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Ré sumé

Dans cet article, nous analysons la performance prévionnelle
des quatre modéles ARMMI qui seront incorporés i la nouvelle
version du programme de désaisonnalisation X-11-ARMMI. Ces

modéles sont le (0,1,1)(0,1,1)12, Y& (AL 2910.,0.,15 le

12*
(0,2,2)(0,1,1)12 et le (2,1,0)(0,1,1)12, qui sont ajustés 3

un échantillon de 120 séries macroéconomiques. La performance
Prévisionnelle des mod&les est calculée en function de la structure
globale des séries ainsi que de la tendance-cycle et du bruit
Présents dans chaque série. La performance prévsionnelle

est exprimée en terme d'erreur pourcentuelle absolue moyenne

calculée pour quatre horizons de prévision.
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FORECAST PERFORMANCE OF ARIMA MODELS AS FUNCTION OF THE NOISE CONTENT
AND TREND-CYCLE PATTERN OF TIME SERIES

Estela Bee Dagum, Guy Huot, Marietta Morry and Kim Chiu
Statistics Canada

1. INTRODUCTION

It has been proven theoretically through the study of filters (Dagum
1982.a; 1982.b and 1983) and corrcborated by several empirical studies,
among others, in Kuiper (1978), Kenny and Durbin (1982), Dagum and Morry
(1984) that the use of one year ahead ARIMA extrapolaticns reduces the
revisions of the concurrent seasonal factors obtained fram the X-11-ARIMA

program (Dagum, 1980).

A set of four ARIMA models ((0,1,1)(0,1,1)12, (0,1,2) (0,1,1)12,
(0,2,2) (0,1,1)12, and (2,1,0) (0,1,1)12) identified by Chiu, Higginson and

Huot (1985) fitted and forecasted well a large variety of economic time
series. ‘These models were ranked on the basis of the one year ahead
forecast error as well as same seven other criteria including fit and
parsimony. The inclusion of the four models in the X-11-ARIMA program in
the order of their ranking is to ensure that a good set of extrapolated
values can be produced even if the user has no expertise in ARIMA model
identification.

Fram the viewpoint of minimizing the filter revisions of the
X-11-ARIMA method, the maximum forecast horizon should not be restricted to
one year only for all series. A study by Huot, Chiu, Higginson and Gait
(1986) showed that for the four ARIMA models and certain parameter values,
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forecast horizons different from 12 months still produce a significant
reduction of the filter revisions. Thus, it is necessary to investigate
which factors would determine the length of the forecast horizon to be used
in order to produce current seasonally adjusted estimates with the smallest
revision. Furthermore, it is also of interest to know how the varying
forecast horizon affects the ranking of the models.

The ultimate objective of a larger study in preparation by the
authors is to produce guidelines based on certain characteristics of the
series regarding the mmber of forecast values necessary to yield season-
ally adjusted estimates of minimal revision. It is ocbvious that the
revisions in these estimates will depend on the forecast error. (A perfect
three-year forecast would result in estimates that do not get revised at
all). Thus, as a first stage in this direction, this paper examines the
relationship between the forecast error at different time horizons amd
certain characteristics of the series namely, the amount of irreqular
variation present and, the pattern of the trend—cycle camponent.

Section 2 describes the design of the experiment; section 3 looks
into the performance ranking of the four ARIMA models according to the
glabal structure of the series. In order to see why some series are fore-
casted with greater accuracy than others, the performance ranking of the
models is evaluated as a function of the noise and the trend-cycle in the
series. Section 4 deals with the relationship between the forecast error
and the noise in the series and section 5 with the relationship between the
forecast error and the pattern of the trend—cycle component. Finally,
section 6 gives the conclusions of this study.

2. THE DESIGN OF THE EXPERIMENT

In designing the experiment our main objectives are: (1) to have a
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representative sample of ecbmmic time series in terms of the amount of
irreqular fluctuations present in them; (2) to eliminate the dependence of
the forecast error on the particular month of the year chosen as forecast
origin; and (3) to minimize the mmber of ARIMA fitting and forecasting
necessary in order to reduce costs.

To achieve these objectives, the following design is adopted. A
sample of 120 series is selected from five sectors of the econamy (labour,
external trade, manufacturing, finance and agriculture).

All the series begin in January 1970 and for each series two
sets of forecasts up to 24 steps ahead are generated from different point
origin (one year apart). The last time point for which a forecast is made
corresponds to May 1981 caming from a series that ends in May 1979. May
1981 is chosen as the last forecast time point to avoid the effect of the
atypical 1981 recession on the forecast errors.

Another (simpler) alternative would be to produce 12 sets of
forecasts per series each starting at a different month of the year. This
design, however, requires a much larger number of ARIMA fits and would
increase substantially the cost since the number of series cannot be
reduced without jeopardizing the representativeness of the sample.

The four ARIMA models described before are applied to each series
and forecasts are generated fram two time origins; i.e. eight sets of
forecasts are obtained from each series.

The information cbtained for each series includes the forecast
errors for 24 time points for all eight sets, the ARIMA parameter values,
the goodness of fit statistic, the forecasting origin, the class to which
the series belong according to the amount of irregularity and the series
identifier. This information is merged with another collected previously
from each series during the X-11-ARIMA seasonal adjustment run concerning
the amount of irreqular and trend-cycle variations in the series.






The series fall into five classes (of 24 series each) according to
the amount of irreqular variation present as identified by the X-11-ARIMA
program in table F.2.B. The five classes are:

Class 1 0.0% - 5.0% irregular variation
Class 2 5.1% = 10.0% " I\
Class 3 10.1% - 20.0% 1 A
Class 4 20.1% - 30.0% L &
Class 5 30,1% - 50.0% " H

The amount of irreqular variation in a series, however, is often
measured as a function of the residuals left after fitting a model. We
therefore calculated the amount of irreqular variation both ways, as
identified by the X-11-ARIMA program and from the ARIMA model fitting.
Table 1 shows the average irregular variation estimated from the X-11-
ARTMA and from the ARIMA models. Except for class 1 where the two values
are close, the noise estimated fram the ARIMA models is always much smaller
than the one cbtained from the X-11-ARIMA program.

Place table 1 about here.

3. PERFOMNCERAMGNGOFT}EARDQ}DDE[SATDIFWFORE@SP}DRIZONS

Ead10fthe1205erisinthesanpleisfittedusingthefourARIMA
models. For a given series each model either ranks first, second, third or
fourth according to the mean absolute percentage error (MAPE) of the
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forecasts. Figurelstmstheperformarceramdmofthefwrnodelsm
they ranked first. At a 6 months forecast horizon, model (0y2 3] (0,1,1)12
ranked first 38% of the time followed by models (0,1,1) (0,1,1)12,
(0,1,2) (0,1,1)12 and (2,1,0) (0,1,1)12 with 27%, 19% and 16% respectively.

Figure 1 also indicates that the ranking depends on the forecast horizon.
The dispersion of the forecasting performance of the four models decreases
with an increasing forecast horizon. For instance, the dispersion in the
forecast performance which ranges from 16% to 38% at a 6 months forecast
horizon reduces to 21% to 29% at 24 months. Moreover the ranking of the
first three models changes. Model (0,2,2) (0,1,1)12 now cames third at a 24

months forecast horizon ranking first only 22% of the time while model
(0,1,2) (0,1,1)12 which was third now ranks first.

Place figure 1 about here.

The percentage of times each of the four models ranked second is
about 5% for model (0,2,2) (0,].,1)12 and 31% for the remainders with small

dispersion in their forecast performance. The id,2,2) (0,1,1)12 model
ranked third in 4% of all the cases, the (2,1,0) (0,1,1)12 model in 44% and
each of remaining two models ranked third in 26% of the cases.

Figure 2 shows the relative ranking of the models when they ranked
fourth. At a 6 months forecast horizon, model (0,2,2) (0,1,1)12 ranked

fourth in 50% of all the cases. This precentage increased to 68% at the 24
months horizon, indicating a dereriorating forecasting performance. This
suggests that model (0,2,2) (0,1,1)12 fits and forecasts well a class of

series that is not adequately picked up by the other three models. In fact
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the (0,2,2) (0,1,1)12 model either performed excellently or very poorly from

the view point of the MAPEs.
Place figure 2 about here.

The relationship between the MAPEs of the forecasts and the forecast
horizon in figure 3 shows that when the four models ranked first (as in
figure 1), the upper limit for the MAPEs is 7% only and model
(052%'2) (0'1'1)12 performed best. Figure 4 shows the MAPEs of the forecasts

of all the 120 series for each ARIMA model. As in figure 2, model
(0,2,2) (0,1,1)12 is outperformed by the other three models which are almost

equivalent with respect to the MAPEs.

Place figures 3 and 4 about here.

4. THE REIATIONSHIP BEIWEEN THE MAPEs OF ARTMA EXTRAPOLATIONS AND THE
NOISE IN THE SERIES

Several authors have discussed the relationship between the amount
of irregular variation in the series and predictability of the series (see
e.g. Makridadis and Hibon, 1979; Granger and Newbold, 1978 and Nelson,
1976) . This relationship is analysed here for ARIMA models. Figure 5 shows
the mean absolute percentage error (MAPE) of the forecasts from an (0,1,1)
(0,1,1)12 ARTMA model for four time horizons against five classes of

irreqular variation.






Place figure 5 about here.

It is apparent that the MAPE increases with the amount of noise
present for each of the four time horizons of 6, 12, 18 and 24 months. The
increase is very large as we move from class 2 to 3, that is for series
with a maximum of 10% of irregularity to a maximm of 20% and similarly
fram 30% to 50%. On the other hand, a decrease is adbserved between classes
3 and 4. This unexpected behaviour could only be explained by the
characteristics of the sample series that fell in class 4 given the
relative small size of the sample.

If the amount of irregularity is fixed, the dispersion of the MAPEs
is very small among the four time horizons of 6, 12, 18 amd 24 months. A
similar pattern was observed for the MAPEs of forecasts fram the ARTMA
models (0,1,2) (o,1,1)12 and (2,1,0) (0,1,1)12.

On the other hand, figure 6 shows a different pattern for the MAPEs
of the extrapolations from a (0,2,2)(0,1,1) " model. The dispersion of the

MAPEs of the forecasts for the four time horizons is large within each
class of irreqular variation. However, similarly to the other 3 models,
the MAPE increases with increasing amount of noise in the series.

Figure 7 shows the predictive performance of the four ARIMA models
for a time horizon of 12 months (which is arrrently the only one included
in the X-11-ARIMA program). It can be seen that the MAPEs produced by the
(0,2,2) (o,1,1)12 model are much higher than those of the other three

remaining models for each class of irregular variation. In fact, the MAPEs
of the (0,2,2) (0,1,1)12 ARTMA model ranked first in the highest proportion
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(33%) of the sample series with MAPEs smaller than 5% but when it ranked
fourth, tl'xeMPEofmeforecastsmngedbetweenSO%and70%,mmhhigl'xer
than the MAPEs of forecasts fram the other models.

Place figure 7 about here.

5. REIATIONSHIP BETWEEN MAPEs OF ARIMA EXTRAPOIATIONS AND THE PATTERN OF
THE TREND-CYCLE COMPONENT OF THE SERIES ]

In order to evaluate the effect of the trend—cycle on the
forecasting performance of the four ARIMA models, we compare here the MAPEs
of the forecasts with a measure M that provides information on the pattern
of the trend-cycle camponent in the series. The measure M is defined by
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tonically increasing annual trend. For values between 0 and 1, the series
has reversals of direction in its anmual rates of change (negative values).
The series is then assumed to be affected by the business cycle.

Values between -1 and 0 will have a similar interpretation but the
sample of series chosen for this study has very few cases where M is
smaller than .60. Table 2 shows the frequency distribution of the sample
according to the values of M.

Place table 2 about here.

Figure 8 shows the MAPE of the forecasts fram an (0,1,1) (0,1,1)12

ARTMA model for the four time horizons versus several values of M. It is
apparent that the average forecast error decreases with increasing M. For
the case of M = 1, a perfectly monotonic trend, the MAPE is very small.
There are no major differences for the four time horizons when M is close
to 1. Series with more cyclical movements (.6 <M < .8) however, tend to
have higher MAPEs at longer time horizons i.e. the models predictive power
diminishes if the series are affected by cycles. The other models showed
similar forecast error pattern according to the M measure.

Place figure 8 about here.

Finally, we looked at the relationship between the MAPE of the ARIMA
extrapolations and the various amount of irregularity in the series for
fixed values of M. Figure 9 shows the MAPEs for the (0, 51) (0,1,1)12 model

with a 12 month time horizon and M = 1 and M < .99.
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Place figure 9 about here.

When M = 1, the MAPEs of the forecasts are small and change very
little with increasing values of the irregular component. On the other
hand, when the series have been cyclically affected such as for M < .99,
the MAPEs increase with increasing irregularity in the series. 1In fact,
when the amount of irregularity in the series is larger than 10%, the
presence of the business cycle seems to be the main cause that affects the
forecasting performance of the ARIMA models.

6. OONCLUSIONS

This study analyzed the predictive performance of the four ARIMA
models to be incorporated into a new version of the X-11-ARIMA seasonal
adjustment camputer program. The predictive performance of each model is
evaluated globally (the standard approach) for 120 macroeconamic series and
also as a function of both the amount of irreqularity in each series and
the pattern of the trend. For each case the mean absolute percentage error
(MAPE) of the forecasts are calculated for various time horizons. The
results show that the MAPEs for these four ARIMA models are more sensitive
to the presence of the business cycle in the series than to either the
amount of irregularity or the length of the forecast horizon. This is
particularly evident when the contribution of the irregulars to the total
variance of the series is larger than 10%.
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Table 1. The average irregular variationg in the series as identified by
the X-11-ARTMA program and ARIMA models

Classes (1 - average R2) X 100 T
(ARTMA models) {(X-11-ARTMA)
1 2.56 2.79
2 4.18 7.50
3 558 14.13
4 6. 35 23.50
5 28.65 40.79
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Table 2. Frequency Distribution of the Sample According to the Measure M

Intervals Frequency % of Total
g L=(0) 0 0.00
=0.99 to -0.80 1L 0.83
-0.79 to -0.60 0 0.00
-0.59 to -0.40 ik 0.83
-0.39 to -0.20 2 2.50
=0,28" o | +0L00 2 1.67
0.01 o 10520 il 0.83
Q.21 tol 0.40 74 5.83
0.41 to 0.60 13 10.83
0.61 to 0.80 181, 984 7
0.81 to 0.99 34 28533
1.00 47 39.18

Total 120 100.00
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