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II. MODELS FOR STATIONARY STOCHASTIC PROCESSES 

2.0 Introduction 

Two important categories of stochastic processes, the Normal Linear 

Stationary and the Normal Homogeneous Linear Non-Stationary processes have 

proved to be the easiest to deal with from a mathematical point of view. 

Furthermore, they seem to describe quite accurately the generating 

mechanism of many physical problems. The properties that make these types 

of processes very useful are that, by the assumption of normality they are 

fully characterized by their moments of the first and second order and, by 

being assumed stationary or stationary in the differences (homogeneous non-

stationary) the mean and variance are constants and, thus, the 

autocovariance functions depend only on the time lags. Linear stochastic 

processes have often been applied to describe phenomena that belong to the 

natural and social sciences. 

The importance of introducing the assumptions of linearity is that all 

linear stationary processes fulfill the principle of ergodicity, i.e. we 

can obtain consistent estimators of the mean and covariance functions with 

only one single realization. In other words, averages computed from one 

sample (one set of data) called time averages can ultimately be identified 

with corresponding ensemble averages, that is, averages over the whole span 

of outcomes or possible realizations of the process. The ergodic property 

is very important when dealing with time series, the data of which are the 

result of a single experiment as for example in economics. In the next 

section we will introduce parametric and non-parametric models for linear 

stationary stochastic processes. Both forms are statistically equivalent 

but depending on the problem one form can be more convenient than the other 
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to apply. For example, the description of the stochastic nature of a time 

series by means of a parametric model (in the sense of a model with few 

parameters) is useful for forecast purposes. On the other hand, for 

frequency response studies, it is more useful to have non-parametric models 

(in the sense that actually an infinite number of parameters is required to 

specify the process) such as the autocovariance function or its Fourier 

transform the spectrum. 

Among the classical books that discuss parametric models for stationary and 

homogeneous stationary stochastic processes, the reader may refer to 

Anderson (1971), Box and Jenkins (1970), Cramer and Leadbetter (1967), 

Fuller (1976) and Yaglom (1962). Non-parametric models are treated in 

detail by Brillinger (1975), Jenkins and Watts (1969), Granger and Hatanaka 

(1964), Priestley (1981), Koopmans (1974) and Nerlove, Grether and Carvaiho 

(1979). 

2.1 	Parametric Models of Linear Stationary Stochastic Processes 

A stochastic process Xt is 	said to be linear 	if there 	exists 	a 	purely 

random process Ut and a sequence of parameters 	, a1 , a2 , ... such that, 

(2.1) X 	m = Ut + a11J 	+ 	+ ... kOakU - ; a = 1 tk o 

In continuous time, equation (2.1) becomes, 

(2.2) X(t)-m = f°°cz(v)U(t-v)dv. 
0 

The E(Ut) = E [U(t)l = 0 and E (Xt) = E [X(t) 1 = rn 

If the series or the integral is convergent, then equation (2.1) or (2.2) 

define a stationary linear stochastic process, where m is the expected 	4 
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	value of the process. 

If the series or the integral is not convergent, then equations 2.1 ) or 

(2.2) define a non-stationary linear process and rn has no precise meaning, 

except as a point of reference for the level of the process. The equation 

(2.1) is sometimes called an infinite moving average although the infinite 

sum of the coeficients is not constrained to be equal to 1. 

F o r a finite number of terms, 	equation (2.1) d e f i n e s a 

linear parametric stochastic process with a discrete time parameter. 

In this section we shall deal only with discrete time parameter processes. 

(The analysis for continuous time follows a similar procedure .) 

Using the backshift operator B, where B 0  = 1, BUt = U_1 and B"Ut = Ut_ n , 

the equation (2.1) for m=O can be written in compact form as follows: 

(2.3) 	x = ( 1:1B+ct2B2+. . .)U = koakU = ct(B)U 

where k _ k B k  = a(B) is the linear filter or operator that transforms the 

input Ut  into the output x. It is also called the transfer function of 

the linear system or generating function of the weights. In the latter, B 

can be considered as a dummy variable whose k-th power is the coefficient 

of ctk. 

For equation (2.3) to be stationary in the wide sense, it is a necessary 

and sufficient condition that the transfer function a(B) be convergent for 

JBI < 1 which implies that koF<M,  M finite. 

2.1.1 Autoregressive Processes (AR) 

I Autoregressive processes were first introduced by U. Yule (1921) and 
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are a subclass of linear processes. A process X is said to be an 

autoregressive process of order p, AR(p) if it can be expressed as a 

linear combination of p previous values of the process plus a purely 

random component U.. It may be written in the following form 

(2.4) Xt + iXt.i + 2Xt_2 +...+ pXt_p = 	Ut 

Using the backshift operator B, equation (2.4) results in, 

(2.5) Ut = (1 +1B + 2B 2  +...+ 8BP)X t  = Z arBrX, = Ut; ao = 1 

If the X. process is stationary, then equation (2.5) may be written as an 

infinite moving average 

(2.6) 	= 	
1 	1J = 	1(B) 	= ro 	rBr 

E Br 
r=o r 

In effect, each Xt_m,  m=l,.., p can be replaced by an autoregressive 

process and finally we end up with an infinite series of U's. 

There are several equivalent conditions for the stationarity of the process 

(2.6). 	Written as an infinite moving average, we already said in the 

previous section that the infinite series of weights must be convergent for B< 

1, which implies rorI  finite. 

r 
These conditions for convergence are equivalent to rorB 	0 

r 
since if E 	B =0, then the transfer function becomes infinite. 

ro r 

r 
We shall see which are the conditions for rorB 	0 

(2.7) 	(1 +1  B + B 2  B + .. 
.+ P 

 B) = (B) 

Observe that 	(B) is a polynomial in B of order p. 	Factoring out BP and 

4 



making B = lwe have 

G 

(2.8) 	= 1 

I 
GP 

(G +GP -1 + 	+ . . .+ 	= 

(G-G 1 ) (G-G2 ) ... (G-.G,) 

Where G 1 , G2, ..., G are the p roots of the characteristic equation of 

a(b. 
It is obvious that the equation (2.8) may be written 

(2.9) 	(B) = (l-G1B)(1-G28) . . . (1_GB) 

Therefore, if 	there 	is a 	G 	=., 	(B) = 	0, the process 	(2.6) is 	non- 

stationary. for it to be stationary, 	the roots of (B), 	namely 	B.1  = 

i = 1.2, ..., p must all be in absolute value greater than 1 or 

equivalently I Gi I < 1. The conditions I G I < 1 coincide with the 
requirements for the stability of the deterministic component of (2.4). 

Observe that if Ut = 0, then (2.4) reduces to a homogenous finite 

difference equations of order p, whose general solution is 

(2.10) X = Al G1t+  A2  G 2t+ •.. + AGt 

Where G,  i = 1,2,...,p are the roots of its characteristic equation and 

for the process (2.10) to be stationary, JGj I < 1, for i = 

For a continuous time parameter, the autoregressive process (2.4) is 

defined by a differential equation of order p and to be stationary, the 

roots of its characteristic equation must all have negative real parts. 

Autoregressive processes of order 1 and 2 are often used to represent 

business and economic time series. 

The first order autoregressive process also known as Markov process is 

usually written as, 



(2.11) Xt = iXt_i + Ut 

where _1<4i < 1 for the process to be stationary. 

Figure 6 shows an AR(l) process generated from the model Xt 0 . 60Xt_i+Ut 
2 

where cy u  = 1.0. 

The second-order autoregressive process may be written 

(2.12) Xt 	i 	+ 2Xt_2 + U 

For the process (2.12) to be stationary, the roots of 

(2.13) 	(B) = 1 - 4B_ 	B 2  = 0 

must be greater than one, which implies that the parameters 	and 4 must 

satisfy the following conditions 

2 + 01 < 1 

- 	< 1 
(2.14) 

—1 < 02 < 1 

Figure 7 shows an autoregressive process AR(2) generated from the model 

Xt = .75Xt1 - .50X t 2+Ut where cTU  = 1.0 

(place Figures 6 and 7 about here) 

2.1.2 Finite Moving Average Processes (MA) 

The autoregressive model discussed above, expressed X j  and a finite 

weighted sum of p previous values of the process X, plus a purely random 

component U. 	Equivalently, if the process is stationary, it can be 

4 
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expressed as an infinite weighted sum of the Ut'S,  where E(Ut) = 0, E(Ut) 2  

= U and E(Ut Ut+T) = 0 for all T / U. 

A process X. is said to be a finite moving average of order q MA(q) if 

it is a linear combination of q+l  purely random variables 

•.., U_ q . That is, 	 q 
(2,15) Xt =+ CLiUt_i + CL 2 	+• +CLq U_2 = roCLrUt_r; CL1 

Using the backshift operator B equation (2.15) becomes, 

q 	r 
(2.16) X t  = E CLrB  Ut = (B)Ut 

r=o 

Where ct(B) = 1 + CLj,  B + cx2B 2  + •.. +cLB1, is the generating function of the 

weights. 

The process (2.15) is always stationary, that isCL(B) is convergent for 

8 1<1 but for the model (2.15) to be invertible i.e. to be expressed as an 

infinite autoregressive process, 

q 
(2.17) Ut= ( CLB  ) 	Xt = c('(B)Xt = 

	
r r o  r 	 r o 	t 

the roots of cx(B) = 0 must lie outside the unit circle. 

The first-order moving average process MA(l) is usually written as 

(2.18) X = Ut - 0] 	Ut_i = ( 1-01 B)Ut 

where -1 <E3i<l for the process to be invertible. However, the process 

(2.18) is stationary for all values of e 

Figure 8 shows a realization of a MA(l) process from Xt=U t  - .80 Ut_i where 
2 

a 	=1.0. 
U 

The second-order moving average process MA(2) may be written 
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(2.19) X 	= Ut - i Ut1 - 	U 	= (1-9k B-2 B )Ut 

and is stationary for all values of 0 1 and 0 2. For the process (2.19) to be 

invertible the roots of the characteristic equation 

(2.20) 1 - 01B - 02B 2  = 0 

must be greater than one, which implies that the parameter values must 

satisfy the following conditions 

(2.21) 02 + 6 1 < 1 
02 - 6 1 < 1 

-1 < 6 2 < 1 

Figure 9 shows a moving average process MA(2) generated from a model 

Xt=Ut+. 4OUti+. 4OUt2wherea2 = 1 . 0  

(Place Figures 8 and 9 about here) 

2.1.3 Autoregressive-Moving Average Processes (ARMA) 

For empirical applications, a combination of an autoregressive process, say 

of order p with a moving average, say of order q, has the advantage of 

involving very few parameters. 

Thus, an ARMA (p,q) process may be written 

(2.22) X = Ut + alUl + ... + ct q t_q 	lX t_l _..._ pXt_p  

or equivalently 

(2.23) (r Eor Bt)X = (t 	r 	r 	t 	o 	o E a Br)U ; a = 	= 1 
o  

and therefore, 
q 	r 

(2.24) X 
= ro 

r r  Ut  

r=o r 

[.1 
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The ARMA (p,q) process is considered as the output Xt obtained from an 

input Ut purely random or white noise, where the transfer function is the 

quotient of two polynomials. The number of parameters of the model (2.22) 

is p+q+2, including the mean of X and the variance of Ut. 

For the ARMA (p,q) process (2.24) to be stationary the sane conditions 

discussed in the previous sections are required namely, the roots of the 

p 
characteristic equation E a Br= a(B) = a must all be in absolute value r=or 	 q 
greater than 1. The process (2.24) is invertible if 	Br = cL(B) = 0 has r=o r 

all its roots outside the unit circle. Then, 
P 

Br 

(2.25) Ut 	
ro 

r r 
E aB r=o r 

Figures 10 and 11 	show an ARMA (1,1) realization from Xt = 0.60Xt_l+ut - 

0.8OUtl and an ARMA (2.2) generated from Xt = .75Xt_1 - .5OXt_2 + Ut + . 40Ut1 

2 
+ .40Ut 2 where a = 1.0 in both models. 

(place Figures 10 and 11 about here) 

2.2 Non-Parametric Models of Stationary Stochastic Processes: The 

Autocovarjance and autocorrelation Functions and their Fourrier 

T r n c F ii v-me 

The models previously discussed are all parametric, in the sense that they 

have a finite number of parameters. Another way to describe the generating 

process of a stationary time series is by means of non-oarametric models - 



models with an infinite number of parameters. Among the non-parametric 

approaches, the analysis of the autocovariance and autocorrelation 

functions and their Fourier transforms, the power spectrum also known as 

the non-normalized spectral 	density function or simply spectrum and the 

normalized power spectrum or normalized spectral density function are the 

most relevant. 

From a mathematical point of view, these functions are Fourier pairs and 

consequently, they are equivalent. Both provide the same type of 

probability information, in the sense that both characterize all the second 

order moments of a stationary stochastic process. The use of either the 

autocovariance function analysis or the spectral analysis depends on the 

particular properties of the data that one needs to stress. The latter 

stresses the frequency domain, whereas the former conveys the same 

information in the time domain. 

In the spectral representation, a stationary process is seen as a linear 

combination of random oscillatory components where the total variance is 

distributed over frequency. If the process is defined for discrete time 

parameter, it is possible to determine the proportion of variance 

attributable to each component with a particular frequency A, but for time 

continuous processes, we refer to the contribution of a band of frequencies 

around a particular A 

An important use of the autocorrelation function and the normalized 

spectral density function (normalized spectrum) is to permit the 

identification of linear filters that minimize the mean square error when 

the systematic component of a process is corrupted by a purely random 4 
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component. 

Both functions are also very useful as initial guides in constructing a 

probability model for the mechanism that has generated the time series. 

Thus, for example, an autocorrelation function that is positive for 

successive values of t (time lag) and tends to zero as T increases, will 

reflect both a smooth behaviour of the time series and the fact that the 

process is more of a finite autoregressive type than purely random. The 

order of the autoregressive process can also be obtained from the partial 

autocorrelation function. The same information is given in the frequency 

domain by a normalized spectral density function with predominancy of low 

frequencies. See for example Figures 12 and 13 which show the 

autocorrelation function and the normalized spectrum corresponding to the 

AR(l) process shown in Figure 6. On the other hand, when adjacent values 

of 	c(r) are negatively 	correlated, 	the process generating the time 	series 

will show a areat fluctuation for short periods of time and the corresponding 

normalized spectral density function will have predominancy of high 

frequenci es. 

(Place Figures 12 and 13 about here) 

However, although important for model building (especially in engineering 

and physics) spectral analysis has shown to be more relevant in frequency 

response studies and in the area of design of experiments to optimize the 

performance of industrial processes. 

In the analysis of economic time series the first non-parametric approaches 

were based on the autocovariance and autocorrelation functions. At the end 

of the fifties and during the decade of the sixties, the latter was almost 

0 abandoned and spectral analysis became fashionable. In the decade of the 
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seventies, however, the analyses in the time domain regained acceptance 

mainly because of new powerful algorithms and new methods to modelized 

stochastic processes in a parametric form as those developed by Box and 

Jenkins (1970). 

The autocovariance function of a stationary process X. is by definition, 

(2.26) GXX(T) = 	- 1J}{Xt+ -u}]; 	t =...-1,O,l,... 

where T  is the time lag, assumed here to be an integer and ii is the mean. 

If the time parameter of the process is continuous, then r can assume any 

value between ±. 

There are situations in which it is necessary to compare time series which 

have different scales of measurement and in this case, it is useful to 

normalize the autocovariance function dividing by the variance of the 

process. This function is called the autocorrelation function. That is, 

(2.27) P M 
= Xx(T) = XX(T) 	

T 
XX 

 
aXX(0) 	

ax 

Observe that, 

(2.28) aXX(0) PXXUt) = 

and therefore, if we know the autocorrelation function and the variance of 

the process Xt we have all the information provided by the autocovariance. 

The graph of equation (2.27) is also known as the correlogram. 	The basic 

properties of the autocorrelation function for a real process are: 	(We 

shall suppress the subindex X to abbreviate the notation): 
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c(0)=1 

p(- t) = 	c(T) 	The 	function 	is 	symmetric 	with 	respect 	to the origin 

because of the stationarity 	assumption 	and 	therefore 	it 	needs only to 	be 

calculated for positive lags. 

(3) 1 p(t) < 1. This is a consequence of the fact that the variance of a 

random variable or of linear combination of random variables is positive. 

In effect, assume Yt=AiXt+A2xt_.. then the variance of Yt is 

2 	 2 
var. Yt = A 1  var. Xt + A 2  var. Xt_T + 2A 2cov . 	(XtXt-r).  The 

right member is non-negative for aliXi, A 2  real and the second member is a 

quadratic form in A 1 , A 2 . 	For it to be positive, its roots must be 

imaginary, which implies 

var. X. var. Xt..t>rcOV(XtXt )]2 

or equivalen:ly 

[coy (X X 	)i tt—T 
P(Xt,XtT) = var X var Xt_T 

For a stationary process, (3) reduces to, 

fP(T)j = 
1 c(o)I - 

(4) The autocorrelation matrix is positive semi-definite. 	That is, the 

determinant of the autocorrelation matrix and all its principal minors are 

positive or zero. Property 4 is a generalization of property 3 and shows 

that the autocorrelation function is always positive semi-definite. The 

converse is also true; that is, every positive semi-definite function of a 

real (or integral) argument is the autocorrelation function of a continuous 

(discrete) stochastic process. (This was proven by Khintchine and 

Kolmogorov, see Yaglom, 1962). 

1) 



(5) if the process is continuous, then c ( t) is defined for T  taking values 

between + and - and it is a necessary and sufficient condition that the 

function be continuous at T = 0 since this implies continuity everywhere 

(Yaglom, 1962). If the process is assumed to be purely random, this 

continuity property poses problems. 

For a discrete purely random process U.s, the autocorrelation function is 

P(0) = 1 and p(r) = 0, for all T 	O. If Ut is a time continuous process we 

would have a discontinuity at -r = 0. 	To avoid this, the autocovariance 

function is redefined as 

(2.29)açt)=a(o) 6(t) = CT 	 6(T) 

Where 6(t) is a Dirac delta or impulse function, interpreted as zero for 

T 0 and infinite for t= 0, then the covariance between neighbouring points 

is zero but at the expense of making the variance of the process infinite 

(Jenkins and Watts, 1969). A delta function is defined as a sequence of 

function 6 (t) such that !:6(t)  dt = 1, for every n and in the limit as n 

tends to 
tO 

utj - 0   
= 0 

Since any analytical function, periodic or not, can be aporoximated to any 

degree using any class of periodic functions, the spectral representation 

of a stochastic process can be done using Fourier series or Fourier 

integrals, depending on the time parameter being discrete or continuous. 

In Fourier analysis, the periodic functions are sines and cosines. They 

have the important properties that an approximation of a given number of 

terms gives the minimum mean square error between the function and its 

approximation, and also that they are orthogonal, so the coefficients may 
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be determined independently of one another. 

The use of Fourier series to describe phenomena evolving through time was 

suggested in several studies by Lagrange (1772-78), Buys-Ballot (1847) and 

Stokes (1879), but the best known work was the periodogram method used by 

Schuster (1898) in the search of hidden periodicities in sunspot data. In 

economics, the periodogram was used by Moore (1914) and by Beveridge 

(1922). The use of the periodogram to describe time series failed because 

of the assumptions of fixed amplitudes, frequencies and phases in the 

Fourier components. The modern spectral analysis uses the Fourier series 

(or Fourier integral) assuming that the amplitudes and phases are random 

variables. 

It is shown (see, Yaglom, 1962) that every stationary stochastic process 

X(at) can be approximated by a linear combination or harmonic oscillations 

of form 

(2.30) X(w,t) = Xk(w)f(t)= Xk(w)Re1c 

where Xk(W) is a time independent random variable and f 	(t) 	is 	a 	numerical 

function 	of 	t. The 	numerical 	factor Re can 	be included 	in 	the 	random 

variable Xk(w)  and the product Xk(w)R will 	be simply denoted here by 

Xk;then equation (2.30) becomes, 

(2.31) Xk(t) =Xk e 1kt = 	
XK(.cosAkt+isinAkt) 

where Xk is a complex random variable with mean value zero, and x is a 

constant. 

Then, each component of the form (2.31) describes a periodic oscillation of 

angular frequency kk with random amplitude R and random phase e. The 

15 



angular frequency x =2rif=2r14, is the number of cycles around the unit 
circle per unit of time; f is simply the frequency and it is the 

reciprocal of the period T or length of time required for one complete 

oscillation. 

If the process is defined for a discrete time parameter, we can represent 

it by 

(2.32) X = ' Xke i)kt 
k=1 

and for continuous time parameter by, 

(2.33) X(t) = ! eiAt  dZ(A) 

where Z(X) is a stochastic process indexed on A. 

Equation (2.32) is the spectral representation of a stationary process with 

a discrete spectrum and the set of numbers (A1, A2 ...} is cal led the 

spectrum of the process. 

Equation (2.33) is the spectral representation of a stationary process, 

where Z(A) is a continuous spectrum with mean value zero and uncorrelated 

increments. 	The possibility of such representations for arbitrary 

stationary processes was first shown by Kolgornorov (see Yaglom, 1962). 

The spectral representation of a stationary process is then a 

"decomposition" of the process into separate pairwise uncorrelated periodic 

oscillations. It is possible to separate spectral components corresponding 

16 



to different parts of the spectrum by using suitable chosen linear 

operators or filters. In engineering, a filter is a device which passes 

harmonic oscillations in certain frequency range (the pass band) while 

suppressing oscillations with different frequencies. In practice, the 

filters used are of three types, the low-pass filters, passing all 

oscillations with frequencies less than a certain critical frequency X05 

the high-pass filters, passing all oscillations greater than X 0  and the 

band-pass filters passing only oscillation with frequencies that belong 

to a given interval (pass-band) 

We shall see now, that the information contained in the autocovariance 

function is equivalent to the one given by its Fourier-Stieljes transform, 

the power spectrum or non-normalized spectral distribution function. 

Since any arbitrary stationary process can have a spectral representation, 

its corresponding autocovariance function can also be expressed in the 

spectral form. 

Thus, for a process such as (2.32), which is assumed stationary and 

therefore E(xkX)=O, k2, (by X we denote the conjugate of X), the 

autocovariance function is, 

2iAr i)cr 
(2.34) U(T) klEkI e k = klbke 	; bk> O 

The autocovariance function (2.34) exists if the series is convergent, that 

is, if 

Eb 	< (2.35) klEkI = k=1 k 	' 	bk> O 

It was shown by Slutsky (1938) that the converse is true, every stationary 

stochastic process with autocovariance function of the form (2.J4 can be 

17 
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represented in form of (2.32) with E(XkX2) = 0 for k=2. 

Setting T=0, equation (2.34) becomes, 

2 	00 

(2.36) c 	]. (0) _kEk 	= k1bk ; 	bk> O 

which shows that in the superposition of uncorrelated periodic 

oscillations, the total variance of the process is equal to the sum of the 

variances of the separate periodic components. 

Observe that variances bk of the separate periodic components are the mean 

values of the squares of the amplitude Xk of the harmonic components XkeiAkT 

of the process Xt. 

The representation (2.34) was generalized by Khintchine (1934) who proved 

that the autocovariance function of any stationary stochastic process can 

be represented in the form of an integral, 

(2.37) Y(T) 	e 
1AT 
 dG(X) 

where G(X) is the integrated spectrum or also called spectral distribution 

function because it is equivalent to a probability distribution function 

and it is the Fourier-Stieljes transform of the autocovariance function (T) 

The spectral distribution function is a monotonically non-decreasing 

function, symmetric with respect to the origin and bounded G(.00)=o  and 

G(co)=c(0). When G(x) is normalized, that is, divided by the variance, 

then F( A)= ( 	is called the normalized spectral distribution function 

which is the Fourier-Stieljes transform of the autocorrelation function 

p(T). That is, 

rCO  iXT  
(2.38) p(i) = 	dF(\.) 



The normalized spectral distribution function F(A) is also non-decreasing, 

symmetric with respect to the origin and bounded F(_o)=0 and F(co)=l. It 

can be decomposed as, 

(2.39) F(A)=F1(X)+F2(A)+F 3 (A) 

where F1(X), F2(X)  and F3(X) are each non-decreasing, F1(A) 

is a pure step function, F2(X) is absolutely continuous, that is, F2(A)=F(u) du 

and F3(X) is a singular function, continuous and with F(A)=0  almost 

everywhere. 

Thus F(X ) can be seen as a distribution function and p () as its 

characteristic function. Since G(A) and F(A ) are odd functions, for every 

real process the (2.37) and (2.38) are real integrals and can be written 

as 

	

I (2.40) a(r) =1
- 	 0 

coS?TdG(A) =1 COSATdG (X) 

where G1(X) = 2G(X) and 

(2.41) p(t) =1 cosAtdF(A) = f cosATdF (A) 

	

- 	 0 	1 

where F1(X) = 2F(A). 

When F(A) and G(A) have derivatives (which are the interesting cases) 

(2.42.a) 	dF(A) = f(A)dA 

(2.42.b) dG(A) = g(A)dA 

then f( A) is the normalized spectral density function or normalized 

spectrum, and g(x)  the non-normalized spectral density function or power 

spectruri (-7) and ( :) are the inverse Fourier transforms of q(' and 
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f(A) respectively. 

For 	discrete, the normalized spectral density function f(A) is the 

Fourier transform of a sequence of autocorrelations and we have 

00 

(2.43) f(A) = 1  T p(T)e_ T ; 	ll<A<rI 

and for t a continuous time parameter, 

—iXi 
(2.44) f(A) = 1 j

x
p(T)e 	di: 	_co<X<oo 

27 

Similarly the spectrum g(A) for a discrete process is 

(2.45) g(A) = 1 -iXi; —fl<A<11 

and for a continuous process, 

(2.46) g( A) 4 1 cY(T)e 	di 	-°<X<°° 
-00  

Since FIX) = 	f(u)du, integrating (2.43) and (2.44) we obtain the 

normalized spectral distribution function F(X). 

For a real process X, the (2.43) reduces to 

(2.47) f(A) 
= 	+4 TlT 0sAi = 	! p(i)cosAi; —II<X41 

and the (2.44) takes the form, 

(2.48) f(A) = - 1  / p(i)cosXidt; 
211 

Then, the corresponding normalized spectral distribution functions are: 

(2.49) F(X) 	
p(o) 1 	p(t)sinAt 	-rr<x<rr 
211 	rrr=- 	T 

and 

20 



(2.50) F( ) = 	fX 
f(T)cosTdTd; 

A similar procedure is followed to obtain G(). 

In the next section we deal with the autocovariance and autocorrelation 

functions and the spectrum and normalized spectral density corresponding to 

the linear processes in (2), (2.1), (2.2) and (2.3), and illustrate with 

some theoretical examples. 

2.3 AUTOCOVARIANCE AND AUTOCORRELATION FUNCTIONS OF LINEAR STATIONARY 
PROCESSES AND THEIR FOURIER TRANSFORMS 

We saw in Section 2.1 that a linear stationary process X. can be 

interpreted as the output obtained from an input Ut  (a purely random 

process) that has been passed throuqh a transfer function 	ct(B)  which is a 

convergent iifinite sum of weights ot for 3 Ri. That is, 

(2.51) NI finite 

Then, according to the definition of the autocovariance function (2.26) and 

remembering that the process is assumed to be stationary with zero mean, we 

obtain, 

2°° 
(2.52) cXX('r) = E(XtXt+T) = 	tJ ko akak+T 

The variance of X t  is then, 

(2.53) a(o) = c 	'f c k=o k 

and the autocorrelation function is 

T) 	kLk'k+rXX  
(L..) 	xx(T) = 2 

p 	 =o <. 
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The autocovariance function can be obtained in an easier way using the 

autocovariance generating function, which also can be used to obtain the 

spectrum of the process. 

The autocovariance generating function is 

(2.55) 	
= 00 

xx = o,±1,±2, 

Since for a stationary process a cT)  is an even function, then a (k) =xx 
is the coefficient of Bk  and B-k. 

For the infinite moving average linear process (2.51) the autocovariance 

generating function is shown to be 

( 2 . 56 i(B) =(B(B 1 ) 

For B = e - IA, the equation (2.55) becomes 

—iAT 
(2.57)ci(B) 	; 	 T = 0, ± 1, ± 2, 

—iXi Comparing (2.57) with the spectrum gxx(X) 
= uff 	 , we see that T=— XX 

27rg(X) = CYXX(B). If we limit A to be non-negative, then, Trg 	(A)=a(B).xx  

Therefore, multiplying the autocovariance generating function by gives 

us the power spectrum of the process. Then, using equation (2.56), the 

spectrum of the linear process (2.51) can also be written in the form, 

a2 	2 
(2.58) g(A) =4cL(B) 	; 	_Tr<A<Tr 

where c (B)! =Ic(e) 
2 

is called the filter gain and it is the square of 

the filter transfer function. 	Equation (2.58) shows that the spectrum of 
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the output Xt of the linear process (2.51) can be obtained from the 
a 2  

constant uniform spectrum - 	 of a white noise process U nultiplied by a 

factor (the filter gain) that depends only on the characteristics of the 

filter. The frequencies for which Ja (e)! is large are magnified and 

those for which the filter gain is small are reduced. The variance of Xt 

is, 

a2  
(2.59) 	

U 	T = !g(X)dA = - 	o (e)I 2  dA 

Dividing equation (2.58) by the variance (2.59) we obtain the normalized 

spectral density function fXX(A) which is the Fourier transform of the 

autocorrelation function PXX(T). Then, 

2 
(2.60) 	f() 

= 	!ct(e—iX )i 	o<A<ir 
ii 

ct(e 
-I),

) 2dA 	-- 

It is easy to show that the autocovariance and autocorrelation functions of 

the autoregressive process AR(p) (2.4) satisfy the same form of difference 

equation corresponding to the deterministic part of it. In effect, 

multiplying (2.4) by Xtt and using (2.6) we obtain, 

(2.61) 	
p
zx 	x 	= r=o r t—r t-T r=o r L  -T- 

Since E(Xt_ r Xt_ T) = Gxx(r_r); E(U) = a j; E(UtU s ) = 0 for all tts;  the 

expected values of the two sides of (2.61) satisfy for T=O and for T>O, 

respectively, 

p 
(2.62) 

and 

p 
(2.63) 	 T = 1, 2, 

0 
	r ~o r XX 
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These are often called the Yule-Walker equations. Thus, the sequence 

cXX (T_l) ,  a(T_2) ......., 	 = 1, 2, 

satisfies the homogeneous difference equation (2.63). 	Dividing equation 

(2.63) throughout by cr , we obtain the autocorrelation function which also 

satisfies a homogeneous difference equation analogous to the one of the 

process X. itself. We can write equation (2.63) using the backshift 

operator B in the form of, 

(2.64) 	B r=or XX Tl,2 ...... 

and equivalently for the autocorrelation function, 

(2.65) 	E B BrP (T)B(B)P(r)=o; 	 T = 1, 2, r=or XX 	XX  
Bo = 1 

where B operates on T. 

The same conditions for stationarity that were required for the finite 

autoregressive processes of the form (2.4) apply here. If all the roots 

G 1<1 are distinct, we have two situations: 

A root Gi is real, in which case AG (see equation 2.10) decreases 

geometrically to zero as t increases. 	If the root is positive, we will 

have a decreasing exponential function; and, if it is negative, we will 

have an exponential function alternating in sign and decreasing in absolute 

value. 

A pair of complex conjugate roots G, G, in which case they generate 

a tern that is an oscillating trigonometric function, decreasing in 

absolute value, and whose period of oscillation depends on the argument of 

the complex roots. 
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The variance axx(o) of an autoregressive process Xt can be obtained from 

equation (2.62) and also can be expressed in terms of the autocorrelation 

function by dividing (2.62) by cYxx(0) and making aXX(_r)=aXX(r). 

Then, 

a 2  
(2.66) a2 = U X 	1+ 1p(1)+ 2p(2)+. . .+p(p) 

The spectrum gxx(x ) for the AR(p) process can be obtained using equation 

(2.58) where the filter gain is I(e_1X) 2 . 

Then, 

- __________  
a<X<1I XX `X

(2.67) 	
- fl(e_)J2 - 	 .+ 1 e 	+.. 

The normalized spectral density function f(x) is obtained dividing 9XXX) 

by a. 

Figures 14 and 15 show the autocorrelation function and the normalized 

spectral density function, respectively, of the autoregressive process 

AR(2) of Figure 7. 

(Place figures 14 and 15 about here) 

Though the autocorrelation function of an AR(p) process is infinite in 

extent, by its own nature it can be described in terms of p non-zero 

functions of the autocorrelations. This information is provided by the 

partial autocorrelation function which helps to determine the order of an 

autoregressive process to fit to an observed time series. For an 

autoregressive process of order p, the partial autocorrelation function has 

a cutoff after the p lag. 

Denoting by 	akj 	the ,jth coefficient 	in 	an AR(k) process so that kk is the 

last 	coefficient, then from 	equation 	(2.65) ekk 	satisfies the set of 
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equations. 

(2.68) 	P ( i ) dP(J -1 ) + k2p(j 2 )+...+8kkp(J - k); 	j=1,2,...k 

leading to the Yule-Walker equations, which may be written as; 

1 	p . . . p(k-1) 	a
k1 	p(1) 

p 	1 . . . p(k-2) 	k2 	p(2) 

(2.69) 	 = 

p(k-1) 	p(k-2) 	1 	8kk 	p(k) 

Solving the system (2.69) for k=l , 2, 3, ... we obtain the partial 

autocorrelations 11 22 33 ..... In general, akk is the partial 

autocorrelation function of the lag k. 

For the finite moving average process of order q (MA-q) (2.15) the 

autocovariance function is 

q-T 
(2. 70 	(T ) E (XtX t+t)= kakk+T 	T<q 

and 

Then the variance of the MA(q) process is 

 q 2 
(2.71) 	4= 	kOak 

and the autocorrelation function is 
q-t 

; 

(2.72) Pxx(T) 	
k okk+i 	T<q 

 

kok 
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and 

cs(T)=o; 

Consequently, the correlogram of a MA(q) process is zero for Tq+1 onwards. 

According to equation (2.61), the spectrum of a MA(q) process is then 

2 	2 

(2.73) g(A)= -*ct(e
—iA 2 _ 

- - 

U 
k=Oke—iAk 

 2 ; 
	0=1; o<A<fl xx 

and the normalized spectral density function fxx(X) is 8X(X)/a. 

Figures 16 and 17, 18 and 19 show the autocorrelation function and the normalized 

spectral density of the moving average process MA(l) of Figure 8. and MA(2) of 

Figure 9, respectively. 

(Place Figures 16, 17, 18 and 19 about here) 

For the ARMA(pq) process X defined in (2.22), the xx(T), PXX(T), 

P g (X) and fXX(X) can be obtained in a similar way. Thus, 

(2.74) 	cr (T)(T)-4o.1a(T-1)+. . .4aT-q)- 1o(r-1)-. . .xx 

where OXU(T) is the cross covariance function between Xt  and  Ut and is 

defined by 

Since Xt 	depends only on random components which have occurred up to time 

t-t uncorrelated with Ut  it follows that 	r)=o fori>o and (;X~ -[)t o 

for r<o. 

The (2.74) reduces to, 

(2.75) 	 r>q+1 
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Hence, the autocorrelation function is: 

(2.76) 	 T)q+1 

or 

t>q+1 

where B operates on T. 

Then for an ARMA (p,q) process there will be q autocorrelations whose 

values depend on the choice of the q moving average parameters (I as well as 

on the p autoregressive parameters . Now for t>q+l, the p 

autocorrelations already obtained provide the initial values for the 

homogeneous difference equation (B)p T)=o which then entirely determines
XX  

the autocorrelations of higher lags. 

If 	q<p, the 	whole 	autocorrelation 	function 	will 	consist of 	a mixture 	of 

damped exponentials 	and/or 	damped 	sine 	functions. 	If q>p, the 	q-p+l 

autocorrelations used as initial values will not follow this general 

pattern. 

For -rO, equation (2.74) gives the variance of the process 

	

(2.77) 	 . 	 .
XU 

which has to be solved along with the p equations (2.74) for 1=1, 2, ... p 

to obtain 4,a,(1), ... 

The spectrum of the process is 

2 	q 	-jAr 2 
aU r  E a r  e 

	

(2.78) 	
o 

- 	-iXr 2 

k=o r I 
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and the normalized spectral density function f()  is the quotient between 

xxX anda. 

Figures 20 and 21 show the autocorrelation function and the normalized 

spectral density function of the ARMA(l,l) process of Figure 10. 

Similarly, Figures 22 and 23 show the autocorrelation function and 

normalized spectrum of the ARMA(2,2) process of Figure 11. 

(place Figures 20, 21, 22 and 23 about here) 

2.3.1 Relation Between the Autocorrelation Function and the Normalized 
Spectral Density Function 

We shall now discuss for some particular cases the relationship between the 

autocorrelation function and the normalized spectrum. 

Consider an autocorrelation function of the form 

(2.79) 

where o<3<l serves as a measure of the rapidity of decrease of the p(T) 

with the increase of the time lag T. We see in Figure 24, that the greater 

the , the more damped the autocorrelation function, thus implying a less 

smooth stochastic process 

(Place Figure 24  about here) 

The corresponding normalized spectral density function f(X) is, 

—iAT 	1 ° - ixr-3It  (2.80) f(X) 	dT = 	 dT  
2 

and it gives the same information contained in (2.79) but in the frequency 

domain. The normalized spectral density function is shown in Figure 25. 

(Place figure 25 about here) 
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We can see that for small t3 the normalized spectrum has predominancy of low 

frequencies implying a smooth process, whereas asa increases, the curve is 

compressed toward the x - axis, at the same time becoming flatter. This 
kind of behaviour of the function () enables us to illustrate a purely 

random process or white noise, the normalized spectral density of which is 

a constant equal to for - Tr<A<fl. Observe that the ordinate of f(A ) at 

the origin is 	and as 1 increases, the interception decreases. In fact, 

it is assumed that 	can assume very high values and the P(T) is 

transformed into a spike-shaped function, different from zero only in a 

very small neighbourhood around T0. 

The total variance of the process is the area under f(A). For small 3 , a 

low frequency band accounts for most of the variance whereas for large 

the 	variance 	is 	distributed 	almost uniformly in the frequency band 

capable of exerting an 	effect 	on 	the 	process 	under 	consideration. 	It 	is 

impossible for 	absolutely 	white 	noise to 	exist, since 	for 	the 	spectral 

density 	to be 	constant 	in 	the 	whole range 	of variations 	of A , 	the 

autocovariance 	function 	for 	T=O, 	would have 	an infinite 	variance 	which 

cannot take place in any real 	process. 	In effect. 

	

(2.81) 	a(o)=g(A)dX=c,dA = co 

Let us now consider an autocorrelation function p(T)  of the form 

- 

	

(2.82) 	p(T)e T I cos WT 

which differs from (2.79) by the presence of the factor cos WT that gives 

to p(r) the form of a damped harmonic oscillation as shown in Figure 26 

If we were to observe the generating process, some periodicity would be 

apparent. 
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(Place Figure 26  about here) 

The corresponding normalized spectral density function can be obtained 

replacing cos wr by 4(et+et)  and by replacing A by (A.-w) and ( x~ w) in 

the integrals of f(X). Then, 

1  ________ _________  

(2.83) f( A) = 
- 	

(A ) 2+c&2  + (Xi)2-f2 =IT 	( 2-oi2- 2 ) 2+4a2 A 2  - 

The representation of f(A) shown in Figure 27 presents peaks in the 
11 

neighbourhood of the angular frequency w. For W=-- 
, the fundamental 

seasonal frequency in the time domain would correspond to a period of 6 

months; for J!. , to a period of 12 months. Then, the corresponding 

model for the generating process would have an oscillatory seasonal 

component whose amplitude and phase are changing slowly compared with the 

fundamental seasonal period. The larger the S (that is, the more rapid is 

the rate of change) the more obscure is the seasonal component and 

therefore, the less sharp is the peak in the normalized spectral density 

function. 

(Place Figure 27  about here) 
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X t  = U t - .80 U t-1 	u 
and a 2 = 1.0 
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Figure 9 - A Realization of an HA(2) Process 
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Figure 10 - A Realization of an ARNA(1,1) Process 
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Figure 11 - A Realization of an ARNA(2,2) Process 
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2 and o 	= 1.0 
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Figure 14 - Autocorrelcation Function of an AR(2) Process 
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Figure 16 - Autocorrelation Function of an MA(I) Process 

X = U t - .80 Ut_i  and a2 = 1.0 
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Figure 18 - Autocorrelation Function of an MA(2) Process 
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Figure 19 - Normalized Spectrum of an MA(2) Process 
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Figure 20 - Autocorrelation Function of an ARN.A(1,1) Process 
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Figure 21 - Normalized Spectrum of an ARH.A(1,1) Process 
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Figure 22 - Autocorrelation Function of an ARNA(2,2) Process 

X = .75 X 1  - .50 XL2 + U + .40 	+ .40 U 	 and u 2 = 1.0 
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X t  = .75 X t-1 - .50 X t-2 + U t + .40 U t-1 + .40 U t-2 
 and 	

2 
u =1.0 
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