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1 - Causes and Characteristics of Seasonaflty 

A great deal of information on socio-economic activity 

occurs in the form of time series where observations are 

dependent and the nature of this dependence is of interest 

in itself. A time series is a sequence of observations 

ordered in time, say X 1 , X2, ..., X, ..., Xi.; the interval 

between dates t and t+l being fixed and constant throughout. 

The observations are generally compiled for consecutive 

periods, such as days, weeks, months, quarters or years. 

The analysis of time series has long distinguished 

different types of evolutions, which may possibly be corn-

bined, namely: (1) the trend (2) the cycle, (3) the sea-

sonal variations and (4) the irregular fluctuations. 

The trend is a slow variation over a long period of 

years. It is generally associated with the structural 

causes of the phenomenon in question. In some cases, the 

trend shows a steady growth, in others, it may move down-

ward as well as upward. 

The cycle is a quasi-periodic oscillation characterized 

Ly 1trnt1ing periods of expansion and contraction. In 

riit : Ii: 	related to fluctuations in economic activity. 

The seasonal variations represent the effect of climatic 

and institutional events that repeat more or less regularly 

each year. 

The irregular fluctuations represent unforeseeable 

I, 
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ilovenients related to events of all kinds. They have a 

stable random appearance but, in some cases, extreme values 

may be present. These extreme values, or outliers, have 

identifiable causes, such as strikes, or floods, and, there-

fore, can be distinguished from the much smaller irregular 

variations. 

The decomposition of an observed time series in several 

evolutionary processes is basic for time series analysts, 

the study of the cycle and economic growth, and the study 

of seasonality. The feasibility of time series decomposi-

tion was proved by Wold's famous theorem [25] which states 

that if a time series X is stationary to the second order 

(i.e. its mean does not depend on time and its autocovariance 

function depends only on the time lag) then it can be uniqu-

ely represented as the sum of two mutually uncorrelated pro-

cesses, one an infinite moving average q t  and the other, a 

deterministic process C t , where the future evolution of the 

realization can be determined completely provided that all 

its previous values are known. Hence, 

xt = t + 

where, 

nt 	Ut. E J 2  <CO 
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rrl 	3 	3 
	(3) 

E( 	= 0 for all t, s. 

There are several decomposition models that have been as-

sumed for time series analysis. The more often applied are 

the additive and the multiplicative models. That is, 

X = C + St + Ut 	(additive model) 	(4) 

X.= C S Ut 	(multiplicative model) (5) 

where C is the trend-cycle, S. is the seasonal component 

and Ut  is the irregular component (in the model (5), St  and 

U are expressed as percentages). The choice of decomposi-

tion model for a given series depends on whether the compo-

nents are assumed to be independent (additive model) or 

dependent (multiplicative model) of one another. There are 

few cases, however, 	where a mixed decomposition model in 

which components are multiplicatively and additively related 

may be more adequate as, for example, the one discussed in 

[101, 

x t  = C (l+St) + Ut 	(6) 

Among the several types of fluctuations, those due to sea-

sonality has long been recognized. The organization of so-

ciety, means of production and comunication; social and 

religious events have been strongly conditioned by both 
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climatic and conventional seasons. Seasonal variations in 

agriculture, the low level of winter construction and high 

pre-Christmas retail sales are all well known. 

It is generally accepted that there are four causes of 

seasonality in economic time series; namely, the calendar, 

timing decisions, the weather and expectations. Most of the 

seasonal movements in exports and imports are caused by 

variations in the number of working days in a month. Deci-

sions on the timing of such events as school variations, 

payment of company dividends or the ending of the tax year 

cause seasonal variations. Changes in temperature, rainfall 

and other climatic factors directly affect agricultural 

production, transportation, construction and indirectly, 

many other activities. The expectations of seasonality in 

one economic activity will lead to actual seasonality in 

another; for example, toy production will increase in expec-

tation of the Christmas sales peak. While the causes of 

seasonality are generally exogeneous to the economic system, 

human intervention can modify their extent and nature. For 

example, seasonal variations in the automobile industry are 

affected by manufacturers' decisions regarding the extent of 

model changeover each year. 

Another main feature of seasonality is that the pheno-

menon repeats with certain regularity every year but it may 

evolve. Many reasons can produce changes in seasonal 
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patterns. A decline in the importance of the primary sector 

in the gross national product modifies seasonal patterns in 

the economy as a whole, as does a change in the geographical 

distribution of industry in a country extending over several 

climatic zones. Changes in technology alter the importance 

of climatic factors. For most economic series, an evolving 

seasonality is more the rule than the exception. The assump-

tion of stable seasonality, that is, of seasonality that 

repeats exactly every year is good for a few series only. 

Depending on the causes of seasonal variations, their 

patterns can change slowly or rapidly, gradually or abruptly, 

in a deterministic manner or in a stochastic manner. 

2 - Seasoniil Models 

The simplest and often studied seasonal model assumes 

that the generating process of seasonality can be represen-

ted by strictly periodic functions of period ii (e.g. 12 for 

monthly data, 4 for quarterly data). 

For monthly series, the problem is to estimate 12 con-

stants, one for each month, that sum to zero. That is, 

1< for t=k or t-k divisible by 12 

St 	 (7) 
0 	otherwise 

2 
a=0 

k=1 

The model (7) is more often shown unders its equivalent form 
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in the frequency domain as follows, 
6 

S = E (cxi  cos 2rrAt+sin 21TA0 A 3 =j/12 	(8) 
J= I 

Where the X for j=l,2,3, ... ,6 are the seasonal frequencies 

which correspond to cyclical periods of 12,6,4,3,2.4 and 2 

months, respectively. 

The seasonal model (8) is said to be deterministic if 

Uj  and aj  are constants, and stochastic if a j  and aj  are 
purely random variables with zero mean and 

(cia 	ifj=k 

E(aak) 	E(jf3k) j 

	

ifjk 	(9) 

E(ak) = 0 	for all j and k. 

Series that follow the model (8) have spectra which are 

zero except for six spectral lines of height a, 	 at each 

All the spectral power is concentrated at the seasonal 

frequencies. Although this never occurs with real data, 

series that show very narrow seasonal peaks can be well ap-

proximated by this kind of model. 

For most economic time series, however, seasonality is 

not stable but it changes gradually. In such cases,a more 

general seasonal model may be expressed as follows, 

2At 
+jt 	 2 At); A = j112 (10) 

Where at  and jt 
 are time-varying parameters. They can 

either be low degree polynomials or stochastic processes 
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with spectra dominated by low frequency components. For 

example, if the seasonal amplitudes follow a stationary 

autoregressive process of order one, then, 

= 	+ Ut 	(11) 

jt 	Pjt_i + Vt 

where JpJ<l and U. V are purely random mutually uncorrela-

ted variables with zero mean and constant variance. 

If a series follows the seasonal model (10) where ctjt  

and ait  are assumed to be stationary stochastic processes, 

its spectrum will be characterized by peaks at the seasonal 

frequency bands A(6) of width 6 and where the value of 6 

depends on the rate at which ct  and ajt  change. 

The broader the bands, the less regular will be the 

seasonal variations. The set of seasonal frequency bands 

may be defined by, 

X6+6 =ir} (12) 

3 - Seasonal Adjustment Methods 

The fact that the causes of seasonality are generally 

exogeneous to the economic system is the main reason for 

the removal of seasonal variations from an observed series 

to produce a seasonally adjusted series. The adjusted 

series thus reflects only variations attributed to the trend, 

the cycle and the irregulars. The removal of seasonality 



from a time series, however, does not indicate how the 

series would have evolved had there been no seasonal 

variations; rather, it shows more clearly the trend-cycle 

abstracted from seasonality. 

The estimation of seasonal vaHations has always posed 

a serious problem to statisticians because the phenomenon 

varies and is not directly observable. 

The majority of the seasonal adjustment methods deve-

loped thus far are based on univariate time series models 

where the estimation of the seasonal variations is made in 

a simple and mechanical manner and n 

explanation of the phenomenon in que 

The majority of the methods for the s 	Mlu 

of economic time series fall into two broad categories. The 

first derives from general regressions and linear estimation 

theory, the second depends mainly on the application of mov-

ing averages or linear smoothing filters. Very few excep- 

tions do not fall into this broad classification, being pro-

bably the most known, the S.A.B.L. 	method [41  which uses a 

combination of both moving means and medians. 

3.1 Regression Methods 

Most work on regression methods for seasonal adjustment 

is based on the assumption that the systematic part of a 

time series can be approximated closely by simple functions 



of time over the entire span of the series. In general, two 

types of functions of time are considered. One is a poly-

nomial of fairly low degree that fulfills the assumption 

that the economic phenomenon moves slowly, smoothly and 

progressively through time (the trend). The other is a 

linear combination of periodic functions representing oscil-

lations that affect the total variation of the series (the 

cycle and seasonality). For example, a simple regression 

model that assumes a cubic trend and a stable deterministic 

seasonality is, 

x t =c t +s t +Ut 	(13) 

where 

Ct = 	a. t 
1=0 

1 (14) 

	

12 	12 

St=.D.t 	 (15) 

	

j=l 	' j=1 

The ai  and 	are the unknown parameters and 
0jt 

 are seasonal 

dummy variables which take the value 1 when the tth observa-

tion concerns the jth months and zero in all other cases. 

If Ut  is assumed to be purely random with zero mean and 

finite variance the estimation of the parameters can then 

be made by least squares. 

Many variations are possible concerning the specifica-

tion of the components. Thus, in the representation (15) it 
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may be assumed that the seasonal component changes through 

time. The coefficient 	is then replaced by 	+yt, the 

Yj being restricted by the condition that their sum is zero. 

In other cases, a multiplicative decomposition model may be 

found to be more appropriate than the additive model (13), 

in which case, the determination of the trend and the season-

al component can be carried out as before by means of a 

regression on the logarithms of the X. 

Major contributions to the development of regression 

models for seasonal adjustment were made in the sixties, 

particularly in [13], [14], [16] and [18].  To overcome the 

limitation of using a global representation of the trend-

cycle, [11] and [22] used local polynomials (spline func-

tions) for successive short segment of series. These re-

gression models, however, still imply a deterministic be-

haviour of the time series components. More recent studies 

have considered the possibility of a stochastic behaviour of 

the components by developing mixed models [20] or regression 

models with time varying parameters [12]. 

Regression methods have been seldom used by statistical 

agencies. The main reasons for this are: (1) that the 

seasonally adjusted series are wholly revised when new ob-

servations are added; and (2) that all the regression models 

developed until very recently, implied a deterministic 
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behaviour of the components. 

3.2 	Moving Average Methods 

The majority of the seasonal adjustment methods applied 

by statistical bureaus belong to the class of moving average 

methods which make the assumption that although the systema-

tic part of a time series is a smooth function, it cannot 

be approximated well by simple mathematical functions over 

the entire range. 

Since moving averages are linear transformations (see 

entry in this Encyclopedia) they possess the properties of 

scale preservation and additivity. Furthermore, they have 

the time invariance property which is not shared by the re-

gression methods. The time invariance property means that 

if two inputs X. and Xt+  to the moving average are the same 

except for the time displacement T then the outputs are 

also the same except for their time displacement. In other 

words, the moving average or linear filter responds always 

in the same manner. 

Methods based on moving averages techniques assume that 

the trend-cycle and seasonal components change through time 

in a stochastic manner. The majority of the methods that 

belong to this class are mainly descriptive non-parametric 

procedures in the sense that they lack explicit parametric 

models for each unobserved component. 
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In most recent years, however, several attempts have 

been made to develop model-based procedures where univariate 

statistical models are explicitly assumed for each component. 

The explicit models mainly belong to the Gaussian ARIMA 

(autoregressive integrated moving average) type developed by 

[211 or to variations of it as developed in [3], [1511 and 

119J. Other types of models which are not ARIMA have also 

been studied, for example, in [11. All these new approaches 

are still in a developmental stage and the majority of the 

moving average procedures officially adopted by statistical 

bureaus belong to the non-parametric type (see [171). Among 

the latter, the Method II-X-11 variant [21] and the X-11.-

ARIMA [5] are the most widely applied. The X-ll-ARIMA was 

developed to produce more accurate estimates of current 

seasonally adjusted series when seasonality changes rapidly 

and in a stochastic manner; characteristics often found in 

main economic indicators. 

These two methods follow an iterative estimation pro-

cedure where the trend-cycle is estimated first, the seasonal 

component next and the irregular is derived as a residual. 

The properties of the combined linear filters applied to 

obtain a seasonal estimate have been analysed in [23], [24] 

and [26] for the X-11-varjant and in [6] for the X-ll-ARIMA. 

It is inherent to all linear smoothing procedures that 

the end observations cannot be smoothed with the same set of 



.uuuetric titers as applied to central observations. 

Hecause of this, the estimates for current observations must 

)e revised as more data are incorporated into the series. 

In the context of the X-ll and X-ll-ARIMA, this means that 

the first and last three and a half years of a new series 

ii 	h 	rpv 1 	Iecw;e ti 	i r 5yiIJ::ri 	fi I Hr, r:ui re 

Lfl 	udr 	f 	f . 	 . iirl e:.dtr. 	The 

riic. 	i17ir'ences in the moving averages applied 

to ti 	u 	'v,j L i ori ,, as it changes its positions rela- 

tive to the end of the series have been studied extensively 
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