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ABSTRACT 

Concurrent seasonally adjusted values are subject to revision when more 

data become available. This study attempts to analyse the total revision 

associated with the concurrent seasonal filter for the X-ll--ARIMA seasonal 

adjustment method. The total revision is defined as the mean-squared 

difference between the frequency response functions of the central and 

concurrent filters at certain frequencies. Four ARIMA models are considered 

which are used in the construction of the filter weights. We determine total 

revision for different forecast horizons and different ARIM.A parameter values. 

Then we evaluate for different forecast horizons the sensitivity of total 

revision to change in model parameter values. 

KEYWORDS: X-ll-ARIMA, revision, frequency response function, region of improvement. 



1 . Introduction 

Most data collected by a statistical agency are in the form of time 

series, that is a new datum point is collected every month or quarter, etc. In 

Canada, many time series contain annual or seasonal variation, and analysts 

often wish to have this seasonality removed before they study the series. The 

majority of seasonal adjustment methods adopted by statistical agencies belong 

to the category of moving-average procedures. 	f;ost widely used of these 

procedures is the X-ll-ARIMA program with or without ARIMA extrapolations. 

The latter is referred to in this paper as the basic X-ll. 

The X-ll-ARIMA procedure enhances the basic Bureau of the Census X-ll 

program by forecasting the raw time series one year ahead using parsimonious 

ARIMA models and by applying to the latest observed datum point an asymmetric 

seasonal adjustment filter which is closer to the central filter, thus reducing 

the filter revision for that point. 

In practice, the figures seasonally adjusted using asymmetric filters 

will change, or be revised, as time passes. This revision has two causes; the 

addition of new data, and the consequent use of different moving averages or 

filters. In this paper, we study the revision due to the second cause only. 

Section 2 contains a mathematical definition of the filter revision used in 

X-1 1 -ARIMA. 

Some estimated parameter values in ARIMA models produce small filter 

revisions and other values, large revisions, sometimes larger than those of 

the basic Statistics Canada X-ll procedure. In section 3, we identify for four 

ARIMA models the sets of parameter values for which X-ll-ARIMA has smaller 
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filter revision than the basic X-ll procedure. In section 4, we discuss the 

parameter values obtained from fitting the four ARIMA models to about 190 

Canadian economic time series, to see whether or not the fitted models produce 

revisions that are smaller than those of the basic X-ll procedure. 

For a given time series, a given ARIMA model, and given parameter values, 

X-11ARIMA may be better or worse than the basic X-ll, depending on the forecast 

lead time, or forecast horizon. Section 5 considers this question. 
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2. Measure of revision associated with concurrent and central filters 

Geweke (1978) and Pierce (1980) have shown theoretically that under 

certain conditions, the X-11-ARIMA seasonal adjustment procedure (Dagum, 1975, 

1980) estimates a concurrent preliminary value whose total revision is smaller 

than the revision obtained using X-ll alone. The X-ll-ARIMA proceeds as follows: 

(1) a univariate ARIMA model (see Box and Jenkins, 1970) is fitted to the series 

to be seasonally adjusted; (2) this series is extrapolated one year fortiard; 

and (3) provided the extrapolations are acceptable, the X-ll metiod is then 

applied to the extended series. That is, the current data are seasonally 

adjusted using weights that are closer to the central weights of the 1-l1 

procedure on the extended series, rather than end weights. 

Using end weights, that is, using a one-sided or asymmetric filter, as 

X-ll alone does, means that the seasonal adjustment of the lat available figure, 

that is the concurrent figure depends on its past only. However, both the past 

and the future of the series being adjusted contain relevant seasonal information 

ab3ut the concurrent figure. Thus the ARI1A extension of the series allows for 

the use of past and acceptable forecasted future values wnen adjusting the 

concurrent figure. 

The ARIMA model, by taking into account the particular autocovariance and 

variance structure of the series in making the forecasts, rapidly responds to 

its changing trend-cycle and seasonal variation. Combining the ARIMA extrapolation 

filter with the X-ll asymmetric filter for the seasonal adjustment of the 

concurrent point still results in an asymmetric filter, but with varying weights 
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(see Dagum, 1983). This latter filter improves on the basic X11 filter by 

reducing the mean squared error of the revisions. This holds, as shown in 

Pierce (1980), even for series that are non-stationary in their original form 

but stationary after a suitable differencing transformation. 

The X-ll asymmetric filter for the seasonal adjustment of the concurrent 

point considered here assumes that the standard additive decomposition mde 

is employed and that there is no replacement of extreme valu2s. 

Lt x be the raw datum for time j and y be the analogous estimate of 

the seasonally adjusted number. The estimate of the seoaiy adjusted value 

of the concurrent point x will be reisi until the additional information is 

sufficiently distant Fr:m time j to be no longer relevant, in which case y is 

called ce7tri and its seasonal estimate is fiCi. The successive revisions fcr 

Yj thus reflect both the quality of the new irformatioi and the differences in 

tne weights ariplied to the series when sub.ecent relevant data x. 	are 

available. For our purposes, the data 	£ are acceptable ARIMA forecasted 

future values where 	42. 

The linear filters and revisions considered here are analysed in the 

frequency domain. Let the sequence of weights thk(c)}_  describe the filter 

used to seasonally adjust a point in a time series when it is far enough from 

the ends of the series to be central. fhk(c)}  is then symmetric and its seasonal 

estimate is final. This symmetric filter is time-invariant. It is almost 

identical for X-ll and X-11-ARIMA since both methods vary mainly with proximity 

to the ends of the series. Let {hk(c)} 	and  {hk(e)} 	be the weights of 
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the X-ll and X-ll-ARIMA concurrent point seasonal adjustment filters respectively. 

The latter will depend on the ARIMA model used, the parameter values, 

and the forecast horizon £. Both filters produce a preliminary seasonal 

estimate. The properties of these filters have been studied in the frequency 

domain by Wallis (1974), Laroque (1977) and Dagum (1983) among other authors. 

Any linear filter fhk}  can be described in an equivalent way by means 

of its associated frequency response function H(): 

H() =hk  exp(-iwk); 	(O4i.7r) 	 (2.1) 

= G(w) exp(i(u)) 	 (2.2) 

where w is the frequency, 

G() = 	H(w) 11 	 (2.3) 

the right hand side of the equation is the modulus of H(), and 

[1m(R) 

)1 
= arctan 	 (2.4)

Re(H(w))J 

The gain G() and phase shift () functions are particularly useful in the 

discussion of the properties of filters. 

Given any periodic input of frequency w radian per cycle to a filter 

the output will be amplified by a factor G() and shifted by an angle 

For instance, while the syrriietric filter produces a zero or ±r phase 

shift, the concurrent point seasonal adjustment filter can produces any shift 

between ±r. 

The revision measure, R(), is defined as 

	

R(j) = H(w;e) - 
	

(2.5) 

that is, the difference between the frequency response functions of the concurrent 
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point seasonal adjustment filters H(w;e) and the symmetric filter H(w;c). 

R(w) takes into account both the qain and phase shift functions. The total 

revision measure, MSR, introduced by Dagum (1982), is defined as the mean square 

of the modulus of R(w). 

MSR = (1/7 .f H R(u) 112  dc). 	(2.6) 

In the next sections, we will use the square root of MSR. 
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Stationarity and invertibility regions where the total revisions of 

X-11-ARIMA filters are smaller than those of X-ll 

We turn our attention, in this section, to the identification of the 

sets of parameter values of given ARIMA models for which the X-ll-ARIMA current 

point seasonal adjustment filters improve on the X-ll. The analysis of the 

X-ll-ARIMA performance is undertaken for four models, namely 

(0,l11)(011 11) 
	

3. (0,2,2)(011) 

(0,1 ,2)(O,l ,l) 4. (2,1 ,O)(O,l ,l ) 

where S is 12 if the series is monthly and 4 if it is quarterly. The selection 

of the models resulted from a large empirical study based of Canadian macro-

economic time series (Chiu, Higginson and Huot, 1934). This selection was 

obtained by taking into account the goodness-of-fit of the models, their 

forecasting performance and other criteria such as stability and invertibility 

conditions. 

The four models will be incorporated in a new version of the X-ll-ARIMA 

computer package. Only models 1, 3, and one other model are now available. 

Figures 1,2 and 3 depict the admissible region for moving average (MA) 

models 1, 2 and 3 to be invertible. Figure 4 shows the stability region 

for model 4 that is autoregressive (AR). Stability and invertibility are 

dual concepts. As one can see in figures 2, 3 and 4, the stability region 

for an AR process is the same as the invertibility region for the analogous 

MA process. 
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FIGURE 1: 
BOUNDARY AND ESTIMATED PARAMETER VALUES OF ACTUAL SERiES: 

ARIMA MODEL (0.1.1)(01.1) 
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FIGURE 2: 
BOUNDARY AND ESTIMATED PARAMETER VALUES OF ACTUAL SERIES 
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FIGURE 3: 
BOUNDARY AND ESTIMATED PARAMETER VALUES OF ACTUAL SERIES: 

ARIMA MODEL (0.2.2)(0.1.1) 
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FIGURE 4: 
BOUNDARY AND ESTIMATED PARAMETER VALUES OF ACTUAL SERIES: 

ARIM.A MODEL (2.10)(0,11) 3  
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The four figures contain other pieces of information. We are here 

mainly concerned with the boundaries that define the set of ARIMA parameter 

values for which the X-ll-ARIMA current point seasonal adjustment filters 

improve on the basic X-ll filter. The estimated parameter values for the 

sample of Canadian macro-economic time series, represented by the dots, and 

the parabolic boundaries in figures 2, 3 and 4 will be discussed in the next 

section. 

The boundaries plotted on the invertibility and stability 

regions for the 0's and p's are estimated by comparing the modulus of revision, 

MSR, for the basic X-ll procedure and for X-ll-ARIMA. For each of the four models, 

the values of MSR were calculated for a grid of values of (0, e) for model 1 

(Oi, O) for models 2 and 3, and (p1, p) for model 4. X-ll-..ARIMA improves on 

X-ll whenever its MSR is smaller than 0.359, which is the value of the modulus of 

revision for X-11 alone. The boundary lines indicate those pairs of parameter 

values having a MSR smaller than 0.359. 

The structure of the series that fall in the region f imorovement 

for X-11-ARIMA is generally the same as that implicit in the X-ll central 

weights. The ARIt4A models force the X-ll-ARIMA concurrent filters to converge 

faster to these weights. Series that fall outside the region are likely to 

have a different structure. 

A complete family of boundaries exists for each of the four figures. The 

boundaries vary according to the forecast horizon &, and in figures 2, 3 and 4, 

according to the value taken by G. In order to simplify the graphic presentation, 



t was set to 12 in all four figures and 0 was set to 0.6 in the last three; 

however a family of boundaries has been estimated for each model for Z = 6, 12, 

18, 24 and 42 months and for 0 = 0.8. 

The region of improvement of X-ll-ARIMA on X-ll for parameters of the 

first model is the upper right part of figure 1. The boundaries for £. = 12 and 

18 months are vertical in their upper half and 0 is always greater than or 

equal to 0.2. For t = 6 months, e 	-0.6, and for Z = 24 and 42 months. ? 

is 	0.3. 	We see that 0 increases with .. In other words, the smaller 0 is 

(i.e. the more the seasonal pattern changes), the shorter the forecast horizon 

must be in order for X-ll-ARIMA to improve on X-11. On the other hand, when 

£ increases 0 decreases. 

The region of improvement for parameters of the second model is in 

the upper right of the triangle. When £. increases from 6 to 12 months, the 

boundary of the region moves significantly to the left. As £. increases to 18, 

24, and 42 months, the leftward movement of the boundary is smaller. Increasing 

0 from 0.6 to 0.8 always moves the boundary to the left. 

The third model has a very small region of improvement in the lower 

right of the triangle. We shall see why this is so in the next section. In 

general the boundary of the region behaves like that for the second model. 

The last model differs. from the preceding ones in that its region of 

improvement is in the left part of the triangle. Now the boundary moves to the 
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right when Z or 0 increases. This opposite movement occurs because this last 

model represents an autoregressive process while the other models represent 

moving-average processes. 

Each model has a region where the X-11-ARIMA end point seasonal factor 

filters improve on those of X-11. From the point of view of filters, any series 

fitted and forecasted by an ARIIIA model whose parameter values fall in this 

region should be seasonally adjusted better by X-ll-ARIMA than by X-11. 
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4. The estimated parameter values for actual series 

The most important finding shown in figures 1 to 4 is that almost all 

the estimated parameter values in our sample of Canadian macro-economic time 

series fall within the region where X-ll-ARIMA performs better than the basic 

X-ll. This means that for each of these series there is a gain in seasonal 

factor revision due to the filter. 

The sample comprised 23 quarterly series and 167 monthly seasonal time 

series chosen randomly from eleven sectors of the Canadian economy; national 

accounts; labour; prices; manufacturing; fuel, power and mining; ccnstruction; 

food and agriculture; domestic trade; external trade; transportation; and finance. 

Among the 190 series to which each of the models were fitted, we graohed 

in figures 1 to 4 only those series that satisfied the two extrapolation 

criteria of the X-11-ARU1A. That is, an adjusted model is acceptable if 

its forecast error is less than or equal to 15 and if the x 2  probability for 

testing the null hypothesis of randomness of residuals is greater than or 

equal to 5. 

Table 1 shows, for each of the four models, the number of series that 

satisfy the two extrapolation criteria of X-11-ARIMA, the mean and standard 

deviation of the estimated parameters, their smallest and largest values and 

their range. 

We see from figure 1 that only two of the 79 series that were well 

fitted and extrapolated by the first model, have parameters that fall outside 
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the region. Models 2 and 3 each have 3 such series and model 4 has 4. 

TABLE 1: 	Characteristics of the estimated parameter values 

for the four ARIMA models 

Model 	N 	Variable 	Mean 	Standard 	Mm. 	Max. 	Range 
Deviation 	Value 	Value 

(0,1,1 )(0,l ,l ) 79 e 0.33 0.31 -0.34 0.93 1.27 

o 0.67 0.14 0.10 0.94 0.84 

(0,1 ,2)(0,l ,1 ) 81 6 1  0.31 0.32 -0.39 0.96 1.35 

82 0.02 0.17 -0.39 0.41 0.80 

o 0.65 0.15 0.09 0.96 0.87 

(022)(01,1) 67 @1 1.05 0.27 0.36 1.86 1.50 

82 -0.20 0.23 -0.91 0.26 1.17 

o 0.60 0.15 0.02 0.92 0.90 

79 -0.26 0.30 -0.83 0.39 1.22 

02 -0.13 0.19 -0.55 0.35 0.90 

o 0.68 0.12 0.33 0.98 0.65 

One may wonder, when looking at table 1, at the small number of series 

(at most 43%) that each model fitted and forecasted satisfactorily or at the 

average value of o for the different models (at most 0.68). The most probable 

explanation for the small value of o is that we used the conditional least-

squares estimation method, instead of the unconditional method. As for the 
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success rate of the ARIMA models, we should take into account the fact that 

these series ended in December 1983. The forecasts were obtained by fitting 

the models to the entire series in order to estimate the parameter values and 

calculate the forecasts for the last three years. An important reason for this 

high rate of failure of 57% is that the last three years were atypical years 

afflicted by a severe recession which has caused a rate of failure (between 

34% and 41%) in forecast error. The rate of failure in x 2  ranges between 22% 

and 29% (see: Chiu, Higginson and Huot, 1984). 

The size of the improvement due to the filters varies within the region 

of improvement. That is, there is a point in this region where the filter 

revision is smallest. MSR is a strictly increasing function in all directions 

from the smallest point, throughout the entire region (of invertibility for 

models 1 to 3 and of stability for model 4). Outside the region of improvement, 

MSR increases much more rapidly than inside. We know the size of the filter 

improvement for each set of parameter values. Thus if several models fit a 

series fairly well, all other things being equal, we have enough information to 

select the model whose parameter values provide the smallest filter revision. 

These results not only conform to but extend the conclusions given in 

several theoretical and empirical studies (see among others: Geweke, 1978; 

Pierce, 1980; Kenny and Durbin, 1982; Dagum, 1975, 1982.a and 1982.b; and 

Wallis, 1983). This is because the results show that as long as the 

extrapolations are reasonable (a forecast error < 15%) and the fitting is 

acceptable (x2 	5%), the extrapolations will generally reduce the concurrent 

filter revisions although the model chosen might not be the optimal one from 
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the point of view of the mean squared-error of forecasts. 

To illustrate the nature of the improvement due to the filters within 

the region of improvement, we will now analyse different sets of parameter 

values for each model using their frequency response function H(w), their 

gain G() and phase shift (w). 

For our first model we chose two pairs of parameters inside the 

improvement region. The first, e = 0.5 and o = 0.9, is the point where the 

filter revision is smallest. The second, e = 0.4 and 3 = 0.4, is a point near 

the boundary. 

Figure 5 shows three curves. Each represents graphically the distance 

between the frequency response functions of two filters. We are comparing the 

central X-ll filter with three different end filters in turn: the X-ll and those 

of X-ll-ARIMA associated with the two chosen pairs of parameters. The lower 

the curve, the better the associated end filter is performing. The curve with 

the lowest average height is the one associated with (0.5, 0.9). The highest 

average hal gh t bel onas to the curve for X-11.  

From this figure we see that the X-ll-ARIMA concurrent filter with 

parameter values 0 = 0.5 and o = 0.9, on average, approximates best the 

frequency response function of the X-11 central filter. It improves on the 

second X-ll-ARIMA concurrent filter because its gain function is closer to unity 

and it has less phase shift as shown in figures 6 and 7. It also improves, on 

average, on the X-ll concurrent filter especially at frequencies close to the 

seasonal frequencies kcycles per year, k = 1, . .. , 6. The improvement occurs 
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FIGURE 7: PHASE—SHIFT FUNCTIONS OF SEASONAL ADJUSTMENT FILTERS. 
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because the gain function for the ARIMA (0.5, 0.9) filter is much closer to unity a 

these frequencies. A gain function close to unity indicates that the contribution 

of these frequencies to the series is almost unaltered in power. However, both 

ARIMA filters have a poorer performance than the X-ll concurrent filter in the 

business-cycle range. This is due to a large phase shift. 

The border of the improvement region for all four models occurs for a 

revision of 0.359. The minimum revision possible for model 1 in figure 1 is 

0.285. Most of the series modelled in this figure have a revision between 

0.300 and 0.330. 
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The roots of the characteristic equation of a second-order AR or MA 

process are real if 2  or 07 lie above the parabola shown in figures 2, 3 and 

4, and complex if they lie below. We see from figure 2 that about one third of 

the series fitted by model 2 had complex roots. 

Model 2 is characterized by a large region of improvement. The smallest 

revision, located in the upper right part of the region of improvement, is 

obtained with parameter values el = 0.4 and 02 = 0.6. The gain function 

associated with this filter is significantly lower than unity (viz 0.90). This 

performance in gain is more than compensated for in superior performance in 

phase shift and it is the filter that allows best for moving seasonality. 

Inside the region of improvement, except in its upper right part, the gain 

functions of the filters associated with most of the series are close to unity 

except of course at seasonal frequencies. Outside the region of improvement 

where few series fell, the gain of the associated filter is close to unity at 

business-cycle frequencies but rises significantly above unity at high non-

seasonal frequencies. The minimum revision possible for an invertible model 

in figure 2 is 0.316. Most of the series shown in this figure had revision 

less than 0.330. 

The region of improvement for model 3 is small and located to the lower 

right of the triangular invertibility region in figure 3. The equation of the 

right side of the triangle is 02 = 1 - Oi. The cloud of points in figure 3 

shows that the estimated value of 02  is usually close to the estimated value of 

1 - 01. The minimum revision possible for the third model is 0.321 for 0 = 1.8 

and O 	-0.8. Most of the series modelled have a revision lower than 0.345. 
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There are two important differences between models 2 and 3. The gain 

function associated with the minimum revision filter for model 3 is equal to 

unity at business-cycle frequencies, which was not the case for model 2. The 

minimum revision filter for model 2 allows scmewhat better than that of model 3 

for moving seasonality. These two models have similar gain functions in other 

respects. 

The minimum revision possible for model 4 is 0.324 for p j  = -0.3 and 

02 = -0.3. Most series modelled in figure 4 have revision lower than 0.350. 

Unlike the other three models, the minimum revision point for this model is 

located almost in the middle of the region of improvement. Its gain function 

is closer to unity than that of models 2 and 3, and it allows for moving 

seasonality slightly less than these two models. It is not even the filter 

that allows best for moving seasonality in figure 4. Filters located to the 

left of 	= -0.3 and ' = -0.3 perform better from that point of view. 

So far the analysis has focussed on the region of improvement. However, 

outside this region, is the X-ll-ARIMA worse than X-11? In order to answer the 

question, we may reasonably assume that the few series that fall outside the 

region of improvement are likely to have a structure that is different from that 

implicit in the X-ll central weights. Cleveland (1972) and Cleveland and Tiao 

(1976) have shown that there exists a stochastic model, very close to the 

model with parameter values e = 0.4 and e = 0.6, that approximates 

well the central weights of the X-ll procedure. These parameter values lie inside 

the region of improvement for the first model. When we depart significantly from 

6 = 0.4 and 0 = 0.6, the true structure of series is not likely to be the same as 
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that implicit in the X-ll central weights. Thus it is not desirable to have 

concurrent filters that converge to the X-ll central filter. 

Let us assurie that the ARIMA model fitted to such series gives a good 

representation of the behaviour of the series that lie outside the region of 

improvement. Then the concurrent filter of X-11-ARIMA, which is mainly 

influenced by the extrapolation filter of the APIMA model , reflects the current 

structure of the series. in this case, the total revision for the concurrent 

filter will be largar than that of X-ll. It does not mean that the concurrent 

estimate of X-ll-ARIMA for these few series is not better than the one obtained 

from X-ll alone. In such a situation, one should revise the concurrent estimate 

at most one year later in order to avoid forcing the convergence toward the 

inappropriate X-ll central filter. 
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5. Revisions for different forecast horizons 

We will now investigate the effect of different forecast horizons on 

the total revision, MSR, for the concurrent X-ll-ARIMA filters. The forecast 

horizon Z denotes the lead time of the forecast. We will first compare the MSR 

associated with different forecast horizons £. = 1, ..., 24 and 42 months for 

different pairs of parameter values located in the region of improvement of the 

first model. Then for each model we will study the forecast horizon for the 

concurrent seasonal filter of X-ll--ARIMA associated with the smallest MSR value. 

Figure 8 shows five curves, each corresponding to a point in the 

improvement region for model 1. The set of parameter values 9 = 0.5 and 3 = 0.9 

which is the point where the filter revision is smallest has the lowest curve 

for every lead time. We see furthermore from this figure that the optimal 

forecast horizon for revisions depends strongly on the location of the parameter 

values in the region of improvement. For 8 = 0.5 and a = 0.9 the best lead time 

is 24 months. However, the longer the forecast lead time, the greater the 

variance of the forecast error and the riskier it is to forecast. In practice 

the lead time for the X-11-ARIMA is 12 months. It appears from figure 8 that 

there are other cases such as parameter values e 	0.8 and a = 0.4, and 9 = 0.4 

and a = 0.4, where the lead time should not be extended beyond 11 months. 

Twelve months is a very sensitive lead time. It can be associated in 

figure 8 wih the largest decrease in MSR (0.5, 0.9) or the largest increase in 

MSR (0.8, 0.4). The lead time of 24 months bahaves in a similar manner. 

The end point x is treated as central by X-ll-ARIMA only when there are 



- 23 - 

acceptable ARIMA forecasted values for 42 months ahead. Then x is seasonally 

adjusted using a symetric filter. Figure 8 shows that there is not much gain 

to be expected by extending the forecast lead time from 24 to 42 months. 

FIGURE 8: REVISIONS FOR DIFFERENT PARAMETER VALUES 
FOR ARIMA MODEL (0,1.1)(0,1,1)9 
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Table 2 shows, for each of the four models, and for lead times £. = 6, 

12, 18, 24 and 42 months, the MSR values where the filter revision is smallest inside 

the regions of improvement. The first model gives the smallest revision. We 	-• 

see that the closer the seasonal parameter e is to 1.0, the smaller the revision. 

Such a value of 0 corresponds to stable seasonality, which is easy to forecast 

using ARIMA models. 
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Table 2: 	MSR values associated with the smallest filter revision 

inside the region of improvement for each ARIMA model 

(0,l,l)(0,l l) 	(0,1 ,2)(0,1 l) 	(0,2,2)(0,1 l) 	(2,1 0)(01l) 

(.5, .9) 	(.4, .6) 	(1.8, -.8) 	(-.3, -.3) 

e = . 6 	® = .8 	= .6 	e = . 8 	o = . 6 	e = .8 

6 .315 .321 .315 .320 .315 .335 .324 

12 .285 .316 .298 .320 .301 .324 .301 

18 .270 .311 .286 .315 .288 .316 .288 

24 .258 .312 .278 .315 .280 .310 .277 

42 .254 .307 .270 .311 .272 .308 .274 

The other points in the region of improvement of models 2, 3 and 4 have 

a behaviour similar to that shown in figure 8. There exist sets of parameter 

values outside the region of improvement for which MSR increases as Z increases. 
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6. Conclusion 

In this paper, we have shown that there exist sets of parameter values 

of given ARINIA models for which the X-ll-ARIMA concurrent point seasonal 

adjustment filter improves on the basic X-ll. These sets, referred to as the 

regions of improvement for X-ll-ARIMA, are defined by boundaries plotted on the 

invertibility and stability regions for the 8's and d's. 

From the point of view of filters, any series fitted and forecasted by an 

ARIMA model whose parameter values fall in the region of improvement will 

generally be seasonally adjusted better by X-ll-ARIMA than by the basic X-ll. 

- An important finding is that almost all the estimated parameter values in our 

sample of Canadian macro-economic time series fall in the regions of 

improvement. 

- The size of the improvement due to the filters varies within the region of 

improvement. There is a point in this region where the filter revision is 

smallest. The revision is a strictly increasing function in all directions 

from that point. 

- We know the size of the filter improvement for each set of parameter values. 

Thus if several models fit a series fairly well, all other things being equal, 

we have enough information to select the model whose parameter values provide 

the smallest filter revision. 

- As long as the extrapolations are reasonable (a forecast error f4 15) and 

the fitting is acceptable (x2 . 5), the extrapolations will generally reduce 

the concurrent filter revisions although the model chosen might not be the 
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optimal one from the point of view of the mean squared-error of forecasts. 

- The optimal forecast horizon for revisions depends strongly on the parameter 

values in the region of improvement. There are cases where the best lead time 

is 24 months and other cases where it should not be extended beyond 11 months. 

- We can select the forecast horizon according to the estimated parameter values. 

- Twelve and 24 months are very sensitive lead time. 

- From the point of view of filters, there is not much gain to be axpected by 

extending the forecast lead time from 24 to 42 months. 
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