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1. Introduction

Qur socio-economic environment is unstable and uncertain;
inflation, recessions, and increasing pollution are among the factors
contributing to increasing instability. We try to resolve the problem by
using a method of forecasting that permits us to evaluate the impact of the
frequent changes. ARIMA models (Box - Jenkins, 1970) are flexible enough

to deal with such frequent changes in time series.

The purpose of this paper is to study a set of eight criteria
which when applied to the Box-Jenkins method permit an evaluation of the
fitting and forecasting performance of a set of the most often applied
ARIMA models to Canadian economic time series. The question of which
models perfPrm well is important for programs like the X-11-ARIMA (Dagum
.1980) which automatically fits a fixed small set of models (three models in
the case of the X-11-ARIMA) to the series.

Section 2 introduces eight criteria: the average forecast error
for the last three years; the chi-square statistic for the randomness of
the residuals; the presence of small parameters, overdifferencing,
underdifferencing, correlation between the parameters; stationarity and
invertibility. Section 3 discusses the criteria and summarizes the
results. Section 4 ranks the models conditionally and unconditionally.
Section 5 compares within-sample and out-of-sample extrapolated values for

the last three years.



2. The Criteria

In this section we give a brief discussion of the eight criteria

used in ranking the models.
Stability

The stability condition of a process Z, is either "stationary" or
"non-stationary”. It indicates how well the system remembers the shocks
2t_j» j=1, 2,..., and how fast or slowly the response of the system to any

particular shock decays. For a process

= A yiaege Py an. gt -

where a, NID(O, 062), the filter is said to be stable if the sequence

{y;} is convergent. For a general ARIMA model (p, d, qT,
d =
¢(B)(1 - B)Z, =8 (Blay,

-

the stability condition is that all the roots A; of the characteristic

equation
k. 2 - "
$(B) =1 - 0B - 0,8 - ... -9 BP = (1-39B)(1-22B)...(1-A,B) = 0
for the process are strictly inside the unit circle, i.e.|xj[<1 .

Invertibility

The process Z; may be expressed as:

Ly = ag + mlyq + Tply o +...

The system is said to be invertible if the sequence {m } is



convergent. The criterion is considered to be of primary importance
because if the invertibility condition fails, the generating function ={B)
of the n's increases without bound. This means the current event of the
system depends more on events in the infinite past, and the process is

physically meaningless.

The invertibility condition for a general ARIMA model (p, d, q)l,

s that the roots v, of the characteristic equation

3(8) =1 - 918 - 9B% -...- 5,89 = (1-v1B)(1-vpB)...(1-ye8) = O

for thevprocess are strictly within the unit circle, i.e. [v|<].

Underdifferencing

In the AR(p) model, when one or more of the characteristic roots

Aj » say A, approaches 1; then from
p(B) = 1 - ’518 --p282 -...-atDBp
= (] —‘\lB)...l.l _'k‘lB){} —'kB‘)(l —DB)

= {1 - FlB)...(1 r gt = ApagBl. .. (1 - ApB)(1 = Sl ,
we have (B) approaching

(1 - 918 - 6282 -...- 3, 18P"1H(1 - B).

Therefore, a differencing operator may be needed for this system, and the
AR(p) model becomes an ARI(p-1,1) model. Furthermore, when j  approaches 1,

it may also lead to non-stationarity.



Overdifferencing

Consider the general ARIMA model (p, d, q) (P, D, Q)g,
o(B) o)1 - BYA(1 -850z, = 8(B) OBay

If any roots v; of the characteristic equation &B) = 0 approach 1, i.e.

if any (1 - v;B) approach (1 - B}, we can eliminate (1 - B) from both

sides.

Test of randomness for the a;'s.

Correlation in the residuals is not desirable since we want an

unbiased estimate of the parameters for the process.

The statistic
iy [ ¢

m
= +2) L (n-k P
Q = n(n < n-k) K

"as modified by Prothero and Wallis (1976) and Ljung and Box (1978) from the

Chi-square test of Box and Pierce is used.

Here n is the sample size, k=1, 2,...m are the various lags, and P, are
the autocorrelations. Q is used for the testing of the randomness of the

residuals.

Small Parameters

Generally speaking, when the number of parameters of a given
model is increased, the mean sum of squares os is reduced. However, only
large parameters, or those parameters significantly different from 0 can
contribute to a significant reduction of og . To check for a small

parameter, we may need an F-test (Pandit and Wu 1983):



where r is the number of parameters of the model and s is the number of
parameters which are restricted to zero. N is the number of observations,
Ag s /fhe (smaller) sum of squares of the restricted model; and Ay is the

lTarger sum of squares of the restricted model.

But in our study here, we choose two constants, 0.05 and 0.10,

as our indicator of the presence of a small parameter.

Correlation of the Parameters

High positive or negative correlation between parameters reflect

‘ ambiguity in the estimated values since a range of parameter values results

in models with equally good fit. Therefore, if some of the elements in the
correlation matrix of estimated parameters are large in absolute value, say
greater than or equal to 0.9, the model may be reduced by deleting some of

the smaller parameters.

Forecasting Error

No matter how we define a good model or bad model, we still have
a primary interest in the forecasting error of the model. In this paper we
use the mean absolute percentage forecasting error of one-year-ahead

forecast

1
MAPE = N

where ¢ is 12 or 4, and Et(@ is the forecast with lead time 2.



8 Evaluation_gi the ARIMA Models

The eight criteria have been put into two groups. The first
group considers good fitting of parsimonious models while the second
considers the quality of the forecasts. This distinction between fitting
and forecasting is important; good fitting and good forecasting are not

equivalent.

These criteria have been used to evaluate and rank seven of the

most often applied ARIMA models, namely:

Vo CORTIMTEEN , 1) 5. (1,1,00(0,1,1)4
2. (0,1,2)(0,1,1) 6. (2,1,00(0,1,1)
2511, 1052 2@l ) & 7. (2,1,0(0,1,2)

4. (2,1,2)(0,1,1)

where "s" is 12 if the series is monthly and 4 if it is quarterly.

These models were fitted to a sample of 167 monthly seasonal time
series chosen randomly from eleven sectors of the Canadian economy:
national accounts; labour; prices; manufacturing; fuel, power and mining;
construction; food and agriculture; domestic trade; external trade;
transportation; and finance. About 40 quarterly time series from national

accounts and finance were also tested.

The series are mostly multiplicative, according to the Bell
Canada model test (Higginson, 1976), that is the different components
(trend-cycle, seasonal, and irregular) are multiplied together to produce
the raw series. Therefore, the amplitudes of the seasonal component

frequently increase with increasing levels of the trend. The



multiplicative series received a logarithmic transformation before the
first three and last three models were fitted. The fourth model was fitted

to the untransformed series in all cases.

Looking at the non-seasonal part of an ARIMA model which is
associated with the trend-cycle and extremes, the models can be grouped
into three classes. Class I is models 1, 2 and 3 whose ordinary part
includes only one or two first differences and one or two moving average
parameters. Class III includes models 5, 6 and 7 whose ordinary part
includes only one first difference and some autoregressive parameters.
Model 4 (Class II) forms a class by itself; its non-seasonal part is mixed.

We see that the seasonal part of all models is the same except for model 7.

Although the eight criteria are analyzed separately in this
section, several of them are dependent. For example we shall see that the
excess of parameters in model 4 generates problems of nonstationarity,

noninvertibility, under- and overdifferencing, and correlation.

In sections 3 and 4, we test within-sample extrapolated values
for the seven ARIMA models. That is, the models are fitted to the whole
series thus providing the parameters to be used for calculating the
forecasts for the last three years. This is the way ARIMA forecasts are

evaluated in the X-11-ARIMA program.

3.7.Criteria for Fitting Parsimonious ARIMA Models

The stationarity condition requires that all the roots of the
autoregressive characteristic equation be inside the unit circle. We see
in Table 1 that non-stationarity occurs only for model 4, in three cases.

These appear to be due to overparametrization of the model.



In order for the model to be invertible, it is necessary that the
roots of the moving average characteristic equation be inside the unit
circle. Only model 4 has many cases of noninvertibility, 20%, as we see in
Table 2. Two explanations are possible. There is first of all the case of
straightforward noninvertibility. In some other cases noninvertibility
was accompanied by nonstationarity. The fact that the autoregressive part
may have roots near unity might have caused autocorrelation in the

residuals. The moving average parameters would then take higher values %o

compensate.
TABLE 1
Failure in Stationarity
. CLASS I | cLass 11 | CLASS 111
comoe LModel 1 | Model 2 | Model 3 Model 4 [Model 5 | Model 6 Mcdel 7
VI (0,1,1) (0,1.,1) l(O,l,Z] (QRIN" (020208 (0 Myl i(Z,l.Z) (@u2vb) | (12m0) (OPMatINNE2,1, 0) § (0L, L] (2, 1% Ofafionb:. 2)
-- -- - [ -- -- - -- ’ 3 24 -- -- -- -- -- --
|
TABLE 2
Failure in Invertibility
[ CLASS I CLASS IT | CLASS III |
e, | Model 1 iModel 2 [ Model 3 | Model 4 | Model 5 | Model 6 | Model 7
e L il ol gy le,1,2 2,0 | 9,22 (..0) | 1202 @01 ! (1.1,00 (0,1,1) ¥(z.1,0) (o,x,ng (2. Mol a1l 2y
B ' 4 13 { 2 is g 2% i3 25% 2 LY 2 13 ‘ 1 i

An important criterion in judging the appropriateness of the
ARIMA models for the series is the chi-square test of Box and Pierca (1970)

(modified by Prothero and Wallis in 1976, and by Ljung and Box in 1978},



applied to the autocorrelation of the residuals. Table 3 shows for each of
the seven models the number and the percentage of series that fail the chi-
square test at different levels. We see from this table first, that within
a given class of models the simpler models have higher failure rates and
second, that the fajlure rate depends to a large degree on the class of the
model. The first point is illustrated by models 2 and 6 which having one
more parameter than models 1 and 5 respectively, have a higher number of
series passing this test. The evidence for the second point is that
moving average models appear to satisfy the chi-square test better than
autoregressive models. This may be due to the presence of extremes in the
series. At the 5% level for example, model 1 fails for 27% of the series
compared with 49% for its autoregressive counterpart model 5. As well as
all models of class III, the mixed model, class II, is inferior to the

second model of class 1.

TABLE 3

Failure in Chi-Square

CLASS [ | cLASS II CLASS I1I

el L Model 1 1 Model 2 Model 3 Model 4 Model 5 jA'Modei [ Model 7
VALLE 0,1,1) t0,1,1) | (o,1,2) (0,1,1) | (0,2,2) (0.1,1) [(2,1,2) (0,1.1) | (1.1,® (0,21} }¢2,L.0 (9,1,1) | (2,1, (0.1,
1 1 13 18 1is 29 Ml 26 163 52 i7% 21 13y | 20 128
3s 43 27% s 22% 48 29% 41 25% 32 19% i3 29% §2 254
108 61 A7y 48 29% 56 148 55 334 39 ERA Y 60 363 56 RERY
15% ¥ 43% s7 EEY ] 693 11y 88 40% 101l 60% 7! 43 €4 33
20% l 33 Sa% 82 I 30 38% 78 463 1086 642 80 434 7/2) 431
0% 100 50% R/ 6% 94 $éy 88 53% 119 28 ] 95 57% as 53t
40% D £6% 97 58% 107 T4 | 99 53% L2 76% 124 82% 160 §0%
5CA 2l 724 106 €1y 118 71t 518 £3% k$3S) 3L 7 7C% ils 833
60% B B g 780 221 T2% 128 77 129 L 141 841 2 76% 121 hrd

Underdifferencing occurs when a root of the characteristic

equation of the autoregression polynomial is close to unity, say a distance
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§ from unity. Here § 1is set equal to 0.1. We see in Table 4 that only
model 4 s wunderdifferenced. Tiap's may be attributed to
overparametrization. Model 4 has two autoregressive parameters and two
moving average parameters in its non-seasonal part. Just through the
estimation, there is a moderate chance that at least one of the

autoregressive parameters will be greater than or equal to 0.9.

TABLE 4

Failure in Underdifferencing

CLASS I CLASS 1T CLASS III
orow | Model 1 | Model 2 IModel 3 |Model 4 | Model 5 | Model 5 | Model 7
g (@42, 3 30 {op, 24 !(0,1,2) (6,1, | (o2 2aieie)L s, 1) %(2,1,2) (0,1, ¢ (1,19 (0,1, H2,1,00 (0.1,1) }{2,1,Q) (Q0,1,2)
.30 — = ! = = = - ! 14 a - - — - - =

In this discussion the critical levels chcsen for overdifferencing
are 0.90 and 0.95. Table 5 shows that models 3 ana 4 are most often
overdifferenced. Model 3 has two fi;st di fferences and two non-sgasona]
moving average parameters. If the second first difference is not

necessary, autocorrelation is created in the series that nas been

" differenced once already. The moving average polynomial will model this

introduced autocorrelation by having one of its roots close to unity. We
can therefore simplify the model by eliminating one moving average
parameter and one difference. As to model 4, this may be due to

overparametrization.
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TABLE 5

Failure in Qverdifferencing

CLASS 1 CLASS IT CLASS III

crmew | Model 1 ]Model 2 | Model 3 | Model 4 Model 5 | wodel 6 Model 7
g = ]

i 0,1,1) (0,1,1) Ol R (ORI || (EL2820 (@ale 198l (2.2.2) | (0,1,20 | (2e1.0) (0,1,2) "162,1.0) 0262) | @,1.07 (0.1.2)

.30 8 5% e % 43 264 S0 208 7 4% l 9 St 14 8%

98 3 2% [ 4% 19 11 a7 2 3 2% ] 1 & Eh )

In ARIMA modelling of a stochastic process,

it is enough to

consider the first two moments, that is the mean and autocovariance. The

test on the size of the parameters serves on1y'to eliminate those that

contribute very little or nothing to the explanation of the

autocovariance.

Table 6 illustrates two things. First, the simplest models pass

this test better than more complicated modeis. After a logarithmic

transformation, most of the multiplicative series in the sample will follow

a straight line fairly closely (except for the seasonal variation), so a

“first difference” model will fit them using few parameters. Adding an

extra unnecessary parameter to the model will often result in its receiving
a small estimate from the estimation. Second, the estimated values of the
moving average parameters are small (less than .05 or .10) more often than
the estimated values of the autoregressive parameters. For example at the

level of 0.05, the second autoregressive parameter in model 6 is judged

unnecessary 13% of the time compared with 29% of the time for the second
the addition of a second

moving average parameter in model 2. Similarly,

seasonal moving average parameter increased the failure rate from 13% in

model & to 43% in model 7.



TABLE' 5

Failure in Small Parameter

T

j geees I ICLASS I1I CLASS III
e | Model 1 | Model 2 [ Model 3 TModel 4 [Model 5 Model 6 | Model 7
Tanaes 1 7 ;
= %0,1.1) (0,1,1) 140,2,2) (3,1,1) f(o.z,Z) (0,1,1 | 2,1,20 10,5,0) | 2,10 0.1 2,00 ©.1.0 [r2,1,00 t0,1.2
.85 s 9 49 29% 21 13% 42 25% i 7% 22 13y ‘ 72 43y
.:0 26 16% g8 S3s% r 43 26% 73 44% ' 3 19% 45 28% 114 A8%
: !

digh positive eor negative garrelaticas bdsai

tWwaen o

wy
v

rametesr

jeh)

estimatas are undesirable and reflect ambiguity in the estimation situation
since a range of parameter combinétions result in models with equally good
fits. Table 7 shows that only models 2, 3 and 4 fail the correlation test,
i.e. the absolute value of at least one of the correiations is > .90
The problem is minimal for model 2, and serious for models 3 and 4 where

51% and 74% of the fits had highly correlated parameters. This may be due

to overdifferencing in model 3 and the presence of too many parameters im

model 4.,
TABLE 7
F3ilure in Correlation

| CLASS I CLASS II CLASS 1iI

I ’ ~ = - 1
oy, LModel 1 ! Model 2 iModel 3 |Model 4 Model 5 Model 6 | Model 7
By ) ! :
P 01,1 w1 .12 .10 [0.2.2 e e ed.n (e 0.0 kae .0 | oo e

= - - ' 3 b3} T 55 1% 124 743 - — - = = =

3.2 Criterion for Extrapolation of ARIMA Models

This criterion attempts to ensure the quality of the forecasts of
the ARIMA models. We require that the average percentage forecast error of

SR Ry ale S SBL . BE L ot B R CE (B R
thes Titised evror 38 ©siow 2 ~tatn Tsvel.

N3]
f1
i
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Table 8 shows that six of the seven models are equivalent from
the point of view of forecasts, i.e. the number of autoregressive and
moving average parameters does not affect the forecast error of the model
averaged over all the series. Of course, some models perform better for

certain series.

TABLE 8

Failure in Forecast Error

cLass 1 | aass CLASS 111
o’ i
W sodel 1| R o] i) wodel 4 Mogel § | model 6 | Mogel 7
[ (ariel ) CORl Y 6@l 2, ) 1(0.2.2)(0.1.1) {20 2) (6.1 31} (Y.l.0)(0.‘-1)’(3.1.0)(0.1.” ;2-1-3)(0.1.2)

< 'S ' t £ . 3 | 1 g
10 E 89 53 AR T 01 50 0 8 8 50 g8s sl g8 51
15 [T = 3 3 35 @ a4 53 2 7 56 34 RS
20 | 39 23 40 24 51 n 30 24 40 24 40 24 40 24

2 } s triee (Y A S I 20
10 i 2 14 2 16 AR | 2 14 21 v ¥ s 3 il

Table 9 shows the average forecast error and standard deviation
of the error under two possible outcomes: passing and failing the forecast
error criterion. Not only is the failure rate of model 3 higher than that
of the other models, but the table shows that when it fails, its average
forecast error is bigger. The forecast errors of model 3 are increased by
its overdifferencing. However, when the forecast errors of model 3 pass

the criterion, their average is as small as that of the other models.



Conditional Mean (M) and Standard Oeviation (SD)
of the Average Forecast Error

CLASS ! IIETEER i gLASS 111
Model 1 i Model 2 [ Mogel 3 | Mode] & IModel 35 | Mocel 5 | Model 7
(QRsLEY) !’3,1.1)[“)&.2! (0,3, 1) ar 2.2} (0,%,1) {2.4.352,1.1) i71,1,000,1,1) @2, 1,0) t’O.l,Ll»’(Z.!‘GL(Oll,Z
K] S %D 1 ¥ 50 | N S0 1 M ) A S0 | 50
i ‘ ' I )
Ik 4.0 | &% 3.9 | 7% 4.1 1 ey 5.9 a8l 3% % 7™ 4.0 | 7% 3.9
I S5% e 3 % 36% 2205 413 25.4 36% 21.4 “ 38% 28.5 | 372 2354 37 23.0

4. Ranking of the Models

To rank the models, the eignt criteria are used at different
acceptance Jevels. Tables 10 and 11 present the overall and conditional
rankings of the models. Table 10 gives the total success rate of the
mcdels. Table 11 gives first the total success rate of the best model; the
following models are chosen according to their success with series with

which all higher models have failed.

TABLE 1O

Sverali Ranking of the Models

st endy SR Sec S 8 cziteria® 8 criteria*
M < Isk B < 1% F2 ¢ 153 SE | jS4 158
i o N 42 5y # =g
‘ % < .10 5P < .05 §? < .35
<0 Z 90 o > .30 j g 12 mog
% o seriss } of series 3 of series t of series
ci2ls that sassad Mecels  =hac sassed ‘vdals zhac cassed Moceis  trat cassed
H 2% 1 344 8 J8% 5 9%
3ls 3 313 1 7 2, 38%
& 9% 3 228 2 25% 2 291
a 48% 2 204 5] 263 5 25%
443 3 13% 7 25% g/ 27y
418 B Ly 3 173 3 153
3% 4 23 3 43 M 5%

11 23 —he foir arizsria liseed, <me four coher griteria genczicned Lnomna et wer2 Lcsad,
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TABLE 1
Conditional Ranking of the Models

2 Titaria 9 criceria* 3 cxiteriar 8 criteria®

FE ¢ I5% fE < 1S53 FE ¢ 13% 2 L

i3 171 "B x} 2 s¥ ¢ > 5 ol

@ < .10 52 hdlh . 05 SR <08

o > .90 o0 > .90 €0l 2 4.95

% Of saries ¥ of serias 3 0f serles 3 of ser:es

Models thac cassed Models chat passed Models  that passed ‘odels that cassed
) 52% 1 34% [ 38% § 39%
7 £ 3 (1} 3 9% 8 7%
2 1 § 4% 7 43 i 4
3 13 5 2% 2 3% Fl 2%

* As well as the four criteria listed, the four other criteria menticned in

Table 10 shows that:

the text were uUposed.

- when only the chi-square statistic (xz) and average forecast error (FE)

are used as criteria, models 4 and 7, which have the most parameters, rank

at the top.

- on the other hand, the use of all criteria favour the simplest models

(models 1 and 6),

overdifferencing (0D) criteria.

ak o add

levels of

small

parameter

(SP)

and

- models 1 and 6 usually rank close together, although model 1 has one less

parameter than model 6.

- when model 6 is not first it is a close sacond.

- the more the criteria are relaxed, the higher the pass ratio is, although

the ranking of the models remain about the same.

In table 11 we see that:

- when all criteria are used, models 1 and 6 which ranked first and second

in table 10 now rank only first and third.
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- second place belongs to model 3. This model which in table 10 ranked
third, fifth and sixth with total success rates of 41%, 13%, 17%, and 19%,
here ranks fourth once and second three times. This is because model 3
fits well an important family of series (series with a steep trend) that

all other models fit poorly.

- moving average and autoregressive models are not mutually exclusive.
These two families of models are complementary and necessary in fitting and

forecasting series.

- when we require only that the average forecast error be less than 15% and
the chi-square statistic be greater than 5% and nothing else, the combined

success rate of models 4, 7, 2 and 3 together is 63%.

- when all the criteria are used, the models chosen are simple and their
combined success rate varies between 46% and 54% using the levels of
15% and 5% described just above. The success rate depends on the levels of

small parameter and overdifferencing used.

»

Even though model 1 does not appear in the third column of table
11, it would appear there if the level of forecast error permitted were

raised to 20%.

The criteria and levels used in selecting models in figures 1 and
2 are the same as are used in the second column of tables 10 and 11, except
that in figure 1 the average forecast error permitted varies between 10%
and 99% while in figure 2 the chi-square criteria varies between 10% and
60%.

Figure 1 shows that:
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- models 1, 3 and 6 perform the best.

- the ranking of the models tends to remain the same.

- the performance of the first model increases more rapidly than that of
the others, going from 23% to 59% compared with an increase from 13% to 17%
for model 3. This point needs clarification. Model 1 is chosen
according to its unconditional performance, while the other models are
chosen according %o their conditional ranking.

- the increase in performance of the models according to unconditional

ranking is greater than the increase when using conditional ranking.

FIGURE 1

Model Priority Chart for Different Levels of the Forecast Criterion

60% CONDITIONAL

PASSING
50%
207
30% |
1
204
3
10% » i ——
: Mie T a0
- 7 7
) ; FORECAST ERROR

-

A— A Vt I



18

We see in figure 2 that

- models 1, 3 and & are generally the best models for any level of chi-

square.
- models 1 and 6 trade places but are not mutually exclusive.

FIGURE 2

Model Priority Chart for Different Levels of the Chi-Square Criterion

T CONDITIONAL
PASSING
oy |ReSSIH
204
10%
CHI SQUARE
0% 0% 20% 30% 0% 50% 505 "

Table 12 presents the conditional ranking of the ARIMA models for
those sectors of the Canadian economy for which we fitted twelve or more
series. The criteria and levels used in ranking the models are the same as

those used in the second column of tables 10 and 11. 'We see that
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- models 1 and 6 are generally the best performers.

- the combined success rate of the models varies considerably from one
sector to another, from 93% in the labour sector to only 21% in external
trade.

- this success rate is at least 50% for five sectors. The rate depends on
the structure of the series, changes in the structure, and the amount of
irregular in the series. The rate is good considering that for two of the
last three years Canada suffered a severe recession which strongly affected
the structure of the series. The success rate for external trade is always

low because those series are very irregular

TABLE 12

Conditional ranking of the ARIMA models for the sectors of the
Canadian econony

Models ranking and % 2f series that cassed

Sectors first % second %  third % fourth %
model * model model mocel

E 0l T MR AT it - 1 79 3 13 - 0 - ]
Reione UF. ...oe. 8 o4 N R 5 S0 2 17 2 8 -
MENUSACEUPENG - T o E e v seenaaans 3 19 § 14 1 S 2 5
Fuel, Power and Mining ............. 1 45 [ 4 - 0 - o]
DOMESBICRTradE B, Wt xosda]e vovinid 0 0505 0 8 1 98 8 ? 7 7 - 0
Extepnall Mizade™ 8. L. ... .......... ] 21 - 0 - 2 - 0
I T WS N R 40 R S X 1 54 = ] - [o - g
ANSDCRESL e, AN, AL . .. ... 1 32 3 1 - g - o]
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5. Within-sample and Out-of-Samplie Forecasts

The within-sample forecasts are obtained by fitting the models to
the entire series in order to estimate the parameters and calculate the
forecasts for the last three years. The out-of-sample forecasts do not use
information from after the forecast time origin. For each forecast origin,

the parameters are re-estimated.

Table 13 shows the rate of failure in forecast error at the 15%
lTevel for within-sample and out-of-sample forecasts. The differencs
between the two is small and is well within one standard deviation for each
model. The X-11-ARIMA seasonal adjustﬁent program uses within-sample

forecasts because they cost less.

TABLE 13

Failure Rate in Forecast Error for
Within-Sample and Qut-of-Samplie Forecasts

Model 1 Medel 2 Model 3 Model 4 Model § Modal 6 Model 7
(0L RN a51,0) .. (40, VRDERIRG ) (ORISR 2 Sametanh . v i, 15aniee, 1,00 | G261, 3)(0,4. 1) (@ i olast 223
2 3 g 3 & :) G
Aitnin-
~ sampia 34 35 41 32 34 33 33
Qut-of-
sample 31 32 42 33 N » 3

Table 14 has been prepared using the same criteria and levels as
were used in the second columns of tables 10 and 11. The unconditional
ranking is exactly the same as that in the second column of table 10. Only
the success rates of the first three models differ, and in table 14, mocel
1 is clearly superior to the other models. However, the conditional

ranking is different from that appearing in the second column of table 11.



. |

TABLE 14

Conditional and Unconditional Ranking of the Models

Unconditional ranking Conditional Ranking
Models % of series Models % of series
that passed that passed
1 40% 1 40%
6 28% 2 5%
5 27% 7 4%
2 20% 3 32
3 14%
7 10%
4 2%

The conditional rankings in tables 11 and 14 differ for two
reasons. First, of course, table 14 uses out-of-sample forecasts. Another
important reason is that the calculation of the seven other criteria was
based on one year less data, and the missing year contained a severe
recession. Thus the structure of the series and the choice of models is

markedly different.

[t appears therefore that the conditional ranking of the models
for both within-sample and out-of sample forecasts depends on the phase of

the business or economic cycle in which the series ends.
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Conclusion
==US Medon

model 3.

~| Madels 1 (moving average model) and 6 (autoregressive model) rank close
together in unconditional ranking, although model 1 has one less parameter

than model s.

- In conditional ranking, these two both rank highly but are not mutually
exclusive. That sy moving average and autoregressive models are

comp]ementary and both are necessary in fitting and forecasting sellles”

- Although Mode] 3 ranks near the bottom, it fits well an important family

of serijes (series with a steep trend) that all other models fit poorly.

- The combined success rate of the models varijes considerably from one
economic sector tg another, from 93z in the labour sector to only 21% in
external trade. This rate depends on the structure of the series, changes

in the structure, and the amount of irregular in the series.
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- It appears that the conditional ranking of the models for both within-
sample and out-of-sample forecasts depends on the phase of the business or

economic cycle in which the series ends.
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