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I1. MODELS FOR STATIONARY STOCHASTIC PROCESSES

2.0 Introduction

Two important categories of stochastic processes, the Normal Linear
Stationary and the Normal Homogeneous Linear Non-Stationary processes have
proved to be the easiest to deal with from a mathematical point of view.
Furthermore, they seem to describe quite accurately the generating
mechanism of many physical problems. The properties that make these types
of processes very useful are that, by the assumption of normality they are
fully characterized by their moments of the first and second order and, by
being assumed stationary or stationary in the differences (homogeneous non-
stationary) the mean and variance are constants and, thus, the
autocovariance functions depend only on the time lags. Linear stochastic
processes have often been applied to describe phenomena that belong to the

natural and social sciences.

The importance of introducing the assumptions of linearity is that all
linear stationary processes fulfill the principle of ergodicity, i.e. we
can obtain consistent estimators of the mean and covariance functions with

only one single realization. In other words, averages computed from one

sample (one set of data) called time averages can ultimately be identified

with corresponding ensemble averages, that is, averages over the whole span

of outcomes or possible realizations of the process. The ergodic property
is very important when dealing with time series, the data of which are the
result of a single experiment as for example in economics. In the next
section we will introduce parametric and non-parametric models for Tinear
stationary stochastic processes. Both forms are statistically equivalent

but depending on the problem one form can be more convenient than the other



to apply. For example, the description of the stochastic nature of a time
series by means of a parametric model (in the sense of a model with few ‘
parameters) is useful for forecast purposes. On the other hand, for
frequency response studies, it is more useful to have non-parametric models
(in the sense that actually an infinite number of parameters is required to
specify the process) such as the autocovariance function or its Fourier

transform the spectrum.

Among the classical books that discuss parametric models for stationary and
homogeneous stationary stochastic processes, the reader may refer to
Anderson (1971), Box and Jenkins (1970), Cramer and Leadbetter (1967),
Fuller (1976) and Yaglom (1962). Non-parametric models are treated in
detail by Brillinger (1975), Jenkins and Watts (1969), Granger and Hatanaka

(1964), Priestley (1981), Koopmans (1974) and Nerlove, Grether and Carvalho

(1979). ‘

2.1 Parametric Models of Linear Stationary Stochastic Processes

A stochastic process X¢ is said to be Tinear if there exists a purely

random process Uy and a sequence of parameters *0, 1, 2, .... such that,

(2.1) Xe=m=U ¥l o +aU o+ omfoau 5o =1
In continuous time, equation (2.1) becomes,
(2.2) x(t)=m = S a(v)U(t-v)dv.

The E(Ug) = E [U(t)) =0 and E (X¢) = E [X(t) 1 =m

If the series or the integral is convergent, then equation (2.1) or (2.2)

define a stationary linear stochastic process, where m 1is the expected ‘
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value of the process.

If the series or the integral is not convergent, then equations {2.1) or
(2.2) define a non-stationary linear process and m has no precise meaning,
except as a point of reference for the level of the process. The equation

(2.1} is sometimes called an infinite moving average although the infinite

sum of the coeficients is not constrained to be equal to 1.

For a finite number of terms, equation (2.1) defines a

linear parametric stochastic process with a discrete time parameter.

In this section we shall deal only with discrete time parameter processes.

(The analysis for continuous time follows a similar procedure .)

Using the backshift operator B, where B® = 1, BU; = Ui and BNy = Uy_p,

the equation (2.1) for m=0 can be written in compact form as follows:

(2.8) Xt = (1+-:¢lB+azB‘+...)Ut = kzoakBkUt = oz(B)Ut

where kj;dkBk = a(B) is the linear filter or operator that transforms the

input Uy into the output X¢. It is also called the transfer function of

the linear system or generating function of the weights. In the latter, B
can be considered as a dummy variable whose k-th power is the coefficient

ofuk.

For equation (2.3) to be stationary in the wide sense, it is a necessary
and sufficient condition that the transfer function a(B) be convergent for

|B| < 1 which implies that kZO[a|<M’ M finite.

2.1.1 Autoregressive Processes (AR)

Autoregressive processes were first introduced by U. Yule (1921) and



are a subclass of linear processes. A process X; is said to be an
autoregressive process of order p, AR(p) if it can be expressed as a
linear combination of p previous values of the process plus a purely

random component Us. It may be written in the following form
(2.4) X¢ + BiXg-1 * BoXgop +...4 Bpxt_p = Ug

Using the backshift operator B, equation (2.4) results in,

|%
- 2 ’ -
(2.5) Up = (1 +BB + BpB® +...+ BBP)Xy = ZBBX, =10

If the Xi process is stationary, then equation (2.5) may be written as an
infinite moving average

X 1 U = @
(2.6) = P t=8"(B) Ut N réo er Ue

In effect, each xt-m, m=1,..., p can be replaced by an autoregressive

process and finally we end up with an infinite series of U's.

There are several equivalent conditions for the stationarity of the process
(2.6). Written as an infinite moving average, we already said in the
previous section that the infinite series of weights must be convergent for |B|<

£ [v.| finite.

1, which implies .

p
These conditions for convergence are equivalent to r_Z_OBrBr #0

P
since if rEOBrBr=0, then the transfer function becomes infinite.

P
We shall see which are the conditions for rgoerar #0
P X 2 P
(2.7) ZRB =(1+RB, B+BB + ...+ B8 B") = B(B)
r=o T 1 2 P

Observe that 3(B) is a polynomial in B of order p. Factoring out BP and



making B = 1 we have

1
G
(2.8) g(x) = oL (6P + B]Gp'1 + Bsz'2 + ...+ B) =
GP p
p

|-

(G-G] ) (G-G (G-Gp)

1
- | -,
G 2

Where Ggy Goy ey Gp are the p roots of the characteristic equation of

It is obvious that the equation (2.8) may be written
(2.9) B(8) = (1-G1B)(1-Gp8) . . . (1-GyB)

Therefore, if there is a G; =%—, B(B) = 0, the process (2.6) is non-
stationary. for it to be stationary, the roots of B(B), namely B; = Gi-l’
i = 1.2, .., p must all be in absolute value greater than 1 or
equivalently | G;| < 1. The conditions | G;]| < 1 coincide with the
requirements for the stability of the deterministic component of (2.4).
Observe that if Uy = 0, then (2.4) reduces to a homogenous finite
difference equations of order p, whose general solution is

(2.10) Xy = Ap G Ay 6% ...+ A6t

Where G;, i = 1,2,...,p are the roots of its characteristic equation and

for the process (2.10) to be stationary, lGi| S B 13,5 5 s ik

For a continuous time parameter, the autoregressive process (2.4) is
defined by a differential equation of order p and to be stationary, the

roots of its characteristic equation must all have negative real parts.

Autoregressive processes of order 1 and 2 are often used to represent

business and economic time series.

The first order autoregressive process also known as Markov process is
usually written as,



(2.11) Xt = ¢1Xt_] + Ut
where -1<¢1 < 1 for the process to be stationary.

Figure 6 shows an AR(1) process generated from the model X;=0.60X;_1+Us
2

where 0, = 1.0.

The second-order autoregressive process may be written

(2.12) Xt =d Xt.] + ¢2Xt_2 & Ut
For the process (2.12) to be stationary, the roots of
(2.13) #B) =1 - ¢B- B2 =0

must be greater than one, which implies that the parameters % and ¢Q must
satisfy the following conditions

¢ + ¢ <1

2 = ¢ <1

(2.14)
-1 < ¢, <1

Figure 7 shows an autoregressive process AR(2) generated from the model
2
Xt = .75X¢.7 - 50X¢_2+Ut where Oy = 1.0

(place Figures 6 and 7 about here)

2.1.2 Finite Moving Average Processes (MA)

The autoregressive model discussed above, expressed X; and a finite
weighted sum of p previous values of the process Xt plus a purely random

component Uy, Equivalently, if the process is stationary, it can be



expressed as an infinite weighted sum of the Ui's, where E(Ug) = 0O, E(Ut)2
2
' = % and E(Ut Utsr) = 0 for a1 T # 0.

A process Xy is said to be a finite moving average of order q MA(q) if

it is a linear combination of q+1 purely random variables Us,

Up1s oees Ut-q' That is, q

(2.15) Xt = Ut + alUt-l + a, Ut-2 +...+aq Ut_2 = rgoarUt_r; Aoy,

Using the backshift operator B equation (2.15) becomes,

q
(2.16) Xy = T aB” U, = a(B)U,
hon

Where a(B) = 1 + ay B + a232 # wal +0¢qu, is the generating function of the

weights.

The process (2.15) is always stationary, that is®B) is convergent for

IB[<1 but for the model (2.15) to be invertible i.e. to be expressed as an

' infinite autoregressive process,
q r -1 “ r
(207) Up = ( ZaB) Xp=ol(BIXg= I TBX
r=o0 r=o

the roots of a(B) = O must lie outside the unit circle.

The first-order moving average process MA(1) is usually written as

(2.]8) Xt = Ut - el -Ut_l = (]-elB)Ut

where -1<6<1 for the process to be invertible. However, the process

(2.18) is stationary for all values of & .

Figure 8 shows a realization of a MA(1) process from X.+=Uy - .80 Ut_7 where

2
 =1.0.
u

' The second-order moving average process MA(2) may be written

-
/Z



(2.19) X¢ = Uy -81VUgo1 -%2Upop = (1-8i8-32 87 Uy

and is stationary for all values of 9 and 8,. For the process (2.19) to be

invertible the roots of the characteristic equation

(2.20) 1 - 6B - 6282 =0

must be greater than one, which implies that the parameter values must
satisfy the following conditions

(2.21) 8, +6, <1
8, - 6, <1

-1 <8, <1

Figure 9 shows a moving average process MA(2) generated from a model

2 .
Xp = U, + .40 U, _; + .40 U, , where o, = 1.0

t-1
(Place Figures 8 and 9 about here)

2.1.3 Autoregressive-Moving Average Processes (ARMA)

For empirical applications, a combination of an autoregressive process, say
of order p with a moving average, say of order g, has the advantage of

involving very few parameters.
Thus, an ARMA (p,q) process may be written

(2.22) X¢ = yp + MUp7 + ... + ‘1qUt_q “81%ea _"'—fapxt-p

or equivalently
P q - -
(2.23) <r=§oerBr)xt - (rz;—oarB )Ut; OLo - 6o =1

and therefore,

t



The ARMA (p,q) process is considered as the output Xt obtained from an
input U purely random or white noise, where the transfer function is the
quotient of two polynomials. The number of parameters of the model (2.22)

is p*q*2, including the mean of X¢ and the variance of Us.

For the ARMA (p,q) process (2.24) to be stationary the same conditions
discussed in the previous sections are required namely, the roots of the

P
characteristic equationrgogrgr = B(B) = 0 must all be in absolute value

q
greater than 1. The process (2.24) is invertible if r§0 rBr = a(B) = 0 has
all its roots outside the unit circle. Then,
P
¥ B B"
rso"r
(2.25) Uy —q—X

T a BY
I=0 T

&

Figures 10 and 11 show an ARMA (1,1) realization from Xt = 0.60X¢-1+Ut -

0'80Ut ' and an ARMA (2.2) generated from Xt = .75Xt-1 - .50Xt-2 + Ug + .40U

+ .40U, _, where 03 = 1.0 in both models.
(place Figures 10 and 11 about here)

2.2 Non-Parametric Models of Stationary Stochastic Processes: The

Autocovariance and autocorrelation Functions and their Fourrier

Transforms

The models previously discussed are all parametric, in the sense that they
have a finite number of parameters. Another way to describe the generating

process of a stationary time series is by means of non-parametric models -

t-1



models with an infinite number of parameters. Among the non-parametric
approaches, the analysis of the autocovariance and autocorrelation ‘
functions and their Fourier transforms, the power spectrum also known as

the non-normalized spectral density function or simply spectrum and the
normalized power spectrum or normalized spectral density function are the

most relevant.

From a mathematical pbint of view, these functions are Fourier pairs and
consequently, they are equivalent. Both provide the same type of
probability information, in the sense that both characterize all the second
order moments of a stationary stochastic process. The use of either the
autocovariance function analysis or the spectral analysis depends on the
particular properties of the data that one needs to stress. The latter
stresses the frequency domain, whereas the former conveys the same

information in the time domain. ‘

In the spectral representation, a stationary process is seen as a linear
combination of random oscillatory components where the total variance is
distributed over frequency. If the process is defined for discrete time
parameter, it is possible to determine the proportion of variance
attributable to each component with a particular frequency A, but for time

continuous processes, we refer to the contribution of a band of frequencies

around a particular X.

An important use of the autocorrelation function and the normalized
spectral density function (normalized spectrum) is to permit the
identification of linear filters that minimize the mean square error when

the systematic component of a process is corrupted by a purely random

10



component.

Both functions are also very useful as initial guides in constructing a
probability model for the mechanism that has generated the time serijes.
Thus, for example, an autocorrelation function that is positive for
successive values of T (time lag) and tends to zero as t increases, will
reflect both a smooth behaviour of the time series and the fact that the
process is more of a finite autoregressive type than purely random. The
order of the autoregressive process can also be obtained from the partial
autocorrelation function. The same information is given in the frequency
domain by a normalized spectral density function with predominancy of Tow
frequencies. See for example Figures 12 and 13 which show the
autocorrelation function and the normalized spectrum corresponding to the
AR(1) process shown in Figure 6. On the other hand, when adjacent values
' of ¢{1) are negatively correlated, the process generating the time series
will show a great fluctuation for short periods of time and the corresponding

normalized spectral density function will have predominancy of high
frequencies.

(Place Figures 12 and 13 about here)

However, although important for model building (especially in engineering
and physics) spectral analysis has shown to be more relevant in frequency
response studies and in the area of design of experiments to optimize the

performance of industrial processes.

In the analysis of economic time series the first non-parametric approaches
were based on the autocovariance and autocorrelation functions. At the end
of the fifties and during the decade of the sixties, the latter was almost

' abandoned and spectral analysis became fashionable. In the decade of the

LX



seventies, however, the analyses in the time domain regained acceptance
mainly because of new powerful algorithms and new methods to modelized
stochastic processes in a parametric form as those developed by Box and

Jenkins (1970).

The autocovariance function of a stationary process Xt is by definition,

(2.26) oyx(T) = E[{X¢ - ulXgsp -u}ds 1 =...-1,0,1,...

where T is the time lag, assumed here to be an integer and M is the mean.
[f the time parameter of the process is continuous, then Tt can assume any

value between #w,

There are situations in which it is necessary to compare time series which
have different scales of measurement and in this case, it is useful to
normalize the autocovariance function dividing by the variance of the

process. This function is called the autocorrelation function. That is,

g ag
(2.27) o, (1) = X@O _ Xng) T=.., -1,0,1,...
XX(0) Oy

Observe that,
(2.28) Gy (0) Pyx'T) = Oyy(D

and therefore, if we know the autocorrelation function and the variance of

the process X¢ we have all the information provided by the autocovariance.

The graph of equation (2.27) is also known as the correlogram. The basic
properties of the autocorrelation function for a real process are: (We

shall suppress the subindex X to abbreviate the notation):

12



(2) o(-1 = o(7) The function is symmetric with respect to the origin
because of the stationarity assumption and therefore it needs only to be

calculated for positive lags.

(3) Je(t)! < 1. This is a consequence of the fact that the variance of a

random variable or of linear combination of random variables is positive.

In effect, assume Yi=A1X¢+2oX¢. ¢ then the variance of Y¢ is
2

2
(a) var. Yt = A1 var. Xt + A2 var. Xt-r + 2hlAzcov. (XtXt-t). The
right member is non-negative for allXi, A2 real and the second member is a
quadratic form inXi, A2. For it to be positive, its roots must be
imaginary, which implies
(b) var. X¢ var. Xt-TZ[COV(XtXt-I )12

or equivalenzly

s [cov (XtXt_T)J

=T var Xt var X

- ﬁz <
(el ue (xt,xt =1

E=T

For a stationary process, (3) reduces to,

lo(ty| = |

o(t)
o(o)| Ay 1

(4) The autocorrelation matrix is positive semi-definite. That is, the
determinant of the autocorrelation matrix and all its principal minors are
positive or zero. Property 4 is a generalization of property 3 and shows
that the autocorrelation function is always positive semi-definite. The
converse is also true; that is, every positive semi-definite function of a
real (or integral) argument is the autocorrelation function of a continuous
(discrete) stochastic process. (This was proven by Khintchine and

Kolmogorov, see Yaglom, 1962).



(5) if the process is continuous, then o 7 is defined for T taking values

between +° and -» and it is a necessary and sufficient condition that the

function be continuous at T = 0 since this implies continuity everywhere
(Yaglom, 1962). If the process is assumed to be purely random, this

continuity property poses problems.

For a discrete purely random process Ut, the autocorrelation function is

p(0) =1 and o(D =0, for all T# 0, If Uy Is a time continuous process we
would have a discontinuity at T = 0. To avoid this, the autocovariance

function is redefined as

(2.29)q 1) = 0 (0) & () = 06 §(1)

Where &t) is a Dirac delta or impulse function, interpreted as zero for
T# 0 and infinite for = 0, then the covariance between neighbouring points

is zero but at the expense of making the variance of the process infinite

(Jenkins and Watts, 1969). A delta function is defined as a sequence of

function 6 ,(t) such that ﬁ:ﬁn(t) dt = 1, for every n and in the limit as n

tends to =
_o t#0
HWE = o o

Since any analytical function, periodic or not, can be approximated to any

degree using any class of periodic functions, the spectral representation

of a stochastic process can be done using Fourier series or Fourier
integrals, depending on the time parameter being discrete or continuous.
In Fourier analysis, the periodic functions are sines and cosines. They
have the important properties that an approximation of a given number of
terms gives the minimum mean square error between the function and its

approximation, and also that they are orthogonal, so the coefficients may

14



be determined independently of one another.

The use of Fourier series to describe phenomena evolving through time was
suggested in several studies by Lagrange (1772-78), Buys-Ballot (1847) and
Stokes (1879), but the best known work was the periodogram method used by
Schuster (1898) in the search of hidden periodicities in sunspot data. In
economics, the periodogram was used by Moore (1914) and by Beveridge
(1922). The use of the periodogram to describe time series failed because
of the assumptions of fixed amplitudes, frequencies and phases in the
Fourier components. The modern spectral analysis uses the Fourier series
(or Fourier integral) assuming that the amplitudes and phases are random

variables.

It is shown (see, Yaglom, 1962) that every stationary stochastic process
X(wt) can be approximated by a linear combination or harmonic oscillations

of form
(2.30) Xlw,t) = P (@)F(t)= DX w)Re™ A

where X, (w) is a time independent random variable and f (t) is a numerical
function of t. The numerical factor Reie can be included in the random
variable Xg(w) and the product Xg(wRe® will be simply denoted here by

Xk ;then equation (2.30) becomes,
p = e‘i)\ kt - p—
(2.31) Xg(t) LZ()(k i X_k(,coskkt+151nkkt)

where X, is a complex random variable with mean value zero, and ) is a

constant.

Then, each component of the form (2.31) describes a periodic oscillation of

angular frequency *, with random amplitude R and random phase o. The

15



angular frequency ) =2nf=2m%, is the number of cycles around the unit
f

circle per unit of time; is simply the frequency and it is the

reciprocal of the period T or length of time required for one complete

oscillation.

If the process is defined for a discrete time parameter, we can represent

it by
(2.32) ¥ = § xetkt
k=1
and for continuous time parameter by,
(2.33) X(t) = /ZeMtazon)
where Z( ) is a stochastic process indexed on X.

Equation (2.32) is the spectral representation of a stationary process with

a discrete spectrum and the set of numbers {A;,X, ...} is called the

spectrum of the process.

Equation (2.33) is the spectral representation of a stationary process,

where Z()) is a continuous spectrum with mean value zero and uncorrelated

increments. The possibility of such representations for arbitrary

stationary processes was first shown by Kolgomorov (see Yaglom, 1962).

The spectral representation of a stationary process is then a
"decomposition” of the process into separate pairwise uncorrelated periodic

oscillations. It is possible to separate spectral components corresponding

16



to different parts of the spectrum by using suitable chosen linear
operators or filters. In engineering, a filter is a device which passes
harmonic oscillations in certain frequency range (the pass band) while
suppressing oscillations with different frequencies. In practice, the
filters used are of three types, the low-pass filters, passing all
oscillations with frequencies less than a certain critical frequency AO,
the high-pass filters, passing all oscillations greater than Ag and the
band-pass filters pass}ng only oscillation with frequencies that belong

to a given interval (pass-band) (AO,All.

We shall see now, that the information contained in the autocovariance
function is equivalent to the one given by its Fourier-Stieljes transform,

the power spectrum or non-normalized spectral distribution function.

Since any arbitrary stationary process can have a spectral representation,
its corresponding autocovariance function can also be expressed in the

spectral form.

Thus, for a process such as (2.32), which is assumed stationary and
therefore E(ka£)=0, k#2 (by X we denote the conjugate of X), the

autocovariance function is,

% b eiKT; b, >0

40T
e (Sl Oy K

(2.34) o(T) =kziE!Xk’

The autocovariance function (2.34) exists if the series is convergent, that

ifsty M

2 o
(2.35) EElx|®= Eb <

-

bk>0

It was shown by Slutsky (1938) that the converse is true, every stationary

stochastic process with autocovariance function of the form (2.34) can be

17



represented in form of (2.32) with E(XXe) = 0 for k=2.
Setting =0, equation (2.34) becomes,
. ® 2 . 0® .
(2.36) 0 (0) = 2 E[X |" = Z2b ;5 b>0

which shows that in the superposition of uncorrelated periodic
oscillations, the total variance of the process is equal to the sum of the

variances of the separate periodic components.

Observe that variances by Of the separate periodic components are the mean

values of the squares of the amplitude Xy of the harmonic components XyeiAkT

of the process Xt

The representation (2.34) was generalized by Khintchine (1934) who proved
that the autocovariance function of any stationary stochastic process can

be represented in the form of an integral,

ii

(2.37) o(m) =/, e Tde(n)

where G(X) is the integrated spectrum or also called spectral distribution

function because it is equivalent to a probability distribution function
and it is the Fourier-Stieljes transform of the autocovariance function o(T1).
The spectral distribution function is a monotonically non-decreasing
function, symmetric with respect to the origin and bounded G(<°)=0 and

G(«)=c(0). When G()) is normalized, that is, divided by the variance,
then F(A)=%?%§l is called the normalized spectral distribution function

which is the Fourier-Stieljes transform of the autocorrelation function

p(T). That is,

i
e

(2.38) o(v) = J° e Tar()

18



The normalized spectral distribution function F(A) is also non-decreasing,
symmetric with respect to the origin and bounded F(-«)=0 and F(«)=1. It

can be decomposed as,
(2.39) F(A)=F{(A)+F2(X)+F3(A)

where F1(X), F2(X) and F3()) are each non-decreasing, Fi(\)

is a pure step function, Fy(X) is absolutely continuous, that is, Fz(X)ﬁﬁ:FE(u) du

and F3(}) is a singular function, continuous and with F3(A)=0 almost

everywhere.

Thus F(X) can be seen as a distribution function and p (1) as its
characteristic function. Since G(x) and F(x) are odd functions, for every

real process the (2.37) and (2.38) are real integrals and can be written

as

(2.40) o(1) =flcos)\'fdc()\) =f:cos)\TdGl()\)

where Gy(X) = 2G(}) and
(2.81) (1) =/7 coshdF(N) = /' coshtdF, ()

where Fq(})

2F ().

When F(1) and G(X) have derivatives (which are the interesting cases)

(2.42.a) dF(A) = f(A)dA

(2.42.b) dG(1)

g(A)dx

then f( ) is the normalized spectral density function or normalized
spectrum, and g()) the non-normalized spectral density function or power

spectrum. o (1) and of 1) are the inverse Fourier transforms of g(i} and

19



f( 1) respectively.

For t discrete, the normalized spectral density function f(X) is the

Fourier transform of a sequence of autocorrelations and we have
r % iAT
(2.83) (N = 3 o p(T)e” 3 -NH
and for T a continuous time parameter,
it

(2.44) (X)) = —nf o(T)e hdT:  —e<i<oo

Similarly the spectrum g(A) for a discrete process is

(2.45) g(}) = %ﬁ rz-w o(rye T, ~TIA<T
and for a continuous process,
(2.46) g(2) =%ﬁ {Zo(t)e'iXTdr ~o0< ) <00

Since F(X) = {if(u)du, integrating (2.43) and (2.44) we obtain

normalized spectral distribution function F(A).

For a real process Xi the (2.43) reduces to

(2.47) £(A) = pgg) T zlo(r)coskr = lﬁ- 2 _P(T)cosAt; -TKA<

and the (2.44) takes the form,

(2.48) £(A) = — f 0(T) cosAtdT; —00< ) <o

Then, the corresponding normalized spectral distribution functions are:

. _P@ 1 ¢ p(1)sinAt, _
22N S = ot T ke T ; T<A<T

and

20
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(2,600 F(4) = l_ﬁ _rA {;)(T)cos,\,Tdel; —co< <

=

A similar procedure is followed to obtain G(X).

In the next section we deal with the autocovariance and autocorrelation
functions and the spectrum and normalized spectral density corresponding to
the Tinear processes in (2), (2.1), (2.2) and (2.3), and illustrate with

some theoretical examples.

2.3 AUTOCOVARIANCE AND AUTOCORRELATION FUNCTIONS OF LIMEAR STATIONARY
PROCESSES AND THEIR FOURIER TRANSFORMS

We saw in Section 2.1 that a linear stationary process Xt can be

interpreted as the output obtained from an input Ug (a purely random

process) that has been passed through a transfer function = @(B) which is a

convergent infinite sum of weights «o for fB!fJ. That sy
2 AR iy | ST . b B bE .
235y Xt_ kgo“ﬁyt-k'kéoal@ Ut—v(B)Ut, kéo‘ak‘ M;: M finite

Then, according to the definition of the autocovariance function (2.26) and
remembering that the process is assumed to be stationary with zero mean, we

obtain,
(2.52) = = o2 % aa
+52) oxx(T) = EX¢Xper) = Oy 1y HPutr
The variance of Xs is then,
) 2
(2.53) o (o) = oy kz;ak

and the autocorrelation function is

Ty, (T) f o, O

(2.58) po (1) = XX k=0 RUIGHT
A OXX(O) 1? a?
k=0 "k



The autocovariance function can be obtained in an easier way using the

autocovariance generating function, which also can be used to obtain the ‘

spectrum of the process.

The autocovariance generating function is

_o® T .
(2.55) o, (B) = X 0, (0B, T = 0,41,+2, ...

Since f i ' ' . 7
ce for a stationary process oxx(r)1s an even function, then oxx(k) Oy (<K,

is the coefficient of BK and B-K.

For the infinite moving average linear process (2.51) the autocovariance

generating function is shown to be
) -1
(2.56%,, (B) = 0% (B (87 ‘

For B = e-1A, the equation (2.55) becomes

-iAT

(2.57)c Te 3 T=0,+1, +2, ...

xx(B) = 1 g

Comparing (2.57) with the spectrum gyy(}) ='§ﬁ Tg_woxx(x)e-ixr, ——

g (A) = oy (B). If we Timit X to be non-negative, then, T8y (A)=0XX(B).

XX
Therefore, multiplying the autocovariance generating function by é gives

us the power spectrum of the process. Then, using equation (2.56), the
spectrum of the linear process (2.51) can also be written in the form,
2
% 2
(2.58) WXQ)=—FP(MI ; —T<ALT
: -ix 2 . ) )
where |a (B)] =la(e™! is called the filter gain and it is the square of

the filter transfer function. Equation (2.58) shows that the spectrum of
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the output X¢ of the 1ing;r process (2.51) can be obtained from the
o}
constant uniform spectrum —% of a white noise process Ut multiplied by a

factor (the filter gain) that depends only on the characteristics of the
ol 2
filter. The frequencies for which|a (e ix)l is large are magnified and

those for which the filter gain is small are reduced. The variance of Xt
s,

o2 .
(2.59) of = Mg 0ar = 2 Mae™h) 2 ax
Dividing equation (2.58) by the variance (2.59) we obtain the normalized
spectral density function fyx(X) which is the Fourier transform of the

autocorrelation function pyy(T). Then,

-ik, 2
(2.60) £(y) = Aate DL = i o<A<r
0 la(e ™) [“aA

[t is easy to show that the autocovariance and autocorrelation functions of
the autoregressive process AR(p) (2.4) satisfy the same form of difference

equation corresponding to the deterministic part of it. In effect,

multiplying (2.4) by X{.r and using (2.6) we obtain,

P
(2.61) réoerxt—rxt-r = rgowrutut-r—r

Since E(Xg_pX¢- ) = Oxx(t-r); E(UZ) = c%; E(UtUg) = 0 for all tgs; the
expected values of the two sides of (2.61) satisfy for t=0 and for T>o0,

respectively,

P 2
(2.62) rgoﬁroxx(-r)-cu
and

3 - =rl = -
(2.63) réoBrUXX(T r) =o T=1, 2, ..



These are often called the Yule-Walker equations. Thus, the sequence
oxx(rd), oxx(t-Z), ATSISISISIN: O'XX(T-p),T =1, 2, cev..

satisfies the homogeneous difference equation (2.63). Dividing equation
(2.63) throughout by ci , we obtain the autocorrelation function which also
satisfies a homogeneous difference equation analogous to the one of the
process X, itself. We can write equation (2.63) using the backshift

operator B in the form of,

P

(2.64) rgosrnrou<r)=s<3)ou(r)=o; T=1, 2, «no..

and equivalently for the autocorrelation function,

P
r _
(2.65) r§°BrB pxx(r)=B(B)pxx(T)-o,

@ A
o
nou
o
-
N
-

where B operates on T.

The same conditions for stationarity that were required for the finite
autoregressive processes of the form (2.4) apply here. If all the roots

|Gj |[<1 are distinct, we have two situations:

(a) A root G; is real, in which case AiGﬁ (see equation 2.10) decreases
geometrically to zero as t increases. If the root is positive, we wil)
have a decreasing exponential function; and, if it is negative, we will
have an exponential function alternating in sign and decreasing in absolute

value.

(b) A pair of complex conjugate roots &, Gj, in which case they generate
a term that is an oscillating trigonometric function, decreasing in
absolute value, and whose period of oscillation depends on the argument of

the complex roots.
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The variance oxx(o) of an autoregressive process Xt can be obtained from
equation (2.62) and also can be expressed in terms of the autocorrelation

function by dividing (2.62) by oxx(0) and making oyx(-r}=oxx(rl.
Then,

(2.66) o2 =Y
1+Blo(1)+820(2)+. ..+Bpo(p)

The spectrum gyy(x) for the AR(p) process can be obtained using equation

(2.58) where the filter gain is |g(e~iMy|™2,
Then,
2 2
c g
(2.67) g (V) = J - O<ALT

| a(e~ 1 |2 1| 1+sle““+. ) .+Bpe-ipr|f 5

The normalized spectral density function f()) is obtained dividing gyx(A)

2
by OX'
Figures 14 and 15 show the autocorrelation function and the normalized
spectral density function, respectively, of the autoregressive process
AR(2) of Figure 7.

(Place figures 14 and 15 about here)

Though the autocorrelation function of an AR(p) process is infinite in
extent, by its own nature it can be described in terms of p non-zero
functions of the autocorrelations. This information is provided by the
partial autocorrelation function which helps to determine the order of an
autoregressive process to fit to an observed time series. For an
autoregressive process of order p, the partial autocorrelation function has

a cutoff after the p lag.

Denoting by Bkj the jth coefficient in an AR(k) process so that B is the

last coefficient, then from equation (2.65) 8y, satisfies the set of
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equations.

(2.68) plj= B, 1Pl )+Bkzp(j-2)+,._+Bkkp(j_k);

S 525 o0 UK

leading to the Yule-Walker equations, which may be written as;

1 P p(k-1)

o ] 0 (k=2)
(2.69)

p(k~1) p(k=2) 1

Solving the system (2.69) for k=1,

B33sseee

autocorrelation function of the lag k.

autocorrelations Bj11, B22,

For the finite moving average process

autocovariance function is

q-T

(2.70) , _ 2
cxx(T) E(XtXt+T) % N :

and

OXX(T)=O;

T™q

Bl p(1)
Bo p(2)
Bk p (k)
2, 35 we obtain the partial

In general, Byx 1S the partial

of order g (MA-q) (2.15) the

1<q

Then the variance of the MA(q) process is

(2.71) a

2
k=0"k

6M.Q

2 2
Ox=%y

and the autocorrelation function is
q-T
e T
q
2
s

(2.72) Pyx(T)=
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and

Ty (T)=0; T>q
Consequently, the correlogram of a MA(q) process is zero for T=q+l onwards.
According to equation (2.61), the spectrum of a MA(q) process is then

2
ag .
(2.73) g M= Flae™) |2 -

:Acéﬂu

|kzoake-ikk|2 ; Yo=1; o<A<II

: . : . 2
and the normalized spectral density function fyy(X) is 8XX(A)/UX

Figures 16 and 17, 18 and 19 show the autocorrelation function and the normalized

spectral density of the moving average process MA(1) of Figure 8. and MA(2) of
Figure 9, respectively.

(Place Figures 16, 17, 18 and 19 about here)

For the ARMA(pq) process Xy defined in (2.22), the Oyx(T), Pyx(T),

gxx(2) and fyx(A) can be obtained in a similar way. Thus,

(2.74) OXX(T)=UXU(T)+alaXU(r—1)+...*aaoxér—q)—sloxx(r-l)-...-BPGXX(T-p)

where Oxy(t) is the cross covariance function between Xt and Uy and is

defined by UXU(T)=E(Xt_TUt).

Since xt__T depends only on random components which have occurred up to time
t-T uncorrelated with U it follows that Y (t )=0 for T>0 and oxﬁ(T)f 0

for t<o.
The (2.74) reduces to,

(2.75) JKX(T)=—810XX(T-1)-...—BPUXX(T‘P); T>q+l

ATl



Hence, the autocorrelation function is:
. =- =)= -p), > g+l
(2.76) Py (1= Py (T-1) - Bppxx(r p) > q

or

B(B)Pyy (T)=0; g+l

where B operates on T.

Then for an ARMA (p,q) process there will be q autocorrelations whose
values depend on the choice of the q moving average parameters o as well as
on the p autoregressive parameters 8. Now for T>q+l, the p
autocorrelations already obtained provide the initial values for the
homogeneous difference equation B(B)Dxx(r)=o which then entirely determines

the autocorrelations of higher lags.

[f g<p, the whole autocorrelation function will consist of a mixture of
damped exponentials and/or damped sine functions. If q>p, the g-p+]
autocorrelations used as initial values will not follow this general

pattern.

For t=0, equation (2.74) gives the varignce of the process

2.77 2.2 _ -q) - e
( ) OX OUmlOXU( l)+...+achU( q) Blcxx(l) chxx(p)
which has to be solved along with the p equations (2.74) for T=1, 2, ... p
. 2

to obtain UX,cxx(l), ot B cxx(p).
The spectrum of the process is

q s

% bt ]
(2.78) g (N= 5 oy b oSl
|85 |
= T
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and the normalized spectral density function fxx(x) is the quotient between

2
/
QXX\A) and gy -

Figures 20 and 21 show the autocorrelation function and the normalized
spectral density function of the ARMA(1,1) process of Figure 10.
Similarly, Figures 22 and 23 show the autocorrelation function and

normalized spectrum of the ARMA(2,2) process of Figure 11.

(place Figures 20, 21, 22 and 23 about here)

2.3.1 Relation Between the Autocorrelation Function and the Normalized
Spectral Density Function
We shall now discuss for some particular cases the relationship between the

autocorrelation function and the normalized spectrum.
Consider an autocorrelation function of the form
(2.79) o=t

where 0<8<1 serves as a measure of the rapidity of decrease of the p(ﬂ
with the increase of the time lag 1. We see in Figure 24, that the greater
the B, the more damped the autocorrelation function, thus implying a less
smooth stochastic process

(Place Figure 24 about here)

The corresponding normalized spectral density function f( ) is,

1 B
I 22 B2

_y [y -iAT 1 . -iAt=-3|T]
(2.80) f()\)— Z—H{mO(T)e dt = —Z-IT£°°e ‘dt =
and it gives the same information contained in (2.79) but in the frequency
domain. The normalized spectral density function is shown in Figure 25.

(Place fiqure 25 abou* here)
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We can see that for small B the normalized spectrum has predominancy of low
frequencies implying a smooth process, whereas as B increases, the curve is
compressed toward the ) - axis, at the same time becoming flatter. This
kind of behaviour of the function f()) enables us to illustrate apurely

random process or white noise, the normalized spectral density of which is

a constant equal to-%ﬁ for - ﬂfﬁfﬂ' Observe that the ordinate of f(A) at
the origin is ﬁB-and as B increases, the interception decreases. In fact,
it is assumed that B can assume very high values and the P(t) is
transformed into a spike-shaped function, different from zero .only in a

very small neighbourhood around 71=0.

The total variance of the process is the area under f(A). For small 3, a
Tow frequency band accounts for most of the variance whereas for large 8
the variance is distributed almost uniformly in the frequency band
capable of exerting an effect on the process under consideration. It is
impossible for absolutely white noise to exist, since for the spectral
density to be constant in the whole range of variations of A, the
autocovariance function for t=0, would have an infinite variance which

cannot take place in any real process. In effect.

(2.81)  Ogy(0)=/ g(Ndr=c/ d) = =

Let us now consider an autocorrelation function o(t) of the form
(2.82) p(T)=§qT|cos wT

which differs from (2.79) by the presence of the factor cos wt that gives
to o T) the form of a damped harmonic oscillation as shown in Figure 26,
If we were to observe the generating process, some periodicity would be

apparent.




(Place Figure 26 about here)

The corresponding normalized spectral density function can be obtained

i -iwT
replacing cos wt by '%(ele+e ) and by replacing A by (ew) and (Xtw) in
the integrals of f(X). Then,

I )\2-1'0.24-(.0 |
2-a2)2+4a2A2

o o
(A=w) 2+a2

(2.83) f(A) = L
o | Ow) 4t A2

The representation of f(X) shown in Figure 27 presents peaks in the
I'[ .

neighbourhood of the angular frequency w. For w=3 , the fundamental

seasonal frequency in the time domain would correspond to a period of 6

Il

months; for wer to a period of 12 months. Then, the corresponding

model for the generating process would have an oscillatory seasonal
component whose amplitude and phase are changing slowly compared with the
fundamental seasonal period. The larger the 8 (that is, the more rapid is
the rate of change) the more obscure is the seasonal component and

therefore, the less sharp is the peak in the normalized spectral density

function.

(Place Figure 27 about here)
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Figure 6 - A Realization of an AR(1) Process

2
X, = .60 xt_ + Ut and Ou =1.0
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Figure 7 - A Realization of an AR(2) Process
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Figure 8 - A Realization of an MA(1l) Process
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Xt = Ut - .80 Ut-l and ou =1.0
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Figure 9 - A Realization of an MA(2) Process

2
Xt = Ut + .40 Ut—l + .40 Ut—?‘.ou = 1.0
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Figure 10 - A Realization of an ARMA(1,1) Process

X, = .60 X_, +U_- .80 U__

and o z =1.0
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Figure 11 - A Realization of an ARMA(2,2) Process
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Figure 12 - Autocorrelation Function of AR(1) Process
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Figure 13 - Normalized Spectrum of an AR(1l) Process
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Figure 14 - Autocorrelcation Function of an AR(2) Process
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Figure 16 - Autocorrelation Function of an MA(l) Process
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Xt = Ut - .80 Ut-l and ou = 1.0



S4
=00

190]

.25+

S

NS

. 00

0.00 0.

Figure 17 - Normalized Spectrum of an MA(l) Process
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Figure 18 - Autocorrelation Function of an MA(2) Process
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Figure 19 - Normalized Spectrum of an MA(2) Process
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Figure 20 - Autocorrelation Function of an ARMA(1,1) Process
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Figure 21 - Normalized Spectrum of an ARMA(l,l) Process
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Figure 22 - Autocorrelation Function of an ARMA(2,2) Process
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Figure 23 - Normalized Spectrum of ARMA(2,2) Process
2
K, = 75K, = 50X _, +U +.400U _, + .40 U _, and o~ = 1.0




Figure 24

p (1)

H




£(\)

Figure 25

T— e

—- -
N e e ... -




- -

Figure 26




Figure 27

£(2)




STATISTICS CAN

GUE STALS

i

1010252623

us 008 ‘




