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La rectification
des périodes de couverture
de données annuelles et trimestrielles

- résumé -

Le document préssnte une méthode pour rectifier les
périodes couvertes par des données  annuelles et
trimestrielles. Par exemple, des données annuelles
couvrent les périodes d'avril & mars de 1'année suivante;
les valeurs rectifiées couvrent les périodes de janvier a
décembre. Des variantes de la méthode conviennent aux
séries de flux, de stock et d’'indice. La méthode peut
aussi s’utiliser pour désagréger des données annuelles
(disons) en chiffres trimestriels ou mensuels.

- summary -

A method 1is presented to correct the reference periods of
yearly and quarterly data. For instance, the available
yearly data cover from April to March of the following
year; the corrected values cover from January to December.
Variants are proposed for flow, stock and index series.
The method can also be used to disaggregate yearly data
(say) into sub-annual figures.

INTRODUCTION

In many cases, statistical agencies receive annual data which pertain to
the financial year (or "fiscal year") of the respondent. The reference
period of that year may range from June 1 to May 31 for instance. However
the statistician actually needs figures which pertain to the conventional
year (or "calendar year") ranging from January 1 to December 31. The yearly
data published by statistical agencies are indeed supposed to reflect the
conventional year.

The problem is also aggravated by the fact that the reference period of the
financial years may change from occasion to occasion for a given
respondent: In 1982 (say), one company’s report covers from April 1981 to
November 1982; 1in 1983, from December 1982 to December 1983: in 1985 (no
report in 1984), from Janusry 1984 to June 1985; and so on.

The problem would be simple if the statistician had the sub-annual
breakdown of the financiszl year values available. Unfortunately, this is
generally not the case. Here is an example of how this may happen. In
order to keep the response burden to questionnaires to & minimum,



statistical agencies ask a greater number of their respondents to fill
detailled questionnaires on a yearly basis; and, a lesser number of
respondents to fill summary questionnaires on a monthly or quarterly basis.
One variable available yearly for a respondent may therefore not be
available at all sub-annually or be available with a lower degree of
reliability.

This paper provides a general method to convert financial year data into
conventional year values. The problem is seen as a special application of
interpolation between annual benchmarks, according to a variant of the
modified Denton method (Denton, 1971; Cholette, 1984). The method consists
of dis-aggregating the financial data into sub-annual values; and, of
re-aggregating the sub-annual values into the desired conventional year
values. When the dis-aggregated data are needed per se, they are then made
available by the method proposed. In some applications, data of financial
yvears ending in January (for instance) may be dis-aggregated into monthly
data in order to be re-aggregated both in conventional year and in
conventional quarter values

Variants of the method are derived for flow series, for stock series and
for index series. An approach to correct the reference periods of
quarterly data is outlined. The conversion of (bundles of) weekly data
into monthly values is covered in another paper (Cholette, 1987a).

The paper unfolds according to Ehrenberg’'s (1982) recommendation about
technical papers. Illustrations and results are presented first.
Methodological details come later.
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Figure 1: Estimated conventinnal year values when the financial years cover
. sometimes more and sometimes less than four consecut:ive quarters
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1. ILLUSTRATION OF THE METHOD FOR FLOW SERIES
WITH IRREGULAR FINANCIAL YEARS

Flow series are such that they sum to the corresponding annual values, e.g.
Retail Trade. The financial years of the flow series in Figure 1 have
reference periods which vary from occasion to occasion. Their statistical
usefulness is 1limited by the fact they are not comparable through time.
The problem consists of converting those five available irregular financial
years into six conventional wvalues, each of which would cover 4 quarters.

Varying reference periods arz not common in practice. Their use here is to
illustrate the generality of the method. The available financial year data
are actually represented in the figure by their averages over their
reference periods, 1i.e. by their value divided by the number of periods
covered. This allows their display on the same scale as the underlying
quarterly series. The latter series is not available in practice. For the
sake of illustration however, it is assumed known. The underlying series
contains an obvious seasonal pattern, with a seasonal peak in the first
quarter of each year and a trough in the third. The underlying trend-cycle
component is not linear. It goes up from year 1 to year 3; down, for year
4 and 5; and then up again.

The figure finally contains the true conventional year values (computed
from the underlying quarterly series) and the corresponding estimated
values. Like the financial years, the true and the estimated conventional
years are represented by their averages over their reference period. The
estimated conventional year values were obtained by means of the conversion
method proposed in this paper. Their percentage errors with respect to the
true conventional year values are small: 0.1%, 1.0% -1.4% 0.8% -1.6% and
3.5% for years 1 to 6 respectively.

2. SIMPLE SOLUTION FOR FLOW SERIES
WITH REGULAR FINANCIAL YEARS

Figure 2 describes a simpler and more common situation where all the
available financial year values y3; (for year 1) refer to 4 consecutive
quarters. All values cover from the second quarter of one year to the
first of the following year. In cases of such regular financial years,
estimation may be greatly simplified under certain assumptions given later.
Each estimated conventional year value ydi is a convex combination of the
two closest financial year data:

(2.1) ydi = (K y3;5.1 + (J-K) y3y) / J, 1i=2,...,N-1,

or more specifically for the situation in Figure 2,

(241 ) ydi = (1 y35.1 + 3 y3y) / 6, i=2,...,5.

In equation (2.1), J is the number of months per year (4 for quarterly and
12 for monthly series); and X is the number of "months" not in the

conventional year reference period. A positive K means that K quarters
wanted in year i are in fact in year i+l; and a negative K, in year i-1.



(For Figure 2, K=1 and J=4.) Variable N stands for the total number of
conventional years referred to -however partially- by the financial years.
(For instance a financial year covering from April 1981 to March 1982
refers to two conventional years, 1981 and 1982.)

financial years: y31 yéy b
[ -~ | - -
quarters: ] ISE 062 | SNANNREINES T 1ie20T3 &
years: PERR IR T BT TN |
Rt R ol ERR SRRt R ety
conventional years: ydl yd2 yd3 y9,

Figure 3:° The reference periods of the central conventional years 2 and 3
are embedded in the reference periods of financial years 1 and 2, and of 2
and 3, respectively. The reference periods of conventional years 1 and 4
are not entirely embedded. In that sense, the corresponding conventional
year estimates are forecasts, as opposed to interpolations.

The first and last desired values are respectively obtained by:
(282 yd1 = ((J+K) y3; - K y8y) / J,

(3.3) ¥4 = (=(3-K) yiyguo + (23-K) yBy.3) / J;

or more specifically in the situation of Figure 2,

fuig’ ) P, =SSR 1 ) 74

A yd6. = (-3 y% + 7 y8s) / &.

These end estimates are in a sense extrapolations or forecasts, because
they involve extrapolated sub-annual values. This is 1illustrated in
Figure 3. Their reliability is therefore lower than that of the central
estimates of equation (2.1). Note that the end estimates do not have to be

used in practice.

Figure 2 displays the conventional year values estimated by means of (2.1')
to (2.3'). The percentage errors (with respect to the true desired
conventional values) are -0.9%, 1.7%, -1.2%, -2.0%, 2.6% and 5.9% for years
1 to 6 respectively. The error is bigger for the last year (5.9%) because
that estimate is in fact an extrapolation.

One attitude with respect to regular financial year values is to ignore the
fact that their reference periods are wrong. In other words, the first
available financial value is considered an estimate of the first
conventional value; the second available value, of the second conventional
value; etc. The resulting percentage errors are 2.1lg for year 1, instead




of -0.9% with the proposed method; 4.4% for year 2, instead of 1.7%; 3.5%,
instead of -1.2%; -3.8%, instead of -2.0%; and 3.7% for year 5, instead of
2.6%. (Doing this provides no estimate for year 6.) The errors are larger
than with the method propoced and biased. The bias is positive in periods
of increase in the (trend-cycle of) the underlying series; and negative in
periods of decrease.

Equations (2.1) to (2.3) correspond to the solution for flow series and
regular financial years, when the method proposed is applied on 3-year
series intervals (two years of financial data). Appendix A provides the
weights corresponding to a 5-year interval. Section 4 explains how the
weights are derived.

3. ASSUMPTIONS ABOUT THE UNDERLYING SUB-ANNUAL SERIES

The wvariants of the financial year conversion methods described in this
paper require some or all the following assumptions. Some situations make
some of the assumptions unrealistic or even untenable. The statistician
may then prefer a to use a variant based on weaker assumptions. This
section may actually be referred to evaluate the scope and the consequence
of assumptions entertained.

The first assumption states that the series consists of the sum of four
components: 1) the trend-cycle, 2) seasonality, 3) the irregular or random
component and 4) the trading-day component:

GhY) Zg = Cp + 5+ I + D Assumption 1

By definition, the seasonal component tends to cancel out over any 4 or 12

successive periods:
O

(510 ) 121 S(i-1)J+j+K ~> 0 Assumption 2
where J is the number of months per year and i and j respectively stand for
the year and the month considered.

The irregular or noise component has an expectation of zero. This implies
it will tend to cancel out on K successive periods:

K

03535 E(I¢) = 0 => ZIeqg >0 Assumption 3
k=1

The trading-day component 1is also centered on zero. It 1is therefore

reasonable to assume that it tend to cancel out on any K successive
periods:
K
(B184) Z Deqk -> 0 Assumption &
k=1

This last assumption is relevant only for monthly flow series. In that
case, it is always verified if K equals 3. Indeed, (3.4) then constitute a
quarter. Since all quarters have (almost) the same number of days, they
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cannot display any trading-day variations.

The two first assumptions are common in all time series decomposition
methods. (See Dagum, 1980; Shiskin et al., 1967; Harvey and Todd, 1983)
Assumption 3 and 4 are valid if K is sufficiently large or if the component
considered is small.

One more assumption may be needed. The trend-cycle is locally linear:
(5D, oy = 207 31 - Cgep '+ ag, ag ‘== 0 Assumption 5

This equation states that each value of the trend-cycle basically lies on
the straight line running through its previous two values. This variant of
linearity is that chosen by Boot, Feibes and Lisman (1967) for the
interpolation of time series; by Leser (1961, 1963) and Schlicht (1981) for
specifying the trend-cycle component in time series decomposition methods.
Linearity can be justified by the fact that many socio-economic series
display a long-term trend. This trend is always well approximated by local
linearity. Deviations from linearity mostly take the from of accelaration
of decelaration.

The available financial years y2; and the desired conventional year ydi may
be respectively written as:

(A 6) YR = 201 19+14K1 * D(1-1)J+2+Ki t -. - + ZiIeKE
(read K; instead of Ki)

(3.7) ydi = Z01-198%1 + Z(ielndlg ity T HBL

For i=5, Ky=3, J=12 (3.6) and (3.7) are respectively:

(36" yas = 259 + 253 + ... + 2Zgp + Zg] *+ 22 + Zg3

(27" ) yd5-249+250+251+252+ - b + Zgg + Zgp

For Kj constant and positive (K;=K>0), i.e. for regular financial years

containing J "months" and wunder Assumption 1, the difference between the
desired and available yearly values is

K J )
¥9i - ¥3¢ = [2 (e(i-1)J+k - ©1J-k+k+1)) + [Z S(1-1)J+j - Z S(i-1)J+j+K]
k=1 =i j=1
(3185
K K K K

+ (S (T1-1)0%k = 2 I1g-kaR+1)] + [2 Dei.1y34k - Z Dig-k+R+1]
k=1 k=1 k=1 il

For i=5, K=3 and J=12 that difference reads:
de - y8g = [cu9 - € + ecg5p9 - ¢ +! legy -‘legal]
G Yk 49 61 50 62 51 63

+ ((sigg TEsigh T AR T S60) -(552 sk b MPLSE (Sl




( BLIBYD)
+ [(I49 + I50 + Isy) -(Igy + Igo + 1g3)]

+ [(D4g + Dsg + Ds3) -(Dgy + Dgy + Dg3)]

Under Assumption 2, the second term in brackets (of eq. (3.8) or (3.8'))
cancels out. Assumption 3 cancels the third term if I, is small or K is
large. Assumption 4 cancels the fourth term, if D, is small or K is large
or equal to 3.

When it is possible to make Assumptions 1 to 4, the difference between the
conventional and the financial years 1is solely determined by the first
term, that is by the year-to-year differences in the trend-cycle c . If
Assumption 5 is also true, i.e. ¢ 1is linear, regular financial years also
behave linearly. Furthermcre, the line in the latter -which is observable-
is the same as that in the trend-cycle. The difference between the
conventional and the finarcial can then be known exactly. More generally,
the conversion is exact to the extent the trend-cycle (linear or not) of
the underlying sub-annual series can be measured from the annual data. The
conversion is garanteed to be exact under linearity. This is the principle
of the conversion method proposed, and this is why it works even if the
trend-cycle is not linear.

4 SPECIFICATION FOR FLOW SERIES
WITH REGULAR FINANCIAL YEARS

This Section considers flow series, when all financial years refer to four
consecutive quarters, that is when K is constant. This is the more simple
situation depicted in Figure 2. The conversion from financial to
conventional years may then be simplified, if the five assumptions of
Section 3 are made. Assumption 2 implies meither the available financial
year data nor the desired :conventional year estimates contain seasonality.
The problem reduces to dis-aggregating the financial year into non-seasonal
values (¢ + I + D ) and to re-aggregating the sub-annual values into
conventional years. The underlying series may contain seasonality. Its
estimates are not required however, because they would cancel out in the
re-aggregation process. L
For similar reasons Assunptions 3 and 4 can further reduce the problem,
namely to dis-aggregating the financial data into sub-annual trend-cycle
values. The difference between the conventional and the financial year is
known through (3.8), provided that the trend-cycle is linear, i.e. provided
Assumption 5 is made. Lineesrity is maximized by minimizing the following
objective function:

1J
(4.1) f(e) = £ (cp - 2cp.1 + €p.9)?
t=3

where I is the number of conventional years in the series interval
considered (I<=N). The extent to which linearity is possible is governed
by constraints:
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J
(4.2) z (C(i-l)J+j+K) = y8;, i=1,..,I-1.
j=1

These state that the values sought have to sum to the available financial
year values.

The solution to that constrained minimization problem is developped in
Appendix B (for more general variants of the method). The desired
trend-cycle values are weighted averages of the available financial
values:

f
(4.3) R S WS &

j=1

The desired conventional year values are then simply the annual sums of ths
sub-annual trend-cycles values:

(T4 h)

(4.4) ydi - Z C(i-1)J+j> R Ly M
M=

If the trend-cycle estimates are of no interest in themselves, the desired
conventional values can be expressed directly in terms of the available
ones (by subtituting (4.3) in (4.4)):

(I-1)
(4.5) yae, Z arlhAsl, | sl

m=1
The weights p;  depend only on I, the number of years in the series
interval; on , the number of months per year; and on K, the number of
months not in the conventional year. They do not depend on the

observations y2;. They can therefore be applied to any series interval -or
any series- with the same values of J and K. In other words, they can be
calculated once and for all.

This is why Appendix A provides tables of weights for I=5, J=4 and 12 and
for relevant values of K. We would recommend their implementation in a
5-year moving average manner:

yd == Pl,m Y%nm end year (extrapolation)
ydy) = = P2,m Ym non-central year (interpolation)
(4.6) yd, == P3,m Y%n-3+m» ©0=3,...,N-2, central years (interpolation)
YdN-l = Z P4,m YN-5+m non-central year (interpolation)
ydy = = PS.m Y3N-5+m non-central year (extrapolation)

where all summations take place over m going from 1 to 4. For I=3, the
weights and their implementation are given by equations (2.1), (2.2) and .
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5. SPECIFICATION FOR FLOW SERIES
WITH IRREGULAR FINANCIAL YEARS

This Section considers flow series, when one does not want to make all the
assumptions made in Section 4 or when the reference periods of the
financial year data are irregular. The latter case is the more complex
case depicted in Figure 1. Financial year values covering sometimes more
and sometimes less than 12 mcnths (4 quarters) contain the seasonal values
of the months in excess or missing in the reference period. Consider for
instance a year referring to 15 periods, from March to May of the following
year. The 12 months which appear once are likely to cancel out in the
financial year, by virtue of Assumption 2. However, the seasonal values of
the extra March, April and May are part of the financial year considered.
(Seasonality cancels out over 12 months but not necessarily over three.) In
that sense, such financial year data do contain seasonality. And this fact
must be taken into account in dis-aggregating into sub-annual values. In
other words, the dis-aggregated sub-annual values must reflect
seasonality.

As for the irregular and the trading-day components, Assumptions 3 and &
may still be reasonable. (This statement will deserve qualification later
on.) In other words, these :omponents still tend to cancel out. The
sub-annual values needed must therefore only comprise the trend-cyle (like
before) and the seasonal components ¢ = C¢ + S¢. An appropriate objective
function is:

1J

(5.1) £C¢) = 2 ($e/%;: - 20¢-1/%¢c-1 + Ce-2/%¢-2)2
t=3

where x is an approximative seasonal pattern chosen by the subject
matter expert of the series. For simplicity the values of X¢ may be the
same for each same month over the whole series interval considered. A
value equal to 1.5 means that the month is 50% higher than an a&average
month; equal to 0.6, 40% lower. A value of 1.0 specifies the month to be
average; and a value of 0.0001, practically nill. Only the relative values
of x matter.

The meaning of objective function (5.1) is then the following. The desired
sub-annual trend-cycle-seasonal values ¢ should be proportional to the
seasonal pattern x ; and the proportion ¢ /x should change as linearly as

possible. (Strictly speaking, Assumption 1 is being approximated by z =
¢ ® I ‘994D ,” whexe ¢ '=c .s|" The new objective function is minimized
subject to the following constraints:

Pm
(5.2 Ele =¥, pg2 1, m=l,....M.

t=rp

These constraints state that the desired sub-annual values ¢ must sum to
the available financial data, whatever the reference periods [rpy,...,p4].



The solution is developped in Appendix B. As in the case of regular
financial years, the desired sub-annual trend-cycle-seasonal values (. are
weighted averages of the available financial year values:

M
(5.3) gtﬂ Zwt'm yam t-l,...,IJ
m=1

They may be used as such or aggregated into conventional quarterly or into
conventional year values (or both). The conventional year values for
instance are simply the annual sums of the sub-annual trend-cycles values:

Ji
(5.4) ydi =- g(i-l)J+j' i=1,...,I.
j=1

The desired conventional values may be expressed directly in terms of the
available ones (by subtituting (5.3) in (5.4)):

M
(SE'5) yd; = lei,m ya o It B 5T
M=

The weights do not depend on the financial year values. They do depend
however - on the distribution of their references periods, on the seasonal
pattern chosen and on J and I. This implies they have to be calculated for
each new series interval. According to Appendix A, this involves
multiplications and inversion of matrices with dimension IJ by IJ. Such
calculations may be prohibitive, especially if they have to be conducted at
each respondents level for instance. They can be immensily reduced by
means of a numerical approcimation proposed in Cholette (1987a).

In many cases Assumption 4 may not be realistic. Indeed an important
trading-day component will not cancel especially if K is small (and
different from 3). Objective function (5.1) is still relevant if x is

defined as the product of the seasonal and trading-day pattern (x =s D ).
The trading-day value D for a month is the sum of all the daily rates of
activity d in the month, divided by the number days in the month t. The
denominator should be 30.4375 if s is equal to 1, i.e. in the absence of
seasonality (for more details see Cholette, 1987a.) Similarly to the
seasonal pattern, those daily rates are more easily expressed with respect
to the average of the week.

The estimated conventional year values of Figure 1 were estimated with the
variant presented in this Section, with I=5, J=4 and with a appropriate

seasonal pattern X
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Figure 4: Quarters corrected by the method proposed for a stock series



) 5178

6. GENERALIZATION TO STOCK AND TO INDEX SERIES

The two variants of the method presented until now only addressed flow
series. This section indicates the changes required to accomodate stock
and index series. Objective function (4.1) is special case of (5.1), where
Xy equals 1 and { equals cy. Further developments will therefore start
from the latter. The objective function is then:

JCIf
(6.1) £(6) = Z (Ce/%e - 20¢-1/%Xe-1 + $p-2/Xp.2)2
t=3

The unknown (. may represent the trend-cycle in case of regular financial
years, i.e. for K constant; or, the aggregate of the trend-cycle and the
seasonal components for K not constant. Variable x may be equal to 1.0
for K constant; and must be equal to an expert-supplied seasonal pattern
far K not .constant.

6.1 Stock series

The annual values of stock series (considered here) correspond to one of
the sub-annual wvalues. Unless the wunderlying sub-annual series is
non-seasonal, it can no longer be assummed that the financial year and the
conventional years do not contain seasonality. Indeed their values will
always depend on the quarter or month chosen. A seasonal pattern x¢
(different from 1.0) is then required in objective function (6.1).

The appropriate constraints for stocks series are particular cases of
(05520

(6.2) Com | = yln,' ol ... M (read tp instead of tm)

According to Appendix B, the conventional year estimates are weighted
averages of the financial values like in equation (5.5). These have to be
recalculated for each series (interval).

6.2 Index series

The annual values of index series correspond to the average of the
sub-annual values. (Flow and stock series expressed as indexes , e.g. the
Index of Industrial production in the first case, the Consumer Price Index
and Unemployment in the second case, are considered as index series for the
purpose of the method.) The appropriate constraints are:

Pm
(613 S R - et 1) =i ap oy, (Dl DM,
C=Thm

or more conveniently,

Pm
(6.3") B M TN, ol D) ¥R B Rty WL, 6 M

t=Tm
The latter equation is a particular case of (5.2) if y3  is appropriately
redefined.




When the reference periods of the financial year are irvegular, X, is
seasonal index and solution (5.5) applies. For index series, however,
financial years should be regular. In that case, assumptions 2 is valid,
so that X may be set to L.0 and {. to cy (unless Assumption 4 cannot be
justified). The solution is then the same as (4.5) except y&. is
redefined, and the weights have the same convenient properties.

7. CORRECTING THE REFERENCE PERIODS OF QUARTERLY DATA

The problem discussed for yearly data is also encountered for quarterly
data. For instance, the reference period of available quarterly data may
cover December to February, March to May, etc., instead of January to
March, April to June, etc. The reference periods may also be irregular.

A variant of the conversion method proposed can correct the reference
periods of available quarterly data. These are dis-aggregated into monthly
values which are then re-aggregated into the desired conventionmal quarters.
An appropriate objective function is still a particular case of (5.1)

31
(7.1) £00) | = DN - 28 o1 /B ThvadE i ]
t=3

where I now stands for the number of quarters (I25) in the series interval

considered. The objective function specifies that the desired monthly
values should remain proportional to some expert-supplied monthly
seasonal-trading-day pattern x . Objective function (7.1) is minimized
subject to constraints (5.2), where vy now represent the available

quarterly data. The solution is derived in Appendix B in matrix algebra,
or the numerical solution proposed by Cholette (1987a) may used. As in the
other variants of conversion, the corrected quarterly estimates are a
linear combination of the available quarters. Those weights depend on x

and 1. Figure 4 illustrates an example of quarterly stock data corrected
for reference periods. The available quarterly wvalues refer to the
February, May, August, November, February, etc., instead of March, June,
September, December, March, etc. The estimation error of the corrected
quarters (with respect to the true quarters) read -0.2%, -0.1l%, 0.0%, 0.0%,
0.0%, 0.2% -0.1%, -0.1% and 0.4% for the nine quarters. When considering
the available quarters as estimates of the desired ones, the errors are
much bigger 12.0%, -6.1%, -9.1%, 2.9%, 16.0%, -2.6%, -9.4%, 0.8% and 8.3%.

8. DISCUSSION

The approach proposed for correcting the reference periods of yearly (and
quarterly) data is based on assumptions about the underlying monthly series
and in many cases on user-supplied seasonal or seasonal-trading-day
patterns. Sometimes, an underlying monthly series does exists, but is
inconsistent with the yearly data. The coverage of respondents may be
different; the reliability, lower; etc. When such a monthly indicator is
available, the conversion problem should be solved in the context of
benchmarking, in our opinicn. This recommendation is especially relevant



when the corrected data are generated to be used as benchmarks for the
corresponding sub-annual series.

Carrying out the conversion in the context of benchmarking would work as
follows.

1) For one socio-economic variable, respondents with the same financial
years are aggregated. Obviously, the level of aggregation must be lower
than that of publication. If a seasonal index x. is used, the aggregation
must involve respondents with presumably common seasonal (and trading-day)
pattern (for the wvariable considered).

2) The same aggregation is carried out "annually" and sub-annually.
Annual discrepancies are then observed between the annual and the
sub-annual data.

3) The sub-annual data is benchmarked to the "annual"” data. In the
benchmarking process, the annual data are specified to pertain to the
reference periods which they actually cover (and not to the conventional
years). The result at this point is a sub-annual benchmarked series
consistent with the available yearly data.

4) The conventional year values are then calculated as the annual sums
(or relevant operation) of the benchmarked series.

An appropriate objective function for proportional benchmarking (subject to
(5.2)) is the following:

T
(8.1) B (fRe - Zeop/xe1)2
£=2

Variable =x. is the available sub-annual information. The unkown zy is the
desired sub-annual benchmarked series consistent with the financial year
data. This function specifies that the ratio of the benchmarked series to
the original is as constant as possible. This specification imputes the
sub-annual missing respondents (in z - x ) proportionally to the ones
available (in x ). In other words, the missing respondents behave like the
available ones. That behaviour is also governed by the observed annual
discrepancies.

An objective function for additive benchmarking:

i
(8.2) Z ((z2y - X¢) - (2.1 - xt-l))2
t=2

This function assumes that the behaviour of the missing respondents (i.e.
of z - x) 1is governed exclusively by the movement of the annual
discrepancies. The behaviour would be constant if the annual discrepancies
were constant; linear; sine-like; etc.
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Objective function (8.1) and (8.2) use first differences instead of second
differences previously. Indeed in the context of benchmarking the indicator
X4 is presumably also an indicator of the trend-cycle. This was not~“in the
previous sections. The indication of the trend-cycle was then achieved by
second differences. We would actually advocate the use of first
differences in the previous sections if the indicator chosen also indicated
the trend-cycle.

The advantages of correcting the reference periods in the context of
benchmarking are the following.

1) The conversion is nc longer based on assumptions but on facts about
the sub-annual series. Those facts are explicitly and operationally
incorporated in the conversion process. (Note that benchmarking does not
assume that the movement of the original sub-annual series is reliable, but
that it is better than nothing; see Cholette, 1987a.)

2) When the variables involved in the conversion have to be benchmarked,
both the conversion and benchmarking are achieved in a single operation.

When a respondent has a wunique reporting pattern and/or provides no
sub-annual values: The sub-annual values of other respondents may be used
as sub-annual indicator.

The correction of the refereace periods of quarterly data in the context of
benchmarking is handled in a way similar to that of annual data.

The benchmarking approach to conversion proposed in this section is in a
sense already used in some surveys conducted by Statistics Canada. The
Shipments, Inventories and Orders surveys for instance collect sub-annual
and annual stocks series. The reference periods of the financial year
values are corrected on the basis of the movement in the available

sub-annual data. If for instance the variable considered rose by 5%
sub-annually from December to March, then the financial year value
pertaining to March is reduced by 5% to make it refer to December. That

procedure implicitely assummes that objective function (8.1) has reached
its minimum of zero; in other words, that a sub-annual series consistent
with the financial year values would have the same growth rates as the
sub-annual series actually available. (Two series exactly proportional to
each other have identical growth rates.) The benchmarking strategy proposed
here is a refinement of that procedure: It uses the exact growth rates
required for consistency.

More information about benchmarking may be found in Denton (1971),
Cholette, (1984, 1987) and Laniel (1986).

One practice with respect to financial year data is the following (Bustros,
1986) . The data of respondents with any of the twelve possible financial
years ending between April (say) of year i and March of year i+l are
assigned to year i; and for the variable considered, the annual value y is
ruled to be the sum of all the data in any of the twelve financial years
assigned to year i. Such a scheme causes biases 1in the trend-cycle
movement of the resulting annual values. The nature of the biases also

o, 0%°
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depends on the phase of the business cycle and even on the variable
considered (Cholette, 1987c¢). The under-estimation of the 1581-82
recession by the Canadian annual Retail Trade data, which are derived in
that manner, confirms that contention.

CONCLUSION

It 1is technically possible to convert financial year data, with reference
period ranging from April to March for instance, into conventional year
data, with reference period ranging from January to December. Under the
method proposed the desired conventional year estimates are weighted moving
averages of the available financial year data.

In all variants of the method, assumptions about the underlying sub-annual
series have to be made (see Section 3). Namely the trend-cycle component
is linear and the seasonality is constant.

For flow and index series, these assumptions are sufficient to derive
acceptable conventional year estimates, provided the reference periods of
the financial years are regular and cover no more than 12 months (e.g.
always June to May). The computations involved are also tremendously
simplified: the weights of the moving averages are known in advance (see
Appendix A) and do not require calculation for each new application.

For stock series or when the reference periods of the financial years are
irregular (e.g. one year January to March, the next year April to March,
April to December, etc.), the assumptions about the underlying series are
not sufficient to derive acceptable estimates. The user has to supply a
seasonal pattern and possibly a trading-day pattern for the underlying
sub-annual series, The computations involved are also much more
time-consuming: The weights of the moving averages are not known in advance
and have to be recalculated for each application.

The same approach can also be used to correct the reference period of
quarterly data. Both assumptions and user-supplied monthly seasonal and/or
trading-day pattern are reguired.

In cases where some sub-annual data is available, we recommend solving the
conversion problem within the framework of benchmarking. The conversion no
longer rely on assumptions about the underlying series and on user-supplied
seasonal-trading patterns, but on facts. As explained in Section 8, the
desired conventional year values are then the annual sums (or relevant
operation) of the sub-annual benchmarked series.
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APPENDIX A: Filve-year weights for converting financial year flow data when
the financial years all cover 4 quarters or 12 months.

The row numbers in the tables indicate which conventional year i in the
5-year interval is estimated by the weights in the row. The column
number m indicates to which available financial year the weight Pi,m
applies. For instance for J=4 and K=1

ydy = 0.15152y3; + 0.97760 y3; - 0.15976 y33 + 0.03064 y3,

Parameter K stands for the number of months or quarters which should be in
conventional year i, but are actually in year m+l for positive K or in year
i-1 for negative K. The weights are the same for K=-1 and K=J-1; for K=-2
and K=J-2; and so on. The weights are therefore given only for positive
values of K.

Furthermore, the weights are the same for K=1 and K=J-1, for K=2 and K=J-2,
except the rows and the columns are in the reverse order. This can be
verified for the quarterly weights for K=0 and 4 and K=1 and 3. .In order
to save space, the weights will not be given in the monthly case for K
greater than 6.

Quarterly weights Pi, m:

for K=0: i\m 1 2 3 4
ik 1.00000 0.00000 -0.00000 0.00000
2 0.00000 1.00000 0.00000 -0.00000
3 -0.00000 0.00000 1.00000 0.00000
4 0.00000 -0.00000 0.00000 1.00000
5, ' -0%L4907 0T 72595 "2 N00488 " 2942791
for K=1: i\m i 2 3 4
1 1.34997 -0.48459 0.16926 -0.03464
2 0.15152 0.97760 -0.15976 0.03064
3 -0.04342 0.26595 0.84837 -0.07090
4 0.02719 -0.13433 0.43710 0.67005
5 -0.11064 0.53921 -1.49650 2.06793
for K=2: \m 1 2 3 4

i

L+ 1570795, -10.98817 | 038R -0. 07227
2 0.38013 0.77921 -0.19881 0.03947
3 -0.07663 0.57663 0.57663 -0.07663
4 0.03947 -0.19881 0.77921 0.38013
S ~UR07220" S0 85 2C8N = (OS8R - I, 7I0i7.95




for K=3:

for K=4:

i\m

8 24
2 O
3 ' o
4 0
IR (1))
i\m

! 2
2 i
3 0
4 -0
5 0

Monthly Weights Pi,m

for K=0:

for K=1:

for K=2:

for K=3;

for K=4:

i\m

1 p I
2 0
3 -0.
4 0.
5. -0
i\m

1 i1
2 0
3" -0
4 0.
5] | =10
i\m

i il
2 0.
3 -0.
4 0.
5t | =08
i\m

1 4%
2 0.
I -0
4 0.
SRR
i\m

il 1
2 0.
3 -0.
4 0.

SIS0

1
0€793
67005
07090

.03064

03464

1

42791
.00000
.00200
.00200
.00000

00000

.00000

00000
00000
16294

1
11€60

.04C9%4

01405
01085
14971

i
23510
09098
02881
02048
13549

)
35502
15002
04344
02859
1))

L
47597
21777
05697
03490
10706

COOro

-G
.00797
.16900
.09944
.64797

.49650
.43710
.84837
.15976
.16926

.00483
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.78371

.16169
.01407
.07947
.05251
. 71584

32791

.49752
.98155
.26629
.13947
.58012

.66960
.93516
.36865
17128
LSe35, |-

O OO0

.53921
.13433
.26595
.97760
48459

.72594
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.07561

.05690
.06762
.96653
.15580
489921

9 07/ b
P1521228
.91511
.30412
.72281

.17998
.16315
.84775
.44317
.54643

.24463
.19030
.76693
.57109
17704

NHOOO

4

.11064
.02719
.04342
SL5IL52
.34997

.14901
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.45584

.01181
.01261
.03196
.88586
.33308

.02437
.02326
.05530
. 77485
4210313

.03748
403159
.07060
.66771
.08758

.05100
.03737
.07861
.56524
.96487
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for K=5: i\m s 2 8 4
i1 1.59763 -0.84340 0.31056 -0.06480
2 0.29380 0.86960 -0.20393 0.04053
3 -0.06833 0.47310 0.67547 -0.08023
4 0.03915 -0.19338 0.68599 0.46825
5 -0.09289 0.44469 -1.19404 1.84224
for K=6: \m 1 2 3 4

i

L 1.71979 -1.01836, 0.37736 -0.07878
2 0.37752 0.78605 -0.20466 0.04109
3 -0.07645 0.57645 0.57645 -0.07645
4 0.04109 -0.20466 0.78605 0.37752
5 -0.07878 0.37736 -1.01836 1.71979

APPENDIX B: Derivation of the solution of the general variant of the
conversion problem

The problem is specified on a series interval containing I years and J
"months” per year. The solution is first developped for correcting the
reference periods of financial years; and then, of quarterly data.

Conversion of Yearly Series

Objective function (6.1) may be rewritten in matrix algebra as

(B.1) Py oty m-lz
where
(B.2) 2 =" 0 50e -8 [ Grml
[ Jixd 6 % 0 ]
[ To Py q 2ail
i3 -1~ , ]
[ ]
TR [ : ]
iy B 0 Enr |
s 22 Y 08 o/ (Ol (0
@-1l -2 .1 . Q' ROF 120

(

(

R " A, = DDy, Dy = B
(

IJx1J (1J-2)x1J [

{

The wunknowns (. represent the sub-annual trend-cycle values for flow and
index series, provided all financial years are regular, i.e. all refer to J
consecutive "months". The unknowns are the product of the trend-cycle and
of the seasonal components, and of the trading-day component if applicable,
in ALL other cases: stock series, and flow or index series with irregular
financial years.




Symbols X, represent known values. They are equal to 1 in case of flow and
index series, provided all financial years are regular. They are equal to
an expert-supplied seasonal pattern, multiplied by a trading-day pattern if
applicable, in ALL other cases. Matrix D; is the second difference
operator; and matrix A, the corresponding quadratic second difference
operator.

Constraints (5.2) are written as:

(B-59 HEw 78 * =y S
where
columns T1 Pl ) P2
i (ORG: Okl W ko 0L 5481080 L0 (02 i
(01 (] Q10 0., . . KOG 11 ¥ 10, %0 ]
(B.6) §as = ' ]
( ]
Mx1J [ ]
( ]
(B2 YO =" 8 7o : TR
Matrix H2' is a sum operator. With r, equal to p, and appropriate values,

the matrix can also act a month selector matrix for stock series.

Vector Y& contains the available financial year values. These values have
been multiplied by J in case of index series.

For simplicity, the constraints are introduced as a quadratic term in an
augmented objective function:

(B.8) F(z) =2z'xlax1lz + g (H3'z - va)r(Ha'z - va)

where g is sufficiently 1largze (e.g. 1000) to cause the term to reach the
minimum (zero), that is to make the term equivalent to constraints in
practise.

Performing the matrix operations in (B.8) yields:

(B.9) F(zZ) =2'X"lax1z + g z'Ha H28'Z - 2g 7'HAYd + g ya‘ya

In order for (B.9) to reach its minimum with respect to {¢. the derivatives
of the objective function with respect to ¢, must by definition equal zero:

(B.10) aF/d¢ = 2 X-lax-1z + 2g H8HA'Z + 23 HAY - 0
-> [X-lax-1 + gHapa'] z - g naya

This implies the estimated sub-annual values are linear combinations, i.e.
weighted averages of the available financial values:
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(B.11) => Z = [X-lax-1l + gHapa')-1 gpyava - yf ya
IJxM

The estimated conventional year values are then the annual sum (or the
appropriate operation) of the estimates sub-annual values:

(B.12) yd = Hd' z - K wf ya - py ya
IxM

where Hd' is the I IJ annual sum operator (similar H2) for flow and index
series; and the appropriate observation selection matrix in case of stock
series.

Correction of Ouaterly Data

For correcting quarterly data, Y2 now contains the avazilable quarterly
values, J 1is equal to 3, and I represents the number of guarters in the
series interval. The augmented objective function is still (B.$§)

Doing the same developments as for the yearly conversion, yields a similar
result. The estimated sub-annual values are linear combinations, 1i.e.
weighted averages of the available financial values:

(B.13) Z = [A + gHaHa']-1l g Haya - ¢ ya
3
I3 M

The estimated quarterly values are then the quarterly sums (or the
appropriate operation) of the estimates sub-annual values:

v
(B.14) yd = Hd' z - Hd' W& va - WY ya
IM
Matrix H9' is the I by 31 quarterly sum operator for flow and index series
L G 8@ ]
frole 'e 10T 1 000 )
(B.15) i S| I
[ ]
IxI3 2 U R )
[LORMO wOSNOWY. Lasl i f2 )

and the appropriate monthly selector for stock series.




