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Abstract 

The X-ll-ARIMA Seasonal Adjustment computer program (Dagum 
1980) performs three basic functions, namely, (1) forecasting; 
(2) seasonal adjustment and (3) composition of original and 
seasonally adjusted series. 

Major developments are being carried out in two key 
functions in order to increase the efficiency of the method and 
its capability to handle adequately a larger number of series. 

New developments related to the forecast functions are (i) a 
new set of built-in ARIMA models; (ii) variable forecasting 
horizons; (iii) backcasting only series shorter than seven years; 
(iv) new acceptance criteria of fitting and extrapolation for the 
built-in ARIMA models; (v) determining the optimal forecast 
horizon as a function of both the amount of noise in the series 
and its trend-cycle pattern; (vi) introduction of other 
extrapolation methods. 

Developments related with the seasonal adjustment function 
include (i) estimation of Easter effect; (ii) estimation of 
stochastic trading-day variations; (iii) new replacement of 
extreme values; (iv) increasing the accuracy of the end-weights 
of the five Henderson trend-cycle filters; and (v) new diagnostic 
tools. 

The main purpose of this paper is to provide a summary of 
each one of these major developments and their impact on the two 
corresponding basic functions of X-11-ARIMA. 

KEY WORDS: Forecasting, Seasonal Adjustment, Trading Day 
Variations, Easter Effect, Extreme Values, Trend-
cycle filters. 
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Introduction 

The X-11-ARIMA seasonal adjustment method developed by 

Dagum (1975 and 1980) basically consists of: 

Modelling the original series by Autoregressive 

Integrated Moving Average Processes (ARIMA models) of 

the Box and Jenkins (1970) types. 

Extrapolating one year of unadjusted data at each end 

of the series from an ARIMA model that fit and 

extrapolated well the original series according to some 

acceptance criteria. This operation called forecasting 

and backcasting is designed to extend the observed 

series at both ends. 

Seasonally adjusting the extended series with moving 

averages (linear filters) that result from the 

combination of the ARIMA model extrapolation filters 

and the seasonal adjustment filters of the Census 

Method II-X-ll variant (Shiskin, Young and Musgrave, 

1967) 

For all "historical" values (at least three and a half 

years from the last available observation), the ARIMA 

extrapolation filters have practically no effect on the 

seasonally adjusted figures. 
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The X-ll-ARIMA computer package can be applied in two 	4 
different modes, namely, (i) with ARIMA extrapolations and (ii) 

without ARIMA extrapolations. In the latter case, the seasonally 

adjusted values are close but not necessarily equal to those 

obtained with the Census Method II X-ll variant. The 

discrepancies are due to some differences in the process of 

identification and replacement of extreme values and the fact 

that the seasonal filters are calculated from their explicit 

formulas. 

The current X-ll-ARIMA computer program performs three 

basic functions, (i) forecasting; (ii) seasonal adjustment and 

(iii) series composition0 	This composition can be made with 

original series and/or seasonally adjusted data by addition, 

subtraction, multiplication and/or division. 

In recent years several economic and institutional 

events have affected the pattern of the various components of 

most time series. Among these events, notable ones are the deep 

recession of 1981-82; the introduction of some government 

regulations that enabled business stores to be open longer hours 

and on Sunday and the early arrival of Easter (March 1986) after 

having fallen on April since 1979. 

To cope with the problems generated by these events, a 

significant amount of research was carried out that led to new 

developments. Some of these developments have already been fully 
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tested and incorporated in Statistics Canada's version of X-ll-

ARIMA (not yet available for distribution abroad). Other 

developments are currently being tested and will be implemented 

at a later stage. 

The main purpose of this paper is to provide a summary 

of these new developments and their impact on X-11-ARIMA. 

2. Major Developments in the Forecasting Function 

The new developments in the basic function of 

forecasting apply mainly to the automatic ARIMA extrapolation 

option of the program. They are described next. 

2.1. A New Set of Built-In ARIMA Models 

Currently there are three built-in ARIMA models tested 

automatically by the X-ll-ARIMA method. These ARIMA models were 

selected according to some criteria of fitting 	and 

extrapolation, from a sample of 174 series that ended in 1977 

(Lothian and Morry 1978). Given the economic and institutional 

events of the early 80 1 s, it was important to assess whether 

I these models were still relevant. Chiu, Higginson and Huot 

(1985) conducted a study on a sample of 190 seasonal series that 
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ended in 1983 from eleven sectors of the Canadian economy. These 

authors evaluated the performance of a set of 7 ARIMA models 

(including the 3 available in the program) according to the 

following eight criteria: mean absolute percentage error of the 

forecasts for the last three years, the chi-square statistics for 

the randomness of the residuals, underdifferencing, 

overdifferencing, stability, invertibility, correlation between 

parameters and the presence of small parameter values. Although 

not mutually independent, these criteria were useful to evaluate 

the goodness of fit and the goodness of forecasting for each 

model. 

The study ranked the four first models as follows: 

1 - (01111)(01111)s 

2 - (0,1,2) (0,l,1)s 

3 - (2,1,0)(0,1,1)s 

4 - (0,2,2) (0,l,l)s 

These models are expressed in the classical Box and 

Jenkins (1970) symbolic notation, where p and P denote the order 

of the ordinary and seasonal autoregressive parameters, 

respectively; q and Q  denote the order of the ordinary and 

seasonal moving average respectively; d and D denote the order of 

the ordinary and seasonal differences, respectively. 



The combined rate of success for the first three nodeis 
0 	
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varied from 97% for labour series to 21% for external trade 

series. The rate was considered good, in general, given the 

fact that during two of the three years tested, Canada suffered a 

severe recession. Furthermore, it was evident that the rate of 

success of model (1) was much smaller than the rate obtained by 

Lothian and Morry (1978) with series ending in 1977. The fourth 

model (0,2,2) (0,1,1) was found to fit well an important class of 

series (series with a steep change in trend) that all the other 

models fit poorly. (Similar results were obtained by Lothian and 

Morry, 1978.) 

0 	The new experiment detected two new models, the 

(0,1,2)(0,1,1)s and the (2,1,0)(0,1,1)s as good for extrapolation 

and fitting a large class of series. It was then decided to keep 

the currently available three ARIMA models and add the two new 

models. The reason for keeping the (2,1,2) (0,l,l)s model was 

that it performed the best from the viewpoint of forecasting 

alone. 

The availability of five models instead of three does 

not increase expenses in running the program because these models 

are tested sequentially in the order shown plus the 

(2,1,2) (0,1,1) as the last. In other words, if model (1) passes 

then, the program does not try the others, but if model (1) 

fails, it tries model (2) and so on. 



2.2 Variable Forecasting Horizons 

The automatic ARIMA option of X-ll-ARIMA currently 

extrapolates only one year of data from a model that has passed 

the acceptance criteria. Since one of the main purpose of 

extending the series with forecasts is to improve the efficiency 

of the asymmetric seasonal filters, an important question arises, 

what is the optimal length of the forecast horizon that minimizes 

the discrepancy between the symmetric and the asymmetric filters? 

Of these latter, the filter applied to the last available 

observation when seasonal adjustment is done contemporaneously 

(concurrent seasonal adjustment) is the most important for it is 

the dominant mode of current seasonal adjustment in Statistics 

Canada. 	For all practical purposes, when the series is extended 

with three and a half years of data, the observation that was 

adjusted by the concurrent filter will be adjusted by a symmetric 

filter. Therefore, we wanted to know how far the data should be 

extended into the future for the asymmetric concurrent filter of 

X-11-ARIMA with extrapolation to improve on the concurrent filter 

without ARIMA extrapolation. This latter is close to the 

concurrent seasonal filters of Census Method II-X-ll variant. A 

study by Dagum (1982) addressed the problem of revisions of the 

concurrent and other non-symmetric filters when one, two and 

three years of data are extrapolated from the three built-in 

ARIMA models in X-ll--ARIMA, namely, (0,1,1) (0,1,1) 12; 

(0,2,2) (0,1,1)12 and (2,1,2) (0,1,1)12 with several 

combinations of parameter values. 
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Dagum (1982) showed that from the viEwpoint of filter 

revision, the largest gain was obtained with one year of 

extrapolated values; there was a small incremental gain if two 

years were used and finally there was no gain going from two to 

three years. This study was extended for the concurrent filter 

by Huot et als (1986) using four models, namely, 

(0,1,1) (0,1,1)12, (2,1,0) (0,1,1)12, (012) (011)12  and (0,2,2) (0,1,1)12. 

These authors found first the set of ARIMA parameter values for 

which the X-ll-ARIMA concurrent seasonal adjustment filters 

improve on X-ll-ARIMA concurrent filter without extrapolation. 

Then, they estimated the parameter values corresponding to a 

large sample of real series for which the above models passed the 

acceptance criteria. Almost all the estimated parameter values 

fell within the region where using ARIMA extrapolations would 

reduce the size of the revisions. Huot et als (1986) also 

investigated the effect of various forecast horizons on the total 

revisions for selected parameter values. Their results showed 

that the optimal forecast horizon that minimizes filter revisions 

changes with the parameter values of the model. Thus for the 
(0,1,1) (0,1,1) 12 where 6=.50 and G=.90, the filter revisions 

are minimized for a forecast horizon of 24 months. 	On the 

other hand, for small values of 0 (say 0=.40) the forecast horizon 

should be shorter than a year. These results are in agreement 

with the fact that the larger the value of 0 the more stable the 

seasonal pattern is assumed to be and consequently, a longer 

0 	forecast horizon is feasible. 



A subroutine that enables the user to select the length 	4 
of the forecast horizons is already available in the new X-ll-

ARIMA computer program one year being the default option. 

2.3. Determining the Optimal Forecast Horizon for 

ARIMA models 

Having incorporated the variable forecast routine into 

the program, it became necessary to investigate which factors 

should determine the length of the forecast horizon to be used in 

practise to produce the best current seasonally adjusted figure 

(best in the sense of being the one with smallest revisions). It 

is obvious that the revisions in the current figure depend on the 

horizon of the forecast and the forecast errors. Extending the 

series with perfect forecast for three years and a half would 

result in an estimate that does not get revised at all. As a 

first stage toward the final objective of producing guidelines on 

the number of forecasts necessary to yield seasonally adjusted 

estimates of minimal revisions, Dagum et als (1986 and 1987) 

investigated the optimal time horizons of the four ARIMA models 

listed in section 2.1 as a function of the noise content of the 

series and their trend-cycle patterns. These authors used a 

sample of 120 business and economic series classified according 

to the amount of irregular variation (as identified by the X-ll-

ARIMA method) into 5 classes ranging from less than 5% to less 

than 50%. The results showed that the forecast errors increased 

fast with the 



0 	increased irregularity in the series when the amount of 

irregularity was larger than 10%. Furthermore, for a fixed 

amount of irregularity the dispersion of the forecast errors was 

very small among the four time horizons analyzed, namely, 6, 12, 

18 and 24 months. 

In order to evaluate the effect of the trend-cycle 

pattern on the forecasting performance, Dagum et als (1986) 

introduced a measure of the degree of monotonicity of the trend-

cycle component. The results showed that for the four models the 

mean absolute forecast errors tend to be more sensitive to the 

presence of cyclical variations, than to either the amount of 

P 

	

	irregularity in the series or the length of the forecast horizon. 

This was particularly evident for those series where the 

irregulars contributed more than 10% to their total variance. 

The next step of this major study is to determine how 

much the total revisions of the current seasonally adjusted 

values are reduced when the series are extended with an optimal 

number of forecasts. 

2.4. Backcastirig 

Another modification being introduced into the 

automatic ARIMA extrapolation option concerns backcasting. The 

current version of this program backcasts one year of data for 

P all series shorter than 15 years. Although backcasting improves 

the seasonal adjustment, in general, for series of 7 years or 
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longer it has the disadvantage of generating permanent revisions. 

These revisions are on early and historical seasonally adjusted 

values. Furthermore, backcasting also introduces revisions of 

current seasonally adjusted values in 8, 9 and 10-year series. 

This is due to the fact that the backcast values will change 

whenever the parameter values of the ARIMA models change. An 

optimal trade-off in the sense that the advantages of backcasting 

dominate its disadvantages can be found in series shorter than 7 

years for the use of backcasting enables the application of a 

symmetric filter to observations in the middle. 

The option of backcasting only series of less than 

seven years is now being incorporated into the X-ll-ARIMA 

package. 	 4 
2.5. Other Modifications in the Forecasting Function 

The criteria of fitting and extrapolation for the 

built-in ARIMA models introduced by Dagum (1981) have been 

relaxed. The mean absolute percentage of the forecast errors 

(M.A.P.E.) has been raised to 15% from ther current 12% and the 

level of significance of the chi-squared distribution of the 

Ljung and Box (1978) test for the randomness of the residuals is 

5% instead of 10%. These changes in the level of the acceptance 

criteria do not affect the advantages of using the ARIMA 

extrapolations but enable a more frequent application of the 

automatic ARIMA options. 
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0 	We are currently considering the incorporation of other 

extrapolation methods besides the ARIMA models as an option for 

the users. These new methods are expected to be optimal for 

shorter and longer forecast horizons than a year. They should 

also be of easy estimation and interpretation. 

Another modification already introduced into the 

program is the automatic removal of trading day variations (if 

present) before the ARIMA modelling for these models cannot 

adequately handle trading-day variations. 

3. Major Developments in the Seasonal Adjustment Function 

The major developments being carried out on the 

) 

	

	
seasonal adjustment function of X-ll-ARIMA include (i) estimation 

of Easter effects; (ii) estimation of stochastic trading day 

variations; (iii) new replacement of extreme values; (iv) 

increasing the accuracy of the end-weights of all the Henderson 

trend-cycle filters available in the program and (v) new 

diagnostic tools. A description of these developments follow. 

3.1. Estimation of Easter Effects 

Currently the X-11-ARIMA does not estimate the impact 

of Easter on the total variation of a series. This type of 

moving holiday associated with the calendar can cause serious 

distortions in month-to-month movements when it occurs in March 

or at the beginning of April. 



-12- 

There has been a renewed interest in Easter adjustment 	4 
recently due to the early arrival of Easter (March 28) in 1986. 

In international trade series, particularly imports, a drop was 

observed in March followed by a rise in April caused by 

processing the end of March custom forms only in April because of 

the Easter closing of customs offices. This is an example of 

series in which the presence of Easter is accompanied by a 

decrease of level. The opposite effect can be observed in other 

series; e.g. marriages always show a marked increase during 

Easter. In these two examples the impact of Easter is immediate 

in the sense that only the holiday period displays a change of 

activity. 

There is another type of Easter effect which affects 	4 
not only the holiday period but days (sometimes weeks) before it. 

This type of gradual impact occurs in retail trade series such as 

chocolates, flowers, woments  clothing. 

To take into account both kinds of Easter effect, the 

following models are now being incorporated into the X-11-ARIMA 

program (Dagum, Huot and Morry 1987.a). 

(a) Immediate Impact Model for Easter Effect. 

E 	(I 	-I. .) 	.1 (I. 	1 - 
E. = 1/2 f(Z.) [id4 i,j+1 

	i,j_ 	icA i,j+ 
1 	 1 i 	 - 	

1J

rA 
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0 	where 

Zj = number of days between Easter Sunday in year i 

and March 22 (the earliest possible Easter date) 

f(Z1) = 1 if Zi<9  (Easter falls in March) 

f(Z) = 0 if Zj >9 (Easter falls in April) 

Ijj = residuals estimated in first iteration of X-11-ARIMA and 

assumed to be affected by Easter effect (Ei); i denotes 

year and j month of March (consequently j+l denotes 
April) 

nM = number of years when Easter fell in March; 

nA = number of years when Easter fell in April. 

0 	(b) Gradual Impact Model for Easter Effect. 

	

E.- 1/2 f(z.)[1cM i,j+1 - 1i,j' - iAi,j+1 - 	 (3.1.2) 
1 rIM 	 LA 

where now the indicator function f(Zi) is defined by 

f(Z) = 1 if Zj <9 

f(Zi) = k+9-Zi if 9< Z1< k 

f(Z) = 0 k 
	

if Zj> k 
The subscript LA refers to late April Easter defined as an Easter 
date occurring on or after the k-th of April. 

The build-up period k can be automatically chosen by the program 

according to the characteristics of the series or provided by the 

user. The process of estimating k is fully described in Dagum, 

Huot and Morry (1987.a). 
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3.2. Estimation of Trading-Day Variations 

The trading-day variations are estimated in the X-11-

ARIMA program using ordinary least squares (OLS) on a regression 

model developed by Young (1965). It is assumed that, 

It = TDt + 
	

(3.2.1) 

where It denotes the residuals after trend-cycle and 

seasonality have been removed from the original series, TDt 

denotes the trading-day variations and E is a purely random 

irregular, i.i.d 	(0,a2  ). 

The trading day variations can be expressed by, 

TDt - il • Tt 	 (3.2.2) 

where 6=(- ) and  Tjt = Xjt - X7t. The j'S represent 

the difference between the Monday, Tuesday,..., Saturday effects 

and the average daily effect T . Xit denotes the number of 
times a given day of the week occurs in months t and X7t 

denotes the number of times that Sunday occurs in month t. As 

long as the relative weight of daily activities is stable 

throughout the length of the time series, this approach produces 

reliable estimates. 

On the other hand, changes in shopping patterns or 

store opening hours introduce modifications in trading-day 

variations that cannot be adequately estimated with the existing 

deterministic model. To overcome this limitation, Dagum, 
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, 	Quenneville and Cholette, (1987) are presently investigating two 

other types of model that assume a stochastic behaviour of 

trading-day variations. One model, already discussed by Monsell 

(1983) assumes that the cS's follow a random walk model. That is, 
6 

	

TDt = 	T., 	 (3.2.3) 
i=1 

where the process generating 6'- 	it'' 	6t is given by 

61 = 	6 1 	+ -t 	 x 	N.1.D.(O, oI ) 	(3.2.4) X6 

The second stochastic model assumes that the vector of daily 

coefficients follows a random walk with a random drift. That is, 
6 

TD = 	 T 	 (3.2.5) 
t 	i=l 

--1 
 +p + 	

(3.2.6) 

= -i + 	 (3.2.7) 

	

P where X and 	are mutually independent and distributed N(O,aI 6 ) 

and N(-O,a 16)  respectively. 

These two stochastic models for trading-day variations are 

written in state-space form and the estimates 6 	and 	are 

calculated with the Kalman filter and Kalman fixed interval 

smoother. The hyper-parameters c, G 2 /a 2  and a/a 2  are estimated 

with maximum likelihood estimators. 

3.3. New Replacement of Extreme Values 

Currently the X-11-ARIMA method replaces an extreme 

seasonal-irregular value say SI , receiving less than full- 
0 
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weight, with an average of the corresponding SI 	times its 

weight and the two nearest preceding and the two nearest 

following full-weight SI. 	for that month (quarter). That is, 

Si 	
-(j 	

si1 + w0sI)/(4 +w0) 	 ( 3.3.1)t
E 

where t1<t2<t0<t3<t4 but not necessarily equally spaced 

and W0 is the weight for the extreme value. In general, the 

wj's such that o<wj<l are calculated in a linearly graduated 

way, being zero for values of the irregulars I . 	falling at or 

outside 2.5c1 and equal to one for values falling at 1.5o or less. 

The equation (3.3.1) is changed for SI extreme values in either 

of the two beginning or ending years. In such cases, the 

is the average of the corresponding SI 	times its weight w 0  

and the four nearest full-weight (wj=l) seasonal-irregular 

values for that month (quarter). If enough full-weight SI 	are 

not present, then the SIt 	is simply the arithmetic average of 

all the SI'S for that month (quarter). 

There are two limitations with the current procedure; 

one, for borderline extremes (w 0  near to one) the modified 

seasonal-irregular can change abruptly from an average of five 

SI'S to its actual value SI 	just simply when one more 
0 

observation is added. Two, if full-weight seasonal-irregulars 

can be found only very far from the extreme value, serious 

distortions are introduced when seasonality changes rapidly. In 

order to avoid these limitations, a new formula is being tested 

on a large sample of series. The proposed formula (Dagum and 

Chiu, 1987) is 

sift) 
=(i1 . SI

ti  + 	+ 	(3.3.2)
= 	0) ( 	 0) 
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where ti<t2<t0<t3<t4 and not necessarily equally 

paced. 

ct j  = 1 w 1 (1_w) 	results from a combination of the 

current weights 'j calculated by the program and a set of a i  
weights which penalize 	SI.values more than two years away from 
SI. The further the SI v±ue the smaller is j. 

o 	• The average is taken over the four largest 

cz'S.In the case of an SI 	to be replaced with two full-weighted 

values present at the two nearest preceding and two nearest 

following years, then 	= 1 and Wj = 1; and the equation 

(3.3.2) reduces to 

SI 	(1-W 4) E  SI + w sI/(  4(1-)+w ) 	(3.3.3) 
to 	0 i=l  

If O<w 
0 
<1/2 equation (3.3.3) gives results similar to the current 

procedure but as w,- tends to one, the modified seasonal-

irregular tends to its observed value. (This formula (3.3.3) was 

suggested to me in a letter by Mr. Andrew Sutcliffe of the 

Australian Bureau of Statistics.) 

3.4. End-Weights of Henderson Trend-Cycle Filters 

The weights of all asymmetric trend-cycle filters in X-

li-ARIMA are those of the Census X-ll-Variant. These weights are 

given with three digits only and, thus, the degree of accuracy of 

the estimates is rather limited. The reason for not using 
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weights with higher precision is that it was not known how these 

weights were obtained by Shiskin, Young and Musgrave (1967). 

Laniel (1985) has recently found a criterion for the 

design of the 13-term Henderson end weights that gives exactly 

the same values as those incorporated into X-ll-ARIMA and 

consequently, they can now be calculated to any degree of 

precision desired. 

The formula used to obtain these weights is based on 

the minimization of the mean squared revision (MSR) between the 

final estimate (obtained by the application of a symmetric 

filter) and the preliminary estimate (obtained by the 

application of an asymmetric filter) subject to the constraint 

that the sum of the weights is equal to one. The assumption made 

is that at the end of the series the seasonally adjusted values 

are equal to a linear trend-cycle plus a purely random irregular 

NID.(Oi 2a )• The equation used by Laniel (1985) is, 

= c (t-E h(t-i))2+a 	E(hmj_hij)2 	(3.4.1) 

where hmj and hjj are the weights of the symmetric (central) 

filter and the asymmetric filters, respectively; h=O for 

ci is the slope of the line and C 2 denotes the 

noise variance. There is a relation between c, and 0 2  such that, 
a 

/C= (4a 2  /n) 1/2 	i 	 (3.4.2) 	1 a 
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' 	the I/C noise to signal ratio in the Census X-ll variant and X- 

il-ARIMA as well, determines the length of the Henderson trend-

cycle filter to be applied. Thus, setting to and m=6 for the 

end weights of the 13-term Henderson, we have, 

Er0'6 	
2 	6 

1J 4 	(( E h..) + 	E (h -h. )2) 	 (3.4.3) 
= ______ j--i 	j=-6 6j lj 

2. CY a 

Making I/C=3.5 (the most noisy situation where the 13-term 

Henderson is applied), Laniel (1985) obtained the same set of end 

weights as those of Census X-11 variant. These end weights have 

been calculated for the remaining Henderson filters using,for quarterly 
and 

series I/C=3.5 for the 5-term filtei7 I/C=7 for the 7-term filter;for monthly 

series I/C=.99 for the 9-term filter and I/C=7 for the 23-term filter. 

These weights are now incorporated into the X-ll-ARIMA program. 

0 	3.5. New Diagnostic Tools 

The major developments concerning the various tests and 

statistics used to control the quality of the seasonally adjusted 

series are described below. 

(a) 	A Modified F-test for the Presence of Stable and Moving 

Seasonal i ty. 

The most important test applied by X-11-ARIMA to assess 

the presence of both stable and moving seasoriality is the F-test. 

This test is based on standard ANOVA methods and do not take into 

account the likely possibility that the seasonal-irregular (SI) 

estimates to which they are applied can be autocorrelated. 
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Sutradhar and MacNeill (1987) have investigated the 

effect on the F statistic assuming the following model for stable 

seasonality. 

Y(t) = 	+ Z(t) 

i - 1,... ,k ; tul,...,n 

Where Yj(t) denotes the final unmodified SI estimates 

corresponding to year t and season i; c is the effect due to the 

ith season; and Zj(t) follows an ARMA process (p,q) (P,Q)s. As 

in standard ANOVA, the season or group effect is constrained by 
k 

	

the relation 	0. 

The modified F-test statistic, Fm, for testing H0: ct0 

versus H1: c'. 0 0 for at least one i is 

	

L. 	
)2 	k(n-1)c2(,&10) 

F 	k 	
(3.5.2) 

m 	n 

. 	(Y(t)_) 2  (k-1)c1 (,e,O) 

where c2 and cl are given by Sutradhar and MacNeill (1987) 

for various combinations of the parameter. values , V, 0 

and ®. 

If the seasonal pattern is assumed to change over time, 

then the model (3.5.2) becomes, 

	

Y(t) = uIai++Zi(t) 
	

(3.5.3) 

where now a t denotes the tth time effect and Jilt= 0. 

The hypotheses to be tested are as follows: 

2 H 	ct o 	i : a = 	= ...ctko 
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0 	versus 

Hi: c 	a 	 for some (i,j) 

and 

versus 

H: a t  0 at, 	for some (t.,t. 

For testing H0  versus Hi,  the modified F-test statistics is 
n 	

( )2 

FM(g) (Y 1 (t)- 1  -?.(t)+..? d
1 (, 	, 0, 0) 	(3.5.4) 

(n-i) c 	, 0, 0) 
where d 1  (, ', 0, 0 	

* (, 	, 0, 0) 

Similarly for testing H' versus 
0 

k 	((t)) 2  
FM(t) = 	k 	n 	 2 d2(4), ti, 0 1  0) 

ii 	 (3.5.5) 

where 

(k-i) c(4),  
d 2  (4), (ti, 0, 0) = 	c  

Values of d 1  and d 2  are calculated by Sutradhar and MacNeill 

(1987) for various combinations of 4) 	, 0 and 0. 

Currently research is being carried Out by Dagum, Huot 

and Morry (1987.b) with a large sample of real series to: 	(1) 
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determine the type of ARMA model most often found for the 

residuals of the SI estimates; (2) calculate the values of Fm 

for stable and moving seasonality and (3) determine the 

relationship between the existing F as calculated by the program 
and Fm . 

Charts of Trading-Day-Irregular residuals by types of 

Month. 

Optional charts that plot the trading-day-irregular 

residuals for the 22 types of months are incorporated into the 

program. These charts permit to evaluate the adequacy of the 

daily weights estimated by the program to produce reasonable 

trading-day variations for each month. They also detect 

those cases where there have been a break in the pattern of the 

trading day variations. 

Spectral Subroutine 

The existing set of tests and statistical measures 

available in the X-ll-ARIMA for analytical purposes will be 

expanded with the inclusion of a subroutine that calculates the 

spectra of both the original series and the seasonally adjusted 

series. This tool will mainly supplement the information 

provided by the F-tests on the presence of stable and moving 

seasonality as well as the F-test on the presence of trading-day 

variations. In general, it will be useful to assess the effect. 

of the seasonal adjustment on the original series. 
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