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. 

La rectification 
des ériodes de couverture 

de données arinuelles et trimestrielles 

- résumé - 

Le document presente une méthode pour rectifier les 
periodes couvertes par des données annuelles et 
trimestrielles. Par exemple, des données annuelles 
couvrent les periodes d'avril a mars de l'année suivante; 
les valeurs rectifiées couvrent les périodes de janvier a 
décembre. Des variantes de la méthode conviennent aux 
series de flux, de stock et d'indice. La méthode peut 
aussi s'utiliser pour désagreger des données arinuelles 
(disons) en chiffres trimestriels ou mensuels. 

- summary - 

A method is presented to correct the reference periods of 
yearly and quarterly data. For instance, the available 
yearly data cover from April to March of the following 
year; the corrected values cover from January to December. 
Variants are proposed for flow, stock and index series. 
The method can also be used to disaggregate yearly data 
(say) into sub-annual figures. 

INTRODUCTION 

In many cases, statistical agencies receive annual data which pertain to 
the financial year (or "fiscal year") of the respondent. The reference 
period of that year may range from June 1 to May 31 for instance. However 
the statistician actually needs figures which pertain to the conventional 
year (or "calendar year") ranging from January 1 to December 31. The yearly 
data published by statistical agencies are indeed supposed to reflect the 
conventional year. 

The problem is also aggravated by the fact that the reference period of the 
financial years may change from occasion to occasion for a given 
respondent: In 1982 (say), one company's report covers from April 1981 to 
November 1982; in 1983, from December 1982 to December 1983; in 1985 (no 
report in 1984), from January 1984 to June 1985; and so on. 

The problem would be simple if the statistician had the sub-annual 
breakdown of the financial year values available. Unfortunately, this is 

. 	generally not the case. Here is an example of how this may happen. In 
order 	to keep the resçonse burden to questionnaires to a minimum, 
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statistical agencies ask a greater number of their respondents to fill 
detailled questionnaires on a yearly basis; and, a lesser number of 
respondents to fill summary questionnaires on a monthly or quarterly basis. 
One variable available yearly for a respondent may therefore not be 
available at all sub-annually or be available with a lower degree of 
reliability. 

This paper provides a general method to convert financial year data into 
conventional year values. The problem is seen as a special application of 
interpolation between annual benchmarks, according to a variant of the 
modified Denton method (Denton, 1971; Cholette, 1984). The method consists 
of dis-aggregating the financial data into sub-annual values; and, of 
re-aggregating the sub-annual values into the desired conventional year 
values. When the dis-aggregated data are needed per Se, they are then made 
available by the method proposed. In some applications, data of financial 
years ending in January (for instance) may be dis-aggregated into monthly 
data in order to be re-aggregated both in conventional year and in 
conventional quarter values 

Variants of the method are derived for flow series, for stock series and 
for index series. 	An approach to correct the reference periods of 
quarterly data is outlined. 	The conversion of (bundles of) weekly data 
into monthly values is covered in another paper (Cholette, 1987a). 

The paper unfolds according to Ehrenberg's (1982) recommendation about 
technical papers. Illustrations and results are presented first. 
Methodological details come later. 

0 
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• 	 Flow series, irregular financial years 
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Figure 1: Estimated conventional year values when the financial years cover 
sometimes more and sometimes less than four consecutive quarters 
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Flow series, regular finandial years 	40 
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Figure 2: Estimated conventional year values when each financial year value 
cover four consecutive quarters 
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ILLUSTRATION OF THE METHOD FOR FLOW SERIES 
WITH IRREGULAR FINANCIAL YEARS 

Flow series are such that they sum to the corresponding annual values, e.g. 
Retail Trade. The financial years of the flow series in Figure 1 have 
reference periods which vary from occasion to occasion. Their statistical 
usefulness is limited by the fact they are not comparable through time. 
The problem consists of converting those five available irregular financial 
years into six conventional values, each of which would cover 4 quarters. 

Varying reference periods are not common in practice. Their use here is to 
illustrate the generality of the method. The available financial year data 
are actually represented in the figure by their averages over their 
reference periods, i.e. 	by their value divided by the number of periods 
covered. 	This allows the:Lr display on the same scale as the underlying 
quarterly series. The latte: series is not available in practice. For the 
sake of illustration however, it is assumed known. The underlying series 
contains an obvious seasonal pattern, with a seasonal peak in the first 
quarter of each year and a trough in the third. The underlying trend-cycle 
component is not linear. It goes up from year 1 to year 3; down, for year 
4 and 5; and then up again. 

The figure finally contains the true conventional year values (computed 
from the underlying quarterly series) and the corresponding estimated 
values. Like the financial years, the true and the estimated conventional 
years are represented by their averages over their reference period. The 
estimated conventional year values were obtained by means of the conversion 
method proposed in this paper. Their percentage errors with respect to the 
true conventional year values are small: 0.1%, 1.0% -1.4% 0.8% -1.6% and 
3.5% for years 1 to 6 respect:ively. 

SIMPLE SOLUTION FOR FLOW SERIES 
WITH REGULAR FINANCIAL YEARS 

Figure 2 describes a simpler and more common situation where all the 
available financial year values ya (for year i) refer to 4 consecutive 
quarters. All values cover from the second quarter of one year to the 
first of the following year. In cases of such regular financial years, 
estimation may be greatly simplified under certain assumptions given later. 
Each estimated conventional year value yd i  is a convex combination of the 
two closest financial year data: 

(2.1) 	y di - (K ya.1 + (J-K) a) / J, 	i-2, . . . 

or more specifically for the situation in Figure 2, 

(2.1') 	y di - (1 yai..l + 3 y) / 4, 	1-2,... ,5. 

In equation (2.1), J is the number of months per year (4 for quarterly and 
12 for monthly series); and K is the number of "months" not in the 

. 	conventional year reference period. A positive K means that K quarters 
wanted in year i are in fact in year i+1; and a negative K, in year i-i. 
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(For Figure 2, K-1 and J-'4.) Variable N stands for the total number of 
conventional years referred to -however partially- by the financial years. 
(For instance a financial year covering from April 1981 to March 1982 
refers to two conventional years, 1981 and 1982.) 

financial years: 	y a 1 	y a 2 	y a 3 

quarters: 	1234123412341234 
years: 	1 	I 	2 	I 	3 	I 	4 	I 

conventional years: 	y d1 	d2 	d3  

Figure 3: The reference periods of the central conventional years 2 and 3 
are embedded in the reference periods of financial years 1 and 2, and of 2 
and 3, respectively. The reference periods of conventional years 1 and 4 
are not entirely embedded. In that sense, the corresponding conventional 
year estimates are forecasts, as opposed to interpolations. 

The first and last desired values are respectively obtained by: 

(2.2) 	y1 - ((J+K) ya1 - K ya2) / J, 

(2.3) 	y 	- (-(J-K) ymN2 + (2J-K) yaNi) / J; 

or more specifically in the situation of Figure 2, 

(2.2') YdI (5 ya1 - 	1 ya2) / 4, 

(2.3') yd6 - (.3 ya4 + 7 y5) / 4. 

These end estimates are in a sense extrapolations or forecasts, because 
they involve extrapolated sub-annual values. This is illustrated in 
Figure 3. Their reliability is therefore lower than that of the central 
estimates of equation (2.1). Note that the end estimates do not have to be 
used in practice. 

Figure 2 displays the conventional year values estimated by means of (2.1') 
to (2.3'). The percentage errors (with respect to the true desired 
conventional values) are -0.9%, 1.7%, -1.2%, -2.0%, 2.6% and 5.9% for years 
1 to 6 respectively. The error is bigger for the last year (5.9%) because 
that estimate is in fact an extrapolation. 

One attitude with respect to regular financial year values is to ignore the 
fact that their reference periods are wrong. 	In other words, the first 
available 	financial value is 	considered an estimate of the first 
conventional value; the second available value, of the second conventional 
value; etc. The resulting percentage errors are 2.1% for year 1, instead 

I 
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of -0.9% with the proposed method; 4.4% for year 2, instead of 1.%; 3.5%, 
instead of -1.2%; -3.8%, instead of -2.0%; and 3.7% for year 5, instead of 
2.6%. (Doing this provides no estimate for year 6.) The errors are larger 
than with the method proposed and biased. The bias is positive in periods 
of increase in the (trend-cycle of) the underlying series; and negative in 
periods of decrease. 

Equations (2.1) to (2.3) correspond to the solution for flow series and 
regular financial years, when the method proposed is applied on 3-year 
series intervals (two years of financial data). 	Appendix A provides the 
weights corresponding to a 5-year interval. 	Section 4 explains how the 
weights are derived. 

3. ASSUMPTIONS ABOUT THE UNDERLYING SUB-ANNUAL SERIES 

The variants of the financial year conversion methods described in this 
paper require some or all the following assumptions. Some situations make 
some of the assumptions unrealistic or even untenable. The statistician 
may then prefer a to use a variant based on weaker assumptions. This 
section may actually be referred to evaluate the scope and the consequence 
of assumptions entertained. 

The first assumption state; that the series consists of the sum of four 
components: 1) the trend-cycle, 2) seasonality, 3) the irregular or random 
component and 4) the trading'.day component: 

(3.1) 	z - ct + St  + It + Dt 	Assumption 1 

By definition, the seasonal component tends to cancel out over any 4 or 12 
successive periods: 

(3.2) 	 Z S(ji)J+j+K -> 0 	Assumption 2 

where J is the number of months per year and i and j respectively stand for 
the year and the month considered. 

The irregular or noise component has an expectation of zero. This implies 
it will tend to cancel out on K successive periods: 

K 
(3.3) 	E(It) - 0 —> E 't+k -> 0 	Assumption 3 

k—i 
The trading-day component is also centered on zero. 	It is therefore 
reasonable to assume that it tend to cancel out on any K successive 
periods: 

K 
(3.4) 	 E Dt+k -> 0 	Assumption 4 

k—i 

This last assumption is relevant only for monthly flow series. In that 
case, it is always verified i:E K equals 3. Indeed, (3.4) then constitute a 
quarter. Since all quarters have (almost) the same number of days, they 

. 
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cannot display any trading-day variations. 	 S 
The two first assumptions are common in all time series decomposition 
methods. (See Dagum, 1980; Shiskin et al., 1967; Harvey and Todd, 1983) 
Assumption 3 and 4 are valid if K is sufficiently large or if the component 
considered is small. 

One more assumption may be needed. The trend-cycle is locally linear: 

(3.5) 	Ct - 2ct1 - ct2 + at, 	at -> 0 	Assumption 5 

This equation states that each value of the trend-cycle basically lies on 
the straight line running through its previous two values. This variant of 
linearity is that chosen by Boot, Feibes and Lisman (1967) for the 
interpolation of time series; by Leser (1961, 1963) and Schlicht (1981) for 
specifying the trend-cycle component in time series decomposition methods. 
Linearity can be justified by the fact that many socio-economic series 
display a long-term trend. This trend is always well approximated by local 
linearity. Deviations from linearity mostly take the from of accelaration 
of decelaration. 

The available financial years ya  and the desired conventional year yd i  may 
be respectively written as: 

(3.6) y a i -  Z(j.i)J+l+Kj + Z(j.4)J+2+Kj + 	... 	+ Zj,J4i 
(read Ki instead of Ki) 

(3.7) yd - Z(ji)J+l + Z(j.l)J+2 + 	... 	+ Zj 

For 1-5, Kj-3, J-12 (3.6) and (3.7) are respectively: 

(3.6') y a 5 - z52 + Z53  + .. . 	+ Z60  + z61 + z62  + 

(3.7') y d 5 - z49 + Z50  + Z51  + z52 + ... 	+ Z59  + 

For Ri  constant and positive (K-.K>0), i.e. for regular financial years 
containing J "months" and under Assumption 1, the difference between the 
desired and available yearly values is 

K 	 J 	J 
yd 

i 	-' 1. a. - [E (c(i1)J+k - CiJ..k+K+i)] + [E 5(ii)J+j 	- E S(j..l)J+j+K] 
k—1 	 j—1 	j-i 

(3.8) 
K 	K 	K 	K 

+ [ (1(i-l)J+k - E 1iJ-k+K+l)) + [E D(]J 	- E DjJ..k+K+1] 
k—1 	k—i 	k—i 	k—1 

For 1-5, K-3 and J-12 that difference reads: 

y d 5 - ya5 	-I C49 - c61 + 	C50 - C62 	+ C51 	- 	C631 

+ 	[(s49 	+ S50 + 	. . + 	60) -(52 + s53 	+ 	. . . 	+ 	s63)] 
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. (3.8') 
+ ((149 + 150 + 151) -(161 + 162 + 163)] 

+ ((D49 + D50 + D51) -(D61 + D62 + D63)] 

Under Assumption 2, the second term in brackets (of eq. (3.8) or (3.8 1 )) 
cancels out. Assumption :i cancels the third term if I t  is small or K is 
large. Assumption 4 cancels the fourth term, if Dt  is small or K is large 
or equal to 3. 

When it is possible to make Assumptions 1 to 4, the difference between the 
conventional and the financial years is solely determined by the first 
term, that is by the yEar-to-year differences in the trend-cycle c . If 
Assumption 5 is also true, i.e. c is linear, regular financial years also 
behave linearly. Furthermcre, the line in the latter -which is observable-
is the same as that in the trend-cycle. The difference between the 
conventional and the finarcial can then be known exactly. More generally, 
the conversion is exact to the extent the trend-cycle (linear or not) of 
the underlying sub-annual series can be measured from the annual data. The 
conversion is garanteed to be exact under linearity. This is the principle 
of the conversion method proposed, and this is why it works even if the 
trend-cycle is not linear. 

4 SPECIFICATION FOR FLOW SERIES 
¶.JITH REGULAR FINANCIAL YEARS 

This Section considers flow series, when all financial years refer to four 
consecutive quarters, that is when K is constant. This is the more simple 
situation depicted in Figure 2. The conversion from financial to 
conventional years may then be simplified, if the five assumptions of 
Section 3 are made. Assumption 2 implies neither the available financial 
year data nor the desired conventional year estimates contain seasonality. 
The problem reduces to dis-.iggregating the financial year into non-seasonal 
values (c + I + D ) and to re-aggregating the sub-annual values into 
conventional years. The underlying series may contain seasonality. Its 
estimates are not required however, because they would cancel out in the 
re-aggregation process. 

For similar reasons Assumptions 3 and 4 can further reduce the problem, 
namely to dis-aggregating the financial data into sub-annual trend-cycle 
values. The difference between the conventional and the financial year is 
known through (3.8), providEd that the trend-cycle is linear, i.e. provided 
Assumption 5 is made. Line.rity is maximized by minimizing the following 
objective function: 

IJ 
(4.1) 	f(c) - I (Ct - 2Ct..1 + Ct..2) 2  

t-3 

where I is the number of conventional years in the series interval 
. 	considered (1<—N). The extent to which linearity is possible is governed 

by constraints: 
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J 
(4.2) 	Z (°(i1)J+j+K) 	

y81,  
j-1 

These state that the values sought have to sum to the available financial 
year values. 

The solution to that constrained minimization problem is developped in 
Appendix B (for more general variants of the method). The desired 
trend-cycle values are weighted averages of the available financial 
values: 

3 
(4.3) 	Ct - 	W'<t0 yam  t1, 	,IJ 

j l 

The desired conventional year values are then simply the annual sums of h& 
sub-annual trend-cycles values: 

(1-1) 
(4.4) 	y di - E C(j.1)J+j  

rn—i 

If the trend-cycle estimates are of no interest in themselves, the desired 
conventional values can be expressed directly in terms of the available 
ones (by subtituting (4.3) in (4.4)): 

(1-1) 
d. - E Pj,m ya  

rn—1 

The weights pj m depend only on I, the number of years in the series 
interval; on i, the number of months per year; and on K, the number of 
months not in the conventional year. They do not depend on the 
observations yaj. They can therefore be applied to any series interval -or 
any series- with the same values of J and K. In other words, they can be 
calculated once and for all. 

This is why Appendix A provides tables of weights for 1-5, 3-4 and 12 and 
for relevant values of K. We would recommend their implementation in a 
5-year moving average manner: 

- 	 P1,m 
ya end year (extrapolation) 

- E P2,m  yarn  non-central year (interpolation) 

(4.6) ydn  - E P3,m  yan 3+m , n-3...,N-2, central years (interpolation) 

ydq1 
- E P4,m  YaN5+m  non-central year (interpolation) 

E P5,m  YaN5 im  non-central year (extrapolation) 

S 

where all summations take place over m going from 1 to 4. For 1-3, the 
weights and their implementation are given by equations (2.1), (2.2) and 
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(2.3). 

5. SPECIFICATION FOR FLOW SERIES 
WITH IRREGULAR FINANCIAL YEARS 

This Section considers flow series, when one does not want to make all the 
assumptions made in Section 4 or when the reference periods of the 
financial year data are irregular. The latter case is the more complex 
case depicted in Figure 1. Financial year values covering sometimes more 
and sometimes less than 12 mcnths (4 quarters) contain the seasonal values 
of the months in excess or missing in the reference period. Consider for 
instance a year referring to 15 periods, from March to May of the following 
year. The 12 months which appear once are likely to cancel out in the 
financial year, by virtue of Assumption 2. However, the seasonal values of 
the extra March, April and May are part of the financial year considered. 
(Seasonality cancels out over 12 months but not necessarily over three.) In 
that sense, such financial year data do contain seasonality. And this fact 
must be taken into account in dis-aggregating into sub-annual values. In 
other words, the dis-aggregated sub-annual values must reflect 
seasonality. 

As for the irregular and tbe trading-day components, Assumptions 3 and 4 
may still be reasonable. (This statement will deserve qualification later 
on.) In other words, these •:omponents still tend to cancel out. The 
sub-annual values needed must therefore only comprise the trend-cyle (like 
before) and the seasonal components ct — CC + s. An appropriate objective 
function is: 

IJ 
(5.1) 	f(ç) — E (ct/xi:  - 2ct.1/xti + ct  2/Xt 2) 2  

t-3 

where x is an approximative seasonal pattern chosen by the subject 
matter expert of the series. For simplicity the values of x t  may be the 
same for each same month over the whole series interval considered. A 
value equal to 1.5 means thLt the month is 50% higher than an average 
month; equal to 0.6, 40% lower. A value of 1.0 specifies the month to be 
average; and a value of 0.0001, practically nill. Only the relative values 
of Xt matter. 

The meaning of objective function (5.1) is then the following. The desired 
sub-annual trend-cycle-seasonal values ç should be proportional to the 
seasonal pattern x ; and the proportion ç /x should change as linearly as 
possible. 	(Strictly speaking, Assumption 1 is being approximated by z — 
ç + I + D , where ç —c s . 	The new objective function is minimized 
subject to the following constraints: 

Pm 
(5.2) 	1 ct  —-' m' 	P 	Tm' 	inl,. . . ,M. 

t7 m  

a 

These constraints state that the desired sub-annual values ct must sum to 
the available financial data, whatever the reference periods [Tm .....

Pm). 
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The solution is developped in Appendix B. As in the case of regular 
financial years, the desired sub-annual trend-cycle-seasonal values ct are 
weighted averages of the available financial year values: 

M 
(5.3) 	ct= E Wt,m ya  

rn-i 

They may be used as such or aggregated into conventional quarterly or into 
conventional year values (or both). The conventional year values for 
instance are simply the annual sums of the sub-annual trend-cycles values: 

J 
d. - E c(..l)J+  

j -1 

The desired conventional values may be expressed directly in terms of the 
available ones (by subtituting (5.3) in (5.4)): 

M 
(5.5) 	ydj - E Pi,m  yarn , 	i.l .....I 

m-1 

The weights do not depend on the financial year values. They do depend 
however on the distribution of their references periods, on the seasonal 
pattern chosen and on J and I. This implies they have to be calculated for 
each new series interval. According to Appendix A, this involves 
multiplications and inversion of matrices with dimension LI by IJ. Such 
calculations may be prohibitive, especially if they have to be conducted at 
each respondents level for instance. They can be imxnensily reduced by 
means of a numerical approcimation proposed in Cholette (1987a). 

In many cases Assumption 4 may not be realistic. 	Indeed an important 
trading-day component will not cancel especially if K is small (and 
different from 3). Objective function (5.1) is still relevant if x is 
defined as the product of the seasonal and trading-day pattern (x -s D ). 
The trading-day value D for a month is the sum of all the daily rates of 
activity d in the month, divided by the number days in the month t. The 
denominator should be 30.4375 if s is equal to 1, i.e. in the absence of 
seasonality (for more details see Cholette, 1987a.) Similarly to the 
seasonal pattern, those daily rates are more easily expressed with respect 
to the average of the week. 

The estimated conventional year values of Figure 1 were estimated with the 
variant presented in this Section, with 1-5, J-4 and with a appropriate 
seasonal pattern x 

S 
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6. GENERALIZATION TO STOCK AND TO INDEX SERIES 

The two variants of the method presented until now only addressed flow 
series. This section indicates the changes required to accomodate stock 
and index series. Objective function (4.1) is special case of (5.1), where 
xt  equals 1 and ct  equals Ct. Further developments will therefore start 
from the latter. The objective function is then: 

IJ 
(6.1) 	f(ç) — E (ct/xt - 2ci/xi + ct2/xt2) 2  

t-3 

The unknown ct may represent the trend-cycle in case of regular financial 
years, i.e. for K constant; or, the aggregate of the trend-cycle and the 
seasonal components for K not constant. Variable x may be equal to 1.0 
for K constant; and must be equal to an expert-supplied seasonal pattern 
for K not constant. 

6.1 Stock series 
The annual values of stock series (considered here) correspond to one of 
the sub-annual values. Unless the underlying sub-annual series is 
non-seasonal, it can no longer be assummed that the financial year and the 
conventional years do not contain seasonality. Indeed their values will 
always depend on the quarter or month chosen. A seasonal pattern x 
(different from 1.0) is then required in objective function (6.1). 

The appropriate constraints for stocks series are particular cases of 
(5.2): 

(6.2) 	yam, m-1,...,M 	(read tin  instead of tin) 

According to Appendix B, the conventional year estimates are weighted 
averages of the financial values like in equation (5.5). These have to be 
recalculated for each series (interval). 

6.2 Index series 
The annual values of index series correspond to the average of the 
sub-annual values. (Flow and stock series expressed as indexes , e.g. the 
Index of Industrial production in the first case, the Consumer Price Index 
and Unemployment in the second case, are considered as index series for the 
purpose of the method.) The appropriate constraints are: 

Pm 
(6.3) 	E c 	/ (Pin - 	

— + 1) 	
-, in , 	Pin ~ Tin, 	rn-i,... 

tT 

or more conveniently, 

Pin 
(6.3') 	Z  ct — (Pm - 	

+ 1) yam , Pin > r,  
t—T in  

The latter equation is a particular case of (5.2) if ya 
M  is appropriately 

redefined. 

S 
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When the reference periods of the financial year are irregular, Xt  is 
seasonal index and solution (5.5) applies. For index series, however, 
financial years should be regular. In that case, assumptions 2 is valid, 
so that xt  may be set to 1.0 and ct to Ct  (unless Assumption 4 cannot be 
justified). The solution is then the same as (4.5) except ya is 
redefined, and the weights have the same convenient properties. 

CORRECTING THE REFERENCE PERIODS OF QUARTERLY DATA 

The problem discussed for yearly data is also encountered for quarterly 
data. For instance, the reference period of available quarterly data may 
cover December to February, March to May, etc., instead of January to 
March, April to June, etc. The reference periods may also be irregular. 

A variant of the conversion method proposed can correct the reference 
periods of available quarte::ly data. These are dis-aggregated into monthly 
values which are then re-aggregated into the desired conventional quarters. 
An appropriate objective function is still a particular case of (5.1) 

31 
(7.1) 	f(ç) - [E (ri=/xt - 2r1/x1 + r2/x2) 2 ] 

t-3 

where I now stands for the number of quarters (12:5) in the series interval 
considered. 	The objective function specifies that the desired monthly 
values 	should remain proportional to some expert-supplied monthly 
seasonal-trading-day pattern x . Objective function (7.1) is minimized 
subject to constraints (5.2), where y now represent the available 
quarterly data. The solution is derived in Appendix B in matrix algebra, 
or the numerical solution proposed by Cholette (1987a) may used. As in the 
other variants of conver!;ion, the corrected quarterly estimates are a 
linear combination of the available quarters. Those weights depend on x 
and I. Figure 4 illustrates an example of quarterly stock data corrected 
for reference periods. The available quarterly values refer to the 
February, May, August, Noverber, February, etc., instead of March, June, 
September, December, March, etc. The estimation error of the corrected 
quarters (with respect to the true quarters) read -0.2%, -0.1%, 0.0%, 0.0%, 
0.0%, 0.2% -0.1%, -0.1% and 0.4% for the nine quarters. When considering 
the available quarters as estimates of the desired ones, the errors are 
much bigger 12.0%, -6.1%, -9.1%, 2.9%, 16.0%, -2.6%, -9.4%, 0.8% and 8.3%. 

DISCUSSION 

The approach proposed for correcting the reference periods of yearly (and 
quarterly) data is based on assumptions about the underlying monthly series 
and in many cases on user-supplied seasonal or seasonal-trading-day 
patterns. Sometimes, an underlying monthly series does exists, but is 
inconsistent with the year].y data. The coverage of respondents may be 
different; the reliability, lower; etc. When such a monthly indicator is 

. 

. 	available, the conversion problem should be solved in the context of 
benchmarking, in our opinion. This recommendation is especially relevant 
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when the corrected data are generated to be used as benchmarks for the 
corresponding sub-annual series. 

Carrying out the conversion in the context of benchmarking would work as 
follows. 

For one socio-economic variable, respondents with the same financial 
years are aggregated. Obviously, the level of aggregation must be lower 
than that of publication. If a seasonal index Xt  is used, the aggregation 
must involve respondents with presumably common seasonal (and trading-day) 
pattern (for the variable considered). 

The same aggregation is carried out "annually" and sub-annually. 
Annual discrepancies are then observed between the annual and the 
sub-annual data. 

The sub-annual data is benchmarked to the "annual" data. In the 
benchmarking process, the annual data are specified to pertain to the 
reference periods which they actually cover (and not to the conventional 
years). 	The result at this point is a sub-annual benchmarked series 
consistent with the available yearly data. 

The conventional year values are then calculated as the annual sums 
(or relevant operation) of the benchinarked series. 

An appropriate objective function for proportional benchmarking (subject to 
(5.2)) is the following: 

T 
(8.1) 	E (Zt/Xt - Zt..1/Xt..1) 2  

Variable Xt is the available sub-annual information. The unkown Zt is the 
desired sub-annual benchmarked series consistent with the financial year 
data. This function specifies that the ratio of the benchmarked series to 
the original is as constant as possible. This specification imputes the 
sub-annual missing respondents (in z - x ) proportionally to the ones 
available (in x ). In other words, the missing respondents behave like the 
available ones. That behaviour is also governed by the observed annual 
discrepancies. 

An objective function for additive benchxnarking: 

T 
(8.2) 	Z ((Zt - Xt) - (ztl - Xt..l)) 2  

t-2 

This function assumes that the behaviour of the missing respondents (i.e. 
of z - x ) is governed exclusively by the movement of the annual 
discrepancies. The behaviour would be constant if the annual discrepancies 
were constant; linear; sine-like; etc. 
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Objective function (8.1) and (8.2) use first differences instead of second 
differences previously. Indeed in the Context of benchmarking the indicator 
x is presumably also an indicator of the trend-cycle. This was notT '  
previous sections. The indication of the trend-cycle was then achieved by 
second differences. We would actually advocate the use of first 
differences in the previous sections if the indicator chosen also indicated 
the trend-cycle. 

The advantages of correcting the reference periods in the context of 
benchmarking are the following. 

The conversion is no longer based on assumptions but on facts about 
the sub-annual series. 	Those facts are explicitly and operationally 
incorporated in the conversion process. (Note that benchmarking does not 
assume that the movement of the original sub-annual series is reliable, but 
that it is better than nothing; see Cholette, 1987a.) 

When the variables involved in the conversion have to be benchmarked, 
both the conversion and benchmarking are achieved in a single operation. 

When a respondent has a unique reporting pattern and/or provides no 
sub-annual values: The sub-annual values of other respondents may be used 
as sub-annual indicator. 

The correction of the referece periods of quarterly data in the context of 
benchinarking is handled in a way similar to that of annual data. 

The benchniarking approach to conversion proposed in this section is in a 
sense already used in some surveys conducted by Statistics Canada. The 
Shipments, Inventories and Orders surveys for instance collect sub-annual 
and annual stocks series. The reference periods of the financial year 
values are corrected on the basis of the movement in the available 
sub-annual data. If for instance the variable considered rose by 5% 
sub-annually from December to March, then the financial year value 
pertaining to March is reduced by 5% to make it refer to December. That 
procedure implicitely assummEs that objective function (8.1) has reached 
its minimum of zero; in other words, that a sub-annual series consistent 
with the financial year values would have the same growth rates as the 
sub-annual series actually available. (Two series exactly proportional to 
each other have identical growth rates.) The benchmarking strategy proposed 
here is a refinement of that procedure: It uses the exact growth rates 
required for consistency. 

More information about benchmarking may be found in Denton (1971), 
Cholette, (1984, 1987) and Laniel (1986). 

One practice with respect to financial year data is the following (Bustros, 
1986). The data of respondents with any of the twelve possible financial 
years ending between April (say) of year i and March of year i+l are 
assigned to year 1; and for the variable considered, the annual value y is 
ruled to be the sum of all the data in any of the twelve financial years 

40 	assigned to year i. 	Such a scheme causes biases in the trend-cycle 
movement of the resulting annual values. The nature of the bias€s also 

I 

fl 
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depends on the phase of the business cycle and even on the variable 	S 
considered (Cholette, 1987c). The under-estimation of the 1981-82 
recession by the Canadian annual Retail Trade data, which are derived in 
that manner, confirms that contention. 

CONCLUSION 

It is technically possible to convert financial year data, with reference 
period ranging from April to March for instance, into conventional year 
data, with reference period ranging from January to December. Under the 
method proposed the desired conventional year estimates are weighted moving 
averages of the available financial year data. 

In all variants of the method, assumptions about the underlying sub-annual 
series have to be made (see Section 3). Namely the trend-cycle component 
is linear and the seasonality is constant. 

For flow and index series, these assumptions are sufficient to derive 
acceptable conventional year estimates, provided the reference periods of 
the financial years are regular and cover no more than 12 months (e.g. 
always June to May). The computations involved are also tremendously 
simplified: the weights of the moving averages are known in advance (see 
Appendix A) and do not require calculation for each new application. 

For stock series or when the reference periods of the financial years are 
irregular (e.g. one year January to March, the next year April to March, 
April to December, etc.), the assumptions about the underlying series are 
not sufficient to derive acceptable estimates. The user has to supply a 
seasonal pattern and possibly a trading-day pattern for the underlying 
sub-annual series. The computations involved are also much more 
time-consuming: The weights of the moving averages are not known in advance 
and have to be recalculated for each application. 

The same approach can also be used to correct the reference period of 
quarterly data. Both assumptions and user-supplied monthly seasonal and/or 
trading-day pattern are required. 

In cases where some sub-annual data is available, we recommend solving the 
conversion problem within the framework of benchmarking. The conversion no 
longer rely on assumptions about the underlying series and on user-supplied 
seasonal-trading patterns, but on facts. As explained in Section 8, the 
desired conventional year values are then the annual sums (or relevant 
operation) of the sub-annual benchmarked series. 

I am most thankfull to my colleague Jocelyn Plourde for his valuable 
assistance. 
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APPENDIX A: Five-year weights for converting financial year flow data when 
the financial years all cover 4 quarters or 12 months. 

The row numbers in the tables indicate which conventional year i in the 
5-year interval is estimated by the weights in the row. The column 
number m indicates to which available financial year the weight Pj,m 
applies. For instance for J-4 and K-i 

- 0.15152ya1 + 0.97760 ya2 - 0.15976 ya3 + 0.03064 ya4 

Parameter K stands for the number of months or quarters which should be in 
conventional year i, but are actually in year m+l for positive K or in year 
i-i for negative K. The weights are the same for K--i and K-J-i; for K--2 
and K-J-2; and so on. The weights are therefore given only for positive 
values of K. 

Furthermore, the weights are the same for K-i and K-J-1, for K-2 and K-J-2, 
except the rows and the columns are in the reverse order. This can be 
verified for the quarterly weights for K-0 and 4 and K-i and 3. In order 
to save space, the weights will not be given in the monthly case for K 
greater than 6. 

uarterly weights jm 

forK-0: 	i\m 	1 	2 	3 	4 
1 	1.00000 0.00000 -0.00000 0.00000 
2 	0.00000 1.00000 0.00000 -0.00000 
3 -0.00000 0.00000 1.00000 0.00000 
4 	0.00000 -0,00000 0.00000 1.00000 
5 -0.14901 0.72594 -2.00483 2.42791 

for K-i: 	i\m 	1 	2 	3 	4 
1 	1.34997 -0.48459 0.16926 -0.03464 
2 	0.15152 0.97760 -0.15976 0.03064 
3 -0,04342 0.26595 0.84837 -0.07090 
4 	0.02719 -0.13433 0.43710 0.67005 
5 -0.11064 0.53921 -1.49650 2.06793 

for K-2: 	i\ni 	1 
1 	1.70795 
2 	0.38013 
3 -0.07663 
4 	0.03947 
5 	-0.07227 

2 
-0.98817 
0.77921 
0.57663 
-0.19881 
0.35249 

3 	4 
0.35249 -0.07227 
-0.19881 0.03947 
0.57663 -0.07663 
0.77921 0.38013 
-0.98817 1.70795 



for K-3: 	 i\m 	1 
1 	2.06793 
2 	0.67005 
3 -0.07090 
4 	0.03064 
5 -0.03464 

for K-4: 	 i\m 	1 
1 	2.42791 
2 	1.00)00 
3 	0.00)00 
4 -0.00)00 
5 	0.00000 

Monthly Weights Pi,m 

for K-C: 	 i\m 
1 	1.00000 
2 	0.00000 
3 -0.00000 
4 	0.00000 
5 -0.1694 
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2 
49650 

0.43710 
0.84837 

-0. 15976 
0.16926 

2 
00483 

0.00000 
1.00000 
0.00000 

-0.00000 

2 
0.00000 
1.00000 
0.00000 

-0. 00000 
0.78371  

3 	4 
0.53921 -0.11064 

-0.13433 0.02719 
0.26595 -0.04342 
0.97760 0.15152 

-0.48459 1.34997 

3 	4 
0.72594 -0.14901 

-0.00000 0.00000 
0.00000 -0.00000 
1.00000 0.00000 
0.00000 1.00000 

3 	4 
-0.00000 0.00000 
0.00000 -0.00000 
1.00000 0.00000 
0.00000 1.00000 

-2.07561 2.45584 

forK-i: 	 i\ni 	1 	2 	3 	4 
. 	 1 	1.11660 -0.16169 0.05690 -0.01181 

2 	0.04094 1.01407 -0.06762 0.01261 
3 -0.01405 0.07947 0.96653 -0.03196 
4 	0.01085 -0.05251 0.15580 0.88586 
5 -0.14971 0.71584 -1.89921 2.33308 

for K-2: 	 i\in 	1 
1 	1.23510 
2 	0.09098 
3 -0.028B1 
4 	0.02068 
5 -0.13569 

2 
-0.32791 
1.00797 
0.16900 

-0. 09944 
0.64797 

3 	4 
0.11717 -0.02437 

-0.12221 0.02326 
0.91511 -0.05530 
0.30412 0.77485 

-1.72281 2.21033 

forK-3: 	 i\m 	1 	2 	3 	4 
1 	1.35502 -0.49752 0.17998 -0.03748 
2 	0.15002 0.98155 -0.16315 0.03159 
3 -0.04344 0.26629 0.84775 -0.07060 
4 	0.02859 -0.13947 0.44317 0.66771 
5 -0.12127 0.58012 -1.54643 2.08758 

for K-4: 	 1 
1 	1.47597 
2 	0.21777 
3 -0.05697 
4 	0.03490 
5 	-0.10706 

2 
-0. 66960 
0.93516 
0.36865 

-0. 17123 
0.51233 

3 	4 
0.24463 -0.05100 

-0.19030 0.03737 
0.76693 -0.07861 
0.57109 0.56524 
1.37013 1.96487 
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for K=5: 	i\m 	1 
1 	1.59763 
2 	0.29380 
3 -0.06833 
4 	0.03915 
5 -0.09289 

2 
-0.84340 
0.86960 
0.47310 

-0. 19338 
0.44469 

3 	4 
0.31056 -0.06480 
-0.20393 0.04053 
0.67547 -0.08023 
0.68599 0.46825 
-1.19404 1.84224 

. 

forK-6: 	i\ni 	1 	2 	3 	4 
1 	1.71979 -1.01836 0.37736 -0.07878 
2 	0.37752 0.78605 -0.20466 0.04109 
3 -0.07645 0.57645 0.57645 -0.07645 
4 	0.04109 -0.20466 0.78605 0.37752 
5 -0.07878 0.37736 -1.01836 1.71979 

APPENDIX B: Derivation of the solution of the general variant of the 
conversion problem 

The problem is specified on a series interval containing I years and J 
"months" per year. The solution is first developped for correcting the 
reference periods of financial years; and then, of quarterly data. 

Conversion of Yearly Series 
Objective function (6.1) may be rewritten in matrix algebra as 

f(Z) - Z'X 1A X 1Z 

where 

- 	[ ci. r 	. . . 	cij) 

	

[1/x1 0 	0...0 

	

[0 	l/x20 ... 0 
X1 -  

IJxIJ  

	

[0 	0 	. 	l/xIJ] 

[1-21 0...O 00] 
[01-2 1...0 00] 

A - D2'D2, 	D2 	- 	[ . 	. 	. 	. 	. 	. 	. 3 
IJ%IJ 	(IJ-2)xIJ 	[ . 	. 	. 	. 	. 	. 	. 

	

[000 0 ... 1-2 	1] 

The unknowns ct  represent the sub-annual trend-cycle values for flow and 
index series, provided all financial years are regular, i.e. all refer to J 
consecutive "months". The unknowns are the product of the trend-cycle and 
of the seasonal components, and of the trading-day component if applicable, 
in ALL other cases: stock series, and flow or index series with irregular 
financial years. 
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Symbols Xt  represent known 'ialues. They are equal to 1 in case of flow and 
index series, provided all financial years are regular. They are equal to 
an expert-supplied seasonal pattern, multiplied by a trading-day pattern if 
applicable, in ALL other cases. Matrix D2 is the second difference 
operator; and matrix A, the corresponding quadratic second difference 
operator. 

Constraints (5.2) are written as: 

(8.5) 	Haz - ya 

where 
columns: r1 	p 	P2 

[00... 011... 10... 00... 000...] 
[00 ... 000 ... 00 ... ll ... 100... 

(8.6) 	H' 	. . 	 . . . 
. 	 . 

MXIJ 	[ . . 	. . 	 . . . 

(8.7) 	ya 	
- [ y1 Y82 ... y.j 

Matrix Ha,  is a sum operator. With 1m equal to Pm  and appropriate values, 
the matrix can also act a month selector matrix for stock series. 

Vector ya contains the available financial year values. These values have 
been multiplied by J in case of index series. 

For simplicity, the constraints are introduced as a quadratic term in an 
augmented objective function: 

(8.8) 	F(Z) - Z'X 1A XZ + g (HaFZ - Ya)I(Ha.Z - ya) 

where g is sufficiently 1are (e.g. 1000) to cause the term to reach the 
minimum (zero), that is to make the term equivalent to constraints in 
practise. 

Performing the matrix operations in (8.8) yields: 

(B.9) 	F(Z) - Z'X 1A X 1Z + g Z'Ha }aIZ - 2g z.Haya + g ya.ya 

In order for (8.9) to reach its minimum with respect to rt, the derivatives 
of the objective function with respect to ct must by definition equal zero: 

(3.10) 	dF/dç - 2 X 1AX 1  Z + 2g HH'Z + 2g Ha y - 0 

-> [X 1-A( + gHaHas] Z - g Haya 

This implies the estimated sub-annual values are linear combinations, i.e. 
weighted averages of the available financial values: 

. 
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-> Z - [X 1AX' + gHaFla')4 g Haya = W y 

IJc M 

The estimated conventional year values are then the annual sum (or the 
appropriate operation) of the estimates sub-annual values: 

yd - HdI z 	}jds wc ya - py ya 

IxM 

where Hd' is the I 13 annual sum operator (similar Ha)  for flow and index 
series; and the appropriate observation selection matrix in case of stock 
series. 

Correction of Ouaterly Data 
For correcting quarterly data, ya  now contains the available quarterly 
values, 3 is equal to 3, and I represents the number of Quarters in the 
series interval. The augmented objective function is still (8.8) 

Doing the same developments as for the yearly conversion, yields a similar 
result. The estimated sub-annual values are linear combinations, i.e. 
weighted averages of the available financial values: 

	

(8.13) 	Z - [A + g}iaHa]l g Haya - 	ya 

13 M 

The estimated quarterly values are then the quarterly sums (or the 
appropriate operation) of the estimates sub-annual values: 

	

(8.14) 	yd 	Hd z - Hdl wc ya _jy ya 

Matrix HdI is the I by 31 quarterly sum operator for flow and index series 

[lll000 ... 000J 
[000111 ... 000] 

	

(8.15) 	Hd- 	. 	. . . 

[ 	 . 	 . 	 . 	 . 	 . 	 . 	 . 

1x13 	[ . 	. 	. 	. 	. . 
[0000 	... lll] 

and the appropriate monthly selector for stock series. 

0 


