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1. Introductthn 

Our socio-economic environment is unstable and uncertain; 

inflation, recessions, and increasing pollution are among the factors 

contributing to increasing instability. We try to resolve the problem by 

using a method of forecasting that permits us to evaluate the impact of the 

frequent changes. ARIMA models (Box - Jenkins, 1970) are flexible enough 

to deal with such frequent changes in time series. 

The purpose of this paper is to study a set of eight criteria 

which when applied to the Box-Jenkins method permit an evaluation of the 

fitting and forecasting performance of a set of the most often applied 

ARIMA models to Canadian economic time series. The question of which 

models perform well is important for programs like the X-ll-ARIMA (Dagum 

1980) which automatically fits a fixed small set of models (three models in 

the case of the X-ll-ARIMA) to the series. 

Section 2 introduces eight criteria: the average forecast error 

for the last three years; the chi-square statistic for the randomness of 

the residuals; the presence of small parameters, overdi fferenci ng, 

underdifferencing, correlation between the parameters; stationarity and 

invertibility. 	Section 3 discusses the criteria and summarizes the 

results. 	Section 4 ranks the models conditionally and unconditionally. 

Section 5 compares within-sample and out-of-sample extrapolated values for 

the last three years. 

1 
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2. The Criteria 

In this section we give a brief discussion of the eight criteria 

used in ranking the models. 

Stability 

The stability condition of a process Z is either "stationary" or 

"non-stationary". 	It indicates how well the system remembers the shocks 

j=l, 2,..., and how fast or slowly the response of the system to any 

particular shock decays. For a process 

Zt = at + J1at1 + 2at_2+... 

= 	(B)at, 

whe-re at  '4ID(O, (3a2),  the filter is said to be stable if the sequende 

{p} is convergent. For a general ARIMA model (p, d, qT, 

- B)dZt = 

the stability condition is that all the roots A 1  of the characteristic 

equation 

(B) = 1 - 	- 2B 2  - 	- 	8p = (1 A1B)(1x28) .. (lAB) = 0 

for the process are strictly inside the unit circle, i.e. lxj l<l 

Invertibility 

The process Z may be expressed as: 

Z = at + 11-lZtl + 72Z 2 	••• 

The system is said to be invertible if the sequence Cir 1} is 
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convergent. The criterion is considered to be of primary importance 

because if the invertibility condition fails, the generating function y{B) 

of the r's increases without bound. This means the current event of the 

system depends more on events in the infinite past, and the process is 

physically meaningless. 

The invertibility condition for a general ARIMA model (p, d, q), 

	

is that the roots 	of the characteristic equation 

(B) = 1 - 6 1B - 	-.. .- 	(l) 1B)(lv2B). .. (l\) qB) = 0 

for the process are strictly within the unit circle, i.e. 'Rl. 

Underdi fferencin 

In the AR(p) model, when one or more of the characteristic roots 

say Ak  approaches 1; then from 

= 1 - 	- b 2 B 2  -. . . 	BP 

= (1 - 	.. 1 - 	k-1 	- 	.. (1 - 	B) 

.1B)... H 	- 	 - ApB)(l - 

we have (B) approaching 

	

(1 - 1B - 	-...- 	1BP*(l - B). 

Therefore, a differencing operator may be needed for this system, and the 

AR(p) model becomes an ARI(p-1,l) model. Furthermore, when X k  approaches 1, 

it may also lead to non-stationarity. 
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Overdi fferenci n 

Consider the general ARIMA model (p, d, q) (P, D, Q), 

- B)d(l - B s ) D Z t  = 	(B) 	O(B)at. 

If any roots v i  of the characteristic equation 	6(B) = 0 approach 1, i.e. 

if any (1 - 'JB) approach (1 - B), we can eliminate (1 - B) from both 

sides. 

Test of randomness for the as 

Correlation in the residuals is not desirable since we want an 

unbiased estimate of the parameters for the process. 

The statistic 
m 

2 

	

Q = n(n+2) 	(n-k)1 k 
k= 1 

as modified by Pro-thero and Wallis (1976) and Ljung and Box (1978) from the 

Chi-square test of Box and Pierce is used. 

Here n is the sample size, k=1, 2,...m are the various lags, and Pkare 

the autocorrelations. Q is used for the testing of the randomness of the 

residuals. 

Small Parameters 

Generally speaking, when the number of parameters of a given 

model is increased, the mean sum of squares a is reduced. However, only 

large parameters, or those parameters significantly different from 0 can 

contribute to a significant reduction of a . To check for a small 

parameter, we may need an F-test (Pandit and Wu 1983): 
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A1  - A0  A 
F 
=S 	F(s, N - r) 

where r is the number of parameters of the model and s is the number of 

parameters which are restricted to zero. N is the number of observations, 

A0  is the (smaller) sum of squares of the restricted model; and A 1  is the 

larger sum of squares of the restricted model. 

But in our study here, we choose two constants, 0.05 and 0.10, 

as our indicator of the presence of a small parameter. 

Correlation of the Parameters 

High positive or negative correlation between parameters reflect 

ambiguity in the estimated values since a range of parameter values results 

in models with equally good fit. Therefore, if some of the elements in the 

correlation matrix of estimated parameters are large in absolute value, say 

greater than or equal to 0.9, the model may be reduced by deleting some of 

the smaller parameters. 

Forecasting Error 

No matter how we define a good model or bad model, we still have 

a primary interest in the forecasting error of the model. In this paper we 

use the mean absolute percentage forecasting error of one-year-ahead 

forecast 

	

N 	IZ 

MAPE = 	
£=l 	

t+ - Zt() 
x 100% 

- I 
I 	t+z 

	

where 9. is 12 or 4, and 	is the forecast with 1ead time Z. 



1.1 

3. Evaluation of the ARIMA Models 

The eight criteria have been put into two groups. The first 

group considers good fitting of parsimonious models while the second 

considers the quality of the forecasts. This distinction between fitting 

and forecasting is important; good fitting and good forecasting are not 

equi valent. 

These criteria have been used to evaluate and rank seven of the 

most often applied ARIMA models, namely: 

(0,1,1 )(0,l ,l ) 
	

5. 	(1,1 ,0)(0,1 ,l ) 

(0,1,2)(0,1,1) 
	

6. 	(2,1 ,0)(0,l ,l ) 

(0,2,2)(0,1,1) 
	

7. 	(2,1 ,0)(0,1 ,2) 

(2,1,2)(0,1,l) 

where "s" is 12 if the series is monthly and 4 if it is quarterly. 

These models were fitted to a sample of 167 monthly seasonal time 

series chosen randomly from eleven sectors of the Canadian economy: 

national accounts; labour; prices; manufacturing; fuel, power and mining; 

construction; food and agriculture; domestic trade; external trade; 

transportation; and finance. About 40 quarterly time series from national 

accounts and finance were also tested. 

The series are mostly multiplicative, according to the Bell 

Canada model test (Higginson, 1976), that is the different components 

(trend-cycle, seasonal, and irregular) are multiplied together to produce 

the raw series. Therefore, the amplitudes of the seasonal component 

frequently increase with increasing levels of the trend. The 
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multiplicative series received a logarithmic transformation before the 

first three and last three models were fitted. The fourth model was fitted 

to the untransformed series in all cases. 

Looking at the non-seasonal part of an ARIMA model which is 

associated with the trend-cycle and extremes, the models can be grouped 

into three classes. Class I is models 1, 2 and 3 whose ordinary part 

includes only one or two first differences and one or two moving average 

parameters. Class III includes models 5, 6 and 7 whose ordinary part 

includes only one first difference and some autoregressive parameters. 

Model 4 (Class II) forms a class by itself; its non-seasonal part is mixed. 

We see that the seasonal part of all models is the same except for model 7. 

Although the eight criteria are analyzed separately in this 

section, several of them are dependent. For example we shall see that the 

excess of parameters in model 4 generates problems of nonstationarity, 

noninvertibility, under- and overdifferencing, and correlation. 

In sections 3 and 4, we test within-sample extrapolated values 

for the seven ARIMA models. That is, the models are fitted to the whole 

series thus providing the parameters to be used for calculating the 

forecasts for the last three years. This is the way ARIMA forecasts are 

evaluated in the X-ll-ARIMA program. 

3.1.Criterla for Fitting Parsimonious ARIMA Models 

The stationarity condition requires that all the roots of the 

autoregressive characteristic equation be inside the unit circle. We see 

in Table 1 that non-stationarity occurs only for model 4, in three cases. 

These appear to be due to overparametrization of the model. 
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In order for the model to be invertible, it is necessary that the 

roots of the moving average characteristic equation be inside the unit 

circle. Only model 4 has many cases of noninvertibi'lity, 20, as we see in 

Table 2. Two explanations are possible. There is first of all the case of 

straightforward noninvertibility. In some other cases noninvertibili'ty 

was accompanied by nonstationarity. The fact that the autoregressive part 

may have roots near unity might have caused autocorrelatiori in the 

residuals. The moving average parameters would then take higher values to 

compensate. 

TABLE 1 

Failure in Stationarity 

CLASS I 	CLASS II 	cuss lit 

Model 1 	I todel 2 	Model 3 	Model 4 	Model 5 	Modal 6 	Model 7 

(011 1 2) (044) 	(0,2,2) (00,1) 	(2,1,2) (0,1,1) 	(1,1.0) (01111) 1)211,0)  (0,1,1) 	(2.1,0) (0,1,2) 

3 	2 	 I 
TABLE 2 

Failure in Invertibility 

CLASS I 	CLASS IT 	CLASS III 

Model 1 	Model 2 	Model 3 	Model 4 	Model 5 	Model 5 1 Model 7 

	

(011.1) 	(011 1 2) (0,1,1) 	(0,2,2) (0,1,1) 	2.1,2) 	3,1,1( 	(1.1,0) (0.1,1)l(2,1,0)  (0,1,1) 1 (2.1,0) 	0.1,2) 

- 	I 	1. 	1% 	I 	2 	1% 	3 	21 	33 	20t 1 	2 	1 	2 	1% 

An important criterion in judging 	the appropriateness of the 

ARIMA models for the 	series 	is 	the chi-square 	test of Box and Pierce (1970) 

(modified 	by Prothero 	and 	Wallis in 	1976, 	and 	by Ljung and Box 	in 1978), 



applied to the autocorrelation of the residuals. Table 3 shows for each of 

the seven models the number and the percentage of series that fail the chi-

square test at different levels. We see from this table first, that within 

a given class of models the simpler models have higher failure rates and 

second, that the failure rate depends to a large degree on the class of the 

model. The first point is illustrated by models 2 and 6 which having one 

more parameter than models 1 and 5 respectively, have a higher number of 

series passing this test. The evidence for the second point is that 

moving average models appear to satisfy the chi-square test better than 

autoregressive models. This may be due to the presence of extremes in the 

series. At the 5 level for example, model 1 fails for 27 10 of the series 

compared with 49% for its autoregressive counterpart model 5. As well as 

all models of class III, the mixed model, class LI, is inferior to the 

second model of class I. 

TABLE 3 

Failure in Chi-Square 

CLASS I  CLASS II CLASS 	III  

Model 	1 Model 2 Model 3 Model 4 Model S Model 6 1 	Model 	7 

0, 1,1) (OL1)1  
(0,1,2) (0,1,1) (0.2.2) (0.111) (2.1.2) 	(01111) (111 1 0) 	(011.1( 1(2,1,0) (011 1 1) (2,1,0) 0.1,2) 

1% 31 19% 13 11% 29 L'% 26 i6l 62 371 21 13% 20 12% 

45 27% 36 221 45 291 41 25% 32 49% 49 29% 42 254 

10% 61 271 43 29% 56 341 55 33% 99 53% 60 361 56 34% 

154 72 43% 57 34% 69 411 66 401 101 60% 71 43% 64 39% 

201 33 53% 62 37% 30 48% 76 46 1k 106 64? 30 48% 73 44% 

30% 100 60% 77 461 94 56% 88 531 119 711 95 57% 89 531 

401 111 664 97 58% 107 	. 641 99 591 127 761 104 62% 100 6011 

50% 121 721 106 63 11 118 711 113 53% 125 1% 70% 116 61 

60% 131 78% 121 72% 129 771 129 77% 141 :1% 

1 117 

127 76% 121 72% 

Underdifferencing occurs when a root of the characteristic 

equation of the autoregression polynomial is close to unity, say a distance 

S 
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from unity. 	Here 	is 	set equal 	to 0.1. 	We 	see 	in 	Table 	4 	that only 

model 	4 	is 	underdifferenced. 	This 	may 	be attributed to 

overparametrization. 	Model 	4 has 	two 	autoregressive parameters 	and two 

moving average parameters 	in its 	non-seasonal 	part. Just through the 

estimation, 	there 	is 	a 	moderate 	chance 	that 	at least 	one 	of the 

autoregressive parameters will be greater than or equal to 	0.9. 

TABLE 4 

Failure in tJnderdifferencing 

CLAS$ I CLASS II CLASS 	III 
Model 	1 	1 Model 	2 	I Model 3 Model Model 	6 	Model 	7 

0,111) 	(2.1.0) 	(0,1,2) (0,1,1) 	(0,1.1) 	(0.1.2) 	(0,1,1)  (0,2,2) 	(0,1,1) 

jlod~(01,13 (2,1,2 (1.1,0) )01(2,0( 

.90 - 	 - 	 - 	 - - 	 - 14 	3% - 

In this discussion the critical levels chosen for overdifferencing 

are 0.90 and 0.95. 	Table 5 shows that models 3 and 4 are most often 

overdifferenced. 	Model 3 has two first differences and two non-seasonal 

moving average parameters. 	If the second first difference is not 

necessary, autocorrelation is created in the series that has been 

differenced once already. 	The moving average polynomial will model this 

introduced autocorrelation by having one of its roots close to unity. 	We 

can therefore simplify the model by eliminating one moving average 

parameter and one difference. As to model 4, this may be due to 

overparametri zati on. 
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TABLE 5 

Failure in Overdifferencing 

I CLASS I  ICLASS 	LI 	1 CLASS 	LII 

Model 	1 	lodel 2 	Model 3 [Model 4 Model 	5 	I Model 	6 

(1,1.0) 	(0,1,1) 	(2,1,0) 	(0,1,1) 

Model 	7 

(2,1,0) 	(0,1,2) (0,1,1) 	(0,1,1) 0,1,2) 	(0,1,1) 	(0,2.2) 	(0.1.1) (2,1,2) 	(0.1,1) 

.90 

.95 

8 	5% 

3 	2 1  

U. 	7% 

6 	4% 

43 	26% 

19 	Ut 

50 	301 

37 	221 

7 	41 

3 	21 

9 	St 

3 	21 

14 	8% 

6 	4% 

In ARIMA modelling of a stochastic process, it is enough to 

consider the first two moments, that is the mean and autocovariance. The 

test on the size of the parameters serves only to eliminate those that 

contribute very little or nothing to the explanation of the 

autocovari ance. 

Table 6 illustrates two things. First, the simplest models pass 

this test better than more complicated models. After a logarithmic 

transformation, most of the Enultiplicative series in the sample will follow 

a straight line fairly closely (except for the seasonal variation), so a 

"first difference" model will fit them using few parameters. Adding an 

extra unnecessary parameter to the model will often result in its receiving 

a small estimate from the estimation. Second, the estimated values of the 

moving average parameters are small (less than .05 or .10) more often than 

the estimated values of the autoregressive parameters. For example at the 

level of 0.05, the second autoregressive parameter in model 6 is judged 

unnecessary 13 of the time compared with 29 of the time for the second 

moving average parameter in model 2. Similarly, the addition of a second 

seasonal moving average parameter increased the failure rate from 13% in 

model 6 to 43% in model 7. 
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TABLE 5 

Failure in $mall Parameter 

CLASS II I CLASS III  

rj. 	Model 	1 I 	Model 	2 Model 	3 IModel 4 IModel 5 1 	Model 6 1 	Model 	7 

(3,1,1) (0,2,2) 	(0,1,1) (2,1,2) 0,1,1) (1,1,0) (0,1,1) :2,1,0 	(0.1,1) (2,1,0) 	(0,1,2) 

35 

iS 

15 	91 

26 	16% 

49 	291k 

88 	53% 

21 	13% 

43 	26% 

42 

73 

254 

44% 

12 

31 19% 

22 

46 

131 

28% 

1 	72 	431% 

114 	68% 

Hiqri posi tive or neoaYve cc"'- e 3t: ons beer crnet' 

estlmates are undesirable and reflect ambiguity in the estimation situation 

since a range of parameter combinations result in models with equally good 

Fits. Table 7 shows that only models 2, 3 and 4 fail the correlation test, 

.e. the absolute value of at least one of the correlations is ), 0.90. 

The problem is minimal for model 2, and serious for models 3 and 4 where 

51 and 74% of the fits had highly correlated parameters. This may be due 

to overdifferencirig in model 3 and the presence of too many parameters i 

model 4. 

TABLE 7 

Filjre in Correlation 

CLASS I 	 CLASS II 	 CLASS iii 

	

Model 1 	Model 2 i Model 3 	IModel 4 	Model 5 	Model 6 1 Model 7 - 

(0,1,1) (01111) 	(0.1,2)  (0,1,1) 	(0.2.2) (.1.17 ) 	( 2.1.2) (0.1.1) 1)1,1.0) (0,1.1) 	2.1.0) (0,1,1) 	(2.1,3)  
- 	

- 	3 	7% 	46 	511 	124 	741 	- 	
- 	- 	- 	- 	- 

3.2 Criterion for Extrapol ati on of APMA Models 

This criterion attempts to ensure the quality of the forecasts of 

the ARMA models. We require that the average percentage forecast error of 

the fit:o "'--'r :o'tir iev-' 
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Table 8 shows that six of the seven models are equivalent from 

the point of view of forecasts, i.e. the number of autoregressive and 

moving average parameters does not affect the forecast error of the model 

averaged over all the series. Of course, some models perform better for 

certain series. 

TABLE 8 

Failure in Forecast Error 

CLASS I CLASS it CLASS 	111 

CRITICAL Model 1 ?4oael 2 Model 3 Model 4 Model 	5 Mod1 6 model 7 

(2,1 ,2)(0.1.1)  (0,2,2)(0,1,5 

10 89 53 84 50 101 60 30 48 84 	50 85 51 85 51 

15 57 34 58 35 69 41 53 32 57 	34 56 34 55 33 

20 39 23 40 24 51 31 40 24 40 	24 40 24 40 24 

25 32 19 33 20 43 26 32 19 36 	22 14 20 34 20 

30 24 14 26 16 35 21 24 14 27 	16 27 15 27 16 

Table 9 shows the average forecast error and standard deviation 

of the error under two possible outcomes:, passing and failing the forecast 

error. criterion. Not only is the failure rate of model 3 higher than that 

of the other models, but the table shows that when it fails, its average 

forecast error is bigger. The forecast errors of model 3 are increased by 

its overdifferencing. However, when the forecast errors of model 3 pass 

the criterion, their average is as small as that of the other models. 
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TABLE 9 

Conditional 	Mean and Standard Deviation 	(SD) 
of the Average Forecast Error 

I I 	CLASS 	St LASS 	III 
Model 	I 	i 	140del 	2 Model 	3 	 Mode l Mooel 	S Motel 	6 	1 	looel 	7 

2::,,s2 	 1)iJ,i1) I 3c.1. 2 0,lj3 (0,2,2)(0,I,1) 	(.1.2 	O,1,) 11,1.2(011) ,L3)(04,t) 
oe 	M 	30 	4 60 1 	30 	'1 	30 4 	3D M 	SO 	II 	3D 

51 	Pass 	7% 	4.0 6% 3.9 7% 	4.1 6% 	3.8 7% 	3.9 I 	 4.0 7% 	3•9 

53L 	35 	23 36% 22.3 41% 	26.4 36% 	21.4 38% 	24.5 37% 	23.4 37% 	23.0 

4. Ranking of the Models 

To rank the models, the e ght cri teria are used at di fferent 

acceptance levels. 	Tables 10 and 11 present the overall and conditional 

rankings of the models. 	Table 10 gives the total success rate of the 

models. Table 11 gives first the total success rate of the best model; the 

following models are chosen according to their success with series with 

which all higher models have failed.  

TABLE 10 

Overall .anking of the Models 

3 =-::arlal S criteri.a 9 cr.ter.a 

15% 	 FE<151 FE 	<15% FE 	<151 

51 	 . 	5% 5.51 
42 

5?.10 6? 	<.35 6? 	<.25 

O0'.90 00'.90 OD'.95 

ss f series % of I of seres 
c5:s 	ta: zassed mcdels thaI 	assed Models =a sS tde1s that =asses 

4 	 52% 1 34% 6 38% 6 39% 

- 	 51% 4 311 1 37% 1 33% 

3 	 491 5 22% 2 29% 2 29% 

48% 2 20% 5 261 3 211 

44% 3 13% 7 25% 7 27% 

41% 7 11% 3 171 3 19% 

321 4 2% 4 4% 4 5% 

23 :!.r: L,ssd, 	e 
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TABLE 11 

Conditional Ranking of the Models 

2 criteria 9 	itsri.a 9 	iterja 9 criteria 
FE< 	15% FE 	< 	151 FE 	4 	151 F! 	< 	15% 

5 . 	5 5% 

.10 SP 	< 	.05 SP 	< 	.05 

CO 	' 	.90 00 	> 	.90 

¼ of series 
Ct) 	.95 

¼ of ser.es ¼ of series k of seres 
be1s 	that 	sod Models 	that Passed tde.1s 	that passed Models 	that passed 

4 	521 1 34% 6 381 6 39 1k 
7 	9% 3 6% 3 9% 3 9% 

2 	1% 6 41 7 4% 1 44 

3 	it 5 21 2 3% 4 21 

As vivall as the four criter.a 1ist, the fair 't*r critera nt.icne in the text ..ere tçosed. 

Table 10 shows that: 

- when only the chi-square statistic (X 2 ) and average forecast error (FE) 

are used as criteria, models 4 and 7, which have the most parameters, rank 

at the top. 

- on the other hand, the use of all criteria favour the simplest models 

(models 1 and 6), at all levels of sm-all parameter ( S P ) a n d 

overdifferencing (OD) criteria. 

- models 1 and 6 usually rank close together, although model 1 has one less 

parameter than model 6. 

- when model 6 is not first it is a close second. 

- the more the criteria are relaxed, the higher the pass ratio is, although 

the ranking of the models remain about the same. 

In table 11 we see that: 

- when all criteria are used, models 1 and 6 which ranked first and second 

in table 10 now rank only first and third. 
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- second place belongs to model 3. This model which in table 10 ranked 

third, fifth and sixth with total success rates of 41%, 13%, 17%, and 19%, 

here ranks fourth once and second three times. This is because model 3 

fits well an important family of series (series with a steep trend) that 

all other models fit poorly. 

- moving average and autoregressive models are not mutually exclusive. 

These two families of models are complementary and necessary in fitting and 

forecasting series. 

- when we require only that the average forecast error be less than 1510' and 

the chi-square statistic be greater than 5% and nothing else, the combined 

success rate of models 4, 7, 2 and 3 together is 63%. 

- when all the criteria are used, the models chosen are simple and their 

combined success rate varies between 46% and 54% using the levels of 

15% and 5% described just above. The success rate depends on the levels of 

small parameter and overdifferencing used. 

Even though model 1 does not appear in the third column of table 

11, it would appear there if the level of forecast error permitted were 

raised to 20%. 

The criteria and levels used in selecting models in figures 1 and 

2 are the same as are used in the second column of tables 10 and 11, except 

that in figure 1 the average forecast error permitted varies between 10% 

and 99% while in figure 2 the chi-square criteria varies between 10% and 

60%. 

Figure 1 shows that: 
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- models 1, 3 and 6 perform the best. 

- the ranking of the models tends to remain the same. 

- the performance of the first model increases more rapidly than that of 

the others, going from 23% to 59 10 compared with an increase from 13 00,  to 17% 

for model 3. 	This point needs clarification. 	Model 1 is chosen 

according to its unconditional performance, while the other models are 

chosen according to their conditional ranking. 

- the increase in performance of the models according to unconditional 

ranking is greater than the increase when using conditional ranking. 

FIGURE 1 

Model Priority Chart for Different Levels of the Forecast Criterion 
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We see in figure 2 that 

- models 1, 3 and 6 are generally the best models for any level of chi-

square. 

- models 1 and 6 trade places but are not mutually exclusive. 

FIGURE 2 

Model Priority Chart for Different Levels of the Chi-Square Criterion 
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Table 12 presents the conditional ranking of the ARIMA models for 

those sectors of the Canadian economy for which we fitted twelve or more 

series. The criteria and levels used in ranking the models are the same as 

those used in the second column of tables 10 and 11. We see that 



- models 1 and 6 are generally the best performers. 

- the combined success rate of the models varies considerably from one 

sector to another, from 93% in the labour sector to only 212  in external 

trade. 

- this success rate is at least 50% for five sectors. The rate depends on 

the structure of the series, changes in the structure, and the amount of 

irregular in the series. The rate is good considering that for two of the 

last three years Canada suffered a severe recession which strongly affected 

the structure of the series. The success rate for external trade is always 

low because those series are very irregular 

TABLE 12 

Conditional ranking of the ARIMA models for the sectors of the 
Canadian economy 

icde1s ranking and of series tiat 	a5sed 
Sectors first • second • third fourth 

model model model noel 

Labour 	............................. 1 79 3 14 - 	o - 

- ............. 5 50 7 17 2 	8 • 0 

Manufacturing 	...................... 3 19 6 14 1 	5 2 5 

Fuel. 	Power and Mining 	............. 1 46 6 4 - 	0 - 0 

Domestic 	Trade 	..................... 1 53 6 7 7 	7 - 0 

External 	Trade 	.................... 6 21 - 0 - 	0 - 0 

Transportation 	..................... 1 54 5 3 • 	a - a 
Finance 	............................ 1 32 3 11 - 	0 . a 
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5. Within-sample and Out-of-Sample Forecasts 

The within-sample forecasts are obtained by fitting the models to 

the entire series in order to estimate the parameters and calculate the 

forecasts for the last three years. The out-of-sample forecasts do not use 

information from after the forecast time origin. For each forecast origin, 

the parameters are re-estimated. 

Table 13 shows the rate of failure in forecast error at the 15% 

level for withi n-sample and out-of-sample forecasts. The di fference 

between the two is small and is well within one standard deviation for each 

model. The X-ll-ARIMA seasonal adjustment program uses within-sample 

forecasts because they cost less. 

TABLE 13 

FailureS Rate in Forecast Error for 
- 	Within-Sample and Out-of-Sample Forecasts 

Model I Model 2 	Model 3 	Model 4 	Model 5 	 Model 6 	 Model 7 
(a.l,l)(o.l.l) 	(o,l,2)(o.l.1) 	(0,2,2)(0,1.1) 	(2,1 .2)(3.1,I) 	(1 1 1,0)(0,1,1) 	(2,1 1 3)(01111)  

.fl tiiin- 
sai'Ie 	34 	 35 	 41 	 32 	 34 	 34 	 33 

Out-of- 
sample 	31 	 32 	 42 	 33 	 31 	 32 	 31 

Table 14 has been prepared using the same criteria and levels as 

were used in the second columns of tables 10 and 11. The unconditional 

ranking is exactly the same as that in the second column of table 10. Only 

the success rates of the first three models differ, and in table 14, model 

1 is clearly superior to the other models. However, the conditional 

ranking is different from that appearing in the second column of table 11. 
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TABLE 14 

Conditional and Unconditional Ranking of the Models 

Unconditional ranking 
	

Conditional Ranking 

Models 	% of series 
	

Models 	% of series 
that passed 
	

that passed 

1 	40% 1 40% 

6 	28% 2 5% 

5 	27% 7 4% 

2 	20% 3 3% 

3 	14% 

7 	10% 

4 	2% 

The conditional rankings in tables 11 and 14 differ for two 

reasons. First, of course, table 14 uses out-of-sample forecasts. Another 

important reason is that the calculation of the seven other criteria was 

based on one year less data, and the missing year contained a severe 

recession. Thus the structure of the series and the choice of models is 

markedly different. 

It appears therefore that the conditional ranking of the models 

for both within-sample and out-of sample forecasts depends on the phase of 

the business or economic cycle in which the series ends. 
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Conclusion 

Our objective was to rank a set of seven ARIMA models according 

to their fitting and forecasting of a large sample of time series. 

- when only the chi-square statistic and the average forecast error are 

used as criteria, models 4 and 7 rank at the top. 

- The use of all eight criteria favours the simplest models (1 and 6) and 
model 3. 

- Models 1 (moving average model) and 6 (autoregres5 
	model) rank close 

together in unconditional ranking, 
although model i has one less parameter 

than model 6. 

- In Conditional ranking, these two both rank highly but are not mutually 
exclusive. 	

That is, moving average and autoregressive models are 

complementary and both are necessary in fitting and forecasting series. 

- Although Model 3 ranks near the bottom, it fits well an important family 

of series (series with a steep trend) that all other models fit poorly. 

- The nonparsimonious models (numbers 4 and 7) have a combined success rate 

of 61% compared to a success rate that varies between 44% and 52% for 

parsimonious models 1, 6 and 3. 

- The combined success rate of the models varies considerably from one 

economic sector to another, from 93% in the labour sector to only 21% in 

external trade. This rate depends on the structure of the series, changes 

in the structure, and the amount of irregular in the series. 
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- It appears that the conditional ranking of the models for both within-

sample and out-of-sample forecasts depends on the phase of the business or 

economic cycle in which the series ends. 
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