(5.38) 

At this stage, we are interested to estimate 77 only. Now for known 3 = 4 (say), we develop 

the estimating equation for i as follows. Let U,,.(jq ,jr ) = I(Yqjq  = 1 ,Yitrj,. = 1) be an indicator 

variable. It then follows that 

E{Uztqr (jq ,jr )} = C tq,- (jq,2rIni) 

and 
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var{Ujtqr (jq ,jr )} = Co,(jq,jrIni){1 	tqr(jqjr)} 	(5.39) 

Next, defirn' 

= [U*72 	......L_ 1)J . 	(.40) 

where, for q 

U qr  = [Uitqr(1, 1)..... U tqr (ju ,jr ), . . . , U qr(Jq 	1, Jr - 

	

isa (Jq  — 1)(Jr  — 1) -dimensional vector of indicator variables. Here U is the 	(Jq  — 1)(Jr  — 1) X I 
q ?~ r 

vector of unit vectors. It then follows that 

E(U2 ) 	= [t22
itqr't(8_1)3]' 	 (5.41) 

with 

tqr = [ qr (1,hIh1),. 	, 4r 0q ,jr I71),. 	, qr (Jq  — l,Jr — 

Now, by pretending that the indicator variables are independent, we construct a working covariance 

matrix of U given by 

ALit = 	cov(U) 

= 	diag[12t11 (l, 1I77)mti1(1, flij), . . . ,i tqr (jq ,.jr Ir)rnitqr (3q ,3r I7), . 

- 1, J8 - 1I77)m2t(S_I)3(J8_1 - 1, 4 - lIij)J, 	(5.42) 

where £itqr(jq ,jr!11) = 	qr (jq ,jr I7)), and mjtqr (jq ,jr IlJ) = 1 - et tqr (jq ,jr 1,). 

By combining (5.40), (5.41), and (5.42), we then construct the estimating equations for i  given 

by 

CTt 	— ) =0, 	 (5.43) it 
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where C t  = 8/871. The solution of (5.43), denoted by , may be obtained by the customary 

Newton-R.aphson method. Given the values (u0) at the uth iteration, (u0 + 1) is obtained as 

—I 1 [J' : -I  
- 	I 	, 	(5.44) i(uO+1)=1(u))+ I>CTRCit CT R*(U* 

1= 1 	 Juo  uo 

where (]uO  denotes that the expression within the brackets is evaluated at i(uo). 

Next the estimate i is used in (5.37) and (5.38) to compute the (jq ,jr )th element of the covariance 

matrix Vit(qr), as 

Vd( qr)Ciq,Jr) = E,jqr(jq,jrI) - 	tg3qtr3r 	 (5.45) 

where ilitqjg  and  Aitrj,  are as in (5.34). Consequently, by (5.24) we obtain the covariance matrix of 

rysT y.tr JeT1 
atq 2

T given by I  

	

1'zt(qq ) 	'zt)qr) 1 
V) ] 	

(5.46) 
L 	it( qr) 	;t(r r  

yielding the covariance matrix of 	as 

V(lI) 	1"t(12) 

= 	1"t(22) 	1't(2s) 	 (5.47) 

t(ss) 

Approach 2. A Mixed Effects Approach 

In the last section we have modelled the correlations between two variables q and r for the ith 

individual so that they vary from individual to individual through some association covariates. But 

as it is seen from (5.36) that this modelling does not allow any negative values for the correlations 

of the dichotomized residuals. As far as the range for correlation is concerned, there is, however, no 

problem with the construction of the correlation structure in Section 5.3.1, except that it may be 

a strong assumption to consider identical correlation for all individual in the study. To overcome 

these two above problems, in this section, we propose a mixed effects approach where the correlations 

between two ordinal variables will vary from individual to individual and they may be positive or 
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negative as desired. The specific modelling is discussed below. Note that this approach described 

here is an alternative approach only to construct a working correlation matrix. 

The proposed modelling in fact will be an extension of the modelling for the identical correlations 

structure discussed in Section 5.3.1. More specifically. we undertake a simple extension so that when 

the variance component of the random effects is zero, the present model will reduce to the model 

discussed in approach 1. But, in the positive variance component case, we will adopt an adhoc 

estimation approach, where the identical correlation obtained in Section 5.3.1 will be adjusted for 

the positive variance of the random effects which can vary from individual to individual. 

Let ci  be a latent random variable such that for given €, the marginal cumulative probabilities 

for the qth variable are given by 

Ptq(jq) = Pr(Z jq  jq ) 	 (5.48) 

iq 	 Jq  

= c i 	exp{X7/3}/ > exp{Xf3} 
3=1 

for j = 1,.., , Jq  - 1, with Piig (Jq ) = 1. Consequently, the conditional marginal probability for the 

qth variable may be expressed as 

I2 tq1 = Pi t q (l) = e 1 P(1) 

ZtQJq = 	i {P;tq (jq ) - Pttq (jq  - 1)}, 

for jq =2,...,Jq -1,and 

= I - fP tq (Jq  - 1) 
	

(5.49) 

3q 	 Jq  

where Pj tq (jq ) = > exp{X q i9qj }/ 	exp{Xi3} as in (5.22). 	 -itq 

2q 1 

	

Suppose that €, "-. (l,ab(ij)), where, for example, b(i1) = exp{X'() 7J}[1 +exp{X( a ) 1)}]', 	 - 

which is the same as the variable correlation itself introduced in approach 1. Also suppose that f e 's 

are independent and o is a small unknown non-negative quantity so that EJ is of o(o) for r ~ 3 . 
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Next suppose that in the Jq  x .4 contingency table for the qth and rth variables, the joint 

bivariate cumulative probabilities are simply f i  multiple of the joint cumulative probabilities. This 

yields the four cell probabilities for the dichotomized variables Titqjq  and Tit,j, defined in (5.28), as 

1t.(gr)(Jg,Jr) I fJFit,,(iq) - Pit(gr )(jg ,jr)} 
1,{Pd9 (3r ) - Pi t (gr )(jg ,jr )} I I - fP tg ( .1g ) - f,P g (jr ) + fiPzt( gr)(Jg ,.Jr) 

The dichotomized probability table in (5.50) is quite similar to that of (5.29). It then follows that 

given c,, the correlation between the dichotomized variables Ttqjq  and Ti t, j, for the ith individual 

is given by 
P;(qr)(jg,Jr) - eiPitq (jq )Piti.(jr ) 

= 	 (5.51) 
[{Ptq(3q){1 - iPtq(jq)}Pr(jr){1 - fiPttq(jr)}] 

Note that all the marginal and cumulative probabilities modelled in this section reduce to those 

in Section 5.3, when the former probabilities are evaluated at e = E() = 1. This is also true 

for the correlation defined in (5.51) as it reduces to (5.30) when evaluated at ei = I. These two 

correlations may be referred to as the correlation between dichotomized variables for the ith person 

under mixed and fixed effects models, respectively. 

	

Let 	= aAjtjj,10fj, and Xjj , = 	 Then upto 	o(o), the correlation in (5.51) 

may be expressed as 

	

= P:t) qjr  + { b(ii)/2}t,3] i , 	 (5.52) 

where [Ii  denotes that the expression within the bracket is evaluated at c i  = 1. 

Suppose we now assume that the variable correlations among the individuals occur only through 

the variance of the random effects e i . It is then reasonable to assume that Pjqjr  remains the same 

for all individuals j = I,... , I. Consequently, we write 

r-/, 

	

+ {abi(7?)/2}[P jjqjji, 	 (5.53) 

where = ( 77T ,  2)T. Next for known 3, i/, may be estimated in the manner similar to that for ij in 

(5.43). For this, we first compute the unconditional joint cumulative probability by 

Pie ( gr)(jq ,jrIl.b) = Pztq (jq )Pi tr (jr ) 

(5.50) 
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j (y)[Pitq(Jq){1 - Pi tq (jq )}Pz t r (jr){ 1 - P r (jr )}j. 	(5.54) 

which vieId 

- 1,jr) - P; t(gr)(jq ,jr - 1IL'). 	(5.55) 

(onsequeiitIv. Ity tsiiig 	qr(Jq n j,') i i i in estimating equation similar to (5.43) we can obtain the 

estimate of , say , which provides the covariance matrix of [, Y'f,]T, say V. The computation 

Of Vit  is quite similar to that of 1 in (5.47). This Vit  matrix, will be used to update the estimate 

of ' as in I lie next seit ion. 

5.4 Use of the Mean Vector and the Covariaiice Matrix in Estimating 

ReuIl 1(1TI Scttion 52.1 thio 

E( 	= 	 (5,56) 
S 

Here 	is the 	(Jq  - fl-dimensional response 
TO 

qr=1 

vector collected at time t, for all s ordinal variables. Now, the covariance matrix of Yjt has been 

computed under three different situations. In Section 5.3.1, the covariance matrix of Yi t  has been 

computed as V, by (5.35), under the identical correlation structure for all I individuals. Note that 

his correlation structure is actually meant for the appropriate dichotomized variables involved in 

computing V. In Section 5.3.2, cov(Y,) , is computed based on a variable correlation structure 

for the dichotomized variables involved and modelling the correlations through a fixed effects model. 

Finally, mixed effects approach has been used and covariance of has been computed similar to 

1. This new covariance has been denoted by V. it 

	

We can now compute the correlation matrix Pit  based on V, 	or V, t . This p is a 	(J - 

Ii X 	(Jq  - 1) symmetric matrix. By using this matrix in (5.13), we compute the D it  matrix as a 

S 



function of c, the longitudinal correlation, and then compute the . by (5.12). Finally, the sample 

estimator, , is obtained by solving S (i3) = 0, as in Section 4, where 

= 2w.ui3  
;s. 

= 	w, 3 .14, , TE'(y - z(3)) 	 (5.57) 

as in (4.4). The asymptotic properties of the 3 estimator is given by (4.7) in Section 4.3. 

When a is unknown, we follow Quenouille (1958) and obtain a pooled estimate of the longitudinal 

correlation as 

To 
	 (5.58) 

where r r  = (v - 	and var(yr) is the variance of 	obtained from the 

matrix given in (5.23). When the complex survey design is known, the estimate of this longitudinal 

correlation parameter may be computed based on the specific nature of the design (such as stratified 

cluster sampling). 

6 Remarks and Further Investigation 

Analyzing longitudinal survey data is an extremely important topic. One of the main objectives 

of such longitudinal analysis is to determine the changes that take place in households and families 

or individuals over time. Unfortunately, it is, however, not easy to analyze this types of data. Some 

of the issues that complicate the methodological development in this area are (1) the responses of 

an individual collected over a period of time are correlated; (2) multi-dimensional responses make 

this issue more complicated as then there will be a structure correlation matrix for the variables 

concerned; (3) missing longitudinal responses; (4) variable household composition over the period of 

the survey; (5) the use of complex survey along with the expectation of cross-sectional estimation. 
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In this report, we have concentrated to the longtudinal estimation as opposed to the cross-

sectional estimation. We have developed a multivariate regression approach which takes the struc-

tural as well as longitudinal correlations into account. It has been assumed that there is no missing 

information over the period of time. 

The methodology developed in this report is an important step toward the analysis of longitudinal 

survey data, such as SLID data collected by Statistics Canada. In the next report, we will analyse 

this data set using the present methodology. The methodology will further be modified to incorporate 

the longitudinal missing responses. An attempt will also be made to deal with variable household 

composition, which will be useful for the cross-sectional estimation at any given year. 
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