$11-614$
no.86-11 Cancia Covida
c. 3

Methodology Branch

'Iime Series Rescatid and Analysis

1) ixision?

Direction de la méthodologie

Disision de la recherche
of de lianalyse des chroniques

WORKING PAPER TSRA-86-U11
TIME SERIES RESEARCH \& ANALYSIS DIVISION
METHODOLOGY BRANCH

13 TERMS HENDERSON END-WEIGLTS
by
Normand Laniel*
*Time Series Research á Analysis Division, currentiy witi
Business Survey Methods Division.
This is a preliminary version. Do not quote without author's permission. Comments are welcome.

Original version written: June 1985.
Revised: July, 1986.

table of conients

Page
Summary 3

1. Introduction 4
2. The Criteria 5
2.1 The BLUE Criterion 6
2.2 The MMSR Criterion 7
2.3 The $\mathrm{x}-11$ Criterion 10
2.4 Other Criteria 11
3. Theoretical Comparison 12
3.1 Measures of Comparison 12
3.2 Discussion of Results 14
4. Empirical Comparison 15
4.1 Measures of Comparison 16
4.2 Results 16
5. Conclusions 17
Bibliography 19
Appendix A - Asymmetric set of weights by design criterion
Appendix B - Theoretical results
Appendix C - Empirical results

SUMMARY

Criteria for the design of 13 terms Henderson asymmetric end-weight are described. One of these criteria can reproduce exactly the Henderson asymmetric weights of the $X-11$ seasonal adjustment method. The theoretical bias, variance, expected revision and revision variance of the trend-cycle estimators constructed with the criteria are analyzed. Also, an empirical comparison is done with seven time series. Finally, conclusions are drawn about the choice of a design criteria.

RESUME

Des critères pour la conception de moyenne-mobiles à poids asymmétriques de type Henderson à treize termes sont décrits. Un de ces oritères permet la reproduction des poids asymmétriques de type Henderson tels qu'on les retrouve dans la méthode de désaisonnalisation X-1i. Sont analysés théoriquement, le biais, la variance, la révision espérée et la variance de la révision produit par les estimateurs de tendance-cycle construits à l'aide des critères. Aussi, on compare empiriquement les estimateurs cyclo-tendanciels avec sept séries chronologiques. Finalement, des conclusions sont tirés quant au choix d'un critère de conception de moyenne-mobiles.

1. Introduction

In the $\mathrm{X}-11$ (Shiskin, Young and Musgrave, 1967) and X-11-ARIMA procedures (Dagum, 1980) for seasonal adjustment, the 9 terms, 13 terms and 23 terms Henderson moving averages (Henderson, 1916) are used for the estimation of the trend-cyclical movements in monthly time series. For these m.a., symmetric and asymmetric set of weights are available. Preliminary estimates of the smoothed seasonally adjusted series, at its ends, are provided by the asymmetric weights while elsewhere final estimates are given by the symmetric weights. Consequently, as more information becomes available, the smoothed values at the right end of the series are revised until symmetric weights can be applied.

Ideally, the asymmetric set of weights should provide an estimate consistent with the one given by the symmetric weionts and minimizing the amplitude of the revisions. The purpose of this study is to compare some design criteria for 13 terms Henderson end weights to see how well the two properties stated are satisfied.

The design criteria compared are described in the next section. A theoretical comparison of the criteria is presented in the third section. An empirical comparison is done in section 4 . Finally, section 5 concludes.

2. The Criteria

The criteria described here are for the design of asymmetric set of weights for the 13 terms Henderson moving averages, but they can easily be modified for $2 m+1$ terms moving averages.

Before going to the criteria themselves, some notation will be introduced. Let yt be the seasonally adjusted monthly series, x_{t} its trend-cycle component and n_{t} the noise or irregular component. It is assumed that

$$
\begin{equation*}
y_{t}=x_{t}+n_{t} \tag{2.1}
\end{equation*}
$$

with $E\left[n_{t}\right] \stackrel{\Delta}{\triangleq} 0$.

A final estimate of $x_{t}, \hat{x}_{t}(m)$, is obtained by application of the symmetric filter $h_{m}(B)$

$$
\begin{equation*}
\hat{x}_{t}(m)=h_{m}(B) y_{t}=\sum_{j=-m}^{m} h_{m, j} y_{t-j} \tag{2.2}
\end{equation*}
$$

where B is the lag operator and $h_{m, j}\left(=h_{m,-j}\right)$ are the weights of the filter. This filter is a moving average of $2 m+1$ terms ($m=6$ for 13 terms). Preliminary estimates for points near the end of the series are given by asymmetric filters

$$
\begin{equation*}
\hat{x}_{t}(i)=h_{i}(B) y_{t}=j=\sum_{i}^{m} h_{i, j} y_{t-j} \tag{2.3}
\end{equation*}
$$

where i is the number of values future to y_{t} entering the moving average.

At times $t+i$ and $t+k, \quad 0<i<k<m, t w o$ smoothed values of y_{t} can be calculated and thus the revision is defined as

$$
\begin{equation*}
r_{t}(i, k)=\hat{x}_{t}(k)-\hat{x}_{t}(i) \tag{2.4}
\end{equation*}
$$

2.1 The B.L.U.E. Criterion

Wallis (1981) has shown, using the approach of Hannan (1970, pp. 186187), that the Henderson symmetric and some asymmetric filters can be obtained by a generalized least squares polynomial regression subject to an error structure, which gives the best linear unbiased estimator. In that context, the trend-cycle is assumed to follow, locally, a cubic

$$
\begin{equation*}
x t=\sum_{\ell=0}^{3} c_{l} t^{\ell} \tag{2.5}
\end{equation*}
$$

and, the noise, the moving average process

$$
\begin{equation*}
n t=(1-B)^{3} \text { at, at } \sim \operatorname{NI}\left(0, \sigma_{a}^{2}\right) \text {. } \tag{2.6}
\end{equation*}
$$

The fitted values given by the B.l.U.f. are

$$
\begin{equation*}
\dot{x} t(i)=\underline{n}_{i}^{\prime} y=z^{\prime} t\left(Z \underline{V}^{-1} z\right)^{-1} z^{\prime} \underline{V}^{-1} \underline{y} \tag{2.7}
\end{equation*}
$$

where \underline{h}_{i} is a column vector containing the coefficients of $h_{i}(B)$ with the coefficients of the less recent data entering first; $y=\left(y_{t-m}, \ldots, y_{t}, \ldots\right.$, $\left.y_{t+i}\right)^{\prime}$ is a column vector containing $m+1+i$ seasonally adjusted values; $z^{\prime} t=\left(1, t, t^{2}, t^{3}\right) ; \underline{Z}$ is an $(m+1+i) \times 4$ matrix whose j th column comprises the ($j-$ 1)th powers of the integers $1, \ldots, m+1+i ; \underline{V}$ is the variance-covariance matrix of the error (noise) process and is a symmetric band matrix with elements on the main diagonal and first three sub-diagonals equal to 20 , $-15,6$ and -1 respectively, all other elements being zero.

By setting $m=6$ and $t=m+1=7$ and considering in turn $i=0,1, \ldots, 6$ equation (2.7) gives a set of six asymmetric and one symmetric filters minimizing the criterion of Henderson (1916). The coefficients are in
table $A-1$ and it can be verified that the symmetric ones correspond to the published values for the 13 terms Henderson moving average.

2.2 The MMSR Criterion

The second and new criterion to design asymmetric end weights consists in minimizing the mean squared revision between the final estimate and a preliminary estimate when the trend-cycle is a cubic and the noise is given by (2.6). Which can be expressed by
$\min E\left[\left(I_{t}(i, m)\right)^{2}\right]$
subject to $h_{i}(1)=\sum_{j=-i}^{m} h_{i}, j=1$.
As is, expression (2.8) can lead to an algebraic solution for the $h_{i, j}$ expressed in terms of the coefficients of the cubic and the variance of the noise. In order to ootain a solution, one must develop a more explicit form for the mean squared revision. By definition one obtains

$$
E\left[r_{t}\left(i, m \lambda^{2}\right]=E^{2}\left[r_{t}(i, m)\right]+\operatorname{Var}\left[r_{t}(i, m)\right],\right.
$$

where $r_{t}{ }^{(i, m)}=\left(h_{m}(B)-h_{i}(B)\right)\left(x_{t}+n_{t}\right)$.

Since $E\left[n_{t}\right]=0$, only x_{t} contributes to the mean of the revision. Using that $h_{m}(B)$ reproduces exactly a cubic and $h_{i}(B)$ a constant, one is lead to

$$
\begin{equation*}
E\left[r_{t}^{(i, m)}\right]=\sum_{l=1}^{3} c_{\ell}\left[t^{\ell}-{ }_{j} \sum_{=-i}^{m} h_{i, j}(t-j)^{\ell}\right] . \tag{2.9}
\end{equation*}
$$

The trend-cycle x_{t} is considered to be deterministic, this implies that only n_{t} contributes to the variance of the revision. Thus the variance can be expressed as

$$
\begin{equation*}
\operatorname{Var}\left[r_{t}(i, m)\right]=\sigma_{a}^{2} \sum_{j=-m}^{m+3} g^{2} j \tag{2.10}
\end{equation*}
$$

where gj_{j} is the coefficient of Bj^{j} in the polynomial operator

$$
g(B)=\left(h_{m}(B)-h_{i}(B)\right)(1-B)^{3}
$$

From equations (2.9) and (2.10), it is clear that the mean squared revision can only be expressed as a function of the parameters c1, c2, c3 and σ_{a}^{2}. This is undesirable in the sense that the purpose of this exercise is to find asymmetric set of weights which can be used with any time series (e.g. for any values of the parameters). A way to partially get around this difficulty is to approximate (2.8) by minimizing the total MSR of three particular cases of (2.8). These are the cases where x_{t} is a pure straight line, where x_{t} is a pure quadratic and where x_{t} is a pure cubic. For each of these cases, the parameter c_{ℓ} (coefficient of t^{ℓ}) may be expressed as a function of $\sigma_{a}{ }^{2}$ in evaluating the I / C ratios as defined in Shiskin et al (1957).

The i / C ratio is the average of the absolute vaiues of the first differenced irregulars (noise) divided by the average of the absolute values of the trend-cycle first differences. Let us first consider the numerator of the ratio, it can be expressed as

$$
I=\frac{1}{2 m} \sum_{j=-m}^{m-1}\left|\Delta n_{t-j}\right|
$$

Since the stochastic process π_{t} is stationary, ergodic and gaussian, the new process $\left|\Delta n_{t}\right|$ has the same properties, which means that the above expression can be evaluated using

[^0]$I=E\left[\left|\Delta_{n t}\right|\right]=\left(\frac{2}{\pi} \quad \sigma_{\Delta n t}^{2}\right)^{1 / 2}$
where
$$
\sigma_{\Delta n t}^{2}=E\left[\left(\Delta_{n t}\right)^{2}\right]=E\left[\left((1-B)^{4} a_{t}\right)^{2}\right]=70 \sigma_{a}^{2},
$$
\[

$$
\begin{equation*}
I=\left(\frac{140}{\pi} \sigma_{a}^{2}\right)^{1 / 2} \tag{2.11}
\end{equation*}
$$

\]

Let us now consider the denominator for the three cases of x_{t} mentioned earlier.
i) If $x_{t}=c_{0}+c_{1} t$ the denominator becomes

ii) If $x_{t}=c_{0}+c_{2} t^{2}$ the denominator is

$$
\left.c=\frac{1}{2 m} \sum_{j=-m}^{m-1}\left|c_{2}\right| \cdot \right\rvert\, 2(t-j)-1
$$

at $t=0$ (time point for which the estimation is done) $c=m\left|c_{2}\right|$.
iii) If $x_{t}=\mathrm{c}_{0}+\mathrm{CH}^{5}{ }^{3}$ the denominator is expressed by

$$
C=\frac{1}{2 m} \sum_{j=-m}^{m-1}\left|c_{3}\right| \cdot\left|3(t-j)^{2}-3(t-j)+1\right|
$$

at $t=0$ (time point for which the estimation is done) $C=m^{2}\left|c_{3}\right|$.

With the expressions for I and C above one can derive a formula to approximate (2.8) by a function of I / C. This formula, for $t=0$ and $m=6$, is $\frac{E\left[\left(r_{0}(i, 6)\right)^{2}\right]}{\sigma_{a}^{2}}=\left.\left.\frac{140 \quad \sum_{l=1}^{3}(36)^{l-1}}{\pi(I / C)^{2}}\right|_{j=-i} ^{6} h_{i, j}(-j)^{2}\right|^{2}+3 \sum_{j=-\sigma^{2}}^{9} g_{j}^{2}$

Integrating over I/C on the domain [1.0,3.5), values for which the 13 terms Henderson m.a. is applied in the $x-11$ method, one obtains the following integrated criterion
$\left.I M G R=\frac{40}{\pi} \sum_{\ell=1}^{3}(36)^{\ell-1} \sum_{j=-i}^{6} h_{i, j}(-j)^{\ell}\right]^{2}+3 \sum_{j=-6}^{Q} g_{j}^{2}$
which can be minimized to obtain end weights.

End weights has been derived from the minimization of the criterion (2.13) above subject to the constraint that the weights sum to 1 . They are presented in table $A-2$.

2. 3 The $\mathrm{X}-11$ Criterion

The criterion that will be derived here is a particular case of the MMSR. Its minimization gives the asymmetric weights of the 13-term Henderson moving average as published. This is not necessarily the one used by Shiskin et al (1957), but it is not possible to verify the statement since nothing has been written on such a criterion. The derivation is based on two hypothesis. One is that the trend-cycle is a straight line and the other that the noise is white (a series of normal independent random variables identically distributed). In this particular case the MSR is expressed by (using expressions similar to (2.9) and (2.10)):

$$
\begin{equation*}
E\left[\left(r_{t}(i, m)\right)^{2}\right]=c_{l}^{2}\left(t-\sum_{j=-i}^{m} h_{i, j}(t-j)\right)^{2}+\sigma_{a}^{2} \sum_{j=-m}^{m}\left(h_{m, j}-h_{i, j}\right)^{2} \tag{2.14}
\end{equation*}
$$

where $h_{i, j} \triangleq 0$ for $j=-m, \ldots,-i-1, \quad c_{1}$ is the slope of the line and $\sigma_{a}{ }^{2}$ is the variance of the noise.

As in section 2.2 the ratio I/C can be calculated and one obtains

$$
I / C=\left(4 \sigma_{a}^{2} / \pi\right)^{1 / 2} /\left|c_{1}\right|
$$

Thus, setting $t=0$ the following criterion is obtained for $m=6$:

$$
\begin{equation*}
\frac{E\left[\left(r_{0}^{\left.(i, 6)^{2}\right]}\right.\right.}{\sigma_{a}^{2}}=-\frac{4}{\pi(1 / C)}\left(\sum_{j=-i}^{6} h_{i, j} j\right)^{2}+\sum_{j=-6}^{6}\left(h_{6, j}-h_{i, j}\right)^{2} \tag{2.15}
\end{equation*}
$$

Minimizing this expression with $I / C=3.5$ (the most noisy situation where the 13 terms Henderson is applied) and subject to the constraint that $\sum_{j}^{5}, h_{i, j}=1$ the $x-11$ Henderson asymmetric end weights are obtained. They appear in Table A. 3 with 7 decimals.

2.4 Other design criteria

Two design criteria found empirically are outlined in the present section. The first one is a suggestion of Kenny and Durbin (1981) about how $X-11$ 13-terms Henderson asymmetric filters may have been constructed. They suggested that the asymmetric weights may have been calculated by assuming that the series ta be smoothed by the symmetric weights can be extended by a straigit line fitted by ordinary least squares. Following this the weights presented in Table $A-4$ are obtained.

The second criterion is a modified version of the suggestion of Kenny and Durbin. Cholette (1983) suggested that the straight line should be fitted by generalized least squares, where the error structure is given by model (2.6). He obtained the weights presented in Table A-5.

3. Theoretical Comparison

The criteria described in section 2 lead to different estimators for the trend-cycle of a seasonally adjusted series at its last time periods. In this section the bias, variance, expected revision and revision variance of these estimators are analyzed theoretically, under the hypothesis that x_{t} is a cubic and Π_{t} follows model (2.6). Frequency response functions (gain and phase-shift) are also presented for the last period filters.

3.1 The Measures of Comparison

The bias of $\hat{x}_{t}{ }^{(i)}$, since $E\left[n_{t}\right]=0$, is given Dy
$E\left[\hat{x}_{t}(i)-x_{t}\right]=\sum_{l=1}^{3} c_{l}\left(\sum_{j=-i}^{m} h_{i, j}(t-j)^{\ell}-t^{\ell}\right)$.

As the c_{ℓ} 's are unknown, three bias ratios have been used. They are calculated in setting $t=0$ in (3.1) and in considering in turn that x_{t} is a pure straight line, a pure quadratic or a pure cubic. One obtains
$\frac{E\left[\hat{x}_{0}^{(i)}-x_{0}\right]}{c_{l}}=\sum_{j=-i}^{m} h_{i, j}(-j)^{\ell}, \quad l=1,2,3$.
The variance of $\hat{x}_{t}(i)$, since $\operatorname{Var}\left[x_{t}\right]=0$, is given by

$$
\operatorname{Var}\left[\hat{x}_{t}(i)\right]=E\left[\left(h_{i}(B) n_{t}\right)^{2}\right]
$$

The variance of the a_{t} 's in model (2.6) is unknown, thus a variance ratio is used to do the comparison which is
$\frac{\operatorname{Var}\left[\hat{x}_{t}(i)\right]}{\sigma_{a}^{2}}=\sum_{j=-i}^{m+3} p^{2} j$
where p_{j} is the coefficient of B^{j} in the polynomial operator

$$
p(B)=h_{i}(B)(1-8)^{3}
$$

The expected total revision is given by equation (2.9) which allows to calculate three mean revision ratios

$$
\frac{E\left[r_{0}{ }^{(i, m)}\right]}{c_{\ell}}=\sum_{j=-i}^{m}{ }^{m}{ }_{i}, j^{(-j)^{\ell}} \quad \ell=1,2,3
$$

These are exactly the bias ratios multiplied by minus one.

The total revision variance is expressed by (2.1U) from this expression a revision variance is obtained as:

$$
\frac{\operatorname{Var}\left[r_{t}(i, m)\right]}{\sigma_{a}{ }^{2}}=j^{m+3} \sum_{-i} g^{2} j
$$

where g_{j} is the coefficient of $B j$ in the polynomial operator

$$
g(B)=\left(h_{m}(B)-h_{i}(B)\right)(1-B)^{3}
$$

The other measure used to compare the different estimators is.the frequency response function of the $h_{i}(B)$ filters, this is computed by

$$
H_{i}(f)=\sum_{j=-i}^{m} h_{i, j} \exp (-z 2 \pi f j), \quad 0 \leq f \leq 1 / 2
$$

where f is the frequency in cycle per month and $z=\sqrt{-1}$. This function is complex and thus can be expressed by two functions called the gain and the phase-shift, these are respectively given by

$$
\begin{aligned}
& \text { phase-shift, these are respectively given by } \\
& G_{i}(f)=\left\|H_{i}(f)\right\|=\left(\operatorname{Re}\left(H_{i}(f)\right)^{2}+\operatorname{Im}\left(H_{i}(f)\right)^{2}\right) \mid / 2 \\
& \text { and } \phi_{i}(f)=\arctan \left[\frac{\operatorname{Im}\left(H_{i}(f)\right)}{R_{e}^{\left(H_{i}(f)\right)}}\right] .
\end{aligned}
$$

$\phi_{i}(f)$ has its units in radians but it can be expressed in months by the transformation

$$
\phi_{i}^{\prime}(f)=\phi_{i}(f) / 2 \pi f, \quad 0<f \leq 1 / 2
$$

3.2 Discussion of results

The bias ratios and variance ratios, calculated assuming that the trend-cycle follows equations (2.5) and (2.6), are shown in tables B-1 and B-2 respectively. It can be observed that BLUE weights are unbiased; Kenny-Durbin and Cholette weights are unbiased if the trend-cycle is a straight line but they have large bias ratios otherwise; MMSR and $X-11$ weights are always biased but the first set of weights less than the second.

For the far end-point filter ($i=0$), the different estimators can be ranked as follows according to their variance (beginning with the lowest variance): Cholette, MMSR, X-11, Kenny-Durbin and BLUE. For the filter corresponding to $i=1, X-11$ and Kenny-Durbin weights have larger variance ratios than BLUE, MMSR and Cholette weights. Finally for the filters corresponding to $i=2,3,4$ and 5, MMSR, $X-11$, Kenny-Durbin and Cholette weights have small variance ratios while BLUE has a large one in comparison.

As stated in subsection 3.1 the expected revisions gives the same results (except for the sign) as the bias ratios. Thus the conclusions about the estimators are the same for this measure.

The revision variance ratios are presented in table B-3. With this measure, one can draw the same conclusions as with the variance ratios since the values tabulated are almost the same except a bit smaller.

In figures B-1.a and B-1.0 to B-6.a and B-6.0, the gain and phase shift functions are shown respectively for the symmetric filter, the BLUE, MMSR, X-11, Kenny-Durbin and Cholette asymmetric end-point filters (i=0).

As one can observe, the gain and phase-shift functions respectively reflect the variance and bias properties of the trend-cycle estinators.

In table B-4 the main characteristics of the frequency responses are summarized. These are the value of the gain at low frequencies (trendcyclical frequencies), the peak value of the gain with its corresponding frequency, the cut-off frequency of the gain (the frequency where it equals $\sqrt{2 / 2}$), the smallest value of the gain at high frequencies (noise frequencies) and the value of the phase-shift at low frequencies.

The small variances of $X-11$, Kenny-Durbin and Cholette end weights are reflected in their low cut-off frequencies. The small variance of MMSR is mainly due to its very small gain value at high frequencies. The large variance of BLUE is certainly caused by its high peak value of its gain, its high cut-off frequency and its large gain at high frequencies. The unbiasness of the symmetric and BLUE end-point filters is shown by their zero phase-shift at low frequencies. The unbiasness or Kenny-Durbin and Cholette filters if the trend-cycle is a straight line is reflected in the zero phase-shift at very low frequencies. Their bias for quadratic or a cubic is shown by the increase in phase-shift with frequency. The phase-shift of $x-11$ end weights is larger than the one of MMSR which reflects its larger bias.

4. Empirical Comparison

In this section, the proportional revisions (defined below) obtained by the application of the BLUE, MMSR, X-11, Kenny-Durbin and Cholette asymmetric Henderson weights to seven time series, described in table C.l, are analysed.

These series have been additively seasonaliy adjusted with the $x-11$ method and their I/C ratio lie in the interval $[1.0,3.5)$. When a series had a multiplicative seasonal component a natural logarithmic transformation was done before running $x-11$.

4.1 The Measures of Comparison

Given a series of length N, the proportional total revision has been calculated as
$p r_{t}^{(i)}=\frac{r^{(6, i)}}{\hat{X}_{t}^{(6)}} \times 100=\frac{\hat{x}^{(6)}-\hat{x}_{t}^{(i)}}{\hat{x}_{t}^{(6)}} \times 100$
for $t=7,8, \ldots, N-6$ and $i=0,1, \ldots, 5$ (six asymmetric filters).

For all series, the mean, standard deviation and root mean square value of $p r_{t}{ }^{(i)}$ have been computed as

$$
\begin{aligned}
& \overline{\mathrm{pr}}^{(\mathrm{i})}=\frac{1}{\mathrm{~N}-12} \sum_{\mathrm{E}=7}^{\mathrm{N}-6} \mathrm{pr}{ }_{\mathrm{t}}{ }^{(\mathrm{i})} \quad \text { for } \mathrm{i}=0,1, \ldots, 5 \\
& s\left(p r^{(i)}\right)=\left[\frac{l}{\bar{N}-12} \sum_{t=7}^{N-6}\left(\mathrm{pr}_{\mathrm{t}}{ }^{(i)}-\overline{\mathrm{pr}}^{(i)}\right)^{2]^{1 / 2}} \text { for } \mathrm{i}=0,1, \ldots, 5\right. \\
& \text { and rms }\left(\mathrm{pr}^{(\mathrm{i})}\right)=\left(\left(\overline{\mathrm{pr}}^{(\mathrm{i})}\right)^{2}+\mathrm{s}^{2}\left(\mathrm{pr}^{(\mathrm{i})}\right)\right)^{1 / 2} \text { for } \mathrm{i}=0,1, \ldots, 5 \text {. }
\end{aligned}
$$

4.2 The Results

The statistics described above are presented in tables $\subset-2$ to $\subset-8$. The following discussion is based on the results for the filters corresponding to $\mathrm{i}=0$ and 1 , since the revisions are generally much bigger for those.

Comparing the results for the different estimators; it is seen that 5 times over 7 X-11 has the smallest rms values closely followed by KennyDurbin which has smallest rms for 2 series. This is due to the fact that $\mathrm{X}-11$ has the smallest standard deviation for the seven series again closely
followed by Kenny-Durbin which has much smaller bias than $X-11$ causing its two smallest rms. The three other estimators BLUE, MMSR and Cholette have larger rms due to their large standard deviations, with BLUE always having the largest rms.

A possible explanation for the disagreements between the empirical and theoretical comparisons could be that a straight line plus white noise is a very good approximation to a 13 months series of seasonally adjusted values. The two best estimators according to rms use a straight line and white noise as design hypothesis.

5. Conclusions

This study has shown that BLUE and MMSR asymmetric weights are fully consistent estimators in the sense that they are designed using the same model for seasonally adjusted data as used for symmetric Henderson weights. X-11, Kenny-Durbin and Cholette asymmetric weights are only partially consistent since they use the hypothesis that the trend-cycle is a straight line apart from using the symmetric weights in their design.

It has been seen that $X-11$ asymmetric weights are very good or the best ones to minimize revisions while the BLUE weights (suggested by Wallis (1981)) are the worst. The Kenny-Durbin weights did also very well for revisions. This suggests that it could be worth trying to estimate the trend-cycle by symmetric weights designed to reproduce a straight line in white noise.

The actual asymmetric weights for the 13 terms Henderson found in $X-11$ should be kept since they minimize revisions very well.

In designing asymmetric sets of weights for other length of Henderson moving averages, it is expected that the $X-11$ approach or the one of kennyDurbin will produce weights with very good properties.

Bibliography

CHOLETIE, P.A.(1983). Non-central weights for the Henderson moving averages. Unpublished paper, Statistics Canada, Ref. No. TSRA-85-015EF.

DAGUM, E.B. (1980). The $X-11$-ARIMA seasonal adjustment method. Catalogue No. 12-564E, Statistics Canada.

HANNAN, E.J.(1970). Multiple Time Series. New York: Wiley.
HENDERSON, R.(1916). Note on graduation by adjusted average. Transactions of the Actuarial Society of America, 17, 43-48.

KENNY, P.B. and DURBIN, J. (1981). Local trend estimation and seasonal adjustment of economic and social time series. Journal of the Royal Statistical Society, Series A,p.144.

SHISKIN, J., YOUNG, A.H. and MUSGRAVE, J.C. (1967). The X-11 variant of the Census Method II seasonal adjustment program. Technical paper No. 15 (revised). Washington, D.C.: Bureau of the Census.

WALLIS, K.F. (1981). Models for $X-11$ and $X-11$-Forecast procedures for preliminary and revised seasonal adjustments. Proceedings of the Conference on Applied Time Series Analysis $\overline{\text { of Economic Data, }}$ A.S.A. - Census - NBER, pp. 3-11.

APPENDIX 'A'
Asymmetric set of weights by design criterion

$h_{i, j}$													
1/j	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
0	0.0	0.0	0.0	0.0	0.0	0.0	0.8181820	0.4895100	-. 2447600	-. 2797200			
1	0.0	0.0	0.0	0.0	0.0					-. 2797200	0.1398600	0.1818180	-. 1049000
2			0.0	0.0	0.0	0.2159610	0.4078570	0.3743320	0.1511720	-. 0637600	-. 1120900	-. 0197400	0.0462770
2	0.0	0.0	0.0	0.0	0.0131980	0.1967640	0.3929800	0.3887290	0.1727680	-. 0637600	-. 1288900	-. 0264600	0.0546760
3	0.0	0.0	0.0	-. 0416800	0.0583470	0.2561220	0.3784560	0.3205310	0.1329860	-. 0372400	-. 0802700	-. 0176200	0.0303640
4	0.0	0.0	-. 0448900	-. 0071400	0.1274110	0.2686790	0.3203790	0.2546060	0.1219990	0.0067120	-. 0363200	- 0276200	0.0303640
5	0.0	-. 0330200	-. 0283800	0.0436610	0.1528140	0.2421210	0.2678420	0.2222750					
6	-. 0193498	-. 0278638	0.0	0.0654918	0.1473565	0.2143367	0.2400572	0.2143367	0.1329680	0.0436610 0.0654918	-. 0109200	-. 0227000	-. 0103200

TABLE A. 2 - MMSR Weights

$h_{i, j}$													
i	${ }^{5}-6$	-5	-4	-3	-2	-1	0	1	2		4		
0	0.0	0.0	0.0	0.0	0.0	0.0	0.4211310	0.3531464	0.2439022	0.1197734	0.0120176	-. 0581103	-. 0918604
1	0.0	0.0	0.0	0.0	0.0	0.2791025	0.2922340	0.2539245	0.1743553	0.0799016	0.0018209	-. 0386319	-. 0427069
2	0.0	0.0	0.0	0.0	0.1481012	0.2154030	0.2414450	0.2160461	0.1493874	0.0678443	0. 0026740	-. 0248683	- . 0160327
3	. 0	0.0	0.0	0.0448341	0.1302402	0.2007618	0.2300237	0.2078446	0.1444058	0.0660825	0.0041322	-. 0201902	-. 0081348
4	0.0	0.0	-. 0169417	0.0510800	0.1354746	0.2049847	0.2332351	0.2100446	0.1455943	0.0662595	0.0032976	-.0220363	-. 0109924
5	0.0	-. 0340088	-. 0053209	0.0609950	0.1436838	0.2114881	0.2380327	0.2131363	0.1469802	0.0659395	0.0012718	-. 0257679	-. 0164298
6	-. 0193498	-. 0278638	0.0	0.0654918	0.1473565	0.2143367	0.2400572	0.2143367	0.1473565	0.0654918		-. 0278638	-. 0193498

TABLE A. 4 Kenny-Durbin Weights

	$h_{i, j}$												
	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
0	0.0	0.0	0.0	0.0	0.0	0.0	0.4646983	0.3821913	0.2584246	0.1197734	-. 0025049	-. 0871551	-. 1354276
1	0.0	0.0	0.0	0.0	0.0	0.2891958	0.2994435	0.2582502	0.1757972	0.0784597	-. 0025049	$-.0458414$	-. 0528002
2	0.0	0.0	0.0	0.0	0.1478950	0.2152483	0.2413419	0.2159945	0.1493874	0.0678958	0.0027771	-. 0247136	-. 0158265
3	0.0	0.0	0.0	0.0429756	0.1287947	0.1997293	0.2294042	0.2076381	0.1446123	0.0667020	0.0051646	$-.0187448$	-. 0062763
4	0.0	0.0	-. 0180481	0.0501949	0.1348108	0.2045422	0.2330139	0.2100446	0.1458155	0.0667020	0.0039614	-. 0211512	-. 0098860
5	0.0	$-.0343137$	-. 0055704	0.0608009	0.1435452	0.2114049	0.2380049	0.2131640	0.1470633	0.0660782	0.0014659	-. 0255184	$-.0161248$
6	-. 0193498	-. 0278638	0.0	0.0654918	0.1473565	0.2143367	0.2400572	0.2143367	0.1473565	0.0654918	0.0	$-.0278638$	-. 0193498

TABLE A. 5 Cholette Weights

$h_{i, j}$													
		$-5 \quad-$	-4	-3	-2	-1	0	1	2	3	4	5	6
0	0.0	0.0	0.0	0.0	0.0	0.0	0.3587284	0.4418412	0.3638444	0.1540632	-. 0614879	-. 1561683	-. 1008211
1	0.0	0.0	0.0	0.0	0.0	0.2473949	0.3108066	0.2958968	0.2038621	0.0765528	-. 0275068	-. 0661813	-. 0400252
2	0.0	0.0	0.0	0.0	0.1471794	0.2142912	0.2407994	0.2164222	0.1508360	0.0697689	0.0040297	-. 0250914	-. 0182354
3	0.0	0.0	0.0	0.0579410	0.1291326	0.1892544	0.2162146	0.1996719	0.1458432	0.0754674	0.0151774	-. 0150876	-. 0136149
4	0.0	0.0	-. 0051448	0.0524004	0.1279454	0.1935717	0.2237699	0.2067235	0.1493690	0.0746040	0.0113998	-. 0190452	-. 0155937
5	0.0	-. 0294480	-. 0042001	0.0589123	0.1397338	0.2074943	0.2355959	0.2130777	0.1490916	0.0691015	0.0039042	-. 0250548	-. 0182083
6	-. 0193498	-. 0278638	0.0	0.0654918	0.1473565	0.2143367	0.2400572	0.2143367	0.1473565	0.0654918	0.0	-. 0278638	-. 0193498

APPENDIX B
Theoretical results

TABLE B. 1 Bias Ratios

TABLE B.2 Variance Ratios

$\begin{aligned} & \text { Iilter's } \\ & \text { Index } \end{aligned}$	BLUE	MMSR	$X-11$	Kenny-Durbin	Cholette
0	7.83222965124				
!	0.273549509918	0.2289945562666	1.272258 0.433648	1.639887392423	
2	0.256753111044	0.06200366414974	0.433648 0.07918	0.4764149843363	0.6203161847037 0.2726048607578
3	0.146251750402	0.0746777426644	0.009996	0.07956805240074	0.07893914403914
4	0.055206405154	0.04570762433596	0.021584	0.01006004122852	0.00935220834408
5	0.018257541456 0.008335025628	0.01767643063646	0.017082	0.02170266169016	0.0115431549895 ?
6	0.008335025628	0.00933531269388	0.008335025628	0.01742424066658	0.0143554400793
				0.00833531269388	0.00835531269388

TABLE B. 3 - Revision Variance Ratios

Filter's					
Index	BLUE	MMSR	$x-11$	Kenny-Durbin	Cholette
0	7.823886044938	1.087685750295			
]	0.265214667572	0.2205700429531		1.620595029769 $0.46538=502552$	0.5995159682066
2	0.245118326774	0.05470979167016	($0.073+15293628$	$0.46538 こ 502952$ 0.0738244900572	0.2606578147975
3	0.137918735344	0.00707557140924	0.005724903028	0.07352449003572 0.0051925345404	0.07306016309026
4	0.04685703492 0.0097232422	0.03760999231218	0.016593021628	0.016E90ct135296	$0.005934770+1372$ 0.0072925755444
5		0.00938387631212	0.010094927628	0.01048569554032	0.00769956692672

TABLE B. 4 FREQUENCY RESPONSES CHARACTERISTICS

heIDERSOH SMMMETRIC FILTER

FIGURE B.lb PIASE-SHIFT IM TIME IHTERVALS

FIGURE B.2b

FIGURE B.3a

FIGURE B3.b


```
FIGURE B.4a
```


X-11 EINO-POINT FILIER

PHASE-SHIFY IH TIME IHTUERVALS
FIGURE B.4b

KERAIY-DURBIA EHD-POIHT FILTER

 phase-shift in time intervalsFIGURE B.5b

FIGURE B.6a

APPENDIX C
Empirical results
table c. 1 DESCRIPTION OF THE TIME SERIES

Identifier	Title	Period	Length
D500002	Slaughtering and Meat Processors (log.)	Jan. 71 to Dec. 84	168
D310000	```Shipments - Canada Total (log.)```	Jan. 71 to Dec. 84	168
D144336	Grass Domestic Product (log.)	Jan. 71 to Dec. 84	168
AIRLNSAD	International airline passengers - Box-Jenkins, Series G. (log.)	Jan. 49 to Dec. 60	144
D655161	Total stocks all departmentsDepartment stores (log.)	Jan. 71 to Dec. 84	168
D2437	Total generation - Hydraulic Power - Electric Pawer (log.)	Jan. 71 to Dec. 84	168
D5300	Total revenue cars loaded On Canadian railways	Jan. 71 to Dec. 84	168

Filter's

Index $\overline{p r}$
$s(p r)$
rms

Criterion

TABLE C. 4 - Revisions Statistics for Series D144336 (I/C $=1.50$)

TABLE C. 5 - Revisions Statistics for Series AIRLNSAD ($1 / C=1.87$)

Criterion	$\begin{aligned} & \text { Filter's } \\ & \text { Index } \quad . \quad \text { pr } \end{aligned}$		$s(p r)$	rms
BLUE	0	-0.00104238	0.36983409	0.36938556
	1	-0.00088225	0.16444420	0.16444657
	2	-0.00142352	0.16631939	0.16632553
	3	-0.00185491	0.13197064	0.13155308
	4	-0.00030659	0.07937689	0.07937748
	5	-0.00071380	0.03202918	0.03203713
1/1SR	0	-0.04353277	0.27360971	0.27708074
	1	-0.00905973	0.14579001	0.14607118
	3	-0.00024704	0.08783979	0.0878 .014
	3	-0.001240.43	0.09362066	0.07352023
	4	-0.00122390	0.07011164	0.07012232
		-0.00042043		0.03062413
$x-11$	0	-0.07320.646	0.12011927	0.20557547
	1	-0.02427657	0.09144513	0.09461271
	2	-0.00017550	0.03306207	0.03306253
	3	0.00927317	0.02703537	0.02355151
	4	0.00272869	$0.023+30 \geq 6$	$0.023 \text { e }$
		0.00052620	$0.0102+662$	
KennyDurbin	0	-0.00403601	0.21125826	0.21129681
	1	-0.00115328	0.09,90802	0.09451502
	2	0.00015171	0.03312510	0.03312645
	3	0.00051235	0.02901543	0.02902400
	4	0.00037444	0.02416151	0.02416441
	5	0.00014969	0.01039426	0.01039534
Cholette	0	-0.091997230	0.24629 .59	0.246314937
	1	-0.00165111	$0.10310+19$	0.10811650
	2	0.00013556	0.03351352	0.03351379
	3	0.00064 .65 0.0004559	0.03505817	0.03507610
	4	0.00044509 0.00017013	0.03047942	0.03 C 50268
	5	0.00017013	0.01286814	$0.0128692 ?$

TABLE C. 6 - Revisions Statistics for
Series D655161 (I/C = 2.07)

TABLE C. 7 - Revisions Statistics for Series D2437(I/C $=2.33$)

Criterion	Filter's Index	$\overline{p r}$	$s(p r)$	rills
BLUE	0	-0.00379200	0.12222501	0.12229019
	1	-0.0007752i	0.05136192	0.05136782
	2	-0.00114342	0.05193969	0.05195227
	3	-0.00156764	0.04143235	0.04147914
	4	-0.00051962	0.02531940	0.02532473
	5	-0.00089203	0.01042006	0.01045817
MiSR	0	-0.01733211	0.00682913	0.08054208
		-0.00355356	0.04571067	0.04585566
	2	-0.00035925	0.02766851	0.02767084
	3	-0.00076293	$0.029: 7597$	0.02918584
	4	-0.00373937	0.02237937	0.02237158
	5	-0.00032003	0.00996714	0.00997254
$x-11$	0	-0.02744679	0.06726092	0.07264542
		-0.00397976	0.03146076	0.03271722
	2	-0.00086193	0.01195275	0.01197376
	8	$0.00=30315$	0.01127204	0.01152121
	4	0.0000668	0.00364325	0.009643 .18
	5	-0.00054234	0.00420374	0.00423878
KennyDurbin	0	0.00142545	0.07166820	0.07168237
		0.00031435	0.03192131	0.03192286
	2	-0.00017058 -0.00035143	0.01200518	0.01200669
	4	-0.00035143 -0.00025010	0.01203561 0.01002361	0.01210072
	5	-0.00012222	0.00431436	0.00431609
Cholette	0	0.00187324	0.08112460	0.08114622
	1	0.00040973	0.03566900	0.03567136
	2	-0.00014533	0.01201400	0.01201496
	3	-0.00028175	0.01403565	0.01408846
	4	-0.00022951 -0.00010219	0.01207677	0.01209374
	5	-0.00010219	0.00514265	0.00514367

Criterion	Filter's		$s(p r)$	rins
BLUE	0	-0.00388069	0.16892803	0.16897259
	1	-0.00121589	0.06181656	0.06182851
	2	-0.00164902	0.06264282	0.06266452
	3	-0.00207464	0.04942777	0.04947129
	4	-0.00035083	0.03006554	0.03006759
	5	-0.00073103	0.01238199	0.01240355
HilisR	0	-0.01169804	0.10973658	0.11035833
	1	-0.00281813	0.05519687	0.05526877
	2	-0.00059751	0.03273415	0.03273761
	3	-0.00076538	0.03491745	0.03492591
	4	$-0.000+7090$	0.02647843	0.0264826 ?
	5	-0.00012143	0.01181653	0.01181715
$x-11$	0	-0.01800903	0.09168704	0.09343995
	I	-0.006:0731	0.0.2: 0.27	0.0 .271151
	2	-0.00078169	0.01559515	0.01661355
	3	0.00111483	0.01717262	0.01720377
	4	-0.00021329	0.01441910	0.01442068
	5	-0.00063824	0.00597978	0.00591432
KennyDurbin	0	-0.00233446	0.09908146	0.09910895
	1	-0.00000059	0.04288379	0.04289141
	2	-0.00001975	0.01666216	0.01666218
	3	0.00002059	0.01879398	0.01879399
	4	$\begin{array}{r} 0.00002826 \\ -0.00000252 \end{array}$	0.01515199	0.01515202
		-0.00000252	0.00608466	0.00608466
Cholette	0	-0.00249654	0.11117815	0.11120618
		-0.00105630	0.04777067	0.04778235
	2	-0.00001357	0.01679072	0.01679072
	3	0.00008339 0.00002091	0.02225379	0.02225398
	4	0.00002091 -0.00000414	0.01897320	0.01899321
	5	-0.00000414	8.00781760	Q. 0078120

TABLE C. 8 Revisions Statistics for

Serles $8500(I / C=2.84)$

Criterion	Filter's Index	$\overline{p r}$	$s(p r)$	rms
BLUE	0	-0.01013198	4.09116194	4.09117440
	1	-0.00368116	1.66656770	1.66657177
	2	-0.00389259	1.68402992	1.68403442
	3	-0.00391341	1. 33404090	1.33404664
	4	$\begin{aligned} & -0.00204458 \\ & -0.00238730 \end{aligned}$	$\begin{aligned} & 0.80139626 \\ & 0.32282611 \end{aligned}$	$\begin{aligned} & 0.80135987 \\ & 0.3223494 \end{aligned}$
MMSR	0	0.00035125	2.80385575	2.80385577
		-0.00134804	1.47814140	1.47814202
	2	0.00171878	0.89425653	0.88425921
	3	0.00090708	0.94361676	0.94361720
	4	-0.00063910	0.70683825	0.70683954
	5	-0.00137594	0. 30842804	0.30843111
$x-11$	0	0.00429601	1.96764260	1.96764729
	1	0.00325374	0.94229506	0.94230058
	2	0.00687790	0.34103509	0.34110444
	3	0.00829224	0.27147672	0.27160333
	4	0.00727213	0.23852020	0.23063104
	5	0.00175223	0.10532495	0.10533953
KennyDurbin	0	-0.01958057	2.19880604	2.19889322
	1	-0.00276365	0.98143088	0.98143477
	2	0.00709778	0.34135308	0.34144420
	3	0.01163937	0.29368440	0.29391498
	4	0.00913117	0.24629073	0.24646143
	5	0.00295966	0.10743780	0.10747856
Cholette		-0.02069073	2.50497726	2.50506271
	1	-0.00514664	1.09835510	1. 09836716
		0.00775002 0.01323588	0.34387896 0.35495720	0.34398627 0.35520389
	4	0.01125700	0.30694041	0.35520389
	5	0.00409360	0.13002288	0.13008746

[^0]: (*) Only $2 m+1$ time periods appear in the sum, since the hypothesis of MA(3) noise and cubic trend-cycle are valid only for the length of the $2 \mathrm{~m}+1$ terms Henderson moving average (e.g. $2 m+1$ time periods).

