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ABSTRACT 

Most statistical bureaus do not apply uniform practices for 
the seasonal adjustment of related series and, consequently, the 
presence of inconsistencies may occur. This lack of uniformity 
results mainly from the fact that: (1) the seasonal adjustment 
method, the X-ll-ARIMA, can be used in four different modes (each 
mode producing different current seasonally adjusted values of 
the same series); and (2) that most key economic and social 
indicators are large aggregates and the results differ whether 
they are seasonally adjusted directly or indirectly (through the 
aggregation of each of the seasonally adjusted components). 
Other problems faced currently by Statistics Canada and other 
statistical bureaus which will also be discussed in this paper 
are: the smoothing of highly irregular seasonally adjusted 
series, the estimation of trading day variation and the 
estimation of Easter effect. 

KEYWORDS: current seasonal adjustment, smoothed seasonally 
adjusted estimates, trading day variation, Easter 
adjustment, aggregation 
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1. INTRODUCTION 

During this decade Statistics Canada and other 

statistical bureaus focussed their attention on several 

important issues concerning the seasonal adjustment of time 

series, namely, (1) the seasonal adjustment of current 

observations; (2) the smoothing of highly irregular seasonally 

adjusted series; (3) the seasonal adjustment of aggregates; (4) 

the estimation of trading day variation; and (5) the estimation 

of Easter effects. 

The main purpose of this paper is to discuss each of the 

above problems in the context of the X-11-ARIMA seasonal 
adjustment method developed by Dagum (1980) and applied by 

Statistics Canada and other statistical agencies throughout the 
world. 

Section 2 introduces the four modes in which the X-11-

ARI14A computer package can be used to produce a current 

seasonally adjusted value and the consequences of applying 

different modes to related series. Section 3 deals with the 

nature and characteristics of the smoothing (trend-cycle) filters 

available in X-11-ARIMA to help reveal better the short term 

trend present in highly irregular series. Section 4 discusses 

the problem of how to handle the seasonal adjustment of aggregate 
series and its components. Section 5 deals with the estimation 

of trading day variations and finally, Section 6 addresses the 

problems associated with estimation of Easter variations. 

2. SEASONAL ADJUSTMENT OF CURRENT VALUES 

A current seasonally adjusted value can be obtained 

using either a concurrent or a forward seasonal estimate. A 
"concurrent" seasonal estimate (factor or effect depending on 

whether a multiplicative or additive model is assumed) is 
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obtained by seasonally adjusting each time a new observation is 

available, all the data available up to and including that 

observation. On the other hand, a forward seasonal estimate is 

obtained from a series that ended in the previous year. A common 

practise is to generate these forward seasonal estimates say, for 
year t+l, from data that ended in December of the previous year 

t. 

There are four modes in which the X-ll-ARIMA computer 

program can be applied to produce a current seasonally adjusted 

value. These four modes are: (I) using ARIMA extrapolations and 

concurrent seasonal factors, (II) using ARIMA extrapolations and 

forward seasonal factors; (III) without the use of ARIMA 

extrapolations and applying concurrent seasonal factors and (IV) 

without the use of ARIMA extrapolations and applying forward 

seasonal factors. 

Statistical bureaus use the four modes to obtain current 

seasonally adjusted values but differ in their frequency. Thus, 

for example, the dominant mode in Statistics Canada is (I) 

followed by mode (III) whereas in the U.S. Bureau of Labor, the 

dominant mode is (II) followed by mode (IV). The current 

seasonally adjusted value produced by each type of seasonal 

adjustment varies and is subject to different degrees of error. 

Even within the same statistical agency there are frequent 

occurrences of different modes being applied to related series. 

This practice is not advisable since it can result in giving 

different signals on the short-term trend of the same type of 

series. Therefore, it is very important to decide the model by 

which similar or related series will be adjusted to avoid 

inconsistencies. 

Under the assumption of an additive decomposition model, 

the seasonal adjustment of a current value Xt can be obtained 

by, 



-4- 

Xt () Xt-st ( ' ) ; 

where St()  denotes a forward seasonal estimate. 

or 

A 	 A 

xt(0)=xt_st(0) 	 (2.2) 

where 't( 0 ) denotes a conconcurrent seasonal estimate. 

The current seasonally adjusted value will become 

"final" in the sense that it will no longer be revised after 42 

more observations are added. Thus, 

t(m)=Xt_St(m) 	 (2.3) 

where St(Ifl) denotes a final seasonal estimate. 

Therefore, the total revision of a concurrent and of a 

forward seasonal estimate can be written as, 

rt(O,m)=st( 0 )_st(m); m>O 
	

(2.4) 

; 	m>O>9. 	 (2.5) 

Under the assumption of an additive decomposition and no 
replacement of extreme values, St('fl)  can be expressed by 

m 
hm,j xt_jh(m)(B)xt; 	(2.6) 

j-m 

where t(m) is the final seasonal estimate from a series 

Xt_m,..,Xt,...,xt+m; and hm,j=hm,-j  are the symmetric 
moving average weights to be applied to the series. h(m)  (B) 

denotes the corresponding linear filter using the backshift 
operator B, such that Bfl=Xt_n. Young (1968) showed that the 
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length of this symmetric filter h(m) (B), for monthly series, is 

145 but that it can be well approximated by 85 weights because 
the values of the weights attached to distant observations are 

very small and, thus, m=42. 

Following equation (2.6) we can express a concurrent 

seasonal estimate St(0) and a forward seasonal estimate St 

by 

0 
t(0)=j...2hO,j Xt-j = h(0)(B)X;m42 	(2.7) 

where h(0) (B) denotes the asymmetric concurrent seasonal 

filter. 

= h(B)X; m=42 
	

(2.8) 
j=-2m 

where h 	(B) denotes the asymmetric forward seasonal filter and 

= 1,2,...,12 for a monthly series. 

The revision of a concurrent seasonal estimate St( 0 ) 

depends on the distance between the concurrent and the final 

filter; that is, d[h(0) (B), h(m) (B)] and the innovations of 

the new observations Xt+l,Xt+2,...  ,Xt+m . 

Similarly, the revision of a forward seasonal estimate 
. 	(2) 	(i,) 
St 	depends on d[h 	(B), h()(B)] and on the new 

innovations introduced by Xt...+1,... ,Xt,  xt+l, ... ,Xt+m 
Theoretical studies by Dagurn (1982a and 1982.b) have 

shown that, 

d[h(0)B, h(m) (B)]<d[h 2  (B), h(m)  (B1 	(2.9) 

for 	2..=l,2 .... ,12. 

The distance between the two filters is defined as the 

mean squared difference between the frequency response function 

of the filters over all the seasonal frequencies. 
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Relation 2.9 is true whether ARIMA extrapolations are used or 

not. Furthermore, the two studies also showed that if ARIMA 

extrapolations are used then 

dh( 0 ) (B), h(m) (B)] using ARIMA extrapolations 	(2.10) 

< dE h(0) (B), h(m)  (Bl without ARIMA extrapolations. 

and similarly, 
d[h(Z) (B),  h(m)(B)]  using ARIMA extrapolations 	(2.11) 

<d[lI) (B), h(m)(B).]  without ARIMA extrapolations 
for 2 = 1,2, ... ,12 

Several studies by Dagum (1978), Bayer and Wilcox 

(1981); Kenny and Durbin (1982), McKenzie (1984), Dagum and Morry 

(1984); Pierce (1980) and Pierce and McKenzie (1985) have shown 

that 

	

r(O,m) < r( 9-,m) 
	

(2.12) 

except in a few cases where 

	

(O,m) > r(,m) 
	

(2.13) 

The relationship (2.13) can be observed when the current 

observations of the latest year are strongly revised since 
gets the largest weight in the estimations of 

From the viewpoint of the total revisions of the 
seasonal estimates, the results of the above empirical studies 

permit to rank the four modes as follows: Mode I (ARIMA 
extrapolations with concurrent seasonal estimates) gives the 

smallest total revision; Mode III (no ARIMA extrapolations with 
concurrent seasonal estimates) ranks second; Mode II (ARIMA 

extrapolations with forward seasonal estimates) ranks third and 

Mode IV (ARIMA extrapolations with forward seasonal estimates) 

ranks fourth. 
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It is important that users are aware of the relative 

quality of each adjustment to produce the most reliable (minimum 

revision) seasonally adjusted estimates. However, it is 

sometimes possible that operational and cost considerations only 

allow for a suboptimal solution such as the application of 

forward seasonal estimates to produce seasonally adjusted current 

values. If this is the case, it is imperative that the same 

approach be followed by all users of related series to ensure 
consistency. 

3. SMOOTHING OF HIGHLY IRREGULAR SEASONALLY ADJUSTED SERIES 

One of the main purposes of the seasonal adjustment of 

economic time series is to provide information on current 

economic conditions, particularly to determine the stage of the 

cycle at which the economy stands. Since seasonal adjustment 

means removing only seasonal variations, thus leaving trend cycle 

estimates together with irregular fluctuations, it is often 

difficult to detect the short term trend or cyclical turning 

points for series strongly affected by irregulars. In such 

cases, it may be preferable to smooth the seasonally adjusted 

series using trend-cycle estimators which suppress as much as 

possible the irregulars without affecting the cyclical component. 

The use of trend-cycle estimates or of smoothed 

seasonally adjusted data instead of a highly irregular 

seasonally adjusted series have been discussed by several writers 

and recently by Moore et als (1981), Kenny and Durbin (1982), 

Maravall (1986), and Dagum and Laniel (1987). Although not yet 

practised widely, some statistical agencies such as Statistics 

Canada and the Australian Bureau of Statistics smooth some of 

their series. 

The statistical properties of the trend-cycle estimators 

(filters) available in X-11-ARIMA can be studied looking at the 

corresponding frequency response functions. The frequency 

response functions of a filter is defined by, 



r(m) (tA)= j-m Ym,j exp(-i2irwj) 	o<w<1/2 	
(3.1) 

where y are the weights of the filter and w is the frequency 
In,J 

in cycle per time unit. In general, the frequency response 

function may be expressed in polar form by 

F(w)=A(w)+iB(w)=G(w)expLic(w)J 
	

(3.2) 

1/2 
where G()=[A 2 ()+ 32(w)j is called the gain of the filter 

and (c 	arctanLB(w)/A(w)J is called the phase shift of the 

filter and is expressed in radians. The expression (3.2) for 

r(w) shows that if the input function is a sinusoidal variation 

of unit amplitude and a phase shift p(), where i(w) is linear, 

the output function will also be sinusoidal but of amplitude G(w) 

and phase shift i(w)+(w). The gain and phase shift vary with 

the frequency w. For symmetric filters, the phase shift is 0 or 

±11 and for asymmetric filters it can take any value between ±11 

being undefined at those frequencies where the gain is 0. 

The combined linear filters applied to the original 

series to generate a central (symmetric) trend-cycle estimate 

have been calculated by Young (1968) for Census Method II-X-ll 
variant. This filter is similar to that of X-ll-ARIMA with and 

without ARIMA extrapolations. Dagum and Laniel (1987) extended 
Young's (1968) results to include the estimation of the 

asymmetric trend cycle filters of X-ll-ARIMA with and without the 

ARIMA extrapolations. 

Figure 1 shows the gain functions of the central 
(symmetric) seasonal adjustment filters and smoothed seasonally 

adjusted data (trend-cycle) filters. It is apparent that the 
trend-cycle filters suppress all the noise present in the series, 
where the noise is defined as the power present in all 

frequencies w< .166. This frequency corresponds to the first 

harmonic of the fundamental seasonal frequency of a monthly 
series. This pattern results from the convolution of the 
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seasonal adjustment filters with the 13-term Henderson trend-
cycle filter. 

(Please place Figure 1 about here) 

Figure 2.a shows the gain functions of the concurrent 

and first-month revised trend-cycle filters of X-11-ARIMA without 

ARIMA extrapolations. Figure 2.b shows their corresponding 

phase-shift functions expressed in months instead of radians. We 

can observe that the gain for all w<.167 is much larger for these 

two asymmetric filters as compared with the central filter. 
Furthermore, there are large amplifications for frequencies near 

the fundamental seasonal. All this means that the concurrent and 

first revised smoothed seasonally adjusted values will have more 

noise than the final estimates. On the other hand, it is 

apparent that the phase shifts are very small, less than one 

month for the most important cyclical frequencies 0<w<.055  (i.e. 

cycles of per iodicities equal to and longer than 18 months). 

(Please place Figures 2.a and 2.b about here) 

Figure 3.a and 3.b show the gain and phase-shift 

functions of the concurrent and first-month revised trend-cycle 

filters of X-11-ARIMA with ARIMA extrapolations. The 

extrapolations are obtained from an IMA model (0,1,1) 0'1'1k2 

with =.40  and ®=.60. The gain functions are closer to the 

symmetric (central) filter than those of X-11-ARIMA without the 

ARIMA extrapolations. There are no amplifications around the 

fundamental seasonal frequency and a similar attenuation of power 

at higher frequencies. On the other hand, there is more phase-

shift (being near to one month) for low frequencies and less 

phase shift for all high frequencies. 

(Please place Figures 3.a and 3.b about here) 
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All this suggests that the smoothed seasonally adjusted 

estimates of highly irregular series will give more reliable 

signals of the short term trend than the seasonally adjusted 

values and even in the smoothed series gains in quality are 

apparent if ARIMA extrapolations are used. 

4. THE SEASONAL ADJUSTMENT OF AGGREGATED TIME SERIES 

Many time series are aggregates of a certain number of 

component series. Macro-economic indicators, for instance, can 

often be broken down by industry, region, commodity, etc. or as 

for the unemployment rates by age, sex, region, etc. This poses 

the crucial problem of seasonal adjustment of aggregated or 

composite time series and raises the following questions: 

Should the original data of the composite series be 

seasonally adjusted (the direct method) or should the 

original data corresponding to each of the component 

series be seasonally adjusted before aggregation (the 

indirect method)? 

Do the direct and indirect methods coincide? 

What is the criterion for choosing between these two 

procedures? 

When the indirect method is used, should there be a 

partial aggregation of the component series before 

seasonal adjustment? 

What are the criteria to identify the optimal partial 

aggregation? 

These questions leave no doubt about the complexity of 

the seasonal adjustment of most key indicators. It is also 

apparent that inconsistencies can occur when different approaches 
are followed for similar or related series. 
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4.1 The direct versus the indirect method 

Which of the two methods should be used to seasonally 

adjust aggregated series is a question with no straightforward 

answer but is fundamental since the two methods give in general 

different results. This is because of the non-linearities in the 
X-ll--ARIMA program which can only be eliminated if the following 

conditions are satisfied: (1) all the component series as well 

as the aggregate are seasonally adjusted with the additive model; 

(2) no replacement of extreme values is made; and (3) the 

variable trend-cycle curve is kept constant during all the 

iterations. From a seasonal point of view, postulating in all 

cases an additive decomposition model is inappropriate, and 

condition 2 is not reasonable in most cases. 

From a statistical viewpoint, the indirect method is 

generally more efficient than the direct one unless the seasonal 

pattern of the aggregate series is easily detectable whereas the 

seasonal pattern of some of the important component series is not 

(due, for instance, to a strong irregularity and the presence of 

outliers) (Pfeffermann, Salama and Ben Tuvia, 1984). The 

indirect method would also be generally preferable for most 

indices and percentage rates such as the unemployment rates 

(Dagum 1979), or when some of the component series have an 

additive structure and the others have a multiplicative one. The 

indirect procedure then ensures that the correct decomposition 

model is used for each series. On the other hand, the direct 

method is advantageous for example when the component series have 

a similar seasonal pattern. The seasonal factors obtained from 

the composite series can be used to adjust the component series. 

Then the adjusted composite series coincide with the aggregated 

adjusted series which is often desirable from theuser's point of 

view. The indirect method can also achieve this goal. 

In most practical cases, however, a selection criterion 

is applied by running the X-ll-ARIMA program which tests the 

smoothness of both the direct and the indirect aggregated series 
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(Lothian and Morry, 1977 and Dagum, 1979). Since the main 

purpose of seasonal adjustment is to determine, for instance, the 

stage of the cycle at which the economy stands, the goal is then 

to have a seasonally adjusted aggregated series that approximate 

as much as possible the trend-cycle curve. The trend and 

cyclical variations are assumed to be "smooth functions of time". 
Thus the selection of the better method is based on the degree 

of smoothness of both the adjusted composite series and the 

aggregated adjusted series. Spectral analysis is another way of 

finding out which one of the two methods is better at removing 

seasonality and smoothing the series. 

4.2 The basic elementary unit of an aggregate, i.e., the partial 

aggregation problem 

The widely used indirect procedure poses a problem. 

Consider the unemployment rate, the components of which are 

grouped, for instance, by age and sex. The partial aggregation 

problem is to collapse together the component series which will 

enable a more accurate identification of seasonal variations. In 

this example, male and female teenage employment can be combined, 

if they show similar seasonal patterns, to form what we shall 

call a basic elementary unit of the aggregate. On the other 

hand, it might be inappropriate to combine adult males and 

females unemployment if their seasonal patterns are non similar, 

each one of the two series is then by itself a basic elementary 

unit. 

Any possible combination of basic elementary units will 

give the same raw unemployment rate but different seasonally 

adjusted unemployment rates. A large discrepancy between the 

adjusted series is a serious problem. Therefore, it is essential 

to identify the better set of basic elementary units. 

Dagum (1979) has presented a set of four properties that 

an economic time series must have to be considered as a basic 
el€mentary unit. 
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Property 1: 

The seasonal component of a basic elementary unit must 

be identifiable, i.e., the seasonal variable must be large 

relative to the irregular and/or the cycle. The X-ll-ARIMA 

program tests series for the presence of seasonality. A similar 
analysis can be made by looking at the correlogram or the 

spectrum of the basic elementary unit series. 

Property 2: 

The seasonal pattern of a basic elementary unit must be 
reduced to its simplest shape and/or result from seasonal causes 
that belong to a homogeneous class. This does not preclude the 

partial aggregation of all series that have two troughs and peaks 

generated by two seasonal causes. For example, adult females of 

different age groups might have more unemployment in winter due 

to slowdowns in economic activity and more unemployment at the 

end of the summer due to other factors such as children 

education. 

Property 3: 

The seasonal pattern of basic elementary units with 

seasonals having similar amplitudes and the "same" timing in 

their peaks and troughs must be aggregated (confer to the example 

given in property 2). 
Property 4: 

A basic elementary unit should represent an observable 

economic phenomenon and not a mathematical abstraction. This 

implies that most of indices and percentage rates such as the 
unemplooyment rates cannot be considered as basic elementary 

units for seasonal adjustment. The direct procedure is thus 
inappropriate in these cases. 

Note that the component series of a macro-economic 
indicator are selected for their economic content and are related 

to a given observable economic phenomenon. On the one hand, the 

four properties prevent any loss of information that may result 
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from partial aggregation. On the other hand, the organization of 

basic units into subsets according to the four properties is 

legitimate and does not place statistics before economics since 

the component series were initially selected because of their 

intrinsic economic relevance. 

5. THE ESTIMATION OF TRADING DAY VARIATION 

Business and economic time series which are flows, in 

the sense that they result from the accumulation of daily values 

over the calendar month, are affected by calendar variations. In 

addition to seasonal influences these calendar variations also 

need to be removed from the series to obtain a clear signal of 

the short-term trend. There are two types of calendar 

variations; one which is due to the changing number of times each 

day of the week occurs in a month, normally referred to as 

trading day variation, the other is caused by the variable timing 

of certain holidays with respect to the calendar of which Easter 

has the largest impact. 

Trading day variations arise mainly because the activity 

varies with the days of the week. 	Other sources are associated 

with accounting and reporting practices for example, stores that 

do their bookkeeping activities on Friday tend to report higher 

sales in months with five Fridays than in months with four 

Fridays. 

The trading day effects are estimated in the X-11-ARIMA 

programusing ordinary least squares on a simple deterministic 

regression model developed by Young (1965) and first introduced 

into the Census Method II X-11 variant (Shiskin, Young and 

Musgrave, 1967). 

In Young's approach, the following model is fitted to 

the series It (this is the series from which the trend-cycle 
and seasonal fluctuations have already been removed): 

= TDt + Et 	 (5.1) 
where it is assumed: 	NID(O,2) 
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The trading day variation TDt can be expressed as: 

6 

	

TDt = ii 	5i Tj.t 	 (5.2) 
where 

	

= i 	- 	and Tit = it - 7t 
the cSi 's represent the difference between the Monday, 

Tuesday,...,Saturday effects Ei and the average daily effect 

• Yit denotes the number of times a given day i of the 

week occur in month t and Y7t denotes the number of times that 
Sunday occurs in the month t. Here the Sj's are fixed and 

estimated using ordinary least squares. As long as the relative 

weight of daily activities is stable throughout the length of the 

time series, this approach produces reasonable estimates. 

However, this is not always a realistic assumption. It is well 

known that, for example, in retail trade, store opening hours and 

consequently, consumer shopping patterns have changed over the 

last decade; there are much more retail outlets open on Sundays 

and even during the week stores keep longer hours than 
previously. 

This problem can be partially overcome by estimating the 
regression coefficients based on the last six or seven years of 

data only rather than on the full span of the series to reflect 
more recent weight patterns. However, if the daily weight 

structure changes rapidly the estimated weights, which describe 
the average weight structure over the last six or seven years, 

will statistically distort the actual trading day variation 
present in the current observations. 

To overcome this limitation of the method, we are 

presently investigating the possibility of introducing two other 

trading day models in the X-ll-ARIMA program which would allow 
for a stochastic behaviour of the daily coefficients instead of 

the presently assumed deterministic one. 

One model, already proposed by Monsell (1983) assumes 

that the generating process of the 's is a random walk. That 

is, 
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TDt = E 61 it Tjt 
i1 

where 
6 1  - 61 	+X 
t 	pdt 

and 	
- 

 

(5.3) 

61  = ,... 6 ); 	tID (O,aI6) 
(5.4) 

The second stochastic model assumes that the vector of 

daily coefficients follows a random walk model with a random 

drift. That is, 

6 
TDt = Z 62it Tit 	 (5.5) 

i=1 	 - 

62 	+ P 	 (5.6) - 	- t-1 

p -p 	+ 	 (5.7) 
-.t 	t-1 	.t 

Equations (5.5), (5.6) and (5.7) provide a local 

approximation to a linear trend in the daily coefficients. The 
level and slope of the trend are assumed to be generated by 

stochastic processes. 

Error vectors Xt and It  are assumed to be mutually 

independent and NID(O,a* r6) and NID(Op 2  16)  respectively. 
These two stochastic models are written in state-space form and 

the estimatesS , i=1,2 of 6 , together with their mean square 

error matrices, are estimated with the Kalman filter and fixed 

interval smoother. Maximum likelihood estimators are used to 

estimate the remaining hyper-parameters a 2  a . 2 /a 2  and a/ 02 

If these models will be made available to users it is 

crucial to provide guidelines (probably based on the signal to 

noise ratio present in the data), concerning the most suitable 

model for a given series. 
Finally whenever there is trading day variation present 

in a series, whether of a deterministic or stochastic nature, it 

is important that this variation be removed before fitting an 

ARIMA model to the series in the extrapolating phase of the X-11-

ARIMA seasonal adjustment procedure, since trading day movements 

would not be picked up adequately by the ARIMA model. 
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6. ISSUES CONCERNING THE ESTIMATION OF EASTER EFFECTS 

As mentioned previously, there is another type of 

calendar variation associated with moving holidays whose effect 

needs to be removed from the time series to avoid distortion in 
the month-to-month movement. Liu (1980) describes how the 
varying placement of the Chinese New Year plays a role in 

modelling time series. Pfefferman and Fisher (1980) discuss the 
impact of religious festivals in Israel, based on the Hebrew 

calendar, in economic time series compiled according to the 

Gregorian calendar. In the western world the most important 

example of holiday variation is associated with the Easter 
holiday which may occur as early as March 22 or as late as April 

25. 

There has been a renewed interest in Easter adjustment 

recently due to the impact of the relatively early arrival of 

Easter (March 28) in 1986. Since this holiday has not fallen in 

March since 1978, in time series affected by Easter variation, 

the March to April movement of 1986 was not in line with those 

observed in previous years for a while. In international trade 

statistics, especially in the value of imports, a drop was noted 
in March followed by a rise in April caused by processing the end 

of March forms only in April due to the Easter closing of customs 

offices. New car dealers reported relatively low sales in 

volumes in March of 1986 because of not being open for business 

during Easter. These two are examples of series in which the 

presence of Easter is accompanied by a decrease in level. The 

opposite effect can be observed in some other series; for 

example, the number of marriages shows a marked increase during 

Easter. In these cases whether the effect is positive or 

negative, the impact is immediate, i.e. only the holiday period 

displays changed activity. 

There is another category of Easter variation which 

manifests itself in an increased or decreased activity not only 
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during the holiday but days and sometimes even weeks before it. 

This type of gradual impact occurs in the sales of chocolates, 

flowers, women's clothing etc. It follows that in cases like 

this the Easter effect will not only depend on whether the 

holiday fell in March or in April but it also depends on the date 

in April. An early April date of Easter will influence the March 

figures to some extent (the earlier the date the higher the 
effect) if the build-up period in activity covers also the end of 

March. Thus we distinguish between two kinds of Easter variation 

one with immediate impact and one with gradual impact. 

Accordingly, the estimation of Easter effect will depend on which 

model applies to a given series. 

In the context of X-ll-ARIMA, there are two basic 

approaches to estimate Easter effects, those which use the 

original data (adjusted for trading day variation) for building a 

regression model and those which base the regression on the 

irregulars obtained in a previous seasonal adjustment. The 

holiday adjustment proposed by Baron (1973) falls into the first 

category while the OECD method and the technique described by 

Pfefferman and Fisher (1980) belong to the second category. 

When the estimation is based on the original data 

normally the proportion of the March values to the sum of March 

and April values is regressed against the date of Easter 

calculated as the number of days between the date and the 

earliest possible Easter date. The limitation of this approach 

is that it assumes a constant seasonal factor for each month 

throughout the entire period and it also ignores possible large 

trend movements that can invalidate the estimates. 

This drawback in the method is basically eliminated 

through the second approach, namely by using the estimated 

irregulars rather than the original series in the regression 

model. Even here some of the Easter effect could theoretically 

contaminate the estimation of the seasonal and trend-cycle 

component in the first stage but experience with real and 

simulated data shows that this is not a serious problem. Thus, 
the second approach is considered more appropriate for the 

majority of time series. 
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The estimation procedure depends on the nature of Easter 

variation present for it implies different Easter effect models. 

Since the estimation of Easter effects is currently not available 

in the X-11-ARIMA program, we describe in detail the two types of 

models that will be incorporated in the near future. 

6.1 Immediate Impact Model 

Let Ijj be the irregular component estimated in a 
first run of the X-].l-ARIMA seasonal adjustment. Here i denotes 
the year and j refers to the month of March. (Correspondingly 

j+1 refers to the month of April.) 

Using the additive decomposition model the irregular 

Ii,j and  Ij,j+l can be further decomposed as: 

	

=-Ej. +e113 	 (6.1) 

'i,j+l = E1+E1,j+3.  

where Ei denotes the Easter effect in year i and Cjj is 
assumed to be an i.i.d random variable. 

Let Z 1  be defined as the number of days between Easter 

Sunday in year i and March 22, the earliest possible Easter date. 

Let 	f(Z) be the indicator defined as 

f(Z) = 1 if Zj<9 (Easter falls in March) 	(6.2) 

f(Z) = 0 if Z1>9 (Easter falls in April) 

then 

[E 	. E = 1/2f(Zi) 	icM 	 1.cAhiii+1hi.Jj 	
(6.3) 

M - 	is the subset of years when Easter fell in March 

nM - is the number of years when Easter fell in March 

A - 	is the subset of years when Easter fell in April 



nA - is the number of years when Easter fell in April. 

Thus when the impact is immediate, the Easter effect can 

be described by a step function. 

6.2 Gradual Impact Model 

Here we will introduce the concept of early April Easter 

by which we mean an Easter date which is before the k-th of 

April, where k is the number of days before Easter whose activity 

is affected by Easter. Correspondingly, an Easter date on or 

after the k-th of April will be referred to as a late April 
Easter. In practice, k varies between 3 and 10 depending on the 

series. 

It is assumed that the effect increases (or decreases) 

linearly during the k days before Easter. According to this 
model, equation (6.1) still holds but equations (6.2) and (6.3) 

need to be modified as follows: 

f(Z) 	= 	1 	if Zi<9 	 (6.4) 
f(Zi) 	= k+9-Zj. 	if 9<Zj<k 
f(Zi) = 	0 	if Zjk 

and 

Ei 	1/2 f(Z) 	iM1 , J+1_hi , j) 	(6.5) 

where LA is the subset of late April Easter years (on or after 

the k-th of April. 

LA is the number of late April Easter years. 

Here the effect follows a step function with a linear 

segment in the middle, of the form /or\., the value 

depending on the Easter date Z j . In the estimation of the 

Easter effect the sloping linear segment is defined as the line 

joining the horizontal line fitted to the March Easter values and 

the horizontal line fitted to the late April Easter values. This 

formulation was chosen over fitting a separate regression line to 

the early April values because normally there would be too few 

points available in this interval to produce a reliable estimate 

of the slope of the line. 
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The build-up period k will usually be provided by 

subject-matter experts. For example, Easter induced sales 

activity would not start earlier than 3 or 4 days before the 

holiday in the case of perishable items such as flowers but for 

women and children clothes a longer build-up period would apply. 

If there is no prior information available about the 

length of the build-up period k users can take advantage of an 

option to be introduced into the X-11-ARIMA program to estimate 
this length from the data. The estimation will be based on the 

difference between the April and March irregulars during April 

Easter years plotted against the Easter date. A sloping linear 

segment and a horizontal segment will be fitted to these 

differences in accordance with model (6.5). The length k of the 

sloping linear segment will vary from 0 to 10 and the sum of 

squared differences between the fitted model and the observed 

irregular differences will be calculated for each k. The optimal 

build-up period will be determined by that value of k for which 

these stun of squares is the minimum. The formulas for this 

calculation can be found in Appendix A. 

If the decomposition of the series is multiplicative, 

the estimation procedure for Ei is identical for both models to 
the additive case the only difference is that the irregulars 

and Ij,j+1  are assumed to be of the form: 

I,j = (l-Ei) X ei,j 	 (6.6) 

i,j+l = (1+Ej) x Ci,j+l 

Similarly to the treatment of trading day variation, the 

estimated Easter effect also needs to be removed from the series 
before the ARIMA modelling phase of the X-11-ARIMA procedure to 

improve the overall seasonal adjustment quality. 
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APPENDIX A 

Determining the optimal build-up period kopt 

Notation: 

M 	- subset of March Easter years 

EA(k) - subset of early April Easter years, i.e. years 

in which Easter occurred between the 1st and 
kth of April 

LA(k) - subset of late April Easter years, i.e. years 

in which Easter occurred on or after the k-th 

of April 

EA(k) -nuJuber of early April Easters 

LA(k) -number of late April Easters 

hj,j - irregular in year i month of March 

1 i,j+l- irregular in year i month of April 

-the number of days between Easter in year i 
and March 22 (the earliest possible Easter 

date) 

Let 

Di = Ii,j+a. - Ii,j 
and 	- 	(I 	-I D = i-i :i..j+l ij 

n 
For k = 0,1,. ..,l0 calculate the following sum of squares: 

LA C k) 
error2LA(k) = i1 	(D(k). - DLA(k)) 

EA(k) 
error2EA(k) = 	i=1 	tDEA(k), - 	

+ Zj 
	

LA(k) - DM)1} 
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Then the optimal build-up period k0 t is defined as: 

k0 t = k min(error 2EA(k) + error 2LA(k)) 

Thus the optimal buildup period is the one for which the total 
error sum of squares is minimum. 
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