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INTRODUCTIOT 

Statistical agencies of developped countries publish figures on a 
very broad range of socio-economic variables. Most of those numbers take 
the form of time series, that is of periodic measures of each 
socio-economjc variable considered. For instance, the monthly Unemployment 

• and Price figures and the quarterly Gross National Product figures 
constitute time series. In many cases, a same socio-economjc variable is 
published with different periodicities. For instance, the Gross National 
Product is released both quarterly and annually. Furthermore quarterly and 
montly series are generally made available in their seasonally adjusted 
forms. Overall, Statistics Canada publishes several hundred thousand time 
series; the Bank of Canada - which in some respects is a statistical 
agency also publishes a large number of time series. 

Time series are used by the various socio-economic decisions 
makers. Governments launch job creation programmes when time series 
indicate a recession. Central banks start anti-inflation policies, when 
time series show that prices begin to rise too fast. Car manufacturers 
slow down production when time series (pertaining to relevant variables) 
suggest that the market will not absorb the current production rates. Even 

• the person in the street is a consumer of time series. The unemployed may 
not start looking for a job, if the unemployment statistics are high. The 
consumer may postpone the purchase of a house or of a car, if interest 
rates are coo high or are rising too fast, or if the employment situation 
is too uncertain. 

Many users of time series hold the natural view that the numbers 
released by statistical agencies are straight compilations of data 
originating from various sources of information like surveys, 
administrative records and censuses. In fact, most of the basic data 
obtained have to be adjusted, corrected or somehow processed by 
statisticians in order to arrive at useful, consistent and publishable 
values: Non-responses or illogical responses to questionnaires are imputed 
(replaced by reasonable values). Financial year data supplied by firms are 
adjusted to reflect the conventional year. Weekly data are converted into 
monthly values. Data supplied by large conglomerates (e.g. an oil 
company) are splitted into various industrial activities (e.g. 
exploration, extraction, refining, retailing); or, into various goods and 
services produced by the company. And all these activities, goods and 
services are broken down geographically (e.g. by Province). Monthly or 
quarterly data are often adjusted on the basis of more detailed and 
reliable yearly information. In many cases, the variables published are not 
even observable: They are indirectly derived from related information. 
According to the famous economist Milton Friedman (1962), "Most economic 
time series are highly manufactured products, constructed out of many bits 
and pieces that must be shaped and rearranged to yield the final series." 
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Without being as provocative as Friedman, it can be asserted that 
subject-matter expertise plays a major role in the establishement of most 
data published by statistical agencies. We define subject-matter as the 
intimate knowledge, by the time series builder, of the socio-economjc 
processes and variables involved in the phenomena measured by the series 
considered. Under the same header, one should also include the intimate 
knowledge of the operational circumstances in which the socio-economjc 
variable are measured. Many of the methods described in this document aim 
at incorporating in the series that subject-matter expertise in the most 
rational manner as possible. 

Many of the processes and the transformation applied by statistical 
agencies are carried out by means of mathematical techniques. The present 
document is concerned with two families of these techniques: interpolation 
and benchmarking. Benchmarking, examined in Part 1, arises when data about 
a variable originate 	from two different sources with different 
periodicities. 	For instance the Canadian monthly Retail Trade series 
originate from a survey; 	and the corresponding annual values, from a 
census. 	The resulting monthly and annual series are generally not 
perfectly consistent. In particular, the annual totals of the former are 
not equal to the corresponding values of the latter. Benchmarking is the 
process of adjusting the sub-annual series to make it consistent with the 
annual benchmarks. 

That classical definition of benchmarking assumes that the 
benchmarks are fully reliable - as their name implies. Section 1 enquires 
into the nature and the manifestations of bencrnarks and introduces various 
concepts and notions relevant both to benchmarking and interpolation. It 
is found that in numerous situations, the reliability of the benchmarks is 
very questionable. Having no substitute, the word benchmark will continue 
to prevail. However, a broader definition of benchmarking, also used by 
Hillmer and Trabelsi (1987), is proposed. Benchmarking is the process of 
combining the monthly and the annual series, in order to obtain a 
consistent and more reliable pair of series for the socio-economic variable 
considered. This new definiton implies that the benchmarks may be binding 
or non-binding; and, that the classical definition is a particular of the 
latter. 

A very exhaustive examination of benchmarking methods, done by Sanz 
(1981), recommends a variant of the Denton (1971) method. That method, 
based on the movement preservation principle, is easy to explain and most 
appropriate for socio-economic time series. Section 2 generalizes the 
approach, to accomodate the various benchmarking situations encountered in 
practice, namely financial year benchmarks, sub-annual benchmarks and 
unreliable benchmarks. Sections 3 and 4 discuss implementatjonal issues of 
benchmarking: preliminary benchmarking of the current year, revision of 
benchmarked values and the computational aspects of benchmarking. Section 5 
addresses the problem of benchmarking systems of series subject to 
aggregation constraints, geographical and industrial aggregation for 
instance. Section addresses the evaluation of benchmarked series. 

Interpolation, examined in Part 2 of the document, arises when the 
desired quarterly (say) values are simply missing for the variable 
considered. Estimates are then derived from relevant external quarterly 
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information and from values available annually (say). 	The components of 
Consumer Expenditures, for example, are not observed quarterly. 	The 
quarterly values are then derived by means of year-to-year growth rates, 
determined by the series builder on the basis of various sources of 
information. Sections 2 (of Part 2) proposes a method of growth rate 
interpolation; and Section 3, a method to achieve similar results by means 
of ARIMA interpolation. Section 1 presents methods for the 
"calendarization" of socio-economic data, for instance the conversion of 
fiscal year data into conventional (i.e. calendar) year values and the 
conversion (of bundles) of weekly data into monthly values. These problems 
can be approached as simplest cases of interpolation and benchmarking. 

Some methods of benchinarking and interpolation described in this 
paper are not actually applied in practice. In our opinion, much of the 
potential for cheaper, improved, better integrated and more aboundant 
statistics, offerred by benchmarking and interpolation techniques, remains 
un- tapped. 

. 

/,,,)) 
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PART 1: BENCHMAR.KING 	 1 
Before proceeding with the content of benchmarking, its context needs 

to be clarified. Many of the concepts and definitions presented are also 
relevant for interpolation. 

1. CONCEPTS AND DEFINITIONS 

This Section enquires into the nature and properties of the benchmarks, 
of the unbenchinarked series and of other notions relevant to benchmarking 
and interpolation. Gaps are observed between seemingly straightforward 
concepts 	and their practical manifestations. 	Benchmarking and 
interpolation methods have to be specifically designed to accomodate the 
factual situations. 

1.1 The Original "Sub-Annual" Series 
As mentionned earlier, many socio-econornic indicators 	are made 

available with different periodicities. 	Typically, many socio-economic 
variables are published monthly and annually; or quarterly and annually. 
The need for benchmarking arises when the sources of information for the 
more frequent series (e.g. monthly) and for the less frequent series are 
different. In the absence of benchinarking, the two series, which describe 
the same variable, could contradict each other. The more frequent (e.g. 
monthly) series will labelled the "sub-annual series", or the "original 
series", with respect to the less frequent series. The less frequent series 
will be labelled the "benchmarks" series. In this paper, "sub-annual" 
series may thus actually refer to daily or weekly data, if considered 
against monthly data; or even to annual data, if considered against 
quinquennial data. By this convention, we hope to achieve a more concrete 
discussion. In most applications considered indeed, the sub-annual series 
are either monthly or quarterly. Resuming the example of the Introduction, 
the original sub-annual series is the monthly values of Retail Trade, 
obtained from a survey; and the annual benchmarks, the annual values of 
Retail Trade, originating from a census. The characteristics of sub-annual 
series are now examined. 

"Sub-annual" series are usually less reliable than their benchmarks. 
This unreliability refers to the fact that the "true" series is observed 
with an error 

(1.1) 	 Xt - 	t + E t 

where xt  is the available observation. 	The larger the error is (in 
absolute terms), the more unreliable is the series Xt. 	In this document 
- at least -, we are not interested in the nature of the error Et (in 
whether it is a sampling error, an observation error, an estimation error, 
etc.); but, in the mere fact that it exists. However, for the purpose of 
benchmarking, it is useful to decompose that error into bias and variance. 
When the error is substantial but behaves very predictably (from a purely 
chronological point of view) from period t to period t+l, series x is 
considered biased. 	For instance, if from period to period a series 
repeatedly under-estimates the true situation by 10% (negative error), it 
is ruled biased. When the error is substantial but unpredictable from one 	40 
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• 	period to the next, the series is considered to have a large variance, that 
is to be erratic or more technically speaking non-efficient. 	Thus 
unreliability may take the forms of variance, of bias, or both. 	The Mean 
Square Error statistic embodies both the variance and the bias: 

(1.2) 	M.S.E.t - var(xt) + biast 2 

One purpose of benchmarking is to improve the reliability of the sub-annual 
series, that is to reduce its M.S.E. Depending on the presence and on the 
nature of unreliability, different variants of benchxnarking will be in 
order. 

Some sub-annual surveys use sample rotation, that is the respondents in 
the sample remain therein for a few periods (e.g. six months). It is well 
known that, in the absence of corrective action, sample rotation causes the 
estimates to remain above or under the true target value for several time 
periods. From the point of view of benchmarking, this effect will also be 
considered as bias. 

Some of the reasons for unreliability are now outlined. In principle, 
the Canadian Statistics Law makes it compulsory for individuals and 
businesses to answer survey questionnaires sent to them by Statistics 
Canada. 	However, both filling in and processing questionnaires is 
laborious. In practice, statistical agencies try to avoid burdening the 
respondents with questionnaires. One way of achieving this is to send to 
the respondent less detailled questionnaires sub-annually and more 

• 	detailled ones annually; to select smaller sample sizes sub-annually (fewer 
respohdents) and larger samples sizes annually. 	The latter practice, 
especially, results in more erratic sub-annual series. 

Statistical agencies also alleviate the response burden by resorting to 
administrative records. Administrative statistics come as the by-product 
of the activity of some organization. School boards, hospitals, churches, 
courts, regulatory agencies, for instance, generate data about school 
enrollments, incidence of deseases, births, marriages, incidence of crimes. 
Such statistics fulfil the needs of the organizations producing them; but 
do not necessarily meet the standards and requirements of the statistical 
agency. Furthermore, there may be differences in procedures and quality 
across regions and organizations. For these and other reasons, 
administrative statistics must usually be adjusted by the statistician in 
order to make them usable. The resulting sub-annual series may not be 
fully reliable. More details about the characteristics administrative data 
can be found in Brackstone (1987). 

Another source of unreliability of the sub-annual series is the 
following. Many respondent companies send their data in bundles of four or 
five weeks. For example, a department store sends its data in bundles of 
4, 4 and 5 weeks; 4, 4 and 5 weeks; and so on. This pattern is typical of 
the Canadian Retail Trade series. For Wholesale Trade, a common practice 
is to send figures every 4 weeks, that is in 13 bundles per year. In both 
cases, central statisticians adjust such data to convert them into monthly 
values. 	The problem is especially serious when bundles end and start in 

• 	the middle of a month. The quality of the adjustment made impacts on the 
reliability of the resulting monthly series - on its variance especially. 
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Section 1.4 of Part 2 proposes methods to address that kind of problem. 

In the context of benchmarking - and interpolation especially -, the 
sub-annual series may be just an indicator series, with a scale of 
magnitude and with units different from those of the desired series. For 
instance, the sub-annual series may be an index series of some kind, 
expressed in percentages; whereas the desired series is to be in billions 
of dollars. Such original sub-annual series are obviously biased estimates 
of the desired series. To the extent the indicators are gross, they are 
also erratic. 

There are broad general rules governing the reliability of sub-annual 
series. Geographically or industrially aggregate series tend to be more 
reliable than than the corresponding geographical or industrial component 
series. Series pertaining to more developed (regions of) countries tend to 
be more reliable than those of less developped countries. Annual series 
tend to be more reliable than the corresponding monthly or quarterly 
series. However there are many exceptions to these rules. 

In many cases, the reliability of the original sub-annual series may be 
assessed by graphical examination. Indeed, all the components of time 
series, except for the irregular and the trading-day components, are smooth 
with respect to time: By definition, seasonality tends to repeat almost 
exactly from year to year; and the trend-cycle values are locally monotonic 
or change direction in a gradual manner. Trading-day fluctuations appear 
erratic against time. However they are neglibible in stock series; and in 
quarterly and annual flow series, because all quarters and years have 
almost exactly the same number of trading-days. Consider a variable known 
to have no trading-day fluctuations and to behave in an essentially smooth 
manner (e.g. population). If the series measuring that variable behaves 
erratically, then it can be ruled as erratic. The reverse is not 
necessarily true however, because some variables are known to have 
un-predictable behaviours, like construction series. In other words, such 
a series cannot be ruled erratic because it behaves erratically. 

The purpose of this section is not to exhaust all sources of 
unreliablilty of sub-annual series, but to give an insight on how it may 
arise. 

1.2 The "Annual" Benchmarks 

The original sub-annual series is one of the inputs of benchmarking. 
Another input consists of the annual benchmarks. A benchmark is the 
relatively less frequent measurement of a socio-economic variable 
considered; and the sub-annual series, the more frequent measurement. That 
definition encompasses quinquennial or decennial census values of 
population with respect to the annual values. In most applications 
considered however, the benchmarks will refer to annual values, and the 
term "annual benchmarks" will prevail. 

Benchmarks usually originate from relatively more reliable sources of 
information, like censuses (e.g. the Canadian annual Census of 
Manufactures) of the target population. They are therefore considered as 
less biased and to have lower variances than the corresponding sub-annual 
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. 	series. 	Before qualifying that statement, it is appropriate to introduce 
the concepts of flow series, of stock series and of index series. 

Conceptually, flow series are such that monthly values are the sum of 
the daily values in the month; quarterly values, the sum of the monthly 
values; and so forth. For instance the amount of gasoline sold in Canada 
in 1986 is the sum of the gasoline sold in each month of 1986. Thus all 
trade series, all export and import series, all income series are flow 
series. Implicit in flow series is the notion of velocity. The faster 
socio-economic agents purchase goods and services, for instance, the higher 
National Expenditures for the period considered; conversely, the more they 
delay their purchases, the lower National Expenditures. 

Stock series, on the other hand, reflect the level of a variable at one 
particular date. Population series, employment series, inventory series 
(e.g. oil reserves) are all stock series. The annual values of stock 
series often correspond to the value of the last sub-annual period of the 
year. Thus the annual values of inventories correspond to the December 31 
value. In some cases, the yearly values of stock series is ruled to be the 
annual averages of the corresponding sub-annual series. The annual values 
of unemployment in 1986, for instance, is the average of the monthly 1986 
values. For the purposes of benchmarking, only the first type of stock 
(e.g. inventories) will be labelled as stock series. The other type of 
stock will fall in the category of index series. Note that annual stock 
series, as just defined, are essentially seasonal: they are the monthly or 
quarterly selected as the yearly value. 

Stric4d.jr speaking, index series are those for which the annual values 
corresponWto the average of the sub-annual values and which are expressed 
as percentage of a base-year. Thus the Consumer Price index (1971-100%) 
and the Index of Industrial Production (1971-100%) are index series in the 
strict sense. (Conceptually, the former is also a stock and the latter a 
flow series.) For the purpose of benchniarking, the second part of the 
definiton is dropped. Unemployment series would therefore be labelled as 
index series, if their annual values are defined as the average of the 
sub-annual figures. As defined herein, the concepts of flow, stock and 
index series are then mutually exclusive and collectively exhaustive. 

The relationship between an annual and the corresponding sub-annual 
series (which is to be retored by benebmarking), is then straightforward: 
For flow series, the antmal benchmarks correspond to the annual sums of the 
sub-annual series; for stock series (as defined above), to the same 
sub-annual value from year to year; and for index series, to the annual 
averages of sub-annual values. Complications occur in practice however. 

In many cases, the annual data actually forwarded to statistical 
agencies do not refer to the conventional year, i.e. the year ranging from 
January to December; but, to the financial year of the individual 
respondents, e.g. July to June. (The expressions calendar year and fiscal 
year are often encountered.) This situation is typical of all the Canadian 
surveys of businesses. Consider a respondent with a financial year 
extending from April to March for instance. The "annual" data supplied by 

• 

	

	such a respondent tend to over-estimate the true conventional year value, 
in case of rising activity (positively sloped trend-cycle component); and 
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to under-estimate, in case of decline. Such annual values are then biased, 
and the bias varies with the phase of the busines cycle. When considered as 
benchmarks pertaining to conventional years, they can be qualified as 
erratic, because their bias is unpredictable from a purely chronological 
point of view. 

However, all variants of benchmarking and interpolation described in 
this document specify the benchmarks as pertaining to the time periods they 
actually cover. This solves the financial year problem, if all the 
respondents (contributing to the benchmarks) have the same financial year. 
That condition does arise in practice - in the institutional sector 
especially, e.g. local governements, school boards, hospitals. If needed, 
conventional year values can be obtained as a by-product of benchmarking, 
by taking the annual sums (or relevant operation) of the series benchniarked 
to the homogeneous financial year values. 

Unfortunately, in most cases the respondents do not share a common 
financial year. One practice under such circuxnnstances is to rule any 
"annual" data covering any financial year which end between April 86 and 
March 87 (say) as pertaining to year 1986. Under that rule, any respondent 
with one of those twelve possible financial years, May 1985 to April 1986, 
June 1985 to May 1986, . . ., May 1986 to March 1987, is classified in 1986; 
and the annual value for 1986 is simply the sum of the data of the 
respondents classified in 1986. As observed by Cholette (1987a), such a 
scheme creates very serious problems. For flow series, the estimates are 
biased, and the bias depends on the phase of the business cycle. For the 
purpose of benchmarking such estimates are then erratic. 

But there is more. The biases also depend on the distribution of the 
respondents over the 12 possible financial years for the variable 
considered (Ibidern). Indeed, the relevant distribution is not the number of 
respondents in each financial year but the number of corresponding units of 
the variable considered (e.g. dollars of sales, volume, persons, etc.). 
Since that distribution changes with the variable considered - even for a 
given set of respondent -, the bias varies with the variable considered. 
Thus relations between variables, which prevailed at the respondent level, 
are destroyed by the aggregation, because the variables are subject to 
different biases. This predicament is unacceptable to decisions makers, 
who base their decisions on sets of socjo-econojnjc variables and not on 
variables considered in isolation; and, unacceptable to statistical 
agencies, who have the mandate to produce integrated systems of series. 
For stock series the situation is worst, because the seasonality inherent 
to stock series (see above) is not preserved. 

Unless the respondents have a common financial year, it is necessary to 
convert financial year data into conventional year values before their 
aggregation (over respondents) into annual benchmarks. Section 1 of Part 2 
proposes methods to do that. However, any such method involves assumptions 
about the underlying sub-annual values (known or unknown) of the respondent 
and estimation errors. The resulting estimated conventional year values 
are certainly less reliable than if there had been not need to carry out 
such a conversion. 
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. 	In Statistics Canada, some annual benchmarks originate from the annual 
input-output model of the economy. 	Such models are exhaustive and 
integrated accounting frameworks, which trace the sales (production) and 
the purchases of each of the goods and services in the real (as opposed to 
financial) economy. For instance, an input-output model traces how much of 
the paper sold (produced) by the paper industry was purchased by industry 
A; how much, by industry B; etc.; how much, by the consumer; and how much 
was exported. More generally, the production of any industry must be 
purchased by the other industries, by the consumer or by foreign buyers. 
It is indeed materially impossible that part of the production of a good or 
service was not purchased by anyone (nor added to inventories) and 
disappeared. 

Input-output models thus provide a way to compare data on the 
production of paper provided the paper industry, to the data originating 
from other sources, on the industrial purchases of paper (say), on the 
consumer purchases of paper, on the exports of paper. In other words, an 
input-output framework can be used to cross-validate data originating from 
different sources like censuses, surveys and administrative records. 
Combined with subject-matter expertise, the model also reveals the probable 
location of inconsistencies. The statistician may then correct the data. 
Furthermore, since the model is exhaustive of all the economy, the values 
arrived at for any variable must at least be consistent with the values of 
every other variable in the model. These are the grounds to believe that 
the values arrived at after such an integration exercise are better annual 
benchmarks than the annual values originally available from the individual 

• 	censuses and surveys. 

One prime example of annual benchmarks supplied by the input-output 
model is that of the National Account series. The National Accounts system 
is literally a sub-set of the input-output framework. The latter covers 
all "intermediate" goods and services, which enter the production of other 
goods and services; and all "final" goods and services, on which the 
Accounts focus. Both frameworks also cover the incomes (sales) 
corresponding to the expenditures (purchases) on goods and services. Since 
the Accounts series, namely the income and expenditures series, are 
quarterly, it is natural to use the annual series from the input-model as 
benchmarks. 

A few more comments about annual benchmarks are in order. In many 
situations, benchmarks are available every second year or, sometimes, in an 
irregular fashion. For a year considered, the annual benchmark usually 
becomes available (if at all) several months and sometimes more than a year 
after the year is over. In some cases, two or three benchmarks at the time 
become available. These operational circumstances have implementatjonal 
implications for any benchmarking method, which are examined in Sections 3 
and 4. 

	

Finally, some sub-annual series have no annual benchmarks. 	For a 
variable considered in isolation, there would be simply no need to 
benchmark. The problem arises when the series is part of a system of 
series, most of which are subject to benchmarking. In order to preserve 
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consistency of the system, some kind of adjusment has to be performed on 
the variable with missing benchmarks. Section 5 outlines how this may be 
achieved. 

This sub-section revealed some of the problems encountered with annual 
benchmarks. It should now be clear that annual benchmarks may not be 
annual - in more than one sense. They may not be reliable, as their name 
leads to believe. (However having no better word to propose and given its 
already wide acceptance, the word benchmark - and the derived word 
benchmarking - will continue to prevail in this document.) The logical 
attitude resulting from this kind of conclusion is the following. The 
annual benchmarks should not always be considered as binding values to be 
complied with by the sub-annual series. In many cases, they should merely 
be considered as extra observations available for the socio-econoinjc 
variable considered, besides the sub-annual series, and should be treated 
as non-binding. Consequently, all the benchmarking variants presented in 
this document allow for both binding and non-binding benchmarks. 

1.3 The "Annual" Discrepancies 
A sub-annual series and independently obtained annual benchmarks for a 

same socio-economic variable give rise to annual discrepancies. These 
measure the degree of inconsistency between the original sub-annual series 
and the annual benchmarks. For flow series, the annual discrepancies are 
the differences between the annual benchmarks and the annual sums of the 
sub-annual series; for stock series (as defined above), the difference 
between the annual benchmarks and the one applicable sub-annual values; and 
for index series the difference between the annual benchmarks and the 
annual averages of the sub-annual series. A more useful concept is that of 
annual proportional discrepancies, which are the annual descrepancies 
expressed as ratios instead of differences. 

Both the proportional and the additive annual discrepancies contain 
information about the benchmarking situation. Table 1.1 displays a 
simplified classification of possible benchniarking situations, depending on 
the reliability of the benchmarks and of the sub-annual series. The table 
also shows the corresponding behaviours of the discrepancies and the 
appropriate benchniarking variant to use in each situation. The table is 
simplified in that it assumes polar cases of un-biasedness and erraticity 
(efficiency); and, in that it seeks simple rules for selecting the 
appropriate benchniarking variants. 

In the first column, the annual benchmarks are reliable: they are both 
un-biased and non-erratic (efficient). 	That column pertains to the 
"classical" benchinarking situations. 	Indeed, except for Hilimer and 
Trabelsi (1987), all benchmarking methods in the litterature, from Bassie 
(1939) to Litterman (1983), force the sub-annual series to comply with the 
benchmarks. In other words, they consider the benchmarks as binding and 
therefore - at least implicitly - as reliable. Reliable annual benchmarks 
may be specified as binding, and benchinarking may be carried out regardless 
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. 	 TABLE 1.1: 	Behaviour 	of the 	annual discrepancies 	and 	appropriate 
benchmarking variants depending on the reliability of the sub-annual series 
and of the annual benchmarks 

1 2 3 4 

Non-Biased Arrual Berxhnarks Biased Anrual Berdimarks 

Non-Erratic Erratic Erratic Non-Erratic 
(reliable) (re1iable) (xireliable) (unreliable) 

constant erratic constant erratic behavicxi.r of 
Non- 	discrepanties discreparxies discreparies discreparI2ies discrepanies •. 	 1 	Erratic 
(re- 

Non 	liable) 	biz±Lng nn-birrling special* special* appropriate Biased 	berkinarking 
Sub- 

berchnarldng bencl-ivarking berx*inarking action 

Series 	 erratic 
- 	---------------------------------------------------------------------------------------- 

erratic erratic erratic behavicur of 
- 	 discreparxies discrepanries discreparxies discreparies discreparxies 

catacic 
2 	(e- 

liable) 	birxilng 	ix*i-biniing 	special* 	special* 	appropriate 

	

berriinarking ben±ii1dng berthnarking berdinarkiig 	action 

constant 	erratic 	constant 	erratic 	behavicur of Non- 	discrepanries discrepanties discrepanries discrepanties 	discreparies Erratic 
3 	(e- 

liable) 	bixxllng 	ii-biring 	special* 	special* 	appropriate Biased 	benthnarldng beithnarldng ben±tnarkthg benrinarking 	action Sub- 
Aritl 
Series 	 erratic 	erratic 	erratic 	erratic 	behaviour of 

	

discreparies discrepanties discrepanties discreparEies 	discrepanies Erratic 
4 	(tsire- 

liable) 	birding 	rin-bini1ng 	special* 	special* 	appropriate 

	

berx±inarking bex±inarking ben*znarking benbearldng 	action 

* special benthnarking variants explaird In Section 2.3 

of the reliability of the original sub-annual series. Indeed, if the 
sub-annual is also reliable (row 1), then the discrepancies are likely to 
be very small (i.e. trivially constant), benchmarking is a mere formality, 
and whether the benchmarks are specified as binding or not binding will 
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have little effect. In all the other cases, where the sub-annual series is 
not reliable (row 2, 3 and 4) bencbniarking is advisable, because it 
improves the reliability of the sub-annual series. The reliability of the 
sub-annual series is not a pre-requisite for benchmarking. (Section 2.1.2 
on the assumptions of benchmarking will examine this in more detail.) Note 
that graphical examination of the original sub-annual series provides 
information about its reliability (see Section 1.1). 

Section 1.2 described many situations with potentially unreliable 
benchmarks. These correspond to columns 2 to 4 of Table 1.1. In the second 
column, the annual benchmarks are not reliable, because they are erratic 
(although unbiased). If the sub-annual series is reliable (row 1), then no 
benchmarking should be attempted, because benchmarking could only 
deteriorate an already good sub-annual series. The benchmarks could be 
discarded. The best annual values of the socio-economjc variable 
considered are simply the annual sums (or the appropriate arithmetic 
operation) of the sub-annual series. In practice however, the sub-annual 
series is not likely to be absolutely unbiased and could probably be 
improved. It is then possible to specify the benchmarks as non-binding. 
(Note that no benchmarking is equivalent to specify non-binding benchmarks 
with no weight attributed to them.) If the sub-annual series is also not 
reliable (row 2, 3 and 4), benchinarking should take place with non-binding 
benchmarks (See Section 2). The resulting benchmarked series is a 
combination - a compromise in a sense - between the sub-annual and the 
annual series. That combination of two unreliable series is generally more 
reliable than each of the individual series. (That principle is well 
established in statistics.) 

The discussion to this point can be summarized as follows: When the 
benchmarks are reliable (colum 1) they may be specified as binding; when 
they are not reliable but un-biased, as non-binding. This philosophy would 
be applicable to any benchmarking method. In the third and fourth columns 
of Table 1.1, the benchmarks are biased. The series builder is then not 
likely to contemplate benchmarking. For the sake of thoroughness however, 
the opportunities (and the lack thereof) provided by benchmarking under 
such conditions are examined. This will be done in Section 2.3, when more 
background on benchmarking principles is available. 

The behaviour of annual discrepancies are thus usefull to assess the 
benchmarking situation, before benchmarking is attempted. Constant 
discrepancies can occur in 4 out the 16 cases tabulated. However, since 
each behaviour of the discrepancies can point to several situations, which 
call for different variants of benchmarking, subject matter expertise is 
crucial to tell the situations apart. Section 6 will expand on the 
assessment of benchmarking situations and benchmarking results. 

1.4 The Sub-Annual Benchmarks 
Some situations involve another input to benchmarking: the sub-annual 

benchmarks. 	These are occasional sub-annual values available besides the 
corresponding values of the original sub-annual series. 	Sub-annual 
benchmarks are usually more reliable than the original series. (The term 
sub-annual benchmark is selected by analogy to the annual benchmarks.) The 
process of benchmarking then combines the annual and the sub-annual 
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S benchmarks with the original sub-annual series. In case of sub-annual 
benchmarks specified as binding, the resulting benchmarked series runs 
through the sub-annual benchmark values. 

Both in interpolation and benchinarking, sub-annual benchmarks can be a 
vehicle for subject-matter expertise. 	Indeed the series builder may use 
them to impose certain seasonal patterns or certain vicinities to the 
desired series for certain periods of time. 	For instance, sub-annual 
benchmarks can be used to "freeze" benchmarked series prior to a certain 
date, by forcing the desired series to start with a value considered as 
historical. 	Later sections will examine those opportunities in more - - 	details. 

The annual benchmarks of stocks series are - technically speaking - 
equivalent to sub-annual benchmarks. 	Indeed both pertain to individual 
sub-periods (e.g. months, quarters). 	Sub-annual benchmarks can also be 
considered as particular cases of annual benchmarks. 	The latter may 
pertain to several sub-periods; and, the former, to individual sub-periods. 
For the time being however, we find it useful to keep them as separate 
concepts. 

1.5 The Sub-Annual Discrepancies 
As in the case of annual benchmarks, sub-annual benchmarks give rise to 

sub-annual discrepancies. These are the difference between the sub-annual 
benchmark and the corresponding original sub-annual observation. 	The 
sub-annual proportional discrepancies are the ratio (instead of the 
difference) of the same. 

In much the same manner as the annual discrepancies, the sub-annual 
ones can be used to assess the benchmarking situation. 	Furthermore, the 
sub-annual and annual discrepancies should align. 	If for instance all 
annual and sub-annual discrepancies hover in the neighbourhood of 1.10 
except for one sub-annual discrepancy equal to 0.80, the series builder 
should question the corresponding sub-annual benchmark or the original 
sub-annual value. 

1.6 Constraints Between Series 
Benchmarking often has to be performed on systems of series bound 

together by additivity constraints or more generally by linear constraints. 
Additivity constraints typically occur when an aggregate variable is the 
sum of geographical or industrial component variables. For example, the 
benchmarked Canadian Retail Trade Sale series must be equal to the sum of 
the corresponding provincial sale series for each period of time. 

Constraints also arise with financial variables, and with economic 
variables seen through the framework of some financial accounting system 
like the System of National Accounts. Accounting constraints are not 
essentially different from additivity constraints, except they may involve 
substractions and fewer variables. For instance Profits are identically 
equal to Receipts minus Expenditures - for each period of time. This 
identity which prevails in the original sub-annual series (say) must still 
hold in the benchmarked series. 
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Section 5 will show how additivity and accounting constraints between 
series can be satisfied. 	 0 
1.7 Illustration of the Benchmarking Problem 

The various notions covered in this section are summarized in 
Figure 1.1. The solid curve Xt stands for the original sub-annual series, 
that is for the un-benchmarkecj series. In the case considered, the series 
is a flow and ranges from the fourth quarter of 1982 to the third quarter 
of 1987. Each annual benchmarks y i  is represented by its average value for 
the year. This practice, maintained throughout this document, conveniently 
displays the annual benchmarks of flow series on the same scale as the 
sub-annual series and also indicates their reference periods. In the 
figure, the annual benchmarks refer to conventional years. However, that 
does not need to be the case for benchmarking to work. No benchmark is 
available for 1984 and 1987, which is imcomplete (i.e. "current"). The 
benchmarking situation illustrated also provides for two sub-annual 
benchamrks Z"t. These pertain to the first and the sixteenth term of the 
series, that is to the fourth quarter of 1982 and third of 1986. They 
specify that the benchinarked series desired should run close to those two 
points. 

460— d 
XtZt.9 

440- 0 
420 - 

y,: annual benchmarks 

z 	sub-annual benchmarks 

400 - 

380 

360 - 

340 

unbenchmarked 
320jr- 

300 x1 

60 i, dt r,: annual discrepancies 

dk: sub-annual discrepancies 
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F, 

- 	 _____________ d 

20  '2 
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4 	1 	2 	3 	4 	1 2 	3 	4 	1 	2 	3 	4 	1 	2 3 	4 	1 	2 	3 	4 1982 	1983 1984 	 1985 	 1986 	 1987 

Figure 1.1: 	Illustration of 	the benchmarking problem when both annual and 
sub-annual benchmarks are available 
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• 	The lower part of the figure displays the annual and the sub-annual 
discrepancies corresponding to the annual and sub-annual benchmarks of the 
upper part. Like for the annual benchmarks, each annual discrepancy (of 
flow series) is best represented by the annual average discrepancies, that 
is by its average over the reference period. Both the annual average 
discrepancies and the sub-annual discrepancies are then represented on a 
common scale. As explained in Section 1.3, the examination of the 
discrepancies provides a first assessment of the benchmarking situation and 
suggests which variants of benchmarking to use. This brings the discussion 
to the principles of benchmarking. 

. 

I.,,. 
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2. PRINCIPLES AND ASSUMPTIONS OF BENCHXARKING 
With that body of concepts and definitions now available, a more 

precise definition of benchinarking may be attempted. Benchmarking is the 
process of optimally combining the original sub-annual series with the 
annual benchmarks and with the sub-annual benchmarks, in order to obtain a 
more reliable sub-annual series and a more reliable annual series. These 
series with reduced Mean Square error are respectively the benchmarked 
series and the derived annual series. 

This definition of benchinarking is somewhat unconventional. 	To our 
knowledge, the attitude of statistical agencies has been to adjust the 
sub-annual series to comply to the benchmark values; that is to consider 
the latter as binding - hence the word benchmarking. This attitude assumes 
that the benchmarks are not just more reliable than the sub-annual series; 
but fully reliable. As discovered in Section 1, the relative reliability 
of the annual benchmarks is, in many situations, very questionnable. In 
our opinion however, the annual series does not have to be more reliable 
than the sub-annual series in order for "bencbmarking", as defined herein, 
to be useful. All the variants of benchmarking presented in this paper 
allow for both binding and non-binding benchmarks. 

There are two approaches to benchmarking time series: the numerical 
approach and the statistical approach. The statistical approach specifies 
a statistical model followed by the desired series. Hillmer and Trabelsi 
(1987) and Guerrero (1987) - these are the only two references for the 
statistical approach to date - specify that the true time series behaves 
according to an ARIMA model (Box and Jenkins, 1970). If it were possible 
to observe the true series, there would be no inconsistency between the 
annual and the sub-annual measurements of the series. In other words, the 
inconsistencies between the measurements available at different frequencies 
originate from the fact that the series is observed with some error. The 
authors accordingly set out to estimate the underlying ARIMA model on the 
basis of both the available sub-annual and annual observations. The fitted 
values obtained are the desired consistent values. This still experimental 
approach is interesting. Note that it does not consider the benchmarks as 
necessarily binding. However, it would substantially reduce the irregular 
fluctuations and - at this development stage at least - elerninate the 
trading-day fluctutations. Furthermore, it does not lend itself to massive 
application in a statistical agency: It requires too much expertise in time 
series modelling and forecasting. It would possibly be appropriate for a 
few key socio-economic indicators. 

The wide-spread numerical benchniarking methods (Lisman and Sandee, 	-- 
1964; Boot et al. 1967; Denton, 1971; Ginsburg, 1973; Laniel, 1986), on the 
other hand, specify no statistical model followed by the series. However, 
some of them at least could be argued to specify a descriptive model for 
the desired series. For instance, the Denton approach to benchmarking 
adopted in this document is based on the principle of movement 
preservation. That descriptive principle is easy to explain: The 
benchinarked series preserves as much as possible of the consecutive 
month-to-month movement of the original sub-annual series (including the 
movement from one year to the next, e.g. from December of one year to 
January of the next year). Numerical methods also lend themselves to large 



- 15 - 

• 	scale application. In the only comprehensive review of benchmarking 
methods to our knowledge, Sanz (1981) recommends a slightly modified 
variant of the Denton method (Cholette, 1978) for use in statistical 
agencies. 

The initial Denton method (1971), did not preserve the movement of the 
original series to the maximum possible extent. In some situations, the 
benchmarked series could display severe movement distortions at the start 
of series. For the long post-war series, this did not matter much, since 
interests usually focuses on the latest values. 	Now, the current and 
predictable trend is towards short series. 	As a result, the kind of 
distortions has become unacceptable, and the problem was corrected by 
Cholette (1978, 1984). The computational reasons behind the initial 
specification have also become obsolete. This document generalizes the 
movement preservation benchmarking approach to encompass the various 
benchmarking situations encountered in practice and described in Section 1 
(unreliable benchmarks, financial year benchmarks, etc.); and, makes 
explicit the assumptions implicit to the approach. 

The principle of movement preservation may be expressed in at least two 
ways: 1) preserving the simple period-to-period change and 2) preserving 
the period-to-period percentage change. These two forms of preservation 
yield two variants of benchmarking: additive benchmarking and proportional 
benchmarking. Both the additive and proportional variants are applicable 
to situations involving un-biased benchmarks. When the benchmarks are 
(un-biased and) non-erratic, they should be specified as binding; when they 

• 	are (un-biased and) erratic, as non-binding. Those events correspond to 
t:he first and second columns of Table 1.1 respectively. 	Section 2.3 
presents other variants of benchmarking applicable to situations with 
biased benchmarks. 

2.1 Additive Benchmarking under un-biased benchmarks 
Additive benchmarking aims at producing a benchmarked series which 

displays the movements of the original series. In other words, the two 
series are to be as parallel as possible. This parallelism, illustrated in 
Figure 2.1, is best conveyed by the corrections. The corrections or the 
adjustment factors are simply the modifications made to the original series 
x to arrive at the benchmarked series Zt. The corrections are then 
measured by the distance between the two series. Obviously, the 
benchniarked and the original series will be parallel to the extent the 
distance between them (the corrections) is constant. Under the movement 
preservation principle, benchmarking then consists of finding smooth 
corrections, which are as constant as possible and run through the annual 
and sub-annual discrepancies. With binding benchmarks, case considered in 
Figure 2.1, the correction curve runs exactly through the sub-annual 
discrepancies and crosses each annual average discrepancy in a very 
specific manner: The surface covered by the corrections and by the annual 
average discrepancies are exactly the same over the reference period of the 
annual benchmarks. 

0 
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2.1.1 Specification of Additive Benchinarking Under Un-Biased Benchmarks 
The maximum parallelism between the benchmarked and the original 

sub-annual series is easily achieved by means of mathematical tools. The 
desired benchmarked series Zt minimizes the following objective function: 

T 	 M 	Pm 
f(z) - gX E ((Zt - Xt) - (Zt..i - Xt..1)) 2  + E gYm  (( E Zt) - Ym) 2  t-2 	 rn—i 	tTm (2.1) 

K 
+ 	E gZ (Zt - 

k—i 

Parameters M and K respectively stand for the numbers of annual and 
sub-annual benchmarks Ym and z. The symbols Tm and Pm specify the 
reference periods of the annual benchmarks. Depending on the values of Tm and pm , the benchmarks may be specified to be available every year, every 
second year or irregularly; or to cover conventional year or financial 
years. For flow series Pm is greater than r m . For stock series Pm is equal 
to Tm. For index series, ym actually stands for the annual benchmarks 
multiplied by the number of months per year (presumably equal to pmrm+l). 
The notation of the annual benchmarks then implies no restriction as to 
their pattern of availability and as to their reference periods. (The 
notation could also encompass the sub-annual benchmarks. However we choose 
to keep the latter distinct and conspicuous for the time being.) 

The first term of the objective function embodies the movement 
preservation principle. This parallelism criterion specifies that the 
corrections (ZtXt) change as little as possible from one time period to 
the next - including between years. In other words, the corrections are as 
constant as possible. The parallelism criterion specifies the movement of 
the benchmarked series but not the level. The criterion could allow a 
benchmarked series with a level very different from that of the original 
series and still be totally satisfied (i.e. be equal to its minimun of 
zero). 

The level of the benchmarked series is determined by the second and 
third terms of the objective function, the benchmarks satisfaction 
criteria. The second term specifies that the sums of the desired 
benchmarked values zt over the reference periods (m..... Pm] are as close 
as possible to the available benchmarks y. And the third term states that 
the benchmarked values sought are as close as possible to the available 
sub-annual benchmarks z. 

Parameters gX, gY and gZ are known relative weights attributed to 
the parallelism criterion and to the benchmark satisfaction criteria. High 
weights gY and gZ relative to gX specify binding benchmarks in practice. 
Binding benchmarks situations are the classical ones covered by column 1 of 
Table 1.1. Low weights, on the other hand, specify non-binding benchmarks, 
covered by column 2 of Table 1.1. Specifying non-binding benchmarks could 
be described as Bayesian benchmarking, in that the statistician set the 
weight of the benchmarks on the basis of prior knowledge. (A starting 
point for the weights in the Bayesian framework would be, assuming no 	0 
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. 	sub-annual benchmarks, gX 	(a2X ..Pcxc7 )1(cv2x+a2y ..2pcxc7 ) and gY — 1gX. For 
large scale applications, determining and using those variances may be just 
as difficult as determining gX and gY directly.) 

The implementation recommended in Section 4 actually circumvents the 
problem of determining those weights. Indeed, the numerical approximation 
proposed therein makes it un-necessary and un-desirable to formally 
minimize objective function (2.1) (or (2.3)) to carry out benchmarking. The 
objective functions can be considered as a tool to formally represent and 
think about the benchmarking process. For the time being, the weights can 
therefore be assumed to have been pre-selected to reflect binding 
benchmarks or non-binding benchmarks when appropriate. 

Appendix B shows that formally minimizing objective function (2.1) 
yields the Eoilowing solution: 

T 	M 	K 
(2.2) 	Zt - E )X 	 + S Pt,m Yin + S p z t,k Zdl,. 

t—1 	rn—i 	k—i 

Each benchmarked values maximizing the criteria specified in the objective 
function is a weighted average of the original sub-annual values and of the 
annual and sub-annual benchmarks. 

2.1.2 Assumptions of Additive Benchtnarking Under Un-Biased Benchmarks 
• 	1inimizing objective 	function 	(2.1) 	involves certain implicit 

assumptions on the part of the statisticians. The literature is rather 
vague about them. An attempt is made here to make the assumptions as 
explicit as possible: 

The movement 	in the sub-annual series 	is worth preserving. 
Reliability is not required. 

The annual benchmarks are unbiased. They may be erratic. 

The corrections to be made to the original sub-annual series do not 
depend on the sub-annual series, but on the discrepancies. 

The first assumption is rather weak. The original sub-annual series 
may be both biased and erratic. Indeed, the movements of a very erratic 
original series will persist in the benchmarked series - with longer and 
therefore smoother movements introduced by benchmarking. Contrary to 
statistical benchniarking approaches, numerical benchinarking does not 
require the presence of a signal in the sub-annual series. If needed, this 
allows benchutarking to be carried out at very low levels of aggregation, 
where the sub-annual series are typically unreliable and contain little 
signal. Subsequent aggregation is that which is likely to increase the 
signal to noise ratio. Whether to benchmark un-reliable series is a policy 
decision. Once taken, the decision to benchmark implies that the sub-annual 
movement is better than nothing and is worth preserving. (More precisely, 
the sub-annual movement is better than that implicit in the benchmarks 
alone, see Section 1 of Part 2.) 
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The second assumption, embodied in the second and third terms of the 
objective function, states that the benchmarks are unbiased. The possible 
bias in the original sub-annual series is corrected on the basis of the 
benchmarks. However, the assumption does not imply reliable benchmarks. 
They may in fact be erratic. High weights gY or gZ for the benchmark 
satisfaction criteria specify un-biased non-erratic benchmarks (first 
column of Table 1.1); and low weights, un-biased erratic benchmarks (second 
column). The benchmarks are binding in the first case and non-binding in 
the second case. 

Figure 2.2 compares the corrections obtained for annual benchmarks 
first considered as binding and then as non-binding. The binding 
corrections incorporate the erratic character of the annual average 
discrepancies, in the form of smooth oscillatory movement. A reliable 
(say) sub-annual series would be distorted accordingly. This illustrates 
the effect of mis-specifying benchmarks as binding. The non-binding 
corrections, on the other hand, do not incorporate the movement implied by 
the discrepancies; but, only their (moving) average level, in the form of a 
nearly constant curve. The resulting benchmarked series therefore keeps 
the movement of the original series with little distortion, but changes its 
level by the amounts determined by the correction curve. In order of 
ascending causality, the level change is thus determined by the 
corrections, by the discrepancies and by the benchmarks. 

Figure 2.2 also calls for a few rather digressive but irresistible 
comments. Under the non-binding corrections, the third annual benchmarks is 
almost satisfied, despite the fact it is not considered any more binding 
than the other ones. The annual benchmarks refer to financial years 
ranging from the second quarter to the first of the following year. The 
single sub-annual benchmark depicted is binding (in both cases) and forces 
the corrections and therefore the benchmarked series to start from a 
pre-specified value. That feature will exploited for implementational 
purposes (Section 4). 

One can sumarize the two first assumptions as follows. The sub-annual 
series provide the sub-annual period-to-period movement of the benchniarked 
series; and the (appropriately weighted) benchmarks, the correct level. 

According to the third assumption, the corrections (Zt - Xt) do not 
depend on the (individual) values of the sub-annual series; but only on the 
annual and sub-annual discrepancies - and their weights. This carries the 
following implication. If the source of sub-annual bias (in Xt)  is 
undercoverage in a survey, for instance, the behaviour of the respondents 
not covered (which are in (Zt - Xt)) is governed by the discrepancies. In 
other words, benchmarking may be used as an implicit and aggregate method 
of imputation. 	The implicitly imputed values are determined by the 
discrepancies. 	More specifically, the behaviour of the inputed values is 
specified to be as smooth and constant as possible. 	Put differently, 
benchmarking assumes that the aggregate under-coverage moves very gradually 
from one period to the next; 	and therefore, displays no sub-annual 
fluctuations, in particular no seasonality. (With proportional 
benchmarking by contrast, the behaviour of the individuals not covered is 
governed both by the discrepancies and by each value of the sub-annual 
series, that is by the behaviour of the respondents covered.) 
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Similarly if the source of discrepancy is a slightly inadequate 
industrial classification of the sub-annual series (say), benchniarking can 
be used to correct for that. Again this involves certain assumptions which 
must be clear to the statistician: The aggregate effect of the sub-annually 
mis-classified units is smooth and gradual from one period to the next. 
Furthermore, in the case of classification, it is assumed that the 
mis-classification does not affect the sub-annual movement (e.g. the 
seasonal pattern) of the original series, which is being preserved by 
benchmarking. That assumption is rather strong, since different industries 
(activities) are likely to display different seasonalities, and since - - 

	

	economic agents usually try to have seasonally complementary activities 
(e.g. logging in the winter and farming in the summer). 

One can reason in an analogous manner with every possible sources of 
annual discrepancies. The practitionner should in fact clarify the 
implicit assumtions of benchmarking depending on the nature of the 
discrepancies. 

None of the three assumptions required the discrepancies to be small. 
They may actually be very large compared to the original sub-annual values. 
If they are constant, the benchmarked series will be exactly parallel to 
the original series. In other words, under constant discrepancies, however 
big, the original series is a perfect indicator of the sub-annual movement; 
and the benchmarks, a perfect indicator of the level. (This also implies 
that the longer movement implicit in the benchmarks is totally consistent 

• with the corresponding movement of the original series.) This property of 
berichmarking is most relevant, when the original series has an order of 
magnitude other than that of the benchmarks. 

0 
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Figure 2.1: Additive benchmarking according to the principle of movement 
preservation in the presence of annual and sub-annual benchmarks 
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2.2 Proportional Benchmarking Under Un-Biased Benchmarks 

	

As already mentionned, the principle of movement preservation may also 	40 
be expressed in terms of percentage changes from one period to the next. It 
will be shown that two series, namely the benchmarked and the original 
series, have the same percentage movement, to the extent they are 
proportional to each other. Consequently proportional benchmarking can be 
considered as an approximation of percentage change preservation. However, 
as will soon become apparent, proportional benchmarking is very defendable 
per se (even if it were not an approximation of percentage change 
preservation). 

FLgure 2.3 illustrates a case where proportional benchmarking would be 
appropriate. When an original series Xt is very seasonal, it can be argued 
that the seasonal trough values can not reasonably account for the annual 
discrepancies to the same extent as the seasonal peak values. Indeed, the 
activity of the variable is almost nill in all fourth quarters and should 
presumably remain small after benchmarking. 	Proportional benchmarking 
fulfills such a requirement. 	Proportional corrections are ratios to be 
multiplied by the original sub-annual series. Their effect is obviously 
larger for larger original observations and smaller for smaller ones. As 
intended, the corresponding benchmarked series Zt is very close to the 
original sub-annual values in trough quarters. Like additive corrections, 
proportional corrections Zt/Xt are as smooth and constant as possible. In 
the case of binding benchmarks displayed in the figure, the corrections run 
exactly through the sub-annual proportional discrepancies and cross the 
annual proportional discrepancies. 

2.2.1 Specification of Proportional Benchmarking Under Un-Biased Benchmarks 
Like in the additive variant, the mathematics of proportional 

benchmarking are specified on the corrections. 	However, the corrections 
are expressed as the ratio of the desired benchmarked series Zt to the 
corresponding original values Xt. The desired benchmarked series minimizes 
the following objective function: 

T 	 M 	PM f(z) = gX 
E ((zt/xt) - (zt..h/xt.l)) 2  + 	gY (((E z)/y) - 1)2 

(2.3) 	
t-2 	 im-1 	trm 

K 
+ 	E gZ ((Zt/Z') - 1)2. 

k-1 

where all symbols retain the same meaning as for additive benchmarking 
(equation (2.1)). 

The first term of the objective function spells the proportional 
movement preservation criterion. That criterion specifies that, the 
proportional corrections (zt/xt) change as little as possible from one time 
period to the next - including between years. In other words, the 
corrections are as constant as possible. The proportionality criterion 
specifies the movement of the benchmarked series but not the level. The 
criterion could allow a benchmarked series with a level very different from 
that of the original series and still be totally satisfied (i.e. be equal 
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. 	to its minimum of zero). This properties is very useful when the original 
series has an order of magnitude or a scale different from the desired 
benchmarked series. In other words, benchmarking - the proportional 
variant especially - may be used as a tool to transform percentages, for 
instance, into billions of dollars. 

The level Df the benchinarked series is determined by the second and 
third terms of the objective function, the benchmark satisfaction criteria. 
These criteria are expressed as ratios of the desired series to the 
benchmarks. Compared to the additive variant, this greatly simplifies the 
choice of weights gxt , gY and gZ. Indeed, all the individual terms 
(inside the summations) in the objective function have comparable 
magnitudes, because they lie immediately above zero. (For more details 
about the weights, see Section 2.1.) 

The first criterion is equivalent to a percentual movement preservation 
criterion, Indeed two series z t  and xt  which are proportional to each other 

/ Xt - ztl / xt.l 

have Ldenica1 period-to-period growth rates: 

—> 	Zt / zt.l — xt / xtl. 

More generalv, to the extent two series are proportional to each other, 
they tend to have the same growth rates: 

. 	 Zt / 	- Ztl / xt1 + at —> 

Zt/Ztl 	Xt/Xtl + atxt/zl. 

— Xt I xt.1 as at tends towards zero 

where 	at represent deviations from proportionality. 	To the extent 
proportionality is realized, the proportionally benchmarked series Zt 
displays the same growth rates as the original sub-annual series Xt. 

Appendix C gives the solution to the formal minimization of objective 
(2.3). Section 4 provides a numerical approximation of the solution which 
is much more economical. 

2.2.2 Assumptions of Proportional Benchinarking Under Un-Biased Benchmarks 
The assumptions of proportional benchmarking, as specified by objective 

function (2.3), are the following: 

The percentual movement in the sub-annual series is worth preserving. 
Reliability is not required. 

The annual benchmarks are unbiased. They may be erratic. 

The corrections to be made to the original sub-annual series depend on 
the annual and the sub-annual discrepancies and on the sub-annual series. 
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The two first assumptions are identical to those in the additive 
benchmarking: The sub-annual series provide the sub-annual period-to-period 
movement of the benchmarked series; and the (appropriately weighted) 
benchmarks, the correct level. 

Like in the additive variant, the benchmarks may be specified as 
binding or non-binding, depending on the weights gym and gZ chosen by the 
series builder. Figure 2.4 compares the corrections obtained for annual 
benchmarks first considered as binding and then as non-binding. The 
binding corrections incorporate the erratic character of the annual average 
discrepancies, in the form of smooth oscillatory movement. A reliable 
(say) sub-annual series would be distorted accordingly. This illustrates 
the effect of mis-specifying benchmarks as binding. 	The non-binding 
corrections, on the other hand, do not incorporate the erratic movement 
implied by the discrepancies; but, - in the example chosen - only their 
trend. The resulting benchmarked series therefore keeps the movement of the 
original series with little distortion, but changes its level (and trend) 
by the amount determined by the correction curve (hence by the 
discrepancies and by the benchmarks). In the case illustrated, the annual 
benchmarks refer to conventional years. The single sub-annual benchmark 
depicted is binding (in both cases) and forces the corrections and 
therefore the benchmarked series to start from a pre-specified value. 

According to the third assumption, the corrections depend both on the 
original sub-annual series and on the annual and sub-annual discrepancies. 
Indeed, since the corrections multiply the original series, their effect 
depend on the values of that series. If the source of sub-annual bias (in 
t) is under-coverage, for instance, the behaviour of the respondents not 

covered (which are in zt-xt) is consequently governed by the behaviour of 
the individuals covered (in Xt) and by the discrepancies. In other words, 
benchxnarking may be used as an implicit and aggregate method of impution. 
with proportional benchmarking, the implicit imputed values depend on the 
available non-imputed values and on the discrepancies. 	Apart from that 
distinction, the assumptions are the same as for additive benchmarking. If 
unclear about the assumption of benchmarkirtg, the reader is urged to refer 
to Section 2.1.2. 

Another virtue of proportional benchmarking is to avoid negative 
henchmarked values, when both the benchmarks and the sub-annual series are 
positive, With the additive variant on the other hand, negative 
benchniarked values would be very likely to occur in a situation like that 	-. 
depicted by Figure 2.3. However the proportional variant produces negative 	- 
values if some of the sub-annual or of the benchmark values are negative. 
The proportional variant is unusable when the sub-annual series contains 	-. 
zero values. In such a case zeroes may be replaced by values different 
from zero but infinitesimally close to zero. 

Like in the additive case, proportional benchmarking does not require 
small discrepancies. 	This allows one to build a series in millions of 
persons (say) from an original series expressed in percentages. The 
proportional variant is very appropriate in such situations. 

0 
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. 	2.3 Benchmarking Under Biased Benchmarks 
Both variants of benchinarking considered until now assumed that the 

benchmarks were unbiased. As a result, they provided the level of the 
benchmarked series, whereas the sub-annual series supplied the sub-annual 
movement. This section enquires into the possible usefulness of biased 
benchmarks. Such benchmarks correspond to the situations referred to by 
columns 3 and 4 of Table 1.1. Before specifically examining those 
situations, more general objective functions, based on the principle of 
proportional movement preservation, are presented. 

• 	Biased benchmarks may contain information about the non-seasonal part 
of the sub-annual movement - especially when they are non-erratic. With 
biased benchmarks (erratic or not), the following objective function would 

• 	be appropriate: 

T 
f(z) - gXt E [(Zt / xt) - (ztl I xtj)] 2  

t-2 

	

M 	 PM 	 Pmi 
+ E gY [(( E Zt) / ym) - (( E Z) / Ym-])] 2  

(2.5) 	
m-2 	ttm 	tTm l 

K 
+ Z gZ [(ztk / z) - (ztkl) / zdii)]2 

. 	

k-2 	

(read subscripts as tk and tk.4) 

+ E ((( 	E 	Zt) / ( 	E 	Xt)] - 1)2 

where J is the number of months per year, I is the number of complete years 
in series. 

The first term is the proportional movement preservation criterion. 
(For the additive criterion, all divide signs in the objective function 
should be replaced by minuses.) The second and third terms specify that the 
movement observed in the annual and sub-annual benchmarks should be 
reflected in the desired benchmarked series Zt. The weights gY and Zk 
are the weights attributed to the movement in the benchmarks Ym and z. 
High values for those weights specify that the movement of the benchmarks 
is binding; this would be appropriate for non-erratic benchmarks (column 
3). Low values specify non-binding movement of the benchmarks; this would 
be appropriate for erratic benchmarks (colurun 4). The fourth term 
specifies that the benchmarked series Zt should adopt the annual levels of 
the original sub-annual series Xt. That term assumes that the original 
sub-annual series is unbiased (row 1 and 2). (Such a term specifying the 
level is required. Its absence could result into a benchmarked series with 
an order of magnitude different from those of either the benchmarks and of 
the original series.) 

0 
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It is possible to specify a yet more general objective function for 
situations where the levels of both the benchmarks and the sub-annual 
series are wrong. 	This new objective function could thus apply to all 
cases referred to in columns 3 and 4 of Table 1.1: 

T 
f(z) - gX E [(Zt / Xt) - (zti / xtl)] 2  

t-2 

M 	Pm 	 Pm-i 
+ E gY [(( E Zt) / Yin) - (( E Zt) / Yrn-i11 2  

m-2 	tTm  
(2.6) 

K 
+ E gZ [(ztk / z') - (ztkl) / zdi1)]2 
k-2 

(read subscripts as tk  and tk..1) 

I 	iJ 	iJ 
+ 	E [( 	E 	Zt) - (a 	E 

i-1 	t-(i-l)J+j. 	t-(i-l)J+l 

H 	Pm 
+ E gY {( E Zt) - 	Yin]2 

rn—i 	t—r 

where a and 0 respectively stand for the known proportional bias of the 
sub-annual series and of the annual benchmarks (e.g. 1.10 and 0.70). Those 
two parameters could also be (linearly) estimated in the minimization 
process. 

The eight situations of columns 3 and 4 of Table 1.1 may now be 
addressed in the framework of objective function (2.6). If the sub-annual 
series is absolutely reliable (row 1, column 3 and 4), no benchmarking is 
advisable. The annual values may be obtained from the original sub-annual 
series. Even if the benchmarks are non-erratic (column 3), there is no 
movement in the annual benchmarks which is not present in the sub-annual 
series, otherwise the discrepancies would not be constant; and benchmarking 
would not improve the sub-annual series. In practice however, the 
sub-annual series Xt is not absolutely un-biased. The appropriate variant 
of benchmarking would then be given by objective function (2.6), where the 
level of the benchmarked series is specified to be that of the original 
(a—i 8-0) and where the movement of the benchmarks is specified as binding 
in case of non-erratic benchmarks (colunni 3) and non-binding in case of 
erratic benchmarks (column 4). The sante variant is also appropriate in 
case of erratic sub-annual series (row 2), except the movement of the 
benchmarks should be given more weight than when the sub-annual is 
non-erratic. In both cases (rows 1 and 2), benchmarking preserves the 
annual level of the un-biased sub-annual series and imposes some of the 
movement in the benchmarks, as this could improve the movement in the 
sub-annual series. 

0 



- 27 - 

. 	In the two situations where the sub-annual series is biased but 
absolutely non-erratic and the benchmarks are biased (row 3, columns 3 
and 4), no benchmaking is advisable. One could then simply adjust the 
level of the sub-annual series on the basis of subject matter expertise 
(for instance raise the series by 10%). Indeed, if the benchmarks are 
non-erratic (column 3), all their movements are also contained in the 
sub-annual series (otherwise the discrepancies would not be constant); if 
the annual series is erratic (column 4), then any benchmarking would make 
the sub-annual series more erratic then it is. In practice however, the 
sub-annual series is not likely to be absolutely non-erratic. The 
appropriate variant of benchmarking would then be given by objective 
function (2.6), where the level of the benchmarked series z t  is specified 
to be higher (or lower) than that of the original series by a factor a 
(>0), where the movement in the benchmarks is specified as binding in case 
of non-erratic benchmarks (column 3) and as non-binding in case of erratic 
benchmarks (column 4). In case of non erratic benchmarks (column 3), the 
level of the benchmarked series may also be specified to be higher (or 
lower) than that of the benchmarks by a factor 8 ( both a and fi > 0). The 
same variant is also appropriate in case of erratic sub-annual series 
(row 4), except the movement of the benchmarks should be given more weight 
than when it is non-eratjc. In both cases (rows 3 and 4), benchniarking 
exogenously changes the annual level of the sub-annual series (by means of 
pre-selected factors a and $) and imposes some of the movement in the 
benchmarks, as this could improve the movement in the sub-annual series. 

Simpler and probably more practical solutions to the problem of biased 
.  benchmarks are the following. Use (publish) the original sub-annual series 

as it is (and forego benchinarking), when the sub-annual series is unbiased 
(rows 1 and 2 and columns 3 and 4 of Table 2.1); and use (publish) only 
the movement of the sub-annual series, when it is biased (rows 3 and 4). 
This results into Table 2.1 which is simpler than Table 1.1. Indeed annual 
benchmarks cannot be good indicators of sub-annual trend-cycle movements: 
The movements derived from annual discrepancies cannot provide precise 
dates (in terms of month or quarter) of turning-points in the business 
cycle. Furthermore, benchmarking by means of (2.6) does not lend itself to 
massive application in statistical agencies, because it would require too 
much expertise. This sub-section at least put the more practical objective 
functions (2.1) and (2.3), as well as their underlying assumptions into 
perspective. 

Section 2 raised the opportunity of benchmarking when the benchmarks 
are un-biased and clarified the assumptions and the implications of 
benchmarking by means of the movement preservation principle. The next 
section discusses the issue of preliminary benchinarking. 

0 
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TABLE 2.1: 	Behaviour of the annual discrepancies and appropriate 
benchmarking variants depending on the reliability of the sub-annual series 
and of the annual benchmarks 

1 	 2 	 3 	 4 

Non-Biased Arui2al Bea±inarks 	Biased Arin.ial Betohnarks 

	

Non-Erratic 	Erratic 	Non-Erratic 	Erratic 

	

(reliable) 	(unreliable) 	(unreliable) -  (unreliable) 

S 

constant erratic constit erratic behavixzr of 
Non- discreparies discreparies discreparies discrepazxies discreparoies 
Erratic 
(re- 

Non liable) biriing ron-birding to no appropriate 
Biased berrhnarking berx±inarldng ben±nar1cing berhnarIcthg action 
Sub-
Ariial 
Series erratic erratic erratic erratic behaviour of 

discreparxies discreparoies discreparoies discreparoies discreparoies 
Erratic 

2 (unre- 
liable) bittling ron-birding to to appropriate 

berc±iriarking berrhnarldng berrhnarking berhnarking action 

S 
constant erratic constant erratic behaviour of 

Non- discreparoies discrepies discreparoies discreparoies discrep&oies 
Erratic 

3 (unre- 
liable) biixilng ron-birxilng use only use only appropriate Biased berohnarldng berohaarlcthg change in xt change in xt  action Sub-

Arnial 
Series erratic erratic erratic erratic behaviour of 

discreparoies discreparoies discreparoies discrepmies discreparoies 
Erratic 

4 (unre- 
liable) birding ron-birding use only use only appropriate 

berchnarking beroharIdng change in Xt change in Xt action 
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3. PRELIMINARY BENCHNARKING 
As rnentionned earlier, the annual benchmark of a year typically becomes 

available well after the year is over. Recent or current sub-annual data 
are then released to the public before they are benchmarked. This 
operational circunstance raises the issue of preliminary benchmarking. 
Figure 3.1 (a) presents a case of preliminary benchmarking under binding 
benchmarks. Comparing the current unbenchniarked values of 1987 with past 
benchinarked of 1986, that is the absence of preliminary benchmarking, 
produces a movement discontinuity equal to CB. The user of such data is 
lead to believe that the socio-econornic variable is going down. This may 
impair decision making. When the 1987 benchmark does become available, 
benchmarking will eliminate the decline GB (as shown later). Comparing the 
preliminary benchmarked values with the past benchmarked values, on the 
other hand, yields no discontinuity (movement CD). 

There are at least two approaches to preliminary benchmarking. One 
consists of forecasting the sub-annual series and the annual benchmark for 
the current incomplete year and of benchmarking as if those forecasts were 
genuine data. This is the avenue taken by Bassie (1939), Lisman and Sandee 
(1964); Laniel (1986) proposed the use of simple ARIMA models (Box and 
Jenkins, 1970). 

Another avenue consists of forecasting the corrections for the current 
year. The approach to benchmarking proposed in Section 2 provides the 
required forecasted corrections as a by-product. 	Under the movement 

• 	preservation criterion used, the optimal corrections merely repeat the last 
correction calculated for the last year for which there was a benchmark. 
In other words, such preliminary benchmarkthg factors, displayed in 
Figure 3.1 (a), are also the ones which result by actually minimizing 
objective function (2.1) (or (2.3)). Indeed the criterion minimized does 
not distinguish between years which have benchmarks from those which do 
not; nor, between years which are complete from those which are not. The 
benchmarked series is kept as parallel (or proportional) as possible to the 
original for all years, and this applies to the current year. For the 
current year without benchmark, complete parallelism (or proportionality) 
is achievable, hence the constant corrections. 

Repeating the last correction is also equivalent to cumulatively 
applying the growth observed in the current unbenchmarked observations to 
the last benchmarked value; in Figure 3.1 (a), to applying additive growth 

• 	 AB to point C, which yields point D. This also holds in the proportional 
- 	model. Indeed, applying the percentage growth xT+ / XT+p.l in the current 

unbenchmarked series yields the following preliminary benchmarked values 
• 	 for periods T+l, T+2,...: 

ZT+l - (xT+l / XT) * ZT - XT+l * (zT / xT) 

ZT+2 - (xT+2 / XT+l) * ZT+1 

- (xT+2 / XT+l) * XT+1 * (zT / xT) 

. 	
XT2 	,' 
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and so on; or more generally 

ZT+p 	(XT+p / XT+p 1) k zT+p..i 

(3.1) 	 —> 	ZT+p — XT+p * (zT / XT), p-1,2,3,... 

where ZT / XT is the last correction made for the last year with a 
benchmark. As shown by (3.1), that same correction is applied to all 
current observations. (The use of growth rates for preliminary 
benchmarking is not to be confused with series interpolation by means of 
growth rates. See Section 2 of Part 2.) 

Repeating the last correction for preliminary berichmarking is 
equivalent to forecasting the next annual average discrepancy, at level E 
in Figure 3.1 (a) (in the additive case); and therefore, implicitly 
equivalent to forecasting both the annual benchmarks and the sub-annual 
series. The forecasted discrepancy is slightly higher than the last one, 
if the previous one was lower than the last one (case displayed). 
Converserly, the forecasted discrepancy is slightly lower than the last one 
if the previous one was higher. The forecasts also level off, which 
provides protection against "turning points" in the discrepancies. 

Figure 3.1 (b) illustrates the same situation as Figure 3.1 (a), after 
the 1987 benchmark is available. Three scenarios corresponding to three 
1987 benchmark values are considered. In the first scenario, the 1987 
benchmark yl3 exactly confirms preliminary benchmarking. This fortunate 
scenario entails no revision to the preliminary benchmarked series Z 1 t. In the second scenario, the 1987 benchmark y 2 3 is much higher than anticipated 
by preliminary benchmarking. The series is then revised from Zt to Z2t. 
The resulting revised change C'D' between 1986 and 1987 is still 
comparable to the preliminary change CD. In that case at least, change CD 
was a better predictor of C'D' than CB was (without preliminary 
benchmarking). 

The third scenario is the worst: The 1987 benchmark y 3 3 is much lower 
than anticipated and yields a negative annual discrepancy (when they used 
to be positive). The series is accordingly revised from z 1  to z 3t. It is 
now debatable whether CD was a better predictor of C"D" than CB was. 
However one point is not debatable: nor the preliminary benchmarked series 
zi t  nor the benchmarked series z 3 t  display discontinuity CB, which occurs 
in - and is uniquely due to - the absence of preliminary benchmarking. 
Furthermore the preliminary benchmarked series, represented by 

Z l t, lies in 
the middle of the extreme scenarios and is therefore the most likely. 

The normative considerations discussed under the assumptions of 
benchmarking actually rule out the possibility of extreme scenarios. In an 
eventual erratic discrepancy situation, non-binding benchmarks would be 
appropriate. The benchrnarked series would be much more comparable with the 
preliminary benchniarked series than in the case of Figure 3.1. 

The preliminary benchmarking scheme just described is no argument 
againts the forecasting approach first mentionned. In some critical 
situations, forecasting the original series and the next annual benchmark 
may produce superior results (lower revisions). The approach should be 
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the forecasting expertise. For mass production however, the preliminary 
correction factors derived from the movement preservation criterion are 
satisfactory - as illustrated by Figure 3.1 

- and trivially easy to 
calculate. Their foreknowledge also means that the benchmarking exercise 
can be conducted only when a new benchmark becomes available (e.g. once a 
year), instead of every month or quarter. In the meantime, the original 
sub-annual series can be preliminarily benchmarked by adding (or 
multiplying) the predicted correction factors to the current sub-annual 
values. This situation is analogous to seasonal adjustment with the 

• 

	

	X-11-ARIMA method, which provides seasonal factor forecasts to be used for 
preliminary seasonal adjustment of current observations. 

Preliminary benchmarking may actually be regarded as one of the 
implementational issues of benchmarking, examined in the next section. 
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Figure 3.1: (a) Preliminary benchxnarking according to the modified Denton 
method; (b) Real benchmarking under a realistic scenario and two extreme 
scenario 
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4. INPLEMENTATION OF BENCHMARKINC 
The implementation of benchmarking is now considered. A natural way to 

implement any benchmarking method is to recalculate the whole benchmarked 
series from the sub-annual original series and from the benchmarks, each 
time a new sub-annual observation is available and a corresponding 
benchmarked value is desired: e.g. every month, every quarter. For a 
series of 120 observations, benchmarking with the Denton approach would 
then involve the inversion of matrices of 120 rows by 120 columns, which is 
a substantial computational problem. The preliminary benchmarking strategy 
explained in the previous section allows one to carry out benchmarking only 
when a new benchmark becomes available, typically once a year. (In the 
meantime predicted preliminary benchmarking factors are used.) However, 
benchmarking under the movement preservation principle can be further 
alleviated 1) by taking advantage of the properties of the method and 2) by 
resorting to numerical approximations to the formal minimization process 
described in Section 2. 

4.1 Simplification based on the properties of the method 
With most benchmarking methods, the introduction of new years of data 

(i.e. of new original and benchmark data) has no impact on the estimates 
pertaining to the distant past. Put differently, the incorporation of the 
new observations causes negligible change in the past benchmarked values 
lying far away from the end of the series. Of course this does not hold if 
past sub-annual values or past benchmarks are modified when the new year is 
incorporated. But since, in practice, statistical agencies leave data 
untouched after a certain number of years (e.g. after 3 years), the past 
benchmarked values do eventually stabilize. In order to facilitate the 
analysis, however, it is first assumed that the only change occurring from 
year to year is the incorporation of the extra year of sub-annual values Xt 
and of benchmark(s) Ym or zdt . 

Under such a pattern, the benchmarked values of a year i, derived by 
the modified Denton method, stabilize in year i+3. This is illustrated in 
Figure 4.1. The proportional corrections Zt/Xt pertaining to 1982 are the 
same in 1985 (dotted curve) as in 1986 (solid curve). Indeed, the 1982 
values of the two curves are undistinguishable. The two corresponding 
benchmarked values are therefore practically identical. In other words, 
the benchmarked values of 1982 stabilized in 1985 (i.e. 	when the 1984 
benchmarak is incorporated). 	The two correction curves of 1983 are almost 
the same in 1985 (dotted curve) as in 1986 (solid curve) and will coincide 
in 1987. 	The benchmarked values of 1983 consequently stabilize in 1986. 
This built-in stabilization of estimates is 	faster under erratic 
discrepancies; and slower, under monotonic discrepancies. 	With that 
stabilization, it is useless to recalculate distant past benchmarked values 
year after year. 	It is sufficient to calculate only the last few years, 
e.g. 5 or 3 years. 

The modified Denton method allows for further alleviations of the 
benchmarking operation. As illustrated in Figure 2.1 and 2.3, binding 
sub-annual benchmarks can specify the starting values of the benchmarked 
series. In particular, the benchmarked series may be specified to start 
from values considered as historical or final by the statistician. In 
Figure 4.1, the corrections curve calculated in 1986 ("zt/xt in 1986") is 
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. 	forced to start from one sub-annual discrepancy in the fourth quarter of 
1981. That discrepancy corresponds to an historical value of the 
benchmarked series. (The values of 1981 and before are historical.) Under 
such a scheme, proposed by Laniel (1986) and Baldwin (19??), one needs 
(re)calculate only the last four complete years of the series, from 1982 to 
1985 in the figure. (The 1986 corrections are a trivial repetition of the 
last 1985 correction and do not actually require calculation.) In 1987, 
when the 1986 data are incorporated, the sub-annual benchmark is moved to 
the fourth quarter of 1982, and only years 1983 to 1986 is (re)calculated. 

Now assume that on 
sub-annual series of ti 
benchmarked series then 
the annual benchmarking 
series. This generally 
the computations. Yet 
algebraic and numerical 
underlies benchmarking. 

incorporating one benchmark, the benchmarks and the 
e two previous years are potentially modified. The 
takes two extra years to stabilize. Consequently 
exercise need involve the six last years of the 
translate into important reduction in the scale of 
massive reductions are still achievable through 
approximations of the formal minimization which 

[IJ 

Before d4scussing approximation, the following point deserves to be 
made. 	On incorporating a benchmark pertaining to one year, at least the 
preceeding year must be revised. 	Figure 4.2 depicts the previously 
benchmarked series accompanied by the new benchmarked series. Failling to 
carry out the revision of 1986 (shaded area) amounts to publishing 
discontinuity CB instead of the correct movement AB. (Note that CD was more 
correct than CL) Point E in the figure represents a sub-annual benchmark 
specified so that 1985 is not modified. The warning, which is illustrated 
for preliminary benchmarking, i.e. for the end of the series, also Io1ds 
when modifying an already available past benchmark value: the year 
preceeding that value must be revised, if no discontinuity is to be 
introduced in the series. 
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Figure 4.2: Revisions in the past benchmarked values required by the 
incorporation of a new benchmark or by the modification of existing 
benchmarks 

4,2 Numerical approximations to the formal minimization 
As explained in Section 2, benchmarking according to the modified 

Denton method is based on the principle of movement preservation of the 
original series; and, in order to achieve that goal, the corrections are 
kept as smooth and constant as possible. This suggest benchmarking may be 
attempted from the discrepancies. The approach proposed here is to 
iteratively fit smooth and flat corrections curves to the discrepancies and 
adjust those curves with simple arythmetic tools, until the discrepancies 
are totally allocated, i.e. 	until the benchmarking constraints are 
satisfied. 	This is analogous to iterative ratio-to-moving average fitting 
in the X-ll-ARIMA series component estimation method (Daguin, 1980). 

4.2.1 Approximation for stock series 

In the case of stock series (as defined in Section 1.2) with binding 
benchmarks, an exact approximation is readily available. The following 
algebraic formulae are those of the corrections c obtained by formally 
minimizing (2.1) or (2.3): 

c 	- dk + (t-tk) * [(dk+l- dk)/(tk+1 -  tk)], 	tk 	t < (4.1) 	 k—1,.. ,K-1 

(4.2) Ct - 	 d1, t < ti 

(4.3) ct dg, t —> t( 
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. 	where dk and tk stand for the sub-annual additive or proportional 
discrepancies and their reference periods respectively. (For stock series, 
the annual benchmarks are technically sub-annual benchmarks, hence notation 
dk instead of rm.) Variable K represents the number of discrepancies, i.e. 
of benchmarks. The corrections obtained from (4.1) are displayed in 
Figure 4.3. They are linear interpolation between the discrepancies on 
each side of a time period considered. The ordinate and the slope of each 
line are dk and ((dk+1- dk) / (tk+l- tk)]. For the periods preceeding the 
first and following the last discrepancies, the corrections simply repeat 
the first and last discrepancies. This scheme would also work for flow 
series which have sub-annual but no annual benchmarks. However, such flow 
series are not likely to occur in practice. 

4.2.2 Approximation for Flow Series 
For flow series with binding benchmarks, the approximation is not exact 

and requires iterations. However, it is based on the same approach as for 
stock series. The steps required are simple but intricate. They are 
documented in Appendix D. 

Figure 4.4 constrast the approximated and the exact corrections 
obtained by formal minimization of the objective function. Even in the 
unfavourable benchmarking situation depicted, the approximated are very 
close to the exact corrections. It could be argued that the preliminary 
benchmarking factors resulting from the epproximation (for periods 16, 17, 
• .) are preferable. Indeed the implicitly anticipated discrepancy (see 

• 	Section 3) is more "conservative". 	For a more favourable benchmarking 
situation, the approximated and exact corrections would be even closer. 

4.2.3 Approximation for Second Difference 
In some applications of benchmarking, but especially of interpolation 

(see Part 2, Section 1), the objective function minimizes second 
differences in the corrections. The resulting corrections behave smoothly 
and as linearly as possible. The approximation described in Sections 4.2.1 
and 4.2.2 remains valid with one very little change. Whenever values of 
discrepancies or corrections are repeated at the start or at the end of 
series, the corrections are linear extrapolations of the corrections 
calculated for the central part of the series. For instance equations 
(4.2) and (4.3) repsectively become 

Ct - ctl + (ttl)*(cti±1 - ctl] 	t < t1 

(read subscript tl and tK as t1 and tk) 

Ct - CtK + (ttK)*[ctK+1 - CtK] 	t _> tK 

For flow series, that substitution is also made in equations (3") and (4") 
of Appendix D (mutatis mutandis). 

Coding to perform benchmarking according to the proposed approximation 
with programme SAS/IML may be obtained from the author. The reduction in 

• 

	

	the amount of calculations and of required computer memory afforded by the 
approximation is massive. As shown in Appendix B and C, formally minimizing 
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objective function (2.1) or (2.3) over five years of monthly data involves 
rnultiplicating and inverting matrices of dimensions 60 by 60. With the 
numerical approximation, the benchniarking operation can efficiently be 
carried out on micro-computers. The operation may also be so cheap as to 
make the implementational simplifications proposed in Section 4.1 
unnecessary. In other words, it may be logistically easier and more 
feasible to recalculate distant past values of series year after year (i.e. 
to run benchmarking over the whole series), like this is done for seasonal 
adjustment with the X-ll-ARIMA method. 

In the case of non-binding benchmarks, the approximation simply 
consists of fitting a smooth curve through the discrepancies with no 
concern to allocate the discrepancies. The curve should only capture the 
local level of the discrepancies. One approach would consist of modifying 
the benchmarks until they yield monotonic discrepancies, of considering the 
modified benchmarks as binding and of applying the approximation just 
presented. (We have nothing more specific to propose at this stage. The 
difficulty was with binding benchmarks, not with non-binding.) Figure 2.2 
and 2.4 provide examples of such curves. 	This strategy applies both to 
stock and to flow series. 	The numerical approximation in non-binding 
benchmarks situation also circumvents the problem of chosing the weights 
gX, gY and gZ in the objective function. (Maybe, the choice of those 
weights is a non-issue.) 
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5. BENCHMARKING SYSTEMS OF SERIES 

	

As explained in Section 1.6, situations occur where identities must be 	40 
preserved between series for each period of time. First, one-way 
classification cases are examined, where the series are components to one 
aggregate, for instance wholesale trade by industry with respect to the 
total of all industries; second, two-way classification cases, for 
instance wholesale trade by region and by industry with respect to the 
totals of all industries and of all regions and with respect to the grand 
total of all industries and all regions. 

5.1 Benchmarking in situations of one-way classification 
Consider the case of N industrial original sub-annual series xlt, 

x2t, . . . , Xft, t-1, . . . ,T, in which the Nth series is the total of the other 
N-i series for each period of time. The N benchmarked series must then 
satisfy T binding constraints: 

(5.1.1) 	Zl,t + Z2,t + ... + ZN..l,t 	- 2N,t 	t-1,...,T 

Each series must (say) satisfy its own annual and sub-annual benchmarks, 
Yn,m and zdn,tk: 

m 
(5.1.2) 	E 	Zn,t -  Yn,rn' 	n-i,. ..,N; ml,...,Mn  

rn,m 

(5.1.3) 	zn tk - zdn, k 	n-1,...,N; kl,...,Kn , 	(read tk as tk) 

where Mn  and K respectively stand for the number of annual and sub-annual 
benchmarks for series The notation allows each of the N series to 
have annual benchmarks with different reference periods, [mm,... 

'Pn,mJ• The notation makes it possible to denote the sub-annual benchmarks by means 
of with the appropriate reference periods 7n,m (Pn m) In other 
words yn may be used to denote benchmarks whether annuai or sub-annual. 
For the sake of simplicity and alleviation, the sub-annual benchmarks zd fl k 
are henceforth dropped. 

One approach with a system of series is to benchmark each component 
separately to its benchmarks and to define the aggregate benchmarked series 
as the sum of the benchmarked components. The analogous practice in 
seasonal adjustment is called indirect adjustment. On comparison to its 
original sub-annual values xNt, the resulting indirectly benchmarked 
aggregate series ZNt may be unacceptable. For instance, it may display 
movements which were not present in the original series and which are ruled 
as highly improbable by the series expert. 

5.1.1 Additive Simultaneous Specification 
A direct approach to systems of series, adopted by Taillon (1987) and 

pursued in this section, is to benchmark the N series simultaneously. The 
principle of movement preservation is specified on both the components and 
the aggregate. This leads to the following global objective function which 
also incorporates the constraints between series: 
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. 	 t'T 	T 

	

f(z) - E gX 	E ((zn ,t - xn,t) - ( Zn ,t..1 	xc1)) 2  
n-i 	t-2 

N M 	Pn,m 
(5.1.4) 	+ 	E 	E gyn ' m  {( E zn,t) - Yn,m) 2  

n-i rn-i 

T 	N-i 
+ G E (( E z,t) - ZN,t) 2  

c-i 	n-I 

The first term specifies the movement preservation principle for each of 
the N series; the second term, the annual (and the sub-annual) benchmark 
constraints of each series. 	The third term specifies the aggregation 
constraint (5.1.1) which must prevail between series for each period of 
time. The weights gY 	specify the relative importance of the various 
benchmarks. High weights imply binding benchmarks; and low weights, 
non-binding benchmarks. The weights gX standardize the components in order 
to make them equally important in the objective function. (In the absence 
of standardization, the relatively small series, i.e. with small absolute 
values, could be corrected by relatively large amounts, potentially 
changing the sign of the series. This would indeed be likely to happen when 
some 	of the other large-valued series display large and erratic 
discrepancies. 	The movement preservation criterion of the small series 

• 	would have little importance in the objective function and could therefore 
be violated with little penalty.) 

5.1.2 Proportional Simultaneaous Specification 
In the additive model (5.1.4), the standardization and the choice of 

weights is very intricate, because of the possibly different orders of 
magnitude of the various series. The proportional variant is much more 
appropriate for simultaneous benchmarking, because all terms are expressed 
in percentages (more precisely in ratios): 

N 
f(z) - 

n-i 

N 
(5.1.5) 	+ 	: 

n- 

+ 

T 
gX 	E ((z 	/ xn,t) - (zn ,t..l / Xn ,t..1)} 2  

t-2 

M n,m 

	

E gyn,m  ((( : 	Zn,t) / Yn,m) - 1.0)2 
L m-1 	t-r n,m 

T 	N-i 
C E (( Z zn ,t) - ZN,t) 2  

c-i n-i 

In some situations with potentially legitimate negative values for some 
components series, e.g. profits, such components may be specified 
additively and standardized through gxn . Assuming no negative components 
and weights gX equal to 1, the movement preservation is equally important 
for all components. Higher weights may be chosen for the more reliable 
components. For instance a weight gxN equal to N-i specifies that movement 
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preservation is as important for the aggregate ZNt as for all the other 
component series collectively. Similarly, by means of gY p , it is possible 
to weight the more reliable benchmarks, e.g. those of the aggregate, more 
than the unreliable ones. (Note that if the benchmards already satisfy the 
aggregation constraints, they will tend to reinforce each other across 
series. In other words, benchmarks specified as binding for one series 
will tend to make the benchmarks of the other series binding.) 

One statistical advantage of simultaneous benchmarking is that it 
operates as some kind of accounting framework to cross-validate the 
benchmarked series. For each period t, the sales (say) must be 
exhaustively allocated to the industries (or regions, etc.). Furthermore, 
through the constraints between series, the higher reliability of some 
components improves that of other components. Another advantage, of 
course, is to produce components which add up to the aggregate. 

(Note that series zN,t may be replaced by the sum of the N-i other 
series in 	both 	(5.1.4) and (5.1.5). 	Proceeding with Langrangian 
multipliers would require 	such a substitution in order 	to avoid 
singularities. The last term of the objective function would then 
disappear but the remaining terms would be substantially complicated. For 
the sake of clarity and simplicity, such aggregate series are explicitely 
kept in the equations; and this will also be the case in the next 
sub-sections.) 

5.1.3 Computational Strategies 
Simultaneously benchmarking several series by means of (5.1.5) or 

(5.1.4) is mathematically possible and straightforward. Computationally 
however, it is problematic. (So far we have successfully processed 25 
quarterly series on 3-year intervals with the standard main computer 
version of package SAS/IML.) Simultaneously processing 30 monthly series on 
3-year (moving) intervals requires the manipulation and the inversion of 
matrices with dimensions 1080 by 1080, which is probihitive (on an 
operational basis at least) for the computers available today. 

In order to overcome that problem, one strategy is to process the N 
monthly series jointly but in two steps. The first step consists of 
benchmarking on a quarterly basis. The monthly original series are 
collapsed into quarterly series and benchmarked simultaneously. Processing 
30 quarterly series on 3-year intervals thus requires the manipulation and 
inversion of matrices with dimension 360 by 360, instead of 1080 by 1080, 
which reduces the order of magnitude of the computations. The second step 
consists of simultaneously benchmarking the original monthly series to the 
quarterly values obtained in the first step and now considered as "annual" 
benchmarks. This step involves matrices of 270 by 270. 

The strategy could also consist of three steps, the first specifying 
the problem on semi-annual series (involving matrices of 180 by 180); the 
second step, on quarterly basis (180 by 180); and the third, on a monthly 
basis (270 by 270). The latter strategy requires the reference periods of 
all the annual benchmarks to coincide with the conventional year or with 

0 
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• 	the end of semesters; and the first strategy, with the conventional year or 
the end of quarters. One problem with that multi-step approach is the 
possible presence of monthly (sub-annual) benchmarks. 

Another strategy to overcome the magnitude of the problem is to 
collapse the N series x t  into a much lower number N' of sub-aggregate 
series to carry out benchmarking at that level of sub-aggregation 
and then to benchmark at the level of the individual series within each 
sub-aggregate. For instance, processing 30 original monthly industrial 
series xn t is done in the following two steps. First the 30 series are 
collapsed into 6 sub-aggregate series These are the sum of 4 to 6 
individual series, except for the 6th series which coincides with the 
overall aggregate (X'NI,tXN t)• (The corresponding collapse of the 
benchmarks is done and this implies homogenoeous reference periods.) 
Simultaneous benchmarking is carried out on the 6 sub-aggregate series by 
means of (5.1.5). Over 3-year intervals, the matrix involved have 
dimensions 	216 by 216 (instead of 1080). 	The second step is to 
simultaneously benchmark the 4 to 6 individual series within each 
sub-aggregate under the constraint that all the individual series sum to 
the sub-aggregate values z's •t established in the first step. This can be 
accomplihed by replacing the iast term of objective function (5.1.5) by 

T 	N 
(5.1.6) 	+ C E ((( E z,c)/ z'net) - 1.0)2 

t-1 n—1 4o 	which embodies the required constraint. This second step involves matrices 
of dimensions 144 by 144 or 180 by 180 or 216 by 216 depending on the 
number of series in the sub-aggregate considered being 4, 5 or 6. 

One statistical advantage of this second strategy is to take advantage 
of the higher reliability of the input series at higher levels of 
aggregation. Furthermore, the movements derived at the more reliable higher 
levels of aggregation are thus imposed to lower levels. In the same 
example, the movement in the aggregate benchmarked series and the 5 
sub-aggregate series are determined jointly: Those estimated for the 5 
sub-aggregates influence those of the aggregate and vice versa. Once the 
movements in the sub-aggregates are thus determined, the second step 
imposes those movements on the series within each sub-aggregate. Indeed, 
the sub-aggregate values - and the corresponding movements - are specified 
as constraints (in (5.1.6)). 

In this second strategy, the collapsing is performed over the 
components, instead of over time in the first strategy. In that sense, 
both strategies are similar. They may actually be combined, i.e. the series 
may be collapsed both over time and components. 

5.2 Benchmarking in situations of two-way classification 
Now consider a system of series pertaining to R regions and N 

industries (say). As illustrated in Table 5.1, the original values Xr n t 
measure the wholesale trade (say) for region r and for industry n at time 
C. (There are in fact T tables like 5.1. under consideration.) Assume 
that Xr,N,t are the regional totals over the industries (last column of 



- 42 - 

table); 	xR n t, the industrial totals over the regions (last row); and 
XN,R , the rand total over both industries and regions, e.g. 	the 
"nadonal" total (last coiunn and row). The last industry "N" and the last 
region "R" are thus the totals for the regions and for the industries 
respectively. 

Table 5.1: Illustration of a two-way classification by region r and by 
industry n, for a given moment of time t 

Regional totals 
over irxiustrjes 

I I n d u s t r y n I xr,N,t 

X1,1,5 	Xl,2,t 	. . . 	 I 
R 	X2,1,t 	X2,2,t 	. 	 I 
e 	J 	 I 
g 	I. 	* 

o 
I 	 Xr , n ,t 	I 

------------------------------------------- -""-- 	 . 

industrial totals 	 I over regions XR,,t I XR1t 	XR ,  2 ,  t 	. . . 	 I xR,N, t total 

5.2.1 Proportional Specification 
The same approach and strategies described in the previous sub-section 

may be used. The aggregation constraints are now be defined for both the 
industrial and regional break-downs 

R-1 
(5.2.1) 	E zr , n ,t 	- 	ZR, n ,t, 	n—l.... ,N-l; t-1,. . . 

r—1 

N-i 
(5.2.2) 	E Zr,n,t 	- 	Zr,N,t, 	r—i,...,R-1;  

n—i 

The sum of regional totals must also be equal to the sum of the industrial 
totals, for each period of time: 

R-1 	N-1 
(5.2.3) 	E Zr,Nt 	- 	(zRNt)  

r=l 	nl 

0 
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• 	(That constraint may be made implicit in (5.2.2) by letting index r therein 
reach R instead of R-i; or in (5.2.1), by letting index n reach N.) 

The principle of movement preservation is specified on the R regional 
series and on the N industrial series. The proportional objective function 
is then: 

R N 	T 

	

f(z) - E 	E gX 	E ((zr n t / xrnt) - (zr,n,t..1 / Xr,n,t..])) 2  
r-1 n-i 	t-2 

R 	N 	Mr,n 	Pr,n,m 
+ 	E 	Z 	E 	gyr,n,m ((( E 	zr, n t) / Yr,n,m) - 1.0)2 

(5.2.4) 	
r-i n-i rn-i 	tTr,nm 

	

T N-i 	R-1 	 T R-i 	N-i 
+ C E 	E (( E  Zr, n t) - ZR n t] 2  + C E 	E [( E  zr, n ,t) - Zr,N,t] 2 , 

	

t-1 n-i r-1 	 t-1 r-i n-i 

T 	R 	N 
+ C E [(E Zr,N,t) - (E ZR n,t)]2 

t-1 r-1 	n-I 

1athematically, it is 	then possible to generalize the approach of 
• 	Section 5.1 to any ievel of classification (and to apply the same 

collapsing strategies), by incorporating the appropriate constraints and 
criteria into the objective function. 

5.2.2 Computational Strategies 
Another approach may be more appropriate in situations where 

statistical agencies publish only the regional totals zrNt and the 
industrial totals ZR,fl t that is the marginal totals of Table 5.1. The 
other series inside Table 5.1 are available to the statistical agency but 
not released to the public - as time series at least -, because 
confidential or not sufficiently reliable, etc. The total number of series 
to consider may therefore be reduced to R+N-1 instead of R*N. For instance 
with 6 regions (R-6) and il industries (N-li), including the totals, the 
number of series to benchmark is 16 instead 66. Keeping the same notation, 
the objective function (5.2.4) becomes: 

	

R 	T 

	

f(z) - E 	gX 	((zr,N,t / xr,N,t) - (Zr,N,t..l / xr,N,t..1)} 2  

	

r-1 	t-2 

	

N 	T 

	

n 
E 

 i 	t 2 
Z ((ZR,n,t / XR,flt) - (ZR,n,t..1 / XR,n,t..lfl 2  

- - 

R 	Mr,N 	Pr,N,m 
+ 	E 	E 	( E 	Zr,Nt) / yr,N,m) - 1.0)2 

r-1 rn-i 
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N MR,n 	PR,n,rn 
+ 	Z 	Z 	gY 	{(( E 	ZR, n t) / YR,n,m) - 1.0}2 

(5.2.5) 	
n—i rn—i 	tTRnm 

T 	R 	N 
+ 	E [(E zr,Nt) - (E zR n,t)J 2  

t—1 r—1 	n—i 

The first two terms specify the movement preservation principle on the 
regional and on the industrial series respectively; the third and fourth 
terms, the annual benchmark constraints; and the fifth term, the overall 
aggregation constraint. 

One statistical advantage of this approach is to take advantage of the 
higher reliability of the input series at higher levels of aggregation, 
namely at the level of the totals. 

Like in Section 5.1, the benchmarking problem (5.2.5) may be first 
specified on a quarterly basis; and then on a monthly basis using the 
benchmarked quarterly values as "annual" benchmarks. 	Similarly, regions 
and industries may be collapsed into sub-aggregates 	to be 	later 
dis - aggregated. 

Minimizing objective function (5.2.5) yields benchmarked values ZR n,t and Zr ,N t for the totals, that is for the margins (last row and last 
column) ok Table 5.1, for all moments of time t (t—1,...,T). If necessary, 
the other series, Xr n,t (for r<R and n<N) inside Table 5.1, may be 
adjusted to sum to the row and to the column totals. This may be achieved 
by Iterative Proportional Fitting or "raking" (Bishop, Fienberg and 
Holland, 1975; Brackstone and Rao, 1979). In the context of Table 5.1 
raking consists of adjusting each column to the its total, by multiplying 
it by the proportion of the corresponding desired and actual totals; of 
adjusting each row to its total in the same manner; of re-adjusting the 
columns; of re-adjusting the rows; and so on. This method has been proven 
to converge exactly. 

In the context of benchmarking, there are problems with the 
2-dimensional raking just described. First, it is not likely to preserve 
the period-to-period movement of the original series Xr n  t (for r<R and 
n<N), because each time period, i.e. each of the T tables like Table 5.1, 
is processed separately. If such discontinuities are to be avoided, 
objective function (5.2.5) may be reverted to, probably with the collapsing 
strategies. 

Second and for the same reason, the 2-dimensional raking just described 
will not satisfy the benhmark Yr,n m of the components series Xrn t (r<R, 
N<N). However this second problem may be corrected by 3-dimensional raking, 
processing one year (of tables like 5.1). The two first dimensions consist 
of the regional and the industrial totals ZR,fl t and Zr N,c; and the third 
dimension, of the benchmarks Yr,n,m for a given year. (This implies the 
availability of benchmarks every year for every series.) The problem 
remaining is the possibility of movement discontinuicies between years, 
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• 	since each year of values Xn,r t is processed separetaly. However, this 
method may represent a trade-ofk between quality and feasibility which may 
provide sufficient quality in many situations. 

Practical experience with simultaneous benchmarking may show that very 
similar results can be achieved with some combination of individual 
benchmarking with raking. If such were to be the case, the methods 
proposed in this section should not be applied. However, simultaneous 
benchmarking does provide a standard, 	i.e. 	a norm, against which 
alternative and simpler approaches may be assessed. 

5.3 Other Problems with System of Series 
In many situations, the source of discrepancy between the components 

and an aggregate - even after benchmarking - is rounding and not the lack 
or the faillure of benchmarking. For instance adding 33, 23 and 63 should 
give 119. However, the computer may yield 120, because internally (in its 
memory) the numbers were actually 33.3263, 23.3919 and 63.4019. If there 
are 100 components, that kind of discrepancy may distribute between -50 and 
50. This phenomenon can also explain the residual discrepancies left after 
benchmarking, between the benchmarks and the annual sums of the 
corresponding benchmarked series. 

One approach to solve that problem is to distribute the rounding 
discrepancies to the values with the largest fractions. 	The distribution 
should take place over the components. 	However this would disturb the 

• 	benchmark constraints. The most pratical attitude is problably to tolerate 
the benchmark constraint disturbances. 	The yearly financial reports of 
private corporations usually footnote rounding discrepancies. 

Simultaneous benchmarking may also be complicated by the fact that some 
components have no benchmarks. Those components may still be specified to 
maximize movement preservation. If a component is the only one without 
benchmarks, those benchmarks are implicit in the those of the other series. 
If several series are without benchmarks, the danger is that their level 
may be changed drastically. In order to avoid this, it is possible to 
specify that such series have corrections close to those of another 
component series. The following term is then added to the objective 
function: 

T 
(5.3.1) 	hu  E(zu,t/ 	Zs,t / X5,t) 2  

t-1 

where the u-th component is the one adopting the corrections of the s-th 
component. Depending on the value of hu , that term can be made binding or 
non-binding. 	The term can be used as a substitute for the movement 
preservation criterion for the u-the component (by setting 	or in 
conjonction with it. 	It is also possible to specify that the uth 
components adopt the corrections of several other components, 	by 
incorporating several terms like (5.3.1) for the uth component. 
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5.4 "Small Area" Data 
Consider a situation with R-6 regions and N-lO industries. The sixth 

region and the tenth industry are respectively the industrial and the 
regional totals and correspond to the margins of Table 5.1. 	The 15 
marginal total series are reliable. 	However, the 45 component series by 
region and industry inside Table 5.1 display erratic movements, more 
specifically, grossly unacceptable growth rates. The conventional approach 
is to correct each of the 45 components separately using subject matter 
expertise. However, this destroys the consistency of the system, i.e. the 
rows and columns of Table 5.1 do not sum to the margins; and those sums 
may now also display unacceptable movements. Another rouond of such 
tedious and laborious adjustment is done over until an acceptable solution 
is reached. 

This type of situation may be addressed by a variant of simultaneaous 
benchmarking. That variant integrates the subject matter expertise about 
each individual component series and combines it with the regional and 
industrial additivity constraints. Assume that the integration exercise 
takes place on 3 years of annual data, 1-3, J-1 and T-3. (The resulting 
series may be temporally dis-aggregated in another step.) Consider the 
following objective function: 

	

R 	N 	T 

	

f(z) - E 	E aX 
r,n E ((Z / Xr,n,t) - 1)2 

r-1 n-i 	t-2 

	

R-1 N-i 	T 

	

E 	E gX 	E ((zr,nt - rr, n ,t zr, n ,t) / r,n,t 2  

	

r-1 n-i 	t-2 

R4 N-i Kr , n  

	

+ 	E 	E 	E 	gYfl 	(( Zr, n tk) / yr,n,k) - 1.0)2 
r-1 n-i k-i 

(5.4.1) 	 (read subscript tk as 

	

T N-i 	R-1 	 T R-i 	N-i 
+ C E 	E 	E zr,n,t) - zR, n ,t1 2  + C E 	E f( E zr,nt) - zr,N,t]2, 

	

t-1 n-i r-1 	 t-1 r-1 n-i 

	

T 	R 	N 
+ C E [(E zr,N,t) - (E ZR n,t)]2 

t-1 r-1 	n-i 

The first term of the objective function specifies that the desired 
series Zr ,t are to be somewhat close to the data Xr 	t available for the 
regions and the industries. 	In other words, the available data should be 
taken into account in deriving the desired values. The importance of the 
data is determined by weights gX n,t (For the totals the weights could 
be binding.) 

The second term, the growth rate criterion, specifies that the 
components series (inside Table 5.1) behave according to growth rates 
rr n t from year to year. Theses growth rates embody the subject matter 
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• 	expertise. The components were ruled unacceptable on the basis of their 
iccual growth rates (in xrn t). The subject matter accordingly specifies 
more acceptable growth rates. Growth rates equal to 1 (which may be good 
starting values) specify that the desired series Zrn t behave smoothly 
from on period to the next. (More information about growth rates is 
available in Section 2 of Part 2.) The standard deviations of Xr n,t' 

t standardizes the components so that the (growth rate criteria of) 
smali components receive the same importance as large components in the 
objective function. 

The subject matter expertise may also be embodied in benchmarks yr n t 
chosen for individual series and individual periods (Km n 

:!:, T). Such 
benchmarks are appropriate to specify the starting point (e.g. 
"historical") of all the component series. 

C 

The last three 
and industries. 

With six regions 
solution requires the 
If needed, sub-annual 
values specified as 
sub-sections. 

terms specify the aggregation constraints over regions 

and ten industries on 3-year annual interval, the 
manipulation of matrices of dimensions 180 by 180. 
values may be obtained by dis-aggregating the annual 
annual benchmarks, as described in the previous 

fl 
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6. THE ASSESSNENT OF BENCHMARKING 	 S 
As explained in Section 1, the benchmarking situation may be assessed 

by the behaviour of the discrepancies, before benchmarking is attempted. 
The situation is favourable when the discrepancies are constant or evolve 
monotonically. Some of the measures of monoconicity developped by Raveh 
(1986) might be used to quantify that statement. 

The same approach could be used to assess the result of the 
benchmarking process. The monotonicity statistics would then apply to the 
corrections, that is to the proportional or additive differences between 
the benchmarked series and the original sub-annual series. Erratic 
corrections may suggest unreliable benchmarked series. 

More specific statistics are in order however. Since the benchmarking 
methods proposed are based on the principle of movement preservation, a 
natural statistic is the average absolute proportional movement deviation 
(i.e. non-preservation): 

T 
(6.1) 	 - Zt..1/XtiI/(Tl) 

t-2 

and the corresponding additive variant for additive benchmarking. As 
pointed out by Laniel (1986), since proportional benchmarking may be viewed 
as an approximation to growth rate preservation, the average absolute 
growth rate deviation (i.e: non-preservation is also an appropriate 
statistic: 

T 
(6.2) 	Elzt/zt-1- xt/xtil/(T-l) 

Another relevant statistic is the residual percentage discrepancy with 
respect to the benchmarks: 

Pm  
(6.3) 	[( E Zt) / y 	-1.0J*100, m—1,. . . 

tTm  

This statistic checks the fulfilment of the benchmarking constraints, 
whether annual or sub-annual. In situations with non-binding benchmarks 
however, the residual percentage discrepancies are also useful to further 
assess the benchmarking situation and the compatibility of the benchmarks 
with the original uri-benchmarked series. 

In the case of systems of series, statistics (6.1) to (6.3) are 
calculated for each component series to the aggregate and for the aggregate 
series. Furthermore, it is certainly appropriate to check the fulfillment 
of the aggregation constraints for each period of time. This may be 
achieved with the residual percentage aggregation discrepancy: 

0 
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(6.4) 	([( E 	/ zN,t) - i)*lOO  
n—i 

where n indicates the component and N the aggregate considered. (In case 
of two-way classification (6,4) is calculated for both classifications.) 

Further research remains to be done on the assessment of benchmarking. 

. 

40 
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PART 2: INTERPOLATION 	 0 
Benchinarking situations, examined in the first part of this document, 

are characterized by the availability of more frequent "sub-annual" and 
less frequent "annual" data about the socio-economic variable considered. 
Benchinarking consists of deriving a sub-annual series on the basis of the 
sub-annual data and of the annual data, referred to as benchmarks. The 
resulting sub-annual series consequently are based on some factual 
information at the sub-annual level, namely the sub-annual data. 

Much of the data published by statistical agencies, however, are - to 
varying degrees - interpolations. The Canadian quarterly Capital 
Expenditure series and to some extent the annual Population estimates are 
interpolations. Interpolation situations are characterized by a lack of 
direct sub-annual data about the socio-economjc variable considered. 
Interpolation consists of calculating sub-annual values from "annual" 
benchmarks. 	This process must therefore rely on assumptions about the 
sub-annual variable considered. 	Compared to series obtained through 
benchmarking, interpolated sub-annual series may be based on little factual 
information at the sub-annual level. 

As will become obvious in this document, the frontier between 
interpolation and benchmarking is in fact arbitrary. Some cases of 
interpolation can indeed be viewed as special cases of benchmarking. Those 
cases will be considered first. At the other end of spectrum, 
interpolation may - at least in theory - involve no benchmarks at all. The 
values are then a pure estimations (from related series). This part of the 
document will progress from one end of the spectrum to the other. 

l.TEMPORAL DIS-AGGREGATION AND CALENDARIZATION 
This section considers cases of interpolation which are special - and 

sometimes trivial applications of benchmarking: Benchmark data are 
temporally disaggregated into quarterly, monthly and even daily values. The 
resulting monthly estimates (say) can be re-aggregated into quarterly 
values. This dis-aggregation and re-aggregation process can be applied to 
correct the reference periods of data available on an unsuitable time 
basis; that is, to 'calendarize". For example, it is possible to convert 
financial year data into conventional year estimates; to convert data 
pertaining to bundles of weekly data into monthly estimates; etc. 

All variants considered may be implemented by means of the numerical 

	

approximation described in Section 4.2 of Part 1. (The formal presentation 	- - 
of the objective functions remains very useful to understand the various 
specifications.) 

1.1 Interpolating Non-Seasonal Values Between Annual Benchmarks 
It is technically possible to create a sub-annual series from annual 

benchmarks in the absence of any original sub-annual series or of any 
sub-annual related sub-annual variable. This problem can be casted as a 
trivial additive benchmarking problem in which the original series x is 
equal to zero. Objective function (2.1) of Part 1 then reduces to: 
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T 	M 	Pm fz) - gX E (Zt - zt1) 2  + E gY (( E Zt) - Ym} 2  

(1.1) 	
t-2 	rn—i 

K 
E gZ (Zt - zdk) 2 . 

k—i 

The second and third terms are the benchmark satisfaction criteria. (See 
Section 2.1.1 of Part 1 for more details.) 

The first term of (1.1) specifies that the required interpolated values 
are as gradual as possible. In situations where the benchmarks predictably 
behave monotonically (e.g. linearly, exponentially), second differences, 
instead of first differences, may be more appropriate. The objective 
function then reads: 

T 	 M 	PM  
f(z) - gX E (Zt - 2 Zt1 + Zt..2) 2  + E gY {( E Zt) - Ym) 2  t-3 	 rn—i 	tTm 

K 
E gZ (Zt - 

k—i 

The resulting interpolated values behaves as linearly as possible. Whenever 
in doubt about the predictable monotonic character of the series, first 

. differences are to be used. The series obtained with second differences 
differs from that obtained with first differences mainly in the first and 
last years, where the latter series levels off as depicted in Figure 1.1. 
For the other years there is very little difference, as the behaviour of 
the series is mainly governed by the benchmark constraints. 

Figure 1.1 displays a sub-annual series derived with first differences; 
that is, by means of objective function (1.1). Such interpolated values 
cannot have any seasonality. They correspond to the trend-cycle component 
of the series. However, the dating of the resulting turning points should 
not be taken seriously. The fact that a turning point occurs at time period 
10 (2nd quarter of year 3) in the figure connot be interpreted as 
significant. The true turning point may in fact lie anywhere between 
periods 8 and 13. In order to interpolate values which display seasonality 
and possibly precise trend-cycle movements, one needs a (non-trivial) 
original sub-annual series or indicator x. 

The yearly values displayed pertain to financial years ranging from the 
second to the first quarter of the following year. 	The interpolated 
quarterly values may then be re-aggregated into conventional year values 
ranging from the first to the fourth quarters. This is how interpolation, 
more precisely temporal dis-aggregation, may be used to calendarize 
financial year values. 
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Figure 1.1: Non-seasonal interpolation by means of the modified Boot, 
Feibes and Lisman method 

For regularly spaced and binding annual benchmarks (high values of gY m ) 
and in the absence of sub-annual benchmarks (gZ_O), the problem specified 
by objective functions (1.1) or (1.1 1 ) is that addressed by Boot, Feibes 
and Lisman (1967). Both objective functions are indeed generalizations of 
the method proposed by the authors. Incidently, additive benchmarking 
(Part 1 equation (2.1.1)) is equivalent to interpolate corrections between 
the annual and sub-annual discrepancies according to (1.1); and, to adding 
the corrections to the original sub-annual series x. This is one link 
between benchmarking and interpolation. 

. 

The interpolation of non-seasonal values can alternatively be carried 
out with the proportional variant of benchmarking, if the original series 
Xt is set equal to any non-zero constant. Indeed minimizing 

T 	 M 	PM  
f(z) - gX Z {(Zt/Xt) - (zti/xtl)) 2  + E gY {( E zt) / Yin -1 )2 

(1.2) 	
t-2 	 ni-i 	tTm 

K 
E gZ ((Zt / z) -1 )2 

k-i 

with x constant, yields identical results as minimizing (1.1). Similarly 
specifying second difference in (1.2) is equivalent to minimizing (1.1 1 ). 
In other words, in the absence of sub-annual series, the additive variant 

fl 
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Applied to interpolation, the proportional variant of benchmarking 
lends itself to a variety of applications: interpolation of sub-annual 
values with seasonal and possibly trading-day variations, interpolation of 
daily values from weekly data. 
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. 
nay be seen as a particular case of the proprotional variant. Further 
developments in this section will consequently be based on the proportional 
variant. 

. 

1 W 34 12341234123412341234 

Figure 1.2: Seasonal interpolation from a seasonal pattern equal to 0.01%, 
25%, 125% and 250% 

1.2 Interpolating seasonal values 

In order to interpolate seasonal values, the proportional variant of 
benchmarking is appropriate. Objective function (1.2) is then minimized, 
where xt is a seasonal indicator s. The latter may be any seasonal 
sequence of numbers , e.g. for a quarterly series s — [10, 25, 20, 30; 10, 
25, 20, 30; 10, 25,...]. In fact a formal seasonal pattern is intuitively 
easier to select. A value equal to 150% means the month or quarter 
considered is 50% higher than an average month; a value equal to 80%, 20 
percent lower than average, and so forth. A value equal to 0.0001% 
specifies the absence of activity (in practice) for the month considered. 
(Zero values of x are not acceptable in the proportional model.) It is 
also possible to select a seasonal pattern which evolves from year to year. 
The annual average of the seasonal pattern does not have to be 100%, since 
the level is adjusted in the benchmarking process. This implies the 
seasonal pattern may be chosen to reflect the percentage of the yearly 
activity carried out in each month. This alternative way of building a 
seasonal pattern may be the easiest. 
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The 	resulting 	interpolation problem amounts to benchmarking a 
pre-selected seasonal pattern xt to the annual (and possibly sub-annual) 
benchmarks Ym The benchmarks should presumably be binding (high values of 
gYm). In cases where the benchmarks predictably behave monotonically (e.g. 
linearly or exponentially), second differences may be preferable in 
objective function (1.2); in doubt, first differences are preferable. 

That seasonal interpolation process is illustrated in Figure 1.2. 	The 
quarterly series is interpolated with first differences from a constant 
seasonal pattern and from the same benchmarks as Figure 1.1. The constant 
seasonal pattern chosen, 0.01%, 25%, 100% and 250%, would be adequate for 
some agricultural series. It specifies no activity in the first quarter 
and most of the activity in the fourth and the third quarters. The annual 
benchmarks cover from the second to the first quarter of the following 
year. The quarterly values resulting from the interpolation may be used as 
such or re-aggregated in conventional year, i.e. "calendar", values 
(ranging from the first to the fourth quarters) 

Similarly, monthly values obtained in that manner may be used as such 
or re-aggregated into quarterly or annual estimates (or both). This kind 
of re-aggregation is appropriate to correct the reference period of annual 
data, pertaining to financial years. Benchmarks covering from February to 
January of the following year for instance are dis-aggregated into monthly 
values. The monthly estimates are then re-aggregated into conventional 
quarters (i.e. January to March, April to June, etc.) and/or into 
conventional years (extending from January to December). 

The same approach may be used for correcting the reference periods of 
financial quarter data. The presence of seasonality in such benchmark 
values would make the three first and last monthly estimates subject to 
heavy revisons. The situation may be improved by artificially extending 
the series by one financial quarter at each end of the series. The 
following trivial ARIMA model would be adequate for most situations 
(provided the reference periods of the benchmarks are regular): 

Yi+l - Yi + y14 - y15 

yo - y1 + y - 

For more details about this type of reference period correction, one 
may refer to Cholette, (1987a) and Cholette and Baldwin (1988a, 1988b, 
1988c) 

1.3 Interpolating Values with Trading-Day Variations 
Monthly flow series are likely to contain seasonal but also trading-day 

variations. The same approach to dis-aggregation may be followed. In 
order to interpolate monthly values with trading-day variations, objective 
function (1.2) is minimized with Xt representing a trading-day pattern TDt: 

7 
(1.3) 	Xt - TDt - 	ntk Dk / 30.4375, 	t-1 .....T 

k-1 	

. 
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. 	where D1, D2,..., D7 are the daily weights constituting the weekly trading 
pattern. 	Number 30.4375 is the average number of day in a month 
(365.25/12); 	and nt,k, the number of each day k in month t. The weekly 
pattern is chosen in much the same way as the seasonal pattern. 	A weight 
D1-10% means that Monday is only 10% as important as an average day; 	a 
weight D5-200%, that Friday is twice (100% more) as important as an average 
day. A daily weight equal to zero, e.g. D7-0% specify no activity for that 
day. 

The weekly pattern may be chosen to evolve through time. Objective 
function (1.2) is then minimized with Xt equal the following trading-day 
pattern: 

t-1 
(1.4) 	xt - TDt - 	E 	Dkt / 30,4375, 	Nt - En9, t—1,... ,T 

k—Nt+1 	 0-1 

where nt is the total number of days in month t and Nt is the cumulative 
number of days elapsed before month t. The number of input daily weights 
Dk is thus (at least) equal to the number of days covered by the T months, 
as opposed to seven in (1.3). 

In general, a monthly series contains both seasonalicy and trading-day 
variations. The appropriate indicator Xt is then the product of TDt (of 
(1.3) or (1.4)) and of a pre-selected seasonal pattern st. However the 
length of the months which is seasonal in nature would be taken into 
account twice, once by the chosen seasonal pattern and once (although 

. 	implicitely) by the trading-day component defined in (1.3) or (1.4). 	In 
order to avoid that specification error, the demominator of (1.3) or (1.4) 
is replaced by the total number of days in the month n. These equations 
become 

7 
Xt - 	* TDt - St *Z 'tk Dk / nt, 	t—1,...,T 

k—i 

for constant weekly pattern; and 

Nt+nt 	t-1 
(1.41) Xt - St * TDt - 5t * E 	Dkt / nt. , 	Nt - En9, t-1,...,T 

k—Nt+l 	9-1 

for evolving weekly pattern. 

The indicator series Xt may also contain a cyclical indicator Ct, in 
which case Xt is equal to the product of Ct, TDt and St. 

Figure 1.3 illustrates monthly trading-day interpolations obtained from 
a constant monthly trading-day pattern x (calculated by means of (1.3)) 
and from financial year data covering from February of one year to January 
of the following year. The interpolated values may be used as such or 
recombined into conventional years or conventional quarters. 



- 56 - 

A Nr 
V V 

- 	 ''M FINANCIAL YEAR DATA 

	

A - 	I 	z INTERPOLATED 

-'T 	 T MONTHLY VALUES 

I 	I 	I 	I 	I 	I 	I 	I 	1 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	 I 	I 	I 	I 	I 
J F M A M J JASONDJ F M A M J JASONDJ Fk4AMJJASQNDJ 

Figure 1.3: Trading-day interpolation from a constant trading-day pattern 

1.4 Interpolating Daily Values from Weekly Data 
As mentionned in Section 1.1 of Part 1, statistical agencies must 

sometimes convert bundles of weekly values into monthly values. This 
problem may also be casted in the framework of interpolation and 
benchmarking (Cholette and Baldwin, 1988c). 	The appropriate objective 
function to minimize is (1.2) with first differences. 	Time t now stands 
for days; and Ym' for the values of the weekly bundles. The appropriate 
indicator x is a repeated sequence of seven constant or evolving daily 
weights, for example 50% for Monday, 90%, 100%, 140%, 160%, 160% and 0.001% 
for Sunday. Their interpretation remains the same as in Section 1.3. 

The trading-day interpolation process illustrated in Figure 1.4 (a), 
consists of benchmarking the weekly trading pattern selected (not 
displayed) to the available bundles values. A constant weekly pattern was 
chosen: D1.-120%, D2-120%, D3-140%,D4-160%, D5-160%, D6-.0l% and D7-.01% 
(no activity for Saturday and Sunday). The resulting daily values z may 
be used as such or re-aggregated into monthly values. 
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Weekly bundles are likely to contain trend-cycle, seasonal and 
irregular fluctuations. (They cannot contain trading-day variations which 
cancels out on any one week.) The presence of seasonality - especially - 
makes it unlikely that the next weekly bundle will be in the neighbourhood 
of the last one. Unfortunately, this is more or less what is assumed in 
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Figure 1.4 (a). 	The fourth bundle is implicitly anticipated to be in the 
iieighbourhood of A. Figure 1.4 (b) presents a scenario where the fourth 
bundle is lower than anticipated. The new interpolated values pertaining to 
the third bundle contradict those first obtained for that bundle. The 
revision is specially pronounced at the end and at the start of the third 
bundle. This illustrates the necessity of forecasting the next bundle in 
order to have good daily estimates for the current bundle. Another 
alternative is to ignore the estimates of the current bundle. (Accepted 
operational delays might allow that.) It may also be possible to ask the 
respondents to supply gross anticipations of their next bundle, like no 
change, 10 % increase (or decrease), 20 % increase, 30% increase, etc. 

Another issue is the scale of the calculations required by the formal 
minimization of objective function (1.2). The four bundles of Figure 1.4 p 	
(b) cover 4, 4, 5 and 4 weeks respectively for a total of (at least) 119 
desired daily values. 	Kultiplications and inversions of matrices with 
dimensions 119 by 119 are therefore involved. The numerical approximation 
described in Section 4.2 of Part 1 is in order. A variant of the 
approximation could be considered. The weekly bundles could be first be 
disaggregated into weekly values, which are in fact illustrated in 
Figure 1.4 (a); and then those weekly values, dis-aggregated into daily 
values. 

. 

0 
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Figure 1.4 (a): Interpolated daily values from three bundles of weekly 
data, respectively covering 4, 4 and 5 weeks 
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Figure 1.4 (b): Revision to the interpolated daily values when adding a 
fourth bundle of weekly data 
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2. INTERPOLATION BY MEANS OF GROWTH RATES 

In some situations, the desired "sub-annual" series is derived from 
annual benchmarks, from a few sub-annual benchmarks and from sub-annual 
growth rates. In other words, the indicator of the desired sub-annual 
series z t  takes the form of growth rates rt (in the neighbourhood of 1.0) 
to be followed by the desired series between periods t-h and c: 
(2.1) 	Zt — rt zth + at, 	t-h+l,. . ,T 

a 	 or 

(2.1') 	Zt - 	rt Zt..h 	— 	at, 	t-h+1,..,T 

where at is a projection error. That error originates from the fact that 
the growth rates do not project the desired series exactly. In particular, 
the projections generated from (2.1) alone will not necessarily comply with 
available benchmarks. Parameter h is usually equal to 4 for quarterly 
series, i.e. the growth rates describe the movement from the same quarter 
of the previous year to the quarter considered. Note that the projections 
errors compound with time. For instance, a large error at time t is 
essentially repeated at times t-4-h, t+2h.... (ceceris paribus). The rest of 
this section will assume quarterly series with same-quarter growth rates 
(h-4). 

The growth rates are determined by the series builder, from relevant 

S information available sub-annually. An example will clarify the situation. 
The desired quarterly series z is the Total Expenditures by Hospitals. The 
annual values, i.e. the annual benchmarks y, are known, but not the 
quarterly values zt. For each quarter, the same-quarter growth rates rt 
are calculated from a projector series xt, in the example the quarterly 
Wages and Salaries series paid by hospitals (rt — xt/xt..4). It is indeed 
arguable that the growth in the quarterly expenditures is related to that 
in the wages: a large proportion of the expenditures consist of the wages 
and that proportion must be quite constant or change very gradually over 
time - at least for a given quarter. Subject matter experts are in 
position to verify that. In order to allow the projector series Xt and 
desired series z t  to have different seasonal patterns, annual same-quarter 
growth rates are generally used (instead of quarter-to-quarter). Indeed 
two series may have different seasonal patterns and identical annual growth 
rates. 

In most situations, the growth rates are some weighted average of the 
• growth measured in a few projector series and related information. The 

series builder may also change the weights of the average and the blend of 
related series through time. This possibility makes the growth rate 
approach very flexible and adaptable to the 	current operational circumnstances. 

The presumed growth rate behaviour of the desired series formalized in 
equation (2.1) leads to the following objective function: 

0 
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f(z) 	gX E (Zt - rt Zt..h) 2  + 	gY (((E zt)/ym) 	
. 

2.2) 	
t—h+l 	rn—i 	tTm 

K 
+ 	E gZ {(Zt/Z) - 1)2. 

k- 1 

The first term of (2.2) is the growth rate criterion. That criterion 
minimizes the projection errors of (2.1 1 ). Put differently, it specifies 
that the desired series should as much as possible behave according to the 
selected growth rates rt. The second and third ternis are the annual and 
sub-annual benchmarks satisfaction criteria. Like in Section 2 of Part 1, 
high values of gY and gZ specify binding benchmarks. 

For series derived from growth rates, the sub-annual benchmarks 
typically form an initial base-year at the start of the series. The 
specification of the projection problem would in fact be incomplete without 
sub-annual benchmarks. These determine the seasonal pattern of the desired 
series (and nothing else does). Indeed, one can show that the projections 
in (2.1) are implicitely based on 4 initial values z'1, d 2 , 1d3 and zd4 : 

i-i 
(2.3) 	zt - ( 7r  r(k1)4+) zd,  j-1,...  	t(i-l)4+j, 

k—1 

where i stands for the year and j for the quarter considered. The initial 
base-year values are chosen by the subject matter expert. For instance the 
quarterly distribution of the projector series x is used to distribute the 
annual benchmarks of the first year. 	The distributed values may be 
improved on the basis of additional information. 

Mathematically, the sub-annual benchmarks may be located anywhere in 
the series, namely at the end of the series. In that case, the projections 
are actually backcasts or retropolations. 	Such a situation is likely to 
happen in the development stage of series. Series are often built from the 
current year backwards. 

Figure 2.1 illustrates a case where base-years are available both at 
the start and at the end of the series. As a result, the seasonal pattern 
of the interpolated series gradually moves from that given by (the sub-
annual benchmarks in) the initial base year to that given by the terminal 
base-year. The figure also displays the series obtained in the absence of 
a terminal base-year. Although it also satisfies the annual benchmarks, its 
reliability deteriorates as the 	estimates depart from the initial 
base-year. 	Namely, its seasonal pattern basically repeats the initial 
seasonal pattern. 	One concludes that incorporating the terminal base-year 
retroactively improves the series, by retro-polating the terminal seasonal 
pattern. 

Another approach to benchmarking series obtained from growth rates is 
to generate the projections through equation (2.1) and to benchmark them 
with the modified Dentori method for instance. 	This produces a series 
consistent with the benchmarks. 	However, the re]Jability of the series is 
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. 	not retro-actively improved (ceteris paribus) on the availablity of the 
terminal base-year (or of any sub-annual benchmark). Furthermore, a level 
and a seasonal discontinuity is likely to arise between the new terminal 
base-year and the values preceeding that year. 

Appendix C gives the linear algebra solution to the growth rate 
interpolation problem. More details about this technique can be found in 
Cholette (1985a) 
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3. ARINA INTERPOLATION OF SERIES 	 0 
It is also possible to interpolate time series by means of ARIMA 

criteria. Auto-Regressive Integrated Moving Average models were popularized 
by Box and Jenkins (1970). 	These models are primarily used to forecast a 
time series from its past values. 	For most socio-economic time series, 
their short-run forecasting performance is astounding. To our knowledge 
they were never used for interpolation purposes. But in our opinion, they 
are worth entertaining, because they would be immensely less laborious than 
the growth rate approach. 

Consider the following trivial quarterly seasonal ARIMA model: 

(3.1) 	Zt - ztl - zt4 - zt5 + at, 	t-6,. . . 

Variable at is a "forecasting" error when considered a priori, i.e. from a 
previous period of time; and, an "innovation" when considered a posteriori, 
i.e. after the fact. That model states that the movement from one quarter 
t-1 to the next quarter t is basically equal to the corresponding movement 
of the preceeding year. 	In other words, the quarter-to-quarter movements 
tend to repeat from year to year. 	In the absence of any innovation (all 
at—O), that behaviour produces a linear trend-cycle with constant seasonal 
pattern. More precisely, the eventual forecast function consists of a 
linear trend-cycle with constant seasonality. The trivial ARIMA model 
(3.1), a 11 (0,1,0) (0,1,0)" in the jargon, describes more than 85% of the 
variations of most socjo-economjc time series (R 2>0.85). 

A more general ARIMA model, the seasonal autoregressive (1,0,0) 
(1,0,0), is proposed however: 

(3.2) 	(Zt - P1 ztl) - p4(Zt.4 - P1 Z.5) + at, 	t-6,..,. ,T 

or equivalently 

(3.2') 	(Zt - 4 z4) - p1(zt1 - 	D4 Zt.5) + at, 	t-6,...,T 

(3.2") 	Zt - P1 zt...1 - P4 Z4 + P1P4 Zt..5 - at, 	t-6,.. .,T 

With both the regular autoregressive parameter pi and the seasonal 
autoregressive parameter P4 equal to 1, model (3.2) is identically 
equivalent to the trivial model (3.1). With p1-1.0 and p4-1.05, model (3.2) 
specifies that the quarter-to-quarter movement tends to increase by 5% from 
year to year. The resulting behaviour, more precisely of the eventual 
forecasting function, displays a linear trend-cycle and an increasing 
seasonal amplitude. With p1-1.0 and p4<1.0, the trend-cycle is linear and 
the seasonal amplitude decreases. By reasoning in a similar manner with 
equation (3.2'), one reaches the following conclusions. With parameters 
P1>1.0 and pji.O, the model specifies exponential behaviour of the series 
with constant seasonal pattern; with pi>1.0 and p4<1.0, exponential 
behaviour with shrinking seasonal pattern; with p1>1.0 and p4>1.0, 
exponentioal behaviour with increasing seasonal pattern; etc. 
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. 	The seasonal autoregressive model (3.2) can therefore describe a wide 
variety of series behaviours encountered in practice. ARIMA behaviour can 
be used as a substitue to growth rate behaviour, which leads to the 
following objective function: 

T 
f(z) - E (Zt 	P1 ztl - P4 Z..4 + P1P4 Zt..5) 2  

t-6 
(3.3) 

	

M 	Pm 	K 
+ E gY (((E zt)/ym) - 1)2 + E gZ ((Zt/Z) - 1)2 

	

rn-i 	t'? rn 	k-i 

where the regular and the regular autoregressive parameters pl and P4 are 
known and pre-selected by the series builder. 

The first term of the objective function, the ARIMA criterion, 
minimizes the ARIMA "forecasting" errors of (3.2 11 ). In other words, it 
specifies that the desired should behave acccording to the seasonal 
autoregressive model selected. The second and third terms are the 
benchmark satisfaction criteria, high values of gY and gZ 	specifying 
binding benchmarks. 

Like the growth rate approach and for the same reasons, ARIMA 
interpolations requires at least one sub-annual benchmark for each quarter. 
Figure 3.1 illustrates an interpolation situation: Annual values start in 

• 	1978, but quarterly values x are available only in 1985. The job of the 
series builder is to develop that series backwards from 1985, that is to 
find plausible quarterly values for all the years. A first attempt is made 
by selecting a seasonal autoregressive criterion with increasing seasonal 
amplitude, e.g. with pl -i.O and p4-1.05. Such a seasonal pattern is 
required to avoid negative interpolated values at the start of the series. 
The four original sub-annual values x of 1985 were specified as 
non-binding benchmarks; and the annual values Ym' as binding benchmarks. 
Figure 3.2 displays the resulting series. Figure 3.3 presents a second 
attempt, in which the expert imposes a different seasonal pattern at the 
start of the series, by means of binding sub-annual benchmarks. 

As illustrated by both examples, ARIMA interpolation produces smooth 
series with no irregularity. The interpolated values may be used as such 
or as the basic structure of the series to be improved by the series 
builder. The philosophy behind such an approach is: first establish was is 
more "predictable" about the series; second, if needed, incorporate 
deviations from the basic structure using subject matter expertise. • - 	Selecting those two values is much less laborious than calculating growth 
rates for each period of time. 

A by-product of ARIMA interpolation consists of forecasts. In Figures 
3.1 to 3.3, the 1986 forcasts are done so that they lead to a pre-selected 
sub-annual benchmark value zd36 . That capability lends itself to scenario 
analysis. 
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Note that ARIMA interpolation - as specified by objective fonction 
(2.3) at least - is inappropriate for monthly series with trading-day 
variations. Indeed classical ARIMA models cannot reliably model such 
fluctuations. 

The method presented in this section is a particular case of that 
proposed by Cuerrero (1987). In the latter, the ARIMA parameters and the 
weights attributed to the benchmarks are estimated instead of chosen by the 
series builder. Such estimation requires the availability of the desired 
for a sufficient length of time. 

Objective 	function could incoroporate 	the movement preservation 
criterion specified only over selected segments of the series 

The solution to ARIMA interpolation is developped in Appendix C. 
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4. INTERPOLATION FROM RELATED SERIES 
The growth rate interpolation method, presented in Section 2 of Part 2, 

described how series may be interpolated from growth rates and from 
benchmarks. The growth rates had been derived by the series builder from 
related series. The rates were in turn used as an imput to the growth rate 
interpolation method, on the ground that the desired series should more or 
less display the same growth as the related series. A case can be made to 
directly incorporate the related series in the interpolation process. This 
section enquires into that possibility. 

4.1 The Regression Model Approach 
As specified by Chow and Lin (1971), Somermeyer et al. (1976), 

Fernandez 	(1981), Wilcox (1983) 	and Litterman (1983), the desired 
"sub-annual" series z is related to series Xlt, x2t, . . ., XQ, which are 
available sub-annually, by means of a regression model: 

Q 
(4.1) 	Zt 	Z Xq 	Yq + Ut,  

q—1 

Since z t  is not available sub-annually, the parameters 1q of the regression 
are estimated on the annual benchmarks Ym of zt (as the regressand) and on 
the annual sums of Xtq (as the regressors), by means of Generalized Least 
Squares. The estimated coefficients are then applied on the sub-annual 
values Xqt to obtain the the desired sub-annual values z. The benchmarks 
y are automatically satisfied, because of a technical reason having to do 
with the variance-covariance matrix V used in the Generalized Least Squares 
estimation. 

In order to avoid a singular variance-covarjance matrix V however, all 
these authors effectively minimize the size of the first correction 
(Z1 - (E 7q Xql))to the regression fitted values (E 1q  Xgj)), as in the 
original 1enton (1971) benchmarking method. This mis-specification is not 
considered important by the authors, because they are concerned with long 
series. Nowadays, statistical agencies are concerned with short series or 
at least short series interval. This mis-specification may seriously 
affect the parallelism between the interpolated and the regression fitted 
values. 

As shown by Sanz (1981) and Fernandez (1981), the Chow and Lin and 
similar regression approaches may equivalently be specified by means of 
quadratic minimization, just as the methods presented in this document. It 
is then possible to avoid the aformentionned specification error by means 	-. 
of the following objective function: 

T 	Q 	M 	Pm 
f(z) - gX E {[Zt - ( Z Xqt 1q)}) 2  + E gY {( E Zt) - ym) 2  

(4.2) 	
t-2 	q-1 	m—1 	t=rm  

K 
E gZ (Zt - zdk 2 . 
k1 	

S 
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• 	The parameters 7qare linearly estimated in the objective function along 
with z t.  The first term specifies that the corrections made to the 
regression fitted values E 1q Xqt (sum. over q) are as constant as 
possible. In other words, the interpolated values are to be as parallel as 
possible to the fitted values yielded by the regression. The second and 
third terms are the annual and sub-annual benchmark satisfaction criteria. 

It is then possible to used the regression approach to interpolation 
without distorting the movement of the interpolated series at the start of 
the series. Other considerations are now examined. 

For Q and 71 both equal to 1, that is when the related series xlt is 
actually the original sub-annual series x to be benchmarked, objective 
function (4.2) is identically equivalent to the additive variant of 
benchmarked presented in the first Part of this document. 

For Q equal to 1 and 71 not equal to I (e.g. 1.10), objective function 
(4.2) specifies a mixed proportional and additive benchmarking variant. 
Part of the adjustment consists of changing the level of the original 
series x by a factor 11 (e.g. 1.10). That proportionality factor is a 
constant parameter for the whole series interval considered. Experience 
shows that deterministic models, with time invariant parameters, are not 
appropriate for socio-economic time series. As pointed by Kendall (1973), 
time series do not behave according to a given algebraic relation over a 
sustained interval of time; and, adding new observations to a 
deterministic model is also likely to cause revisions to the parameters. 

• This revision translates into revisions to all the interpolated values, 
including those in the distant past. This property of the regression 
approach is quite unacceptable to statistical agencies and to users of the 
data. 

For Q greater than 1, the relation between the desired and the related 
series is specified to behave according to a deterministic econometric model 
with constant parameters. 	This deterministic character leads to the same 
criticism. 	Another aspect of the specification is more questionable 
however. Objective function (4.2) implicitly assumes that the (net) 
seasonal pattern of the related series is the same as that of the 
interpolated series. On both these accounts, the growth rate 
interpolation, presented above in Section 2, is preferable: The relation is 
not deterministic because growth rates vary from period to period; and (as 
explained) the seasonal pattern of the interpolated series may be different 
from that of the related series. 

Because it is cast in the more familiar framework of regression 
analysis, the econometric specification of interpolation from related 
series may seem rational and appealing. For practical reasons, we advocate 
stochastic specifications, like the ARIMA and the growth rate approaches 
and - when applicable - the modified Denton approach. As explained in 
Section 4 (of Part 1), the latter method entail an automatic stabilization 
of the estimates after a few years. This section remains nevertheless 
usefull to put the latter approaches into perspective. 



68 - 

Before concluding this section, an extreme case of interpolation from 
related series is reported. That case illustrates the philosophical, more 
precisely the epistemological, implications of interpolation and to some 
extent of benchmarking. 

4.2 Purely Artificial Data 
Some time series published by some statistical agnecies are totally 

artificial or "model-based". Such series have no annual and no sub-annual 
benchmarks. They are only the result of an assumed econometric relation 
for the socio-economjc variable considered. For instance, according to 
economic theory, the national production Pt of country at time t is a 
function of the number of employed workers et and of the quantity of 
capital (equipment) kt with which the workers are producing: 

(4.3) 	Pt - p(et,kt) 

In this equation, production and employment are relatively easy to measure. 
The data for the stock of capital however are very hard to obtain, because 
they pertain to a variable (investment) cumulated over many decades - and 
even centuries - of economic activity. Since national accounts systems 
originated during World War II and thereafter, capital statistics are 
rather imprecise. Another reason is the difficulty to keep track of 
obsolete equipment being prematurely replaced by more advanced technology. 
It is then relatively tempting to fabricate capital stock series. This may 
be achieved in the following manner. 

From equation (4.3), one can easily express capital in terms of the 
more easily measurable variables production and employment: 

(4.4) 	kt - 

By selecting a production function (4.3) and its parameters, based on 
economic theory or on observation of a limited sector of the economy, the 
inverse function (4.4) is ready to use to create artificial capital data: 
Substituting the available employement and production on the righ-hand side 
of the equation yields the desired capital artificial estimates. 

The anecdotal part is the following. A famous professor in a famous 
Canadian university asked his students to estimate various production 
functions from production, labour and capital data of countries of their 
choice. The goal of the exercise was to unravel the production theories 
which were better supported by reality. Much to her disbelief, one of the 
students found that the Cobb-Doublas production function totally 
"explained" production in one country. In other words, the estimated 
function (4.3) perfectly described the behaviour of production with no 
residual. The professor found those unprecedented results very 
interesting, until he realized that the data for capital in that country 
were a total fabrication. The intelligent student had inadvertently 
reconstructed the manner in which the capital data had been generated 
- namely by means of (4.4)! 
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. 	This anecdote and similar occurences have profound epistemological 
consequences. On the one hand, students, academics and researchers use the 
data made available to them by statistical agencies in order to determine 
which socio-econonjic theories are supported by facts. On the other hand, 
the "data", supposed to reflect the facts, have actually been generated by 
statisticians by postulating some theories. Obviously, such data do not 
represent factual information, but the thinking and the opinions of 
statisticians about the facts. The data consequently confirm the theories 
akin to those used in calculating them; and invalidate other theories in 
particular any new theory! 

In 	some countries - especially the developpoing ones -, a large 
proportion of time series are the product of models assumed to represent 

• 	the socio-economic system. 	However, to some extent the same situation 
prevails in developped countries: 	Central statisticians decide which 
theories and which "related" 	series will be used for interpolations. In 
international conferences, researchers present the result of years of 
investigation and triumphantly claim that the "data" significantly support 
such and such an hypothesis, such and such a theory. It is not uncommon 
then to see a witty statistician attending the conference reply - much to 
the disbelief of the flabbergascered academic -: "Of course, this is 
precisely the theory we used in generating the data"! 

Statisticians using interpolation methods must be aware and make their 
users aware of this sort of philosophical considerations. 

. 
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. 
CONCLUSION 

This document proposed a family of methods for benchmarkirig and 
interpolating time series. Part 1 generalized the modified Denton (1971) 
benchmarking approach in order to deal with various situations, namely: the 
reference periods of the benchmarks may vary from occasion to occasion; 
their pattern of availability may be irregular; they may be unreliable. 
The approach was also generalized to benchmark systems of series subject to 
aggregation (e.g. regional and industrial) constraints. 

Part 2 presented methods for interpolating time series. 	It was 
found that calendarization (e.g. conversion of financial year data into 
conventional year values) may be successfully addressed by some variants of 
benchmarking. Methods to interpolate series by means of growth rates and 
of ARIMA models were also introduced. 

All the methods presented in this document are based on minimizing 
some quadratic criteria under constraints. They are numerical as opposed 
to statistical. Statistical model-based methods, like those by Hilimer and 
Trabelsi. (1987) and Guerrero (1987), incorporate the stochastic properties 
of the series in the estimation process and provide confidence intervals 
(i.e. reliability measures) for the estimates as a by product. The lack 
of such intervals - especially - is the weak point of numerical methods. 

Numerical methods, on the other hand, require relatively less time 
series expertise and are massively applicable - even at low levels of 
aggregation. At those levels, the low signal to noise ratio and the 
ignorance of the stochastic properties often preclude the use of 
statistical methods. Nunerical methods are then the only way to 
incorporate subject matter expertise, that is the intimate knowledge by 
series builders of the socio-economic processes and variables involved. 
That expertise is sometimes the only information available apart from the 
benchmarks. The numerical methods proposed in this document are all 
designed to systematically incorporate subject matter knowledge. Depending 
on the method considered, that knowledge takes the form of sub-annual 
benchmarks, of growth rates, of seasonal, ARIMA and other patterns to be 
displayed by the series. Taking a specific form, the expertise thus 
remains documented and may be discussed, and the estimation process becomes 
replicable on a large scale. 

Further developments to numerical 
methods are desirable: development of m 
estimates, development of further measures 
operation, development of approaches 
benchmarking, development of criteria for 
be along the lines of Friedman (1962). 

benchmarking and interpolation 
asures of reliability of the 
of assesment of the benchmarking 
to approximate simultaneous 

selecting indicator series - may 
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. 	APPENDIX A: Vectors and matrices used in the different variants of 
benchmarkding and interpolation 

All the variants of benchmarking and interpolation discussed in this 
document are based on a common notation. Some variants involve only a. 
subset of the matrices defined here. 

Vector Y contains the M "annualt' benchmarks available for the series 
considered. The number of annual benchmarks M may be lower than the total 
number of years I in the series or in the series interval considered. In 
other words, some years may have no benchmark. 

- 	(A.l) 	- 	[ 'i y2 •.. YM I 

Vector Zd contains K "sub-annual" benchmarks. Some series may have no 
such benchmarks. 

(A.2) 	- 	(zd1  z2 ... 	z' 

Vector 2 contains the T desired "sub-annual" values. 

Z' - 	(z1 z2 . . . 	ZJ 

Vector X contains the T original unbenchmarked sub-annual values. 

.(A.3) 	 X' - 1XI X2 ... XTI 

The following diagonal matrices have diagonal elements which are the 
inverse of the elements of vectors already introduced: 

[1/x1 0 	0...0 
o 	l/x20 ... 0 

(A.4) 
 

C 	. 	. 	. 	. 
TbyT  

0 	0 	. 	l/XT I 

[l/zd1O 	o ... o 	i 
0 	l/zd2O ... o 	I (A.S) 	Zd1-  

KbyK  
1 0 	0 	. 	l/zdK I 

(1/Yl 0 	0...0 
0 	l/y20 ... o (A.6) 	Y 1  

( 	 . 	 . 	 . 	
. 

MbvM 	I 
l,'y 
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Matrix D1 is the matrix first difference operator; and D2, the second 
difference operator: 

[1-10 0...0 00] 
[01-1 0...0 00] 

D1 	- 	[ . 	. 	. 	. 	. 

	

(T-1)byT 	[ . 	. 	. 	. 	. 	. 	. 
[000 0...O 1-1] 

[1-21 0...0 00] 

	

[01-2 	1...0 00] 
D2 	- 	[. 	. 	. 	. 	. 	. 	. 

	

(T-2)byT 	[ . 	. 	. 	. 	. 	. 	. 1 

	

[000 	0 
... 

1-2 1] 

Matrix Dr is the growth rate deviation operator, which calculates z - 
rtzth for t—h+1,,. . . ,T. For quarterly series (J-4) with annual growth 
rates (h—J), the matrix is as follows: 

(-r50 	0 	0 	1 	0 	0 	0 	0 	0 	0] 

	

[0 -r6 0 	0 	0 	1 	0 	0 	0 	0 	0) 
Dr 	[ 	 . 

	

. 	.1 (T-4)byT  
[0 	0 	0 	0 	. 	.... -rTO 	0 	0 	1] 

Matrix DA is the ARIMA deviation operator. It calculates deviations 
from the seasonal autoregressive model selected by the series builder. For 
a quarterly series (J-4), the matrix is as follows. 

	

[f1f4-f4  0 	0-f1 1 	0... 0 	0 	0 	0 	0 	.] 

	

[0f1f4-f40 	0 - f1 1 ... 0 	0 	0 	0 	0 	.] 
DA  

	

. 	. 	. 	. 	.1 (T-5)byT  
[0 	0 	0 	0 	. 	. 	....f1f4-f40 	0-f11] 

For a non-seasonal series a regular autoregressive model of order 2 (say) 
may be specified as follows. 

	

-f2 -El 1 	0 	0 ... 0 	0 	0 	0 1 
0 -f2 -f1 1 	0 ... 0 	0 	0 	0 

(A.lO') 	DA  

(T-2)byT 
 

0 	0 	0 	0 	. 	0 -f2 -f1 1 

Matrix B is the "annual" sum operator. It calculates the sums of z 
over periods Tj to P1' r2 to P2, etc. 
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. 	 columns: r1 	P1 	f 2 	P2 
OO ... 011... 10 ... 00 ... 000 ... 

{OO ... OOO ... 00 ... 1l ... iOO ... j 
B 	- 	[ 	. 	. 	. 	. 	 . 	. 	. I .. 	. 	. 	 . 	. 	I 

MbyT 	[ . 	. 	. 	. 	. 	. . 	. 
( 	 I 

For instance, in the case of a 4-year quarterly series, starting in a first 
quarter and with fiscal year annual benchmarks covering from the second 

• 	quarter to the first quarter of the following year, the matrix is 

B 	- [0111100000000000 1 
• 	(A.111) 	( 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 

	

3by16 	[ 00 00000001111000 

Matrix Bz could be termed a selection operator. Applied to Z, it 
selects the the t1th, the t2th,. . . , and the tKth value. Note that it is a 
particular case of B with PkTk, 

columns: t1 	t2 
00 ... 010 ... 000 ... 000 
00 ... 000 ... 010 ... 000 

Bz 	0 0 ... 0 0 0 .. . 0 0 0 ... 0 1 0 

• 	KbyT 	.. 	•.. 	... 

The fo11wLng matrices are annual sum and selection operators used in 
an alternative specification of proportional benchmarking: 

columns: r1 	P I 	T2 

	

[0...O 	x,.1 ... x1O ... o 	...0 	0... 

	

[0...0 	0 	...0 	O ... X72 --- x20j 
  

	

[ 	. 	. 	. 	. 	. 	. 	. 	. MbyT  

	

I 	 I 
columns: t1 	t2 	t3 

[0...o 	0 	0...0 	0 	0...] 
[0...0 	0 	0...0 	Xt20 ... 0 	0 	0...] 

B*z - 	[ 0 ... 0 	0 	0 ... 0 	0 	0 ... 0 	Xt3 0 ... [ 	. 	. 	. 	. 	. 	. 	. 	. KbyT 	I. 	. 	. 	. 	. 	. 	. 	. 	. [ 	. 	. 	. 	. 	. 	. 	• 	. 	. 	. 
where subscript i-rn, pm and tk are to be read as i- rn' Pm and tk. 

• 
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APPENDIX B: Formal solution of the additive variant of the proposed 
benchmarking method 	 0 

In matrix algebra, the objective function (2.1) (of Part 1) for 
.tdditive henchmarking writes: 

F(Z) 	g (Z - XD'D (X - Z) + gy (By  Z - Y)'(B Z - Y) 

+ gz (Bz Z - Zd)'(Bz  Z - Zd) 

where the vectors and matrices are defined in Appendix A. Matrix D is 
usually the first difference operator of equation (A.7). In some 
applications, it may be appropriate to set D equal to the second difference 
operator (A8). Symbols g, gy  and gz  are scalars. They could also be 
diagonal matrices of dimension T by T, M by M and K by K respectively. 
This would allow the specification of some annual benchmarks (for instance) 
as binding and some as non-binding. Performing the matrix multiplications 
in (B.1) yields: 

F(Z) - gx (Z'D'D Z - 2 Z'D'D X + X'D'D X) 

+ gy (Z'By 'By  Z - 2 Z'By 'Y + Y'Y) 

+ g (Z'Brz  BZ  Z - 2 Z'Bz'Zd + Zd'Zd) 

The values of Zt which minimize this hyper-parabola are required. At 
the minimum, the derivative with respect to the unknowns Zt are equal to 
zero. This leads to the normal equations: 

dF/dz - 2 gx  D'D Z - 2 gx  D'D X 

+ 2 gy B'B Z - 2 gy By 'Y 

+ 2 gz  Bz 'Bz  Z - 2 gz  Bz'Zd - 0 

The solution to this linear system of equations is: 

Z 	- 	(gx  DD + gy B'B + g 

[ X  I 
(gx  D'D I g By ' I gz  Bz') 	[ Y  ] 	-. 

[Zd] 

The second order conditions for a minimum are satisfied, because the 
matrices D'D and B'B in (B2) are positive semidefinjte. 
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. 	APPENDIX C: Formal solution of the proportional variant of the proposed 
benchmarking method 

In matrix algebra, 	objective 	function (2.3) (of 	Part 1) 	for 
proportional benchmarking writes: 

F(Z) - g, Z'X 1 'D'D X-Z 

IC 1\ 	 /Vl 	'7 	\'fV-lp 7 - \•1 	 gy 	y 	y 

+ g (ZdBz  Z - z)'(ZaB Z  Z - 

where the vectors and matrices are defined in Appendix A. Vectors L
z and 

of dimensions M by 1 and K by 1 contain values equal to 1. Matrix D is 
usually the first difference operator of equation (A.7). In some 
applications, it may be appropriate to set D equal to the second difference 
operator (A.8). Symbols g, gy  and gz  are scalars. They could also be 
diagonal matrices of dimension T by T, M by M and K by K respectively. 
This would allow the specification of some annual benchmarks (for instance) 
as binding and some as non-binding. Performing the matrix multiplications 
in (C.l) yields: 

F(Z) - gx Z'X 1 'D'D X 1 Z 

+ gy (Z'B 1Y'Y 1 B Z - 2 Z'By 'Y 1 ' y  + & y ' i. y ) 

g (Z'Bz'Zd l 'Zd lBz  Z - 2 Z'Bz'Zd l ' z  + 

The values of z 	which minimize this hyper-parabola are required. At 
the minimum, the derivative with respect to the unknown Zt are equal to 
zero. This leads to the normal equations: 

dF/dZ - 2 gx  X 1 'D'D XZ 

+ 2 gy 3y 'Y 1 'Y 1B Z - 2 gy  By'Y'i y  

+ 2 gZ  Bz'Zd'Zd lRZ  Z - 2 g 	z'Zd'L z  - 0 

The solution to this linear system of equations is unique: 

•  (C.4) Z - (g X 1 'D'D X1 + g, 8y'Yl'Y1By + gz z' Zd - 'ZdBzY l- •  

(gy  By'Y1'Ly + gz Bz'Zd'Lz) 

The second order conditions for a minimum are satisfied because all the 
squared matrices in (C.2) are positive semidefinite. 

As pointed out by 	Laniel (1986), the problem of proportional 
benchmarking may be specified in terms of the corrections c - Zt/Xt 

F(C) - g, C'D'D C 

is 	(C.5) 	+ gy (Y 1B*y  C - £)l(Y'1* C - 
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+ gz (zdlB* z  C - t z )'( zd lB* z  C - 	. 

where 	and B*z  are defined in Appendix A. Following the same steps as 
in (C.l) to (C.4), the solution for the corrections is derived: 

(C.6) 	
C 	(gx  D'D + gy *'Yl'YlB* + g 3*1ZlSZlB*)-1 

(gy  B*'Y]& + gz  B*z zdlL z ) 

The benchmarked values are then simply Zt - Xt * c t.  This formulation 
gives exactly the same results as the one presented above and does away 
with matrix X 1 . The matrix to be inverted is also numerically better 
conditioned for inversion, because its elements are in the neighbourhood 
of 1. 

. 
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. 	APPENDIX D: Approximation for 

Let bk, k-i,..., K, denote 
rk, their reference 
discrepancies, whether annual 
is now the total number of bei 
following steps: 

Benchmarking Individual 

all benchmarks, whether 
periods; and dk, 

or sub-annual, additive 
chmarks.) The approxima 

Flow Series. 

annual or sub-annual; 
the corresponding 

or proportional. (K 
ion consists of the 

1) First the middle points t*k of the reference periods of the 
benchmarks bk are found: 

t*k - (rk + Pk)/2 k-i,... ,K 

- 	For instance a benchmark covering periods 3 to 6 has middle point equal to 
4.5 ((3+6)12); a benchmark covering periods 11 to 15, 13; a (sub-annual) 
benchmark covering periods 1 to 1, 1. 

2) Second initial middle values d*k are assigned to the middle points. 
In the proportional model, the values assigned are simply those of the 
corresponding discrepancies. 

(2) 	d*k - dk, k-I,... ,K 

In the additive model, the middle value is divided by the number of periods 
covered by the discrepancy. 

(2') 	d*k - dk / (Pk - Tk + 1), k-i,... ,K 
W 	

For instance, for a discrepancy equal to 80 covering periods 3 to 6, the 
middle value is 20, i.e. 80/(6-3+1). 

3) Initial gross corrections cg t  are found by linearly interpolating 
between the middle values by means of equations (4.1), where dk is replaced 
by the middle values: 

(3) 	cgt - d*k + (t-tk) * [(d*k+l. d*k)/(t*k+l t*k)], t*k 15  t 	t*k+l, 
k-i,.. ,K-1 

For the periods preceeding and following the first and last middle values, 
the gross corrections simply repeat the first and last middle values: 

cg t  
(3") 	

- d*1, 	t 	t*1  

cgt - d*K, 	t 	t*K 

Figure D.l (a) displays the gross corrections, with the discrepancies 
averaged over their reference periods (i.e. the discrepancies divided by 
the number of periods they cover). The middle values are located at the 
apexes of the broken curve. 

4) The fourth step consists of adjusting the gross corrections so that 
they spread the observed discrepancies (i.e. so that the binding benchmarks 
are satisfied). This step yields initial adjusted gross corrections cat. 
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In the multiplicative case, the gross corrections are multiplied by the 
original sub-annual series to obtain a gross benchmarked series. Residual 
proportional discrepancies between the benchmarks and the gross benchmarked 
series are calculated. The corrections are then multiplied by the residual 
proportional discrepancies. 

Pk 
(4) 	cat  — 	* (bk / ( E 	xt)], Tk 	t -5 

trk 	k-i ,...,K 

For instance a benchmark covering periods 3 to 6 has value 1050, the sum of 
the gross benchmarked series over the same interval is 1000. The residual 
proportional discrepancy is then 1.05. The gross correction curve is then 
multiplied by 1.05 for periods 3 to 6. 	The same is done for each 
discrepancy. 

In the additive case, the adjustment is achieved by adding to the gross 
corrections the average difference between the discrepancy and the sum of 
the gross corrections over the reference periods covered. 

Pk 
(4') 	ca t —cgt + [dk - ( E C)]/(P - r + 1)], r 	t -; 

t-rk 	k-i,... 

For example a discrepancy covering periods 3 to 6 (say) is 80, and the sum 
of the gross corrections for the same periods is 60. The difference is 
then 20 and the average difference is 5 (20/(6-3+1)). The quantity 5 is 
then added to the gross corrections for the periods calculated in (4 1 ). 

This did not adjust the periods not covered by any discrepancies. 	For 
the periods preceeding the first and following the last discrepancies, the 
adjusted corrections merely repeat the first and the last adjusted gross 
correction calculated in (4) or (4'). 

	

ca t  - ca1, 	t :5 r1 	(read r1) 

cgt  
(4") 

	

— carK, 	t 	P( 	(read rK) 

For the periods between two discrepancies (but not covered), the adjusted 
corrections are linear interpolation between the closest 	adjusted 
corrections on each side. 

	

cat  - CPk + (t-pk) * E(cark+l caPk)/(rk+l Pk)l , 	Pk < t < (4"') 	 k-i,.. ,K-1 

The adjusted gross corrections resulting for this step are displayed in 
Figure D.l (b), along with the gross corrections of step 3. Over each 
interval covered by a discrepancy, the two curves are parallel. The 
discontinuities between contiguous intervals will be eliminated in step 6. 

S 

S 

fl 



- 79 - 

• 	Steps 1 to 4 provide initial values to the iteration process to begin. 
The fifth step is a sequence of three sub-steps 5a, Sb and 5c, repeated 
untill the benchmarking constraints are satisfied. In practice, no more 
than five iterations are necessary. 

Sa) The middle points are assigned new middle values. These are equal 
to the values of the adjusted gross correction at the middle points. When 
the middle point lies between two periods (e.g. t*k_6.5), the middle value 
is the average of the two linear extrapolations of the corrections on each 
side. 

(5a) 	
d*k - ca t*k 	for t*k integer 

d*k - [ca,k + ca,k+l + (ca , k - ca , kl)/2 
for t*k not integer 

+ (.ca,k+l + cat,k+2)/2] / 2 

(read subscript t'k±x as t'k±x) 
where t'k is the integer part of t*k. 

Sb) Improved gross corrections cg t  are calculated by 	linearly 
interpolating between the new middle values (exactly as in step 3). 	The 
first improved gross correction are displayed in Figure D.l (c), along with 
the initial adjusted gross corrections of step 4. 

Sc) The improved gross corrections are in turn adjusted to allocate the 
• 	discrepancies. This is achieved exactly as described in step 4. 

Sub-steps 5a to Sc are repeated five times (say). The resulting final 
adjusted corrections of step Sc are displayed in Figure D.l (d) (along with 
the final corrections of step 7). The curve satisfies the benchmarking 
constraints. However it does not quite satisfy the parallelism criterion 
- especially at the apexes where it changes direction drastically. In 
order for the benchmarked series to be parallel to the original, the 
corrections should as smooth and constant as possible. The next step 
corrects the situation. 

The sixth step consists of smoothing the final adjusted corrections 
with a moving average. 	For monthly series benchmarked to annual 
benchmarks, a simple 7-term moving average is used; for quarterly series, a 
weighted 3-term moving average with weights 1/4, 2/4 and 1/4; 	and for 
daily series benchmarked to weekly benchmarks, a simple 3-term moving 
average. (More precisely the length of the average depends on the number of 
time periods referred to by the benchmark. The lenght is equal to the 
integer part of half the number of time periods plus 1. However if that 
length is even, it is increased by 1. 	That length varies, if the 
benchmarks refer to different number of time periods. It varies linearly 
avoiding even numbers.) 

The final corrections are obtained by adjusting the smoothed 
corrections of step 6 to comply with the benchmarking constraints, exactly 
as in step 4 except cs t  is used instead of c9t. 	The final approximate 
corrections obtained are displayed in Figure D.l (d) with the final 



adjusted corrections of step 5c. The desired benchmarked series is equal 
to the sunt or to the product of the final corrections and of the original 
sub-annual series. 

In order to convincingly illustrate the proposed approximation 
technique, an unfavourable and unlikely benchmarking situation was chosen. 
The discrepancies of Figure D.l behave erratically, their reference periods 
are irregular: they respectively cover 1, 3, 4 and 5 periods and none 
covers periods 2 and 3. One concludes that the approximation allows for 
both annual and sub-annual benchmarks and for very general benchrnarking 
situations. However, the procedure - as designed at least - will not work a 

when the reference periods of some benchmarks overlap, in particular when 
the reference period of a sub-annual benchmark is embedded in that of an 
annual benchmark. Such special situations can be handled by the formal 
minimization. 
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Initial gross corrections for flows 
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Figure D.1: Approxivated additive corrections for a flow series with 
binding annual and sub-annual benchmarks 0 
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APPENDIX E: Solution to the simultaneous benchmarking problem 

Using the correction approach suggested at the end of Appendix C, the 
objective function for the two-way classification simultaneous benchmarking 
problem of Section 5 (Part 1) is 

F(C) - g C'D'D C 

(E.l) 	+ gy (YB* C - 	C - L y ) 

• 	 + G (* C)'(B* C) + C (B*r  C)'(B*r  C) 

where B*y  is defined in Appendix A. 	Matrix D is now block diagonal 
difference operator of each component series, each bloc having dimensions 
T by T. Matrices B* and B*r  are similar to B*y . They are such that when 
multiplied by the corrections they generate the industrial and the regional 
discrepancies. When applicable, the grand total aggregation constraint is 
made implicit in one of them. The solution is: 

(E.2) 	
C - (gx  D'D + gy B*y'Y"L4B*y  + G B*n B*n  + C B*r B*r ) -1  

(gy  B*'Y - l'.) 

The benchniarked values are then simply Zt - x * Ct 

. 

11 
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APPENDIX F: Formal solution of the growth rate and the ARIMA interpolation 
problems 	 0 

In matrix algebra, the objective functions (2.2) or (3.3) (of Part 2) 
write: 

F(Z) - g Z'D'D Z 

(F.l) 	+ gy (YB Z - L)'(YB Z - 

+ g (ZdBz  Z - £ z )'(Zd 1RZ  Z - L z ) 

where the vectors and matrices are defined in Appendix A. Matrix D is the 
growth rate deviation operator matrix (A.9) or the ARIMA deviation operator 
(A.lO). Symbols g, gy  and g are scalars. They could also be diagonal 
matrices of dimension t by T, M by M and K by K respectively. This would 
allow the specification of some annual benchmarks (for instance) as binding 
and some as non-binding. Performing the matrix multiplications in (F.l) 
yields: 

F(Z) - g Z'D'D Z 

+ gy (Z'Ry 'Y 1 'YBy  Z - 2 Z'By 'Y'Ly  + t y ' y ) 

+ g (Z'Bz'Zd l 'zd lBz  Z - 2 Z' 3z'Zd" z  + 

The values of z t  which minimize this hyper-parabola are required. At 
the minimum, the derivative with respect to the unknown Zt are equal to 
zero. This leads to the normal equations: 

dF/dZ - 2 g, D'D Z 

+ 2 gy B'Y'Y 1 B Z - 2 gy By 'Y'&y  

+ 2 gz 	Z - 2 9z Bz'Zd l 'L z  - 0 

The solution to this linear system of equations is unique: 

(F 	
Z - (gx  DD + gy By'Y'Y1By + g 3z'Zd 1 'Zd l. Bz ) 

(gy  By'Y'y + gz  Bz'Zd' z ) 

	

The second order conditions for a minimum are satisfied because all the 	-, 
squared matrices in (F.2) are positive semidefinite. 	Note that the 
objective function and its solution are identical to that of proportional 
benchmarking, except matrix X 1  is absent. 
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