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I. BASIC CONCEPTS OF TIME SERIES ANALYSIS 

1.0 Introduction 

During the last decade, many statisticians have been devoted to the 

search for optimal methods of estimation for time series analysis and 

forecasting. The reason for this search Is not hard to perceive. The 

need for accurate statistical data is crucial for decision-making. 

Policymakers, faced with the responsibility of controlling the economic 

activity, will hardly base their decisions on poor estimates or on 

estimates subject to significant revisions whenever new information Is 

available. 

Several methods of estimation, and corresponding computer programs, 

have been produced. For the most part, they are based on classical 

statistical techniques such as least squares or moving averages, although 

some other types of linear filters have also been considered. However, 

when using these methods of estimation, a fundamental and simple principle 

is forgotten, the optimality of any method of estimation strictly depends 

on the fulfillment of the assumptions upon which the methods rely. 

In other words, behind each method of estimation, there is a model for 

which it is optimal. But since there is no unique model that should be 

applied to all time series in all situations, no method of estimation 

should be used uncritically as the one giving unique optimal solutions. 

The more the behaviour of the generating process of a time series 

departs from the assumptions of the model, the less its validity to 

describe the phenomenon and consequently, no matter how optimal its 

corresponding method of estimation is, the final results will be seriously 

sor-te 



This kind of negligence should be attributed not only to users but 

also to researchers engaged in wasteful discussions on the superiority of 

one method with respect to another (superiority usually illustrated with a 

given time series for which the method proved to be optimal). This 

criticism is extended to the theoretical statisticians, for most of the new 

methods of estimation are based on very simple models, the assumptions of 

which are sometimes so general that it is very hard to find the real 

phenomenon that properly fits them. Yet a large class of models exists 

which, from a mathematical point of view, are feasible to deal with and 

better fitting the behaviour of many phenomena evolving through time, but 

for which methods of estimation have not been developed. We specifically 

refer to those models based on the assumptions of non-stationarity, and 

non-normality. We shall not discuss here these types of models but shall 

concentrate our analysis on univariate models for which well-established 

methods of estimation exist. By discussing their assumptions, we hope to 

make users and researchers aware of their limitations. Our approach is 

concerned strictly with the theoretical empirical foundation of the models 

and not with their estimation procedures or other aspects of statistical 

inference. 

We hope in this manner to provide an insight into the most realistic 

and/or mathematically tractable assumptions to be made concerning the 

behaviour of a phenomenon that evolves through time in a probabilistic way. 



0 	2. Time Series as a Sample Realization of a Stochastic Process 

Following the definition of Wold (1938) already accepted in the 

current literature, a time series is a sample realization of a stochastic 

process, which from a non-mathematical viewpoint, is any process controlled 

by probabilistic laws. The most important characteristic for time series 

is that the data are dependent and the nature of this dependence Is of 

interest in itself. The observations made as the process continues 

indicates the way it evolves. 

Assume the process is described by only one random variable X(t), then 

for each t, the numerical value of X(t) will not be uniquely determined as 

in the case of a deterministic system but will depend on the random 

influences that have been acting upon the process up to the time t. Then, 

for every fixed t, X(t), Is a random variable defined on a probabilistic 

space (c4 F, P). When t varies over the time range under consideration, we 

obtain a family of random variables X(t) depending on the parameter t and 

defined on the same probablistic space. This family {X(t), t T} of random 

variables X(t) is a random function or stochastic process. If I is a 

finite set, then we have a finite number of random variables in the process 

which can be described by using multidimensional distribution functions. 

In effect, if X £X1, X2, ..., Xn }, then this is an n-dimensional random-

vector and it is specified by its multidimensional distribution function. 

F(x1, X2,...,Xn)PX1X1, X2<X2,... , Xn<Xn} 

If I is the set of the integers, the process is infinite and is called a 

stochastic process with a discrete time parameter (discrete here refers to 

the nature of the set T) or a stochastic sequence. 	If I is the set of the 

r'uflDer's, 	the orocess is e'so irioe nut 	curOO'e 3' rc'_ 



denumerable and is called a continuous stochastic process or simply a 

stochastic process. The term stochastic process, has usually been applied 

to indicate processes with an infinite (countable or uncountable) number of 

random variables. The complete specification of a stochastic process 

requires something more than a mere extension of the finite case. 

For every fixed t, say tt 1 , we have a random variable X(t1) which is 

completely specified by its distribution function (d.f) denoted by 

(2.1) 	Ft 1  (x1)=P 	X(t1)<x11 

For every element t in the set 1, we have 

(2.2) Ft(x)=P { X(t)<x } 

For each pair of points t1,t2 in the set 1, we have the following 

bivariate distribution function, 

(2.3) Ft 1 ,t 2  (x1,x2)=P CX(t1)<x1, X(t2)<x2} 

of the two-dimensional random variable X 	(X(t1), X(t2)). 

In general, for any arbitrary finite set of t values, we have 

(2.4) F t 1 ,t 2 ,.,tn(xi, x2,...,x)P(X(ti)<x1,X(t2)<x2,...,X(t) x} 

corresponding to an n-dimensional random variable X(X(t1), 

The family of all these joint probability distributions for n=1, 2,... 

and all possible values t constitutes the family of finite dimensional 

distributions associated with the stochastic process X{X(t), 	For 

(2.4) to soecify a stochastic process, it has to satisfy the following two 

condi ti Ons 



The symmetry condition, according to which 

(2.5) Ft.l 
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where j1J2'•••n  Is any permutation of the indices 1, 2...,n. 

In words, the symmetry condition requires that the n-dimensional 

distributions F given 	in 	(2.4) 	should be symmetric In 	all 	pairs (xjtj) 	so 

that F remains invariant when the t and Xj are subject to the same 

permutation. 

The compatibility condition according to which 

(2.6) 	
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In other words, the compatibility condition requires that 

urn. 
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It was oroved by a celebrated theorem by Kolmog orov (1933), that (2.4) with 

(2.5) and (2.6) uniquely defines the probability distribution of the sample 

space of the stochastic process. 

The converse 	is also true; 	that is, 	any family of finite distribution 

functions 	(2.4) 	satisfying conditions 	(2.5) and 	(2.6) can be regarded as 

defining some stochastic process. 

We have defined a stochastic process or random function on I as a 

family of random variables X(t), tT} . 	It is important to point out 

that, 	since 	the 	X(t)'s are random variables, this 	means 	that they are real 

valued 	functions 	of the outcome of 	the sanole 	soace . 	 For this 



reason, sometimes a stochastic process is written explicitly as a 

collection of functions with two arguments, namely, w (the outcome or 

point) which is an element of Q and t (time) which is an element of T. 

In symbols 

(2.7) X = X(w,t), ucQ, 	T 

This was not done above because in probability theory, the dependence on 

of a random variable X is traditionally suppressed. 

Looking at (2.7), two interpretations of a stochastic process can be 

given depending on which of the two argument variables the emphasis is 

placed. For a given W , (2.7) reduces to a family of functions of time, 

which are indexed on w. Thus to each outcome w of a given experiment, 

there is a corresponding well-defined real function of the variable t. 

This function is called a realization or sample function of the stochastic 

process. This approach is of great interest to us since a realization of a 

stochastic process is precisely an observed time series. 

On the other hand, if t is given, (2.7) reduces to a collection of 

random variables indexed on t. In this case, to specify the stochastic 

process, we have to give the probability of occurrence of the various 

realizations, which leads to the definition of a probability measure P on 

the function space of realizations. 

If t and w are both given, then (2.7) reduces to a number. 

The process that generates the observation of a time series is thus 

seen as a random process where one of the infinite many w , members of 

could have been the observed outcome at an instant of time t, say t1. 

Since this is done for all t elements of 1, one realization (observed time 
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	series) of the process is one function of a doubly infinity set of 

functions which might have been generated by the stochastic process. 

Figure 1 shows a monthly time series consisting of all agricultural 



male employees 20 years and older from January 196 7  up to October 1980. 

(Place Figure 1 about here) 

Figure 2 shows the number of employees from January 1975 to December 

1977 together with other time serie which might have been generated from 

the population of time series defined by the underlying stochastic process. 

Therefore, each observation x t  at a given time t, say t=January 1975 can be 

seen as a realization of a random variable X with a probability density 

function P(Xt). Similarly, the observations at any two instants of time, 

say tjjanuary 1975 and t2=June  1975 may be seen as realizations of two 

random variables Xt  and  Xt with joint probability density functions 

P(x 	xt2 ) and In general, the observations of an equispared time series can be 

described by an n-dimensional random vector X = (X1, X2,...,Xn } and its 

multi-dimensional cumulative distribution functions F(x1,xj,... ,X. 

(Place Figure 2 about here) 

The feature of time series analysis which distinguishes it from other 

statistical analyses is the explicit recognition of the order In which the 

observations are made. In several areas of study, successive observations 

of a time series are dependent, particularly in social and economic time 

series. There are, however, cases where the observations are statistically 

independent, especially in some physics and astronomy problems. The 

hypothesis of dependence or independence among successive observations of a 

time series determines the kind of model to use for describing the 

generating process of the series. 

When a stochastic process is soecified according to the family of 

nte distribution functions (2.4) that fufi 	the synnetrv cndit'or 



(2.5) 	and compatibility 	condition (2.6), the 	model that generates 	a 	time 

series is said to be non-parametric in 	the sense 	that an infinite number of 

parameters are involved. 

There exist however other methods of specifying a stochastic process. 

It is often convenient to define a random function by an analytical model, 

containing a finite number of parameters which are random variables. When 

this is the case, the model is said to be parametric. In other chapters, 

we analyse the parametric and non-parametric models which are more often 

encountered in time series analysis. One parametric model that has proved 

to be useful for description and forecasting in empirical cases is the 

autoregressive integrated moving average (ARIMA) process. On the other 

hand, the autocovariance and autocorrelation functions and their Fourier 

transforms the spectral density (spectrum) and the normalized spectral 

density (normalized spectrum) are non-parametric approaches to describe a 

random function. 

There are several classical books that discuss extensively the theory 

of stochastic process and to which the interested reader may refer; see, 

for example, Bartlett (1978), Bucy and Joseph (1968), Doob (1953), 

Grenander and Rosenblatt (1957), Jazwinski (1970), Parzen (1952), Skorokhod 

(1965), and Sveshnikov (1966). 



, 	. Classification of Stochastic Processes 

Given that an observed time series 4(t), tcl} is assumed to be the 

sample realization of a stochastic process {X(t), tcT} one attempts to 

Infer from the observed time series the generating mechanism or probability 

structure of the process. It follows that in order to analyse a time 

series, one must first assume a model for it which must be completely 

specified except for the values of its parameters which one proceeds to 

estimate on the basis of observed samples. Models for time series are 

stochastic processes and there are several ways to classify stochastic 

processes. Next, we introduce in table 1 a classification that enables us 

to discuss the underlying assumptions of each type of process as well as to 

distinguish those processes used for practical applications from the more 

theoretical ones. 

Table I 

Classification j.  Stochastic Processes 

(1) According to the independence or not of the . 	 (a) Stationary 

properties of the stochastic process on the . 	 (b) Non-Stationary 

time origin. 

(2) According to the distribution functions that  Normal 

characterize the process.  Non-Normal 

(3) According to the independence or not of the 	(1) Markovian 

behaviour of the process on its values in the t  (2) Non-Markovian 

preceding time intervals. 

3.1. Stationary Stochastic Processes 

The nost imoortant and common assumptions made about a time series are 

that te corresDcrid 4 no st3ch3stic orocess is sationarv and th 



stationary stochastic process can be described by the lower moments of its 

di stribution function, namely, the mean, the variance and the 

autocovariance function or its Fourier transform, the spectrum. 

Intuitively, a stationary process is one whose distribution remains 

the same as time progresses because the random mechanism producing the 

process does not change with time. In other words, all the probability 

distrbutions depend only on the mutual positions of the instants of time 

t1, t1,...,t, but not on the actual values of these quantities. 

The theory of stationary stochastic processes is extensively discussed 

in Cramer and Leadbetter (1967), Wiener (1949), Wold (1938) and Yaglom (1962) 

and only a brief sumary will be given here. 

A stochastic process X 	CX(,t), wc2 	, tT} is said to be stationary or 

strictly stationary if all the finite dimensional distribution functions 

(2.4) remain the same when the set of points t1,t2,...,t is shifted along 

the time series t. That is, if 4 
(3.1) 	

Ft1+T ,t2+T,...,,+T(x1,x2,...,xn) 

for any n, 61,t2,... 	and T. 

In particular, this implies that for a stationary stochastic process, 

all the one-dimensional distributions of Ft(x)  (2.2) must be identical. In 

other words, they are independent of the values of time t. In the case of 

the two-dimensional distribution functions of (2.3), equation (3.1) implies 

that they can only depend on the time difference t2 - t1, but not on the 

values of t1 and t2 and, in general, according to (3.1) the finite n-

dimensional distribution functions depend only on the differences t 1  - t ,  

(j2,3,. . . ,n). 

Figure 3 below illustrates the definition of a stationary stochastic 

process with values of t as abscissa and values of z t  as ordinates. 

Resulting from one realization the stochastic orocess will be a sequence cf 

values which can be reDresented on the graDh (dotted line). Given a 

- 11 - 



sequence of numbers x1, X2,...,Xfl  and a sequence of times 	we 

can associate with them a curve (unbroken line). The distribution function 

F tl t2 ,•••,, (x1 1 x2,...,x) gives the probability that the realization of 

the stochastic process yields values which do not exceed the real numbers 

x. It follows from (3.1) that this probability does not vary when X is 

displaced laterally. In other words, the distribution is the same in the 

interval [t1+T ,t,,+T] and in the interval Cti,tn ]. 

(Place Figure 3 about here) 

In practice, instead of defining a process as strictly stationary, it 

is very useful to consider it as stationary in the wide sense or second 

order stationary. In this case, only the properties of the first two 

moments are specified. Thus, a stochastic process is defined as 

stationary in the wide sense if: 

(I) the mean value or first order moment .i(t) is a constant. 	In symbols, 

(3.2) l.1(t)=EEX(t)1=xdFt(x) = in 

(ii) the autocovariance function 	(t1,t2) defined as, 

(3.3) 	ECX(t1) -(t1)][X(t2) - 	(t2)] 

is finite and depends on a single variable which Is the difference between 

any two points in time t2,t1; that is, 

(3.4) <X(t1,t2)=C(X(tl+T,t2+T 

setting I =-t, gives 

( 3 . 5 )x(ti,t2) 	x( 0 ,t2 -t1)xx(t2-t1)=xx (r) 

where T=  t2-t1 is the time lag between the two random variables. For t2-tj= 0 

.5) 	yes the yIn ance 	x(0) of the process and divi ding (3.5) by the 



variance we obtain, the autocorrelatlon function Q(r) 

(3.6) P ( .) - QXX(tit2) = 
xx ) 

 ___ 

The mean value is an important characteristic of a stochastic process but 

it only gives the coarsest properties of the process: it is only a measure 

of location. A better description is provided by the autocovariance 

function. For tjt2, c(r) reduces to the variance, that is, a measure of 

dispersion in the mean square sense and for all t 2  tl,cXX(r) is a measure 

of the linear association of the random variables through time. 

For the comparison of the autocovariance functions of two different 

stochastic processes, it is convenient to use the autocorrelation function 

which eliminates the influence of the unit of measure of the random 

variables involved. 

Observe that a second order stationary process coincides with a 

strictly stationary process when the process is assumed Gaussian or normal, 

with finite second order moments. 

We now give some examples of stationary stochastic processes with a 

discrete time parameter. 

Example 1 - A process of independent random variables or white noise 

Let Ut's be independently and identically distributed random variables 

with 

(3.7) 	E(Ut) = in 

and 

(3.8) 	a uu (t) =0 	Vt 0 0 

This is a strictly stationary process but if the requirement of 

identical distribution is not fulfilled, the process is then stationary in 

he wide sense. 	7hjS process is known as a Durey randon orocss 	v 

-j 



statisticians and white noise by engineers. 

Example 2. A Moving Average Process Let the independent random variables 

of example 1 all be identically distributed with zero mean and unit 

variance. We now define a new stochastic process that Is a linear 

combination of these variables, that is, 

(3.9) Zt 	0U + 	1Ut_1 + aq ut...q ; t=...l,o,l... 

where the cLj 1 s are given constants, then every Z t  will be identically 

distributed with zero mean and 	a2  = c 0 2 + 	12"q2 For the covariance 

of Z tZ t+s  we obtain 

aoas+ 1s-1 • • + q-s 1q 	for s<q 

(3.10) 	c'ZZ(s) 
for s>q 

Thus, the covariance depends only on the time lag s so that two pairs of 

random variables (Zt,Zt_) 
and(Zt+h,Zt+S+h)  will have the same joint 

probability distribution for any integer h 	Thus, the moving average 

process (3.9) is strictly stationary. 

Figure 4 shows a moving average process of order q=2 generated from 	1, 

.80; a2 -.60 and a 2 	1.0 

(Figure 4 about here) 

Example 3 An Autoregressive Process. This is a orocess satisfying the 

following stochastic difference equation, 

(3.11) Z 	+ 	+ 	Ut; t...-1,0,l... 

distributed with zero mean. 	If the roots of the associated polynomial 

equation 

(3.12) 	xp-  



are less than one in absolute value, (3.11) is said to be an invertible 

process, such that, 

(3.13)Z = 
	j U..j 	t  

where the right-hand side converges in the mean. Thus, the autoregressive 

process (3.11) is strictly stationary. If the U's are uncorrelated and 

have common mean and variance (but are not necessarily independently and 

identically distributed) the process is stationary in the wide sense. 

Figure 5 shows an autoregressive process of order p2 and 0 1, 4 z.60 

2 =_.50ando=1.0. 

(Place Figure 5 about here) 

Example 4 A process that is stationary in the wide sense but not in the 

strict sense Is 

(3.14) Z 	= cos 	t 	t = 1,2,... 

Where w is uniformly distributed in the interval (0,21. Then the mean of 

the process is zero with a2  = 1/2 and o(r) = 0 for all t 0. These 

random variables are uncorrelated although dependent functionally and 

statistically. 

3.2 PIon-stationary Stochastic Processes 

A non-stationary stochastic process is one that does not fulfill 

conditions (i) and (ii) as expressed by the equations (3.2) and (3.3) for a 

stationary process. Of the class of non-stationary processes, the so-

called homogeneous non-stationary or processes with stationary increments 

were first studied by Kolmog1orov (1941) and Yaglom (1955). 

Processes of this kind are non-stationary but, by adequately 

differencing the process, we obtain a stationary process in the difference 

15 



of a finite order. 	In the empirical applications, very often the 

distinction between one part of the observed series and another part of the 

same series is only in the local level and/or slope of the curve; therefore, 

the order of the difference Is low. 

The homogeneous non-stationary processes generalize the theory of 

stationary random functions. It is obvious that every stationary process 

is also a process with stationary differences. 

The derivative (difference) of a random function (sequence) of 

stationary increments is a stationary process and conversely, the 

indefinite integral (infinite sum) of a stationary process is a process of 

stationary increments. 

We give now the following definition for a process with stationary 

increments (Yaglom 1955): The random process X(t) is called a process 

with stationary increments if the mathematical expectation of the increment 

of X(t) during any time interval is proportional to the length of the 

interval, so that ECX(s) - X(t)] = a(s-t); a, constant; and the structure 

function D(t; u,v) of the process X(t) depends only on the differences u-t 

and v-t; i.e., D(t; u,v) D(u-t, v-t) 

The structure function is more appropriate than the autocovariance 

function for the description of this type of process and was first used by 

Kolniogorov (1941). Thus, a process with stationary increments is 

characterized by a constant a (which in practice can be taken to be zero) 

and by the structure function, which is a function of two variables. 

(3.15) D( i T2) = ECX(t+Tl) - x(t) 	CX(t+ 12) - 

For the real case, instead of (3.15) we have a function of one variable, 

3.16)D( -r) = ErX(t) - X(t)j2 



For a real stationary process, a is equal to zero and D( ) can be expressed 

in terms of the autocovarlance function C(t)  as follows: 

(3.17) 0(t) = 2(0) - 	(r) - 	(_r) 	2a(r) 

An important category of hornogenous non-stationary processes is the 

homogenous linear non-stationary where the process is seen as the output 

from a linear filter, the input of which is white noise. In this type of 

process, previous values of the random variable X(t) will contribute to the 

determination of its value at time t. The non-stationarity may be present 

in the mean and/or in the variance. 

We now give an example of non-stationary stochastic processes. 

Example 5. Random Walk Process. A simple example of non-stationary 

processes is given by the random walk process in which, as the time increases, 

the random variables tend to oscillate about the mean value (a line) with 

an ever increasing amplitude. This type of process has been used for time 

series of economic levels and in particular, to fit stock market price 

data. Let us assume that Ut is a purely random process and Xt is another 

process related to Xt as follows: 

x l  = Ui 

= xl+U2 

(3.7) 	Xt = U1+U2+. . 

Then Xt can be expressed as a linear combination of the ourely randon 



' 	process U with all the weights equal to 1. If the expected value of Ut is j 

and the variance a2U,  It follows that: 

(3.8) E(Xt) 	ti 

and (3.9) var Xt 	t a21j 

The autocovariance of the X. process is 

(3.10) xx(t1,t2)  a mm 	(t1,t2) a 2u 

Equation (3.7) is also called a process with independent increments, since 

(3.11) Ut = Xt-Xt_i 

is a purely random process or white noise and hence equation (3.11) has 

stochastically independent increments Ut-Ut_i,  U_ - Ut_2, ••• U2-U1. 

3.3. 'Ioriial and Non-Normal Stochastic Processes 

Another attribute that can be used for the classification of 

stochastic processes is the form of the distribution functions that 

specify the process. The distribution function most frequently 

encountered is the multivariate Gaussian or Normal distribution. Since the 

multivariate Normal distribution is fully characterized by its moments of 

the first and second order, the existence of a constant mean and an 

autocovariance matrix where each component is function only of the time 

lag, would suffice for this type of process to be stationary in the wide 

sense; and if the random variables are real-valued, then the process will 

be wide stationary and strictly stationary at the same time. Most of the 

processes to be studied here belong to this class. If the distribution 

functions that characterize a stochastic process are not normal, the 

process is then said to bea Non-Norrna process. The of the most conron1y 



applied Non-Normal process is the Poisson process. 	The Poisson process 

arises in situations in which one is Interested in the total number of 

occurrences of a specified type of event up to time t>o as, for example, 

the telephone calls originating in a given locality, the occurrence of 

accidents at a certain intersection or in a mine, the arrival of customers, 

for services and the breakdowns of a machine. The justification for 

viewing these cases as Poisson processes is based on the concept of the law 

of rare events. We have a situation of many Bernoulli trials with small 

probability of success where the expected number of successes is constant. 

Under these conditions the actual number of events occurring follows a 

Poisson distribution. 

A process X(t), t>O is said to be a Poisson process with rate A> 0 

If it satisfies the following conditions: 

X(0) = 0 

X(t) Is a process of independent increments 

the number of events in any interval of length t is Poisson 

distributed with rate A t, that is, for all s, t>0, 

(3.18) PX(t+s) - X(s) = x} = e4t (At) /x ; 	X =0,1,2,... 

It follows from condition (iii) that a Poisson process has stationary 

increments and also that E{X(t)} 	At which explain why A is called the 

rate of the process. 	Since it is not clear how we would determine that 

conditions (iii) is satisfied, an equivalent definition is given where 

(3.18) is changed to: 

(3.19) P X(t+h) - X(t) 	1 } = A h - 0(h) 

(3.20) P(X(t+h) - X(t)> 21= 	0(h) 

where a function f(x) is said to be of order o(h) if lin.f(h) /b 	a. 
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, 	Equation (3.19) gives the probability of at least one event happening 

in a time period h and equation (3.20) states that the probability of two 

or more events occurring in time h is 0(h). Thus, condition (iii) excludes 

the possibility of simultaneous occurrence of two or more events. 

Next we give an example of a Poisson process and for a more detailed 

discussion of this kind of stochastic process the reader may refer to 

Karlin and Taylor (1981), Rolski (1981) and Ross (1980) 

Example 6. Total Claims ona Life Insurance Company 

Let W1, W2,... denote the occurrence tines of the death of the 

policyholders of a given life insurance company. Considering these times 

as the arrival times of insurance claims, the number of deaths can be 

described by a Poisson process (X(t)} 

3.4.tlarkovian and Non-Markovian Processes 

Another important classification of a stochastic process is that of 

Markovian and Non-Markovian processes made according to the independence or 

not of the behaviour of the process on its values in preceding time 

intervals. 

Consider a stochastic process {X, n0,1,2,... )' that takes on a finite 

or countably number of possible values. Let us assume this set of possible 

values is that of the non-negative integers (0,1,2,... } A discrete 

stochastic process is called a Markov Chain if, for any sequence (xo,xi 
•.• 	} of states 

P{X+1 *Xn+lIX n 	X, X.4 2  Xn_1,.. .X 0  

(3.21) P(X + j 	x+jjX =xn } = P(n, X, xn+1 )  

Equation (3.21) can be interpreted as stating that for a rlarkov Chain 

the conditional distribution of any future state Xfl+1 given the past states 

Xn_l, ..., x0 and the current state Xn is independent of the past states 

anc deoends only on the oresent s:ate. e .1es  
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represents the probability that the process, when in state xn, will make a 

transition into state X+1. 

The probabilities P(n, x, y) are called one-step transition 

probabilities at time n. 	Let us fix an nT = (0, 1,2,...} , then the 

transition probabilities P(n,x,y), x,y E.S where S denotes the state space, 

can be treated as the elements of a matrix 

Poo 	Pol 	Po2 

NO 	P11 	P12 

(3.22) 	M(n) = 
Plo 	P11 	Pi2 

The matrix M(n) is called the one-step transition matrix at time n 	Since 

the probabilities depend on n, the Markov Chain is said to be non-

homogenous -rtemporarily non-homogenous. If the one-step transition 

probabilities P(n,x,y) are independent of n; that is M(n) = M a [P(x,y)) 

for 	all 	nE T then 	the Markov Chain 	is 	said 	to be hornogenous 	or with 

stationary transition probabilities. 	Therefore, if a Markov Chain 	is 

homogenous, the process is completely determined by its one-step transition 

matrix M = [P(x,y)] (x,yS) and an initial distribution (P 0(x), xS). 	The 

concept of one-step transition probabilities can be extended to n-step 

transition probabilities defined by, 

(3.23) Prl(x,y) = p 0 m+n 	yl XM  = x } ; 	n2 

Equatiori(3.23)gives the probability of transition from state x to 

state y in n steps. Accordingly, an n-step transition riatrix is defined by 

= [P n(x,y), 
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The Poisson processes discussed in the previous section are also 

Markov processes with discrete states in continuous time. The main 

characteristic of this prototype of Markov processes is that in a small 

time interval there is either no change or a radical change of state. 

Therefore, in a finite interval there is either no change or a finite or 

countably number of discontinuous changes. Realizations of such processes 

are step functions. If change of states occur all the time the process Is 

called a diffusion process or a Markov process with continuous state space. 

Next, we give a few examples of commonly encountered Markov processes 

and for further discussion on these processes the reader may refer to Cox 

and Miller (1965), Basawa and Rao (1980), Joffe (1978), Dynkin (1965) and 

Ross (1980). 

Example 7. A process of tndependent Random Variables. 

' 	If X = CX n , n>O }is a sequence of independent random variables, X is 

trivially a Markov process. 

Example 8. A First-Order Autoregressive Process. This kind of 

process is defined by 

(3.24) Z
Z 6 Zt_i + Ut; t. 

and is a Markov process because the distribution function of Z. 	is 

completely characterized by a knowledge of and 	Is independent of the 

random 	variables 	preceding Z_1. 	If Ut  is 	Normal with mean zero and 

variance c2  the process is also Gaussian and the conditional 	probability P 

= 	zt 	'Z..1 	zt_l}iS Normal 	with mean and variance G u 2.If S. 1 

and Z0  is finite, 	then (3.24 defines a random walk 	(see example 5). 	The 

random 	walk 	is 	a 	non-stationary process wher-eas 	the 	first-order 

autoregressive process 	is stationary if 	< 	1. 

Example 9. 	Wiener or Brownian notion Process. A stochastic orocess 

t-} is called a Wiener or Browriian motion process if: 

(i) X(0) = 0 
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the increment X(t) - X(s) over the interval [s,t] is normally 

distributed with mean zero and variance a2(t-s). 	In other words, 	X(t), 

t0 is a process with stationary increments; and 

X(t) is a process with independent increments. 

The Brownian motion is a Gaussian-non-stationary-Markov process. It 

is the limiting case of random walk processes, where the state space is the 

continuum of real numbers and in which changes of states are occurring all 

the time. 

A process is said to be non-Markovian if the probability properties of 

the process at a given point in time depend on its values in preceding time 

intervals. Among the non-Markovian processes the Homogeneous Linear Non- 

stationary processes are very important for describing socio-economic 

phenomena. These 	processes 	will 	be 	extensively discussed 	in 	another 

section. 

The three main categories of stochastic processes here introduced are 

compatible and several combinations are possible. Thus, a process may be 

normal-stationary-Markovian, or non-normal and non-stationary or normal-

non-stationary-non-Markovian and so on. 



4. Ergodicity 

I  
n the aDplictions of probability theory, one ordinarily deals with events 

that repeat themselves many times. Hence, as the mean value of a random 

variable X characterizing an observed event, we can take the arithmetic 

mean of all the observed values Xj of X. Similarly, to determine the mean 

value and the autocovariance functions (t,$) of a stochastic process X(t), 

we must have a large number of realizations of the process X(t), that Is, 

X1(t)...,X1(t) and then we calculate the mean for every value t, and the 

autocovariance function for every pair of values t and s. However, in 

practice there are many time series and particularly, economic time series, 

the data of which is the result of a single experiment. For this kind of 

series, it is necessary to specify the conditions under which a single 

realization of the process allows the calculation of consistent estimators 

'  for all the characteristics of the distribution of the process. The 

possibility of doing the latter is because the Ergodic theorem (or law of 

large numbers) is applicable to a class of homogeneous linear non-

stationary processes that can be made linear stationary after taking finite 

differences of a relatively low order. 

According to the ergodic theorem, the mathematical expectation of X(t) and 

of X(t)X(s) obtained by taking the average of the corresponding quantities 

over the whole space of outcomes Q (called the ensemble average or sometimes 

spatial average) can be replaced by the time averages of the same 

quantities. 

Given stationary stochastic process X(t), the time average for the mean of 

X(t) is defined by, 

1) 	= 1. 	'x(t)dt; 	 it 



For T-, the time average 5T  converges to the ensemble average 	in mean 

square (also in probability) if and only if 

(4.2) 	urn. E(T -1 ) 2  .0 

since, 

I 
(4.3) 	urn. E(u1 -1.1) 2-ljm.f0G(t)dT; 	t =s-t 

T 

then, the (4.2) will be verified if and only if 

(4.4) 	lirn.rJc(r)dr 	0 

This condition was first shown by Slutsky (1938) and any stationary process 

that fulfills the (4.4) is said to be ergodic in the mean. For ergodicity 

in the second order moments, we need the time average of the autocovariance 

function, namely 

(4.5) a.(r) a 	 :x(t)-L:dt 

to converge in mean square to the ensemble average of the autocovariance 

function 	(r). That is, 

(4.6) 	lirn. E[ 1 (t)-a(r)]2=0 
T-s. 

For normal process, the (4.6) reduces to 

1 1 	
2d (4.7) 	urn. .10  Ia(t)r=o  

The existence of time averages and their convergence properties were proved 

in the famous ergodic theorem of Birkhoff and Khinchin (see Genederiko 

(1966)). 
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Itis easy to show that all linear stationary stochastic orocesses are 

ergodic. Similarly, the homogeneous linear non-stationary processes which 

are linear stationary after taking differences of a finite order fulfill 

the principle of ergodicity. However, not all the stationary processes are 

ergodic. Consider, for example, the following simple stationary process, 

where a and b are normally distributed random variables with zero means and 

connon variance a 2 . 

(4.8) 	X(t) = a cosxt+bsinXt 

The autocovarlance function a(t) is 

(4.9) 	a( -r) = a2cosXt 

0 	Using (4.4) we can show that this process is ergodic in the ocan. We have 

(4.10) 	lim.r.fjo(r)dr = lim.a2 
SinAi 

T 
T- 

But the process is not ergodic for the autocovariance function. Applying 

(4.7), 

a4sinT (4.11) 	urn. I.fT Ia(r)I 2dt= lim.(—+ 
T- 	° 	T-° 
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