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SUMMARY 

A résumé of previous studies on estimators for auto regressive moving aver-

age models is given. The maximum likelihood, unconditional and conditional 

least squares estimators are described. Monte-Carlo results are presented for 

the MA(1) 12  seasonal model estimated by the three estimators. Conclusions 

about the choice of estimator are drawn from these results. 
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1. Introduction 

There exist several algorithms of procedures for estimation of autoregres-

sive moving average models. The most widely used procedures are Least Squares 

3ox and Jenkins (1970)] and Maximum Likelihood [Newbold (1974), Anderson 

1975), Osborr, (1976), Dent (1977). Au (1977), Phadke and Kedem (1978), 

ris1ey (1979), Hillmer and Tiao (1979), Ljung and Box (1979), Gardner et al. 

980) McLeod and Sales (1983), Mélard (1984)]. The two Least Squares proce-

iures proposed by Box and Jenkins, Conditional (CLS) and Unconditional (ULS), 

;ire approximations of the Maximum Likelihood procedure (ML). In ULS, the pre-

nample residuals are approximated by hack-forecastinl and in CLS they are set 

zero. 

Rox and lenkins suggested using (JLS instead of CLS when the model is sea-

onnrd or when the series is short. ML procedures are efficient for seasonal 

' 	 - osoonal models sod For shor? or fnoderstely long series. 

The properties of CLS, ULS and ML For autoregressive moving average models 

with criteria functions and Monte-Carlo experiments have been studied by many 

authors. 

Nelson's (1974) Monte-Carlo experiments on the first order moving average 

model have shown that for a series of length N=30 the CLS estimator has a 

smaller mean square error than the ULS estimator if 8 is near zero and the 

reverse situation if 101 is near one. They also have shown for N100 that the 
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two estimators are equally efficient. Nelson concluded that the analyst would 

cia well to choose a final estimator on the basis of the apparent magnitude of 

the moving average parameter 0. 

Dent and Mm (1978) did a Monte Carlo study of a variety of estimators or 

six simple ARMA models with series of leng N100 only. They found for th 

AR(1), AR(2), AR(3). MA(1), MA(2) and ARMA(1,1) models that CLS, ULS and ML 

are (except in a few AR(3) cases) equally efficient methods to estimate the 

parameters in regard of bias, variance and mean square error. The smal 1 

differences in efficiency that Dent and Miii found between the three m°thods 

are certainly due to the fact that their series were long in comparison with 

the orders of the si molds. They would have Found difFernt r'sults with 

shorter sert. 

Monte-Carlo experiments have been done by Ansley and Newbold (1980) FJL' 

nonseasonal and seasonal autoregressive moving average models. Their study 

reveals that for the ARMA(1,1) and sample size 50 the CLS estimator has unac-

ceptably large mean squared errors for large values of 8 or when 	rind 

close to each other. On the other hand, ULS and ML are eo'ja. 

They also analyzed some quarterly seasonal models for sample size 50. For 

the AR(1)(1) 4  model they did not find large differences between the three 

estimators. However for the MA(1)(1) 4  model they found that for large values 

of the parameters CLS has a bias toward zero with large mean scjuared errors. 

ULS has smaller mean squared errors than ML and for these two estimators have 

much smaller MSE than CLS. For the same model and small values of the para- 

meters ULS has a bias toward one and CLS has smaller mean squared errors than 	41 
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0 	ML but they are still of moderate size. The authors also presented results 

For some monthly seasonal models for sample sizes 50 and 100. These show that 

for the nonseasonal parameter of the AR(1)(1) 12  model LJLS and ML perform well 

and CLS does poorly. On the other hand, for the seasonal parameter CLS and Ml 

are almost equally efficient but, ULS estimates are biased towards the boun-

dary values +1. For the MA(1)(1) 12  model the results are pretty well the same 

as for the quarterly model. 

Davidson (1981) presents an analysis of the MA(1) model small sample pro-

perties. The results are essentially the same as Nelson (1974) hut, the 

author explains the properties with criteria functions. 

A study based on criteria functions has been done by Osborn (1982) for the 

MA(1) model. It gave results compatible with other authors and showed that 

CLS has a tendency to overestimate the residual variance, ULS to underestimate 

it and ML to give an unbiased estimate of it. 

Most of the monthly seasonal Canadian socio-economic time series are fitted 

weel, after suitable differencing, by an ARMA (p,q) x (0,1)12  multiplicative 

model. In some applications the estimation of the parameters for that model 

are crucial. For example, in seasonal adjustment based on ARIMA models the 

seasonal parameter will determine how the seasonal component will be extracted 

from the original series, because it indirectly defines the type of season-

ality (moving or stable). 
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Practitioners know that the estimated value for a MA seasonal parameter 	4 
obtained From CLS, ULS, and ML are often very different. They also know that 

with moderate or large sample size the three estimators lead to the same value 

for nonseasonal parameters (Dent and Mm (1978)). 

The present study concentrates on the MACi) 12  seasonal model, since the 

results could be extended to most of the ARMA(p,q) x (0,1)12  models. It con-

sists of Monte-Carlo experiments for sample sizes N20, 40, 80 and 160 and ten 

parameter values ranging from 0.1 to 1.0 which correspond to the range where 

estimates are found most of the time. In section 2, the two least squared and 

the maximum likelihood estimators are presented. The design of the Monte-

Carlo experiments is described in detail and the results are presented in the 

next section. Finally, section 4 discusses the results and some conclusions 

are drawn about the choice of estimator. 
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2. The ML estimator and approximations 

An autoregressive/moving average process of order (p,q) is defined by 

(B)wt = ü (B)a 	 (2.1) 

where the at's  are independent normally distributed random variables with mean 

zero and variance a 2 , 	B) = 1-0 1 B- ... _B 	0(8) = 14 1 B- ... - e qB 

and B is the backshift operator, such that B'<wt = Wtk. The model is statio-

nary and invertible if the equations 4(B) = 0 and 0(B) = 0 have all roots out-

side the unit circle. 

Since the at's  and hence the Wt'S  have a normal distribution, the like- 

lihood function for the parameters 	= 	..., 4,)', e = ( 0 ......e n )' and 

-1 ' -1 21 	2 FIn E_exp{_(2a2) w Z w} 	(2.2) a 2  is L (+, 0, a w) 	(2lTa 

the propability density function of w = (w 1 , ..., w)' where a 2 E is the nxn 

variance covariance matrix of w. The mean of the w e 's is assumed to be zero. 

It is easy to show that the maximum likelihood estimator of a 2  is 

2 	'-1 
a =w E 	w 	 (2.3) 

n 

Using equation (2.2) in (2.1) and taking the (-2/n) power one obtains the 

concentrated likelihood 

-1 	1/n 
L($,Ow) =(w E 	w) 

0 
(2.4) 

wich minimization yields the ML estimates of 	and 0. In our Monte-Carlo 

experiments the algorithm of Ansley (1979) was used to minimize (2.4). 



For the general model (2.1) Box and Jenkins (1970) show that 	4 
-1 	n 

wE 	wS(c,O) 	E 	a 
	

(2.5) 
t 

where à.= E [atlw].  If the process is MA(q) (po) then (2.5) reduces to 

n 	2 s(,e) 	E 	a. 
t=1-q t 

(2.6) 

The rirst approximation to ML, namely ULS, is obtained by neglecting 
J E  I 11n 

in (2.4), which tends to 1 for large n, and minimizing (2.5). The pre-sample 

residuals are computed by back-forecasting as described in Box and Jenkins 

(1970). 

CLS is the second approximation to ML and is the result of minimizinci 

n2 5* ( 	0) = 	E 	a t. 	 (2.7) 
tp+1 	 4 

The residuals are calculated recursively by letting â t = 0 For t c p + 1 

(see Box and Jenkins, 1970). 
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3. I4rnte-Carlo experiments 

This section reports Monte-Carlo results obtained For the MA(1) 12  model 

W t 	at 
- e ati2 	NI(0,1). For each parameter value and sample size 

(listed in the introduction), 50 realizations of the process were qenerated as 

described below. Then, the parameters 0 and a
2  were estimated with CLS, IJLS 

and ML (Ansley's procedure, 1979). Finally the biases, variances and mean 

squared errors were computed for the three estimators. 

All computations were performed on an IBM 360 computer at Statistics 

Canada. An in-house pseudo-random number generator was used to generate inde-

pendent unif'ortn [0,1] deviates, From which independent normal variates were 

qnerated usinq the exact polar method of Box and MuUer (1958). 

To generate an ARMA (p,q) time series given by (2.1) we require p+q star-

ting values. Suitable starting values were obtained with the Waterloo Simula-

tion Procedure 2 of Mc Leod and Hipel (1978). 

The numerical function minimizations were done with the non-linear least 

squares algorithm of Marquardt (1963) using the ARIMA procedure of SAS/ETS 

(1982). The convergence criterion was to stop iterating when the absolute 

change in the parameter estimate 0 was smaller then 10. For the three esti-

mators the variance of the white noise was estimated by dividinq the sum of 

squares error by the number of residuals minus one. 



The results of the experiments (MSE, bias and variance curves) are shown in 	4 
figures 1 to 6 (see appendix). It is seen that the efficiency of the three 

estimators depends upon the true value of 0 and the length of the simulated 

series (this is not surprising considering their asymptotic properties). 

generally, when 0 is estimated (see figures 1, 2 and 3), CLS has the smal-

lest mean squared error for small values(*)  of 0 but often the largest for 

large values of e. This is mainly due to its bias wich has a similar pattern 

while its variance is often small. ULS behaves in a complementary way. For 

small 0 it has the largest MSE but the smallest for large e. This is due to 

both its bias and variance which follow the same pattern. ML is somewhat 

different. Except for N=20, it has often nearly the smallest MSE for all 0 

but it usually does not have the smallest error. This is explained by a rela-

tively small bias and large variance for all 0. 

It is interesting observe that the following inequality holds almost all 

the time 
0ULS , "ML ). 0CL5 

For the estimation of a2  (see figures 4, 5 and 6), CLS has the smallest MSL 

for small 9 and the largest for large 9. This is due to both its bias and 

variance which become larger as 0 increases. ULS has a large MSE for small 0 

but the smallest for large 0. This is due to its variance which follows the 

same pattern while its bias is relatively large for all 0. ML has often MSE 

nearly the smallest or the smallest for all 0. This is explained by it small 

bias (often the smallest) while its variance is, most of the time, the largest 

for all 9. 	 4 
(*) The meaning of small (or large) value of 9 varies with the sample size. 

For N20 it means 0 	0.3, for N=40 0 4 0.6 and for N=8U and 160 0 <U.d. 
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Another observation one can draw from the figures is that CLS has, For all 

, a larger estimated value for a 2  than ULS and ML. Furthermore, ULS gives a 

smaller value for a 2  than Ml when ® is small while the reverse is true for 

large 0. 

One can verify that all these results agree with other studies. 
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4. Conclusion 	 4 
This study shows that for an ARIMA model with an IMA(1,1) 12  seasonal part 

the best estimator for small values of G is CLS and the best for large 0 is 

ULS. It also shows that Ansley's ML procedure generally does well for the 

bias as an estimator for e but its variance is large. 

The investigation and the development of other estimators than the ones 

considered here should also be considered. 

Since CLS and ULS are the best estimators for small and large values of 0 

respectively, the use of a criterion should be considered to choose between 

CLS and ULS (For example a lack of fit test). One has to note that the 

estimated variance of the residuals cannot be used sinceaCLS 	aULS, as sh'jn 

in the study. 
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