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RESUME 

L'objectif de ce rapport est de stimuler la discussion sur ce que 

devrait être la dêfinition de la variance pour les données corrigées de 

leur variations saisonnières par le projiciel X-ll-ARMMI dans une agence 

statistique tel que Statistique Canada. Cinq sources de variance sont 

présentées avec leur méthodes d'estimation. Ii sagit de la variance du 

signal aléatoire, de la variance d'échantillonnage, de la variance 
provenant d'une méthode sous-optimale pour corriger des variations 

saisonnjères, de la variance de revision et finallement, de la variance 

provenant de l'estimation des paramètres nécessaires a la méthode de 
correction pour les variations saisonnières. 

Ii est coutimier de dCcomposer une série chronologique Y cornme la 

sotnme d'une composante saisonnière St  et non-saisonnière Nt. La variance 
du signal aléatoire est la variance des estimateurs des coinposantes 

saisonnière et non-saisonnière sous les distributions aléatoires 
sous-jacentes a S et Nt.  Etant donnC les modèles aléatoires pour les 

distributions de la série chronologique et ses composantes saisortnière et 

non-saisonnière, le filtrage de Kalman est un outil permettant d'évaluer la 

variance des signaux aléatoires. Du point de vue pratique, cette variance 

est nCcessaire pour construire des incervalles de confiance pour les 
estirriés des signaux aléatoires et de leurs projections temporelles. 

L'erreur d'échantillonnage est présente dans les donndes lorsqu'un 

échanti].lon aléatoire de la population est sélectionné pour produire un 

estimé Yt de '. Si Yt  est considéré comme une constante fixe ou bien une 

variable aléatoire l'erreur d'echantillonnage est la inéme. Les covariances 

d'dchantillonnage pour les données corrigees de leur variations 

saisonnières peuvent se calculer de deux manières. La premiere utilise une 

approximation linéaires des filtres de la mdthode X-ll et la seconde 

utilise les méthodes de re-Cchantillonnage. La variance d'échantillonnage 

des données corrigées pour leur variations saisonnières permet une 

comparaison avec les données non-corrigées. 

La variance provenant de l'utilisation d'une méthode sous-optirnale pour 

corrigCs des variations saisonnières est introduite en remplacant la 

méthode oprirnale par La méthode X-11-ARNNI. Cett:e variance donne une 



- II - 

mesure de qualité de la correction apportee par X-11-ARMMI. 

X-11-ARNIII produit de ineilleur estirn4s en utilisant des filtres de plus 

en plus symxnétriques lorsque des données futures sont disponibles. La 

variance introduite par un changement de filtre saisonnier fait partie de 

la variance de revision. 	Cette variance donne une mesure de qualite de 

X-11-ARMMI et peut étre produite independamment des données. 	Lautre 

partie de la variance de revision depend des données. 	Elle mesure la 

reduction dans les variances des signaux aléatoires provenartt de 

l'utilisation des données futures. Cette variance se calcule ent utilisant 

le lissage de Kalinan. 

Finallement, la variance provenant de l'estirnation des parametres 

nécessaires a la méchode de correction pour les variations saisonnières 
donne une inesure de qualité sur la inéthode d'estimation des pararnètres et 

l'effet de l 8 utilisation de paramètres estiinés (a l'oppose des vrais 

paramètres) sur la variance totale. 

. 

S 
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EXECUTIVE SUMMARY 

This report aims at precisely defining the variance of seasonally 

adjusted data produced by the X-ll-ARIMA seasonal adjustment in a 

statistical agency such as Statistics Canada. Five sources of variances in 

seasonally adjusted data are presented along with their estimation methods. 

The sources are the signal variance, the measurement error variance, the 

increase in variance from the use of a suboptimal seasonal adjustment 

procedure, the revision variance and the increase in variance from the 

parameter estimation of a seasonal adjustment procedure. 

It is a common practice in time series to decompose a time series Y t  
into seasonal S t  and nonseasonal Nt components such that: 

Yt - N + S. 

The signal variance is the variance of the estimator of the nonseasonal 

component under the stochastic model underlying the distribution of Nt. 

Given stochastic models for the series and its components, the Kalman 

• filter provides a mean of computing the signal variance. The signal 

variance is needed to construct confidence intervals around the nonseasonal 

component and eventual forecasts. 

The measurement error variance is restricted to the sampling variance 

which arises in the data because a sample of the population is selected 

instead of the whole population to produce an estimate Yt of Yt.  Jhecher or 

not there is a stochastic model on the time series Yt the sampling 

variance is the same. Sampling covariances of seasonally adjusted data can 

be computed in two ways. The first one uses a linear approximation of the 

X-ll filters and the second one uses resampling methods. The sampling 

variance of the seasonally adjusted data allows a comparison with the 

unadjusted figure. 

The variance from the use of a suboptimal adjustment procedure is 

defined as the increase in the variance of the estimators of the components 

introduced by replacing an "optimal" method by the X-ll-ARIMA method. This 

variance provides a measure of the quality of the seasonal adjustment 

performed by X-ll-ARIMA. 

As more data are available, X-ll-ARIMA produces "better" estimates by 

using more symmetric linear filters. The variances introduced by a change 
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in the filters is part of the revision variance. This part of the revision 

variance provides a measure of quality of X-ll-ARIMA and can be produced 

independently of the data. The other part of the revision variance is 

dependent on the data. It measures the reduction in the signal variance 

from using future observations. Smoothing theory provides a way of 

computing this variance. In practice it can be obtained as a by-product of 

the Kalman filter and smoother. 

Finally, the variance from the estimation of the parameters of a 

seasonal adjustment procedure is the contribution to the variance (signal 

or sampling) arising from the use of estimated (as opposed to true) 

parameters (e.g.: ARIMA parameters in X-ll-ARIMA). This variance 

estimation provides a quality measure on how 	"well" 	the parameter 

estimation was done and the resulting effect on the total variance. 

. 

0 
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0 	1. INTRODUCTION. 

1.1 Sublect and purpose. 

This report aims at precisely defining the variance of seasonally 

adjusted data produced by the X-11-ARIMA seasonal adjustment method in a 

statistical agency such as Statistics Canada. It is intended to stimulate 

the discussion on the topic to help decide which definition should be used 

in an option of the X-ll-ARIMA package. 

1.2 Content of the report. 

Hausman and Watson (1985) have identified five sources of variance in 

seasonally adjusted data. The sources are the signal variance, the 

measurement error variance, the increase in variance from the use of a 

suboptimal seasonal adjustment procedure, the revision variance and finally, 

the increase in variance from the estimation of the parameters of a seasonal 

adjustment procedure. This report presents these sources along with their 

estimation methods. Section 2 introduces some preliminary concepts used 

throughout the report. Section 3 discusses the sources of variance. Section 

4 gives the conclusions of the study. 
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2. CONCEPTS AND NOTATION. 

2.1 Seasonal Adjustment Concepts and Methods. 

The additive variant of seasonal adjustment assumes that the true series 

"t (read capital '1t)  can be decomposed into the trend-cycle C, the seasonal 

S, the trading day Dt  and the irregular variations I: 

Yt - 	+ S + Dt + It. 	 (2,1) 

It is sometimes useful to also write Y as the sum of a nonseasonal Nt  and a 
seasonal S components: 

Yt -  Nt + St. 	 (2.2) 

The seasonally adjusted series is obtained by removing from the observed 

time series Yt  (read little yt)  an estimate St and dt  of the seasonal St  and 

trading-day Dt  components. For an adjustment performed by using information 

available at time t+k the adjusted value at time t is: 

yaC+k - Yt - st,t+k - dt,t+k 	(2.3) 

2.1.1 The X-ll and X-ll-ARIMA methods. 

The X-ll seasonal adjustment method developed by Shiskin et al.(1967) 

provides estimates of ya +k. The method is based on moving averages or 

linear smoothing filters and moving averages assume that the time series 

components are functions of time which cannot be closely approximated by 

simple functions of time over the entire series. Implicit assumptions are 

that the trend, the cycle and seasonal components are stochastic and not 

deterministic. 

If the procedures for outlier identification and modification and the 

procedures for trading-day adjustment are ignored, then the X-ll seasonal 

adjustment in its additive form can be represented by a single set of moving 

averages. For an observation sufficiently far from the end points of the 

serie (m+1<-c<-T-m) the seasonally adjusted value is obtained with a 

symmetric filter a(L): 

- am(L)yt 	Eam,jYtj 	 (2.4) 

where L is the lag operator (Lx - xt..1) and  am ,j - am,..j . For current and 

recent data (t-m+1<t<-T) asymmetric filters a(L) have to be used leading 

. 
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to: 

yaj - aj(L)y - E aijyt..j 	i0 	• m1 	(2.5) 
i_-i 

Details can be found in Young (1968) and Wallis (1982) 

The X-11-ARIMA method, developed by Dagum (1980), is an extension of 

X-11. The method consists of extending the original series at each end with 

extrapolated values from seasonal AutoRregressive Integrated Moving Average 

(ARIMA) models of the Box and Jenkins (1970) type and then of seasonally 

adjusting the extended series with the X-11 filters. 

If Zt  follows an ARIMA model the process will be written in the form: 

(L)zt - 8(L)at 

where 	(L)  is the autoregressive polynomial that include the difference 

operator (1L)d(1Ls)D (needed to make the process stationary), O(L) is the 

moving average polynomial and at  is a white noise sequence. 

2.1.2 The model-based approaches 

• 	During the last decade a great effort has been made by researchers in 

the development of seasonal adjustment methods based on the decomposition of 

univariate time series models. Two approaches have been followed for the 

development of "model-based" seasonal adjustment methods. In the first 

approach the observed series is assumed to follow an ARIMA model. From that 

model, resulting ARIMA models are derived for the components. In the second 

approach, each of the observed components is assumed to follow a stochastic 

model. The first model-based approach is called "reduced-formTM and the 

second, "structual". Major properties and operational limitations of these 

two approaches are discussed by Dagum (1987). In the remaining part of this 

sub-section the two approaches are explained. 

2.1.2.1 The reduced-form approach. 

In the reduced-form approach the trading-day component and any other 

kind of variations of a deterministic character, e.g. holiday effects, has 

to be removed from the original series. One way of doing it is discussed in 

Bell and Hillmer (1983). The input series is thus composed of a 

trend-cycle, a seasonal and an irregular component. 

Hilimer and Tiao (1982) have proposed the general procedure for the 
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ARIMA 	modeling 	of 	the unobserved components. They assume that each of the 

components of Yt  follows an ARIMA model: 

s(L)St - Os(L)bt 

c(L)ct - O(L)e 

- 91(L)dt 

where 	each 	of the pairs of the autoregressive polynomials have their zeros 

lying on or outside the unit circle and have no common zeros, and bt, et and 

dt 	are 	three 	independent 	white 	noise 	processes, 	identically 	and 

independently distributed as N(O,ab2 ), N(O,ae 2 ) and N(O,cld 2 ), 	respectively. 

Given a known model of Yt: 

- Oy(L)a 

and the restrictions: 

(L) 	- 	(lL)d(l+L+. . 

the order of 8S is less than or equal to 11, 

ad2 - var (dr) 	is maximized, 

Hillmer 	and 	Tiao 	(1982) 	derived 	what 	they 	called 	the 	"canonical" 

decomposition 	of 	Yt. 	They 	prove 	in 	particular 	that 	the 	canonical 

decomposition 	is unique and minimizes the innovation variances a 2 and  ae 2 . 

In practice a model for Y 	is identified from the data, and 	this 	model and 

its corresponding estimated parameter values are used as if they were true. 

2.1.2.2 The structural approach 

when structural models are used for the unobserved components the 

trading-day component can either be removed from the original series as in 

the reduced-form approach or modelled with the other components. For 

simplicity of the discussion we shall assume that there is no trading-day 

component. 

The use of structural models is mainly discussed by Harvey and Todd 

(1983) and Harvey (1984): " The basic structural model has the form: 

 At  Yt - 	+ 7 t  + e 	, t—1,. ..,T 	 - 

where p, - 	and e t  are the trend ,seasonal and irregular components 

respectively. 	 - 

The process generating the trend is of the form: 

Pt - Pt-1 + tl + 

and 

is 
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- 	+ 

where q t  and ct  are normally distributed independent white noise processes 

with zero means and variance a,7 2  and a ç 2  respectively. The essential 

feature of this model is that it is a local approximation to a linear trend. 

The level and slope both change slowly over time according to a random walk 

mechanism. 

The process generating the seasonal component is: 

s-i 
It 	-EY t ..j+ t  

i-i 
where wt  is distributed as NID(O,a,2 ) and s is the number of "seasons" in 

the year. The seasonal pattern is thus slowly changing but by a mechanism 

that ensures that the sum of the seasonal components over any s consecutive 

time periods has an expected value of zero and a variance that remains 

constant over time... 

The disturbances nt, rt  and wt  are independent of each other and of the 

irregular component that is a normally distributed white noise process, that 

is, e t  is distributed as NID(O,a2)." 



-6- 

2.2 Survey Errors. 
	

. 

2.2.1 Sampling and non-sampling errors. 

The general problem of sampling theory is to find an optimal combination 

of a design and an estimator yt(*) of ''• The design is the strategy that 

selects a sample from the population. The estimator is a function that 

combines the observations from the selected units (and possibly external 

information) to produce an estimate of the characteristic of interest, 

namely Y. 

Typically the Mean Square Error (MSE) of y t (*), defined as 

measures the uncertainty or the error in y t (*). 	Samplers have identified 

two major sources of errors in surveys. 	They are the sampling and the 

non-sampling errors. 

The sampling error arises from setecting a sample instead of the whole 

population. For example, in a census the sampling error is zero. The MSE 

of yt (*) is 

- E p(s)[yt (s)-Y] 2 	 (2.6) 
seS 

where S is the set of all possible samples s, p(s) is the probability of 

selecting the sample s and yt()  is the estimate of Y, the true value, 

based on the sample s. Under this notation yt(s) is the estimator y t (*) 

evaluated from sample s. 

The MSE of y(*)  can be further decomposed as: 

E[yt(*)Yt]2 - E[yt( *)E(yt( * ))] 2  + [E(y t (*)Yt )) 2 	(2.7) 

where the first term on the right hand side of (2.7) is the sampling 

variance of y t (*) and the second term is the square bias of y t (*). In 

practice the bias is usually assumed to be equal to zero by choosing an 

unbiased or nearly unbiased estimator. It is impossible to compute the 

sampling variance from (2.6) since there is only one selected sample. The 

sampling variance is therefore estimated from the sample by means of a 

variance estimator. In practice the process stops there and there is no 

further estimation of the variance of the variance estimator. 

The non-sampling errors are all the other possible errors. They include 

undercoverage or overcoverage, nonresponse and response errors, and 

processing errors. More details on these errors as well as their estimation 

can be found in the Quality Guidelines published by Statistics Canada 	0 
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(1985). In practice measures of non-sampling errors are computed for some 

specific type of errors but are rarely published. 

In the context of this report the discussion will be restricted to the 

sampling variance assuming that the estimator is unbiased with respect to 

the design. Thus we assume: 

yt(*) - Yt + Ut 	 (2.8) 

where Ut is a random variable representing the sampling error, 

2.2.2 Sampling covariances. 

The estimation of the sampling variance of yt(*) depends on the design 

used. Many surveys produce an estimate of the sampling variance of yt(*) as 

part of their survey operations. If the samples for the survey at different 

time periods are drawn independently of each other then the sampling 

covariances between ytl(*) and y(*)  for ti different than t2 is zero. But 

in practice it is seldom the case and correlation exists between the two 

estimates. From equation (2.8) we obtain the following definition for the 

sampling covariance between Yti  and yt2: 

E[yt1(*)Yt1][yt2(*).Yt2] - E[utlut2) 	(2.9) 

W  When there is no change in the population composition being surveyed on 

two occasions, Tam (1984) gives the necessary results to compute the 

covariances for different sampling plan under simple random sampling. Laniel 

(1987) extends the results when there are births and deaths in the 

population between two occasions. The extension to a more complex design is 

not obvious. 

Another approach to the estimation of the sampling covariance is to 

assume that the sampling error follows a stochastic model. In a panel 

survey where a unit stays in the survey for a fixed number of occasions, say 

q, (Ut) can be assumed to follow a MA(q) process. Inded the sampling 

covariances between ytl(*) and y(*)  for Jtl-t2>q are zero which defines a 

MA(q) process. In rotating surveys it might be reasonable to assume that Ut 

is correlation stationary. Thus we can assume that p(ut,ut+k) - p(k). This 

approach has been used by Wolter and Monsour (1981). The special case of 

p(k) - exp(-Xk) has been successfully used by Quenneville and Srinath (1984) 

in the context of the Survey of Employment, Payroll and Hours. 

It has to be recognized that the problem of the estimation of the 

sampling variances for complex surveys is not straightforward. 	When 
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non-linear statistics such as the ratio estimator are used the problem is 

even more complex, see Kovar (1985,1987). The extension to the sampling 

covariances is not solved yet even thought it could be straightforward for 

some cases. 
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0 	3 SOURCES OF VARIANCE IN SEASONALLY ADJUSTED DATA. 

This section now defines the five sources of variance in the seasonally 

adjusted data. 

3.1 Signal variance. 

3.1.1 Definition. 

Assume that the time series Yt  is observed without sampling errors. From 

(2.8) and (2.2): 

Yt - 't - Nt + S 

The signal variance is defined as Em[ntNt]2  where  Em  denotes the 

expectation under the model (or stochastic process) generating Nt and nt  is 

an unbiased estimator of N.  This means that under repeated realisation of 

the stochastic process Nt,  the expectation of nt  is equal to the expectation 

of Nt. 

Unfortuneately, there are no explicit stochastic models in X-ll (or 

X-ll-ARIMA) but under certain assumptions implicit models have been derived 

by Cleveland and Tiao (1976) and Burridge and Wallis (1984). There models 

are now given. 

According to Cleveland and Tiao (1976), the default options of the 

additive version of X-ll can be aoroximate by a model with stohastit' 

trend-cycle and seasonal components. Very specifically: 

Yt - Ct + St + It 

(1-L)2Ct - (1+.49L- .49L 2 )bit 

(1-L) 12St - ( 1+. 64L12+. 83L24 )b2t 

It - e (white noise) 

C2bl/C2b2 - 1.3 and 'e2/°2b1  14.4. 

The resulting overall model for Y t  is: 

• 	- 	(1-L)(1-L12)Yt - (1- .337L+.l41L2+.141L3+.139L4+.l36L5  

+. 131L6+. l25L7+. 117L8+. 106L9+.093L1° 

+.077L11- .417L12+.232L13 - .001L20 - .003L21  

- .004L22 - .006L23+.035L24 - .021L25 )ct. 

Burridge and Wallis (1984) extend Cleveland and Tiao's analysis to the 

concurrent and first-year revised asymmetric filters a0(L) and a12(L). They 
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use a technique different from Cleveland and Tiao. In their model for the 

final symmetric filter a84(L) the coefficients of the polymomial 9(L) are 

different. The models of the components St  and  Nt  for a0(L), a12(L) and 

a84(L) are: 

a0(L): 	(1+L+. . .+L11)S - (1+1.O0L24)a 

(1-L)2N - (1 - 1. 43L+.7 0L2 )bt 

O'a2/7b2 - .018 

a12(L): 	(1+L+. . .+L11 )St - (1 -4- .33L12+.99L24 )at 

( 1- L) 2Nt - (1 - 1.55L+.82L2 )b 

0a2/0b2 - .026 

a84(L): 	(1+L+. . .+L -- )S - (1+.71L1-2+1.00L24 )at 

(1 - L) 2Nt - (1 - 1.59L-+- .86L2 )bt 

aa2/b2 - .017 

The overall model for Yt  is: 

(1-L)(1-L12 )Y 	- 

where 	the moving average polynomial O(L) is of degree 26 and the 

coefficients are given in Table 1 for each of the three cases. 

. 
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TABLE 1 
Coefficients of the Composite Moving Average Operator 

(L) - 1 + 01L + ... + 

L a0(L) a12(L) a84(L) 

1 - .53 - .64 - .67 
2 .28 .30 .29 

3 .23 .23 .23 
4 .23 .22 .22 

5 .22 .22 .21 

6 .22 .21 .20 

7 .21 .20 .20 

8 .21 .20 .20 

9 .20 .19 .19 

10 .19 .18 .18 

11 .14 .13 .12 

12 -.43 -.33 -.33 
13 .45 .44 .46 * .02 .02 * * * 

* * * 
* * * 
* * * 
* * * 
* * * 
* * * 

22 * * * 
23 -.01 -.01 -.01 
24 .05 .05 .04 

25 -.04 -.05 -.04 

26 .01 .02 .01 

	

a a 2 /0 e 2 	012 	.016 	.011 
1 ) 1 3 	SI 	 S, 	IS .01  
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3.1.2 Estimation 

For series where the true models for the components are those given in 

the previous sections, the X-ll (or the X-11-ARIMA) program could be used to 

estimate the unobserved trend and seasonal components in an optimal way. 

Here, optimal means that the signal variance is minimum. The X-ll (or 

X-11-ARIMA) seasonal adjustment method does not provide an estimate of the 

signal variance. One way of doing it is now described. 

Given the models on the seasonal S and the trend-cycle C, the optimal 

estimators s t  and Ct  are derived along with their mean square errors 

E(s - S) 2 and  E(ct-Ct)2  using a state space representation and the Kalman 

filter. We shall assume for simplicity that the irregular component is a 

white noise process. Details of the discussion are given in Burridge and 

Wallis (1985) but the main ideas are presented here. 

The models for S, Ct, It  and Yt  are written in a state-space fnn 

consists of a state transition equation and a measurement equatior 

X+1 - FXt + GWt+l 	 I 

Yt 	- H'X + I. 	 (3.2) 

In general X and Yt  respectively denote the state vector and the output 

vector. Vt  and I t  are independent serially uncorrelated normal random 

vectors with means zero and covariance matrix Q and K. Here Yt  is a scalar. 

Denoting the degree of the lag polynomials of S and Ct  in the models: 

	

- 9s(L)wlt 	 (3.3) 

c(L)Cc 	Oc(L)'42t 	 (3.4) 

by m,n,p,q, respectively, a convenient state-space representation of the 

unobserved-component model is obtained through the following definitions and 

equivalences: 



F1 - 
0 0... 0 
1 0... 0 

0 0 1... 0 

0... 

F2 is similarly defined by matching coefficients in the model for C t  to 

elements of X2t 

t' -.11 	0 	... 	0 	1 	0 	... 0 0 0 	... 	0 	0 0 	... 	0 
Loo 	... 	000 	,.. 010 ... 	0 	10 ...o 

H' —[1 	0 	... 0 1 0 	... 0] 

Vt - (Wit, W20' 	Q - diag(a 2 1,a 2 2) 

R a 2 	(scalar). 

I 

. t 
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I 

ow 

x - (x'lt x'2t)' 

xlt - (St,St..1,...,St.. m+1,wlt,wlt..l .... ,wlt.. n+1)' 

x2t - 

F - block diagonal (F1,F2] 

I s,1 	s,m-1 OS,M 8 s,l 9 s,2 	9s,n-1 	s,n 
1 	0... 	0 	0 
0 	1... 	0 	0 	0 

0 	1 	0 

•1 
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The specification is completed by the knowledge of the initial state 

vector X0 assumed to be normally distributed with a known mean x0 and 

variance matrix P0. 

Let us assume that there are observations available up to time T, then 

the minimum mean square estimate xT  of XT  is given by: 

XT - XT/T..1 + KT yi 	 (3.5) 

XT+l/T 	FXT 	 (3.6) 

with covariance matrix PT - E[xT - XTI 2  given by: 

PT - (I - KTH')PT/T..l 	 (3.7) 

T-4-l/T 	FPTF' + GQG' 	 (3.8) 

where 

YT 	YT-H'xT/Tl 	 (3.9) 

tT - H'PT/TlH + R 	 (3.10) 

KT - PT/T1H/fT. 	 (3.11) 
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S 
The most common structual models used the 

obtained through the following definitions and 

assumed quarterly observations: 

Xt - I At fit It 71 lt-21' 

F - 11 000 
01 0 0 0 
0 0 -1 -1 -1 
00 1 0 0 
00 0 1 0 

G -I 

Wt - [ 	C t  wt 0 01' 

H' - [1 0 1 0 0] 

Q - diag[c7, 2  cYç 2  ci 2 0 0] 

R - a2 

state-space representation 

equivalences, where it is 

Kalman filter theory as described by equations (3.5) to (3.11) can be 

applied to derive the minimum mean square estimate Xt  of X along with its 

MSE matrix but it requires knowledge of the variances a 
97
2, aç 2 , 0 2  and 

When the variances a 7 2 , aç 2 , and a W 2 are expressed relative to a 2  then 

the likelihood function can be written in the form: 

T 
-2Log L(c,72.Yç2.aw2,c72) - Tlog(21r) + T log(a 2 ) + T E log(f) 

t-1 
T 

+ a2 E(yt)2/ft 
t-1 

where Q has been redefined as being equal to dia, 

and R is equal to 1. In this case the MSE matrix 

Differentiation of (3.12) with respect to 

likelihood estimator of a 2 : 

(3.12) 

(ci,7 2/0 2  C ç 2/C 2  ,c, 2 /a 2  ,0,0) 

of Xt  becomes cl 2 Pt. 

a leads to the maximum 

T 
- T 1E vt 2/ft 

t-1 
It is now possible to take out a2  out of (3.12), leaving the 

concentrated log likelihood function: 

T 
-2L - Tlog(2ir) + T + Tlog(s 2 ) + E 1og(f). 	(3.13) 

t-1 
Numerical optimization has to be carried out with respect to the 

remaining three parameters. 	For example the Davidon-Fletcher-Powell 

0 
	algorithm can be used. 
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3.2 Measurement error variance. 
	 n 

3.2.1 Definition. 

This section discusses the estimation of the nonseasonal component of a 

time series Y, when the latter is observed through Yt' subject to sampling 

errors, and the estimation of the sampling variance of yaC+k. 

To reformulate the problem, we assume: 

Yt -  Nt + S 	 [2.2] 

and it is observed through: 

Yt - Yt + ut 
	

[2.8] 

or equivalently: 

yt — Nt+St+ut. 	 (3.14) 

Seasonal adjustment remove S t  from Yt  whereas the estimation of N.  

requires that both S and Ut  be purged from the observed series Yt• 

Since the irregular component I is often modelled as a white-noise 

process, the estimation of Nt  from yt  or from Yt  would yield similar results 

if Ut  IS white noise. The latter assumption is valid when the surveys are 

independent of each other and the same design has been used. However, most 

surveys conducted by Statistics Canada are overlapping sample designs. The 

Labour Force Survey, Wholesale and Retail Trade Surveys and the Survey of 

Employment, Payroll and Hours are examples. Such designs generally produce 

sampling errors with some form of serial correlation. Questions then arise: 

I) what effect does this serially correlated measurement error have on the 

estimation of the non-seasonal component Nt,  and ii) what is the increase in 

the variance of the estimator of Nt? 

From X-ll 

ya +j_ aj(L)Yt - aj(L)(yt-ut) - aj(L)y-a(L)u. 

If ya ,+1 denotes a(L)yt, the published adjusted figure, then: 

ya+1 - ya +1 + ai(L)ut. 	 (3.15) 

Now since Ut  has mean zero under both the design and the model, ya1 

has the same expectation as Turning to variance and conditioning 

on the sample realisation we obtain: 

Vm(yat,t+i) - 	+ VmEs (yat,t+i)) 

which reduces to: 

Vm(yatt+i) - EmV5 (aj(L)ut) + Vm (Yat,t+ j), 	 (3.16) 



where Em  and Vm  denote the expectation and variance under the stochastic 

models. 

Equations (3.15) and (3.16) are the key equations for the discussion of 

the estimation of the sampling variance of the seasonally adjusted data. 

For classical survey samplers Y 	t—1 ..... T are considered as fixed 

parameters. 	Therefore, from (3.15) the sampling variance of the seasonally 

adjusted data is given by: 

- Vs (ai(L)ut). 	 (3.17) 

But for time series analysts, there is a stochastic process for ''t so 

that the sampling variance is a component of the model variance (3.16). If 

the design is unbiased for all t, then Y and Ut  are uncorrelated time 

series (Bell and Hillmer (1987)). 	In this case the total variance of 

is the sum of the sampling variance of 	and the signal 

variance of ya + j 

The next questions to ask are: i) is there an estimator of Nt  with a 

smaller variance than ya ,+j given we usually have a knowledge of the 

• 

	

	sampling design and ii) how to estimate the sampling variance of the 

seasonally adjusted data produced by X-ll or X-11-ARIMA? 

Those questions are now answered. 
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3.2.2 Estimation. 

3.2.2.1 Optimal estimator of Nt. 

The answer to the first question is yes. 	In fact it requires a 

generalisation of the optimal filter presented in section 3.1.2 where the 

measurement error is assumed to be autocorrelated instead of purely random. 

Here autocorrealted error means that the sampling error ut  is itself the 

output of a linear system of the form: 

xt+l - Axt + Bt+i 

Ut 	- C'Xt. 

For instance, if Ut  is assumed to be an AR(l) 	process with 

autoregressive parameter 0 , then we let C'-1, XtUt,  A-, B-i and 	is 

assumed to be a white noise sequence. 	If ut  is assumed to be a MA(l) 

process with moving average parameter 9, then we have ut-vt+6vt..i, 

Xt''(Ut,OVt], C' - [ 1 O], B'-[l 9], At-vt  and 

A - 10 ii 
Lo oj 

An optimal filter, knowm as the augmented Kaitnan filter is obtained by 

redefining the state vector Xt  to include xt• Details are omitted (ref. 

Anderson and Moore(1979)). 

3.2.2.2 Sampling covariances of seasonally adjusted data, Approach 1. 

To 	facilitate 	the 	discussion 	let 	y - (yl . . YT)' 	and 
y*_ (y* 	y*Oyy*T+l 	y*T+12)I where 	*j j--il .... O,T+1,...,T+12 

denote the ARIMA extrapolated values obtained from X-ll-ARIMA. 

Also let A be the (TxT) matrix where the tth  row represents the moving 

average weights used to produce the seasonaly adjusted figure (ref: equation 

(2.5)) and A*  be the (T+24 x T+24) matrix when ARIMA extrapolated values are 

used. 

Denote by ya  the vector of the seasonaly adjusted data and by y*a  the 

vector of seasonally adjusted data when ARIMA extrapolations are used. Then 

we have ya - Ay and y*a - A*y* .  

If we denote by V(y) the sampling covariance matrix of y then we have 

the sampling covariance matrix of ya : V(ya) - AV(y)A'. 

Denoting by V(y*)  the sampling covariance matrix of 	we obtain the 

. 
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sampling covariance matrix of y*8 : V( y*a) - A*V( y*) A*P .  

Note that the first and last twelve rows, as well as the first and last 

twelve elements of each row of V(y*a)  represent the sampling variance and/or 

covariance of the ARIMA extrapolations with either an ARIMA extrapolation or 

a true value. Now since the ARIMA extrapolations are linear functions of 

the vector y there should be no problem in evaluating their sampling 

covariances given the parameters of the ARIMA model are knowm. 

The problem of the estimation of the sampling covariance of the 

seasonally adjusted data is therefore reduce to the problem of the 

estimation of the sampling covariance matrix of y as discussed in section 

2.2.2. 

3.2.2.3 Sampling covariances of seasonally adjusted data, Approach 2 

In the approach discussed in section 3.2.2 the X-ll-ARIMA and the X-ll 

filters are approximated by the filters a0(L),. .. ,a(L). Moreover the 

sampling covariance matrix of y is not straightforward unless simple 

• 	hypotheses are assumed. 

This has lead to estimate the sampling variability of seasonally 

adjusted data directly using resampling methods. 

If a resampling method such as the random groups, balanced fractional 

samples, jacknife or the bootstrap are used for the estimation of the 

sampling variance of Yt  then the sampling covariances of the seasonally 

adjusted data can be estimated. This is achieved by first seasonally 

adjusting the series corresponding to each replicate and then computing the 

covariance between the deseasonalized replicate values. 

This approach has been used by Wolter and Monsour(1981) and Armstrong 

and Cray(1986). 



- 20 - 

3.3 Suboptimal seasonal adustment procedure variance. 	 0 
3.3.1 Definition. 

We saw in section 3.1.2 and 3.2.2.1 how to obtain the optimal estimate 

of the seasonal and nonseasonal components given an ARIMA or a structural 

model on Yt . In this section we would like to know when X-11 is optimal? 

That is, what is the class of stochastic models for which X-ll or X-ll-ARIMA 

are optimal and if X-11 is not optimal for the given models, what is the 

increase in the signal variance? 

These questions do not seem to have been answered yet. However, the 

literature provides at least ont type of ARIMA models behind X-ll, Cleveland 

and Tiao (1976) and Burridge and Wallis (1984) (ref: section 3.1.1). 

If a given series follows these models, then X-ll could be used to 

estimate the unobserved trend and seasonal components. A natural question 

that arises is if the X-ll procedure robust to departure from this model? 

By analysing two sets of data Cleveland and Tiao (1976) suspect that a 

series obeying (l - L)(1-L' 2 )y - 8(L)c t  for some polynomial (L) might be 

fairly accurately analysed by X-ll but this robustness does not extend to 

models which differ markedly from the overall model they described. 

They do not provide, however, a measure of increase in the signal 

variance by using X-ll instead of the optimal method described in sections 

3.1.2 and 3.2.2.1. Hence, given models on Y , its components St and  Nt, 

and on the sampling variance Ut the questibn that remains to be answered is: 

what is the increase in E[st-St]2  and  E[nt-Nt] 2  introduced by replacing the 

optimal method by the X-11 method? 
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3.3.2 Estimation. 

There is no general answer to the last question since any answer depends 

on the assumed models. 

One specific study, of interest for a statistical agency, has been made 

• by Hausinan and Watson (1985). They consider the effect of ignoring the 

measurement error (sampling error) on the "optimal" procedure and on the 

X-ll method by studying two American series: the civilian unemployment rate 

and the teenage unemployment rate. The second series exhibits more dramatic 

seasonal behavior and is subject to more severe measurement error than the 

first one. 

They show that for the overall unemployment rate that this effect is 

negligible whereas it is considerable for the teenage unemployment rate. 

They conclude that there may be large gains from the use of a model-based 

rather than X-11 seasonal adjustment methods for the teenage unemployment 

rate. 

As a related issue, they consider the optimal sample design. If the 

objective of the survey is the estimation of the nonseasonal component and 

if X-ll is to be used, they conclude that the rotation scheme should be 

chosen to make the measurement error as seasonal as possible (see equation 

(3.15). 

1 



- 22 - 

3.4 Revision variance. 

3.4.1 Definition. 

Future values of the observed series usually contain information on the 

value of the current nonseasonal component. This statement is valid when 

both X-ll-ARIMA or a model-based procedure are used. 

With X-ll-ARIMA, the revision between the final and the first annonced 

seasonally adjusted figures is given by: 

r(0,84) - ya 84  - 	 (3.18) 

Users are generally aware of this type of revision. This revision reflects 

(a) the innovations introduced by the new observations and (b) the 

difference between the two filters a0(L) and a84(L). Assuming that ya t,t  and 

ya +84 are unbiased estimators of Nt  the revision variance can be defined 

as: 

- E[(aü(L) - a84(L))yt) 2 . 	(3.19) 

In the model-based procedures the components Nt and  St are usually 

correlated and hence, future values of the observed series can also be used 

to estimate them. The revision variance is thus defined as the difference 

between the variances of the two estimators of Nt, namely the first one 

using the observations up to time t, and the second one using all the 

observations up to time t+k, for some k>O. 
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3.4.2 Estimation. 

3.4.2.1 X-11-ARIMA. 

An unbiased estimator of (3.19) is obviously given by: 

a2 r(n) — (n-l) -1 E(rt(O 84)-r(0 84)]2 

where a2r()  is the sample variance of the revisions, r(0,84) is the sample 

mean of the revisions and n>1. Since ya and ya84  are assumed to be 

two unbiased estimators of Nt  one would expect that the mean of the 

revisions be equal to zero. In this case cl2r(n)  reduces to: 

n 
— n 	E r(0,84 ) 2 . 

t—1 
The subject of the revision variance induced by a change in the filters 

aj(L) i—Ol,,. . . ,m used to seasonally adjust the data has been thoroughly 

studied by Daguin (1982a.1982b) and Dagum and Laniel (1987). In fact, 

equations (2.5) represent a linear system where yai  is the convolution 

•  of the input yt  and a sequence of weights aj , j called the impulse response 

function of the filter. The properties of the filter aj(L) can be described 

by its Fourier transform called the frequency response function: 

— E ai,jexp( - i2irwi) 
i--i 

where w is the frequency in cycle per time period. F() fully describes the 

effect of the linear filter on the given input. In general, the frequency 

response function may be expressed in polar form by: 

— A(w) + iB(w) - C(w)exp(i()) 

where C(w) — (A2 (,) + B2 (,)) 1/ 2  is called the gain of the filter and 

(w)—arctan(B(w)/A(w)) is called the phase shift of the filter and is 

expressed in radians. 

One way of computing a robust measure of variance is to assume that the 

input series is white noise. In this case, it can be shown that the total 

revision variance is given by: 

1/2 
(84,O) — [ 2 S t Ir( 84)w - r( 0 )(,) II dw  ]1/2 

which is the average distance of the asymmetric filter a0(L) to a84(L) over 

4 
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all frequencies. 

3.4.2.2 Model-based methods. 

In section 3.1.2 the estimate xt  of the state vector X t  is made based on 

the noisy measurement set 	YT)- 	There is no need for a delay between 

the receipt of the last 	measurement 	YT-1 	or 	YT 	and 	production 	of 	the 

estimate xT/T..l  and xT. 	However, one can allow a delay of 	N>O 	time units, 

during which YT-i-l• .YT+N appear, and use all the measurements available to 

produce the estimate xT/T+N  of  XT  by:  XT/T+N - E(XTIy1,...,yT+N). 

The estimate 	xT/T+N 	is 	called 	a 	smoothed 	estimate. 	Any estimator 

producing a smoothed estimate is called a smoother. 

Because 	more 	measurements are used in producing XT/T+N  one expects the 

estimate 	to 	be more accurate. 	Further, the greater the delay, the greater 

the increase in complexity. 	Thus it is important to examine the 	trade-offs 

between the delay, 	improvement in performance and estimator complexity. 

Clearly, 	it is unnecessary to construct estimators which make available 

the 	estimates 	xt/t+k 	for 	all t and k. 	Three types of smoothing problems 

exist. 	Fixed-point smoothing is concerned with obtaining xt/t+k for fixed t 

and all k. 	Fixed-lag smoothing is 	concerned 	whith 	obtaining 	xt/t+N 	for 

fixed N and all t. 	And finally, fixed-interval smoothing is concerned whith 

obtaining xt/M for fixed M and all t in the interval O<-t<-M. 

In the context of seasonal 	adjustment 	it 	is 	clear 	that 	fixed-point 

smoothing is 	irrelevant. 	Either 	fixed-lag 	or 	fixed-interval 	smoothing 

should be considered, the choice of one over the 	other 	being 	dictated 	by 

operational 	problems. 	For example, in fixed-lag smoothing the lag could be 

fixed 	to 1,3,12 or 36 months so that every month the estimate 36 months ago 

would 	become final and last year, 3 months ago and previous month estimates 

would be revised; in fixed-interval smoothing at the end of each 	year, 	all 

the estimates in a specific year would be revised. 

The fixed-lag smoothing equations are given by: 

- Xt/t+N.l + K(N+l)tyt 

where 	is 	equal 	to the initial state vector and xo/N..1-0. 	The gain 

matrices are given by: 

- P(N)t/t.lH[H'Pt,tlH + RJ1 

where 
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P(N+l)t+i/t - P(N)t/t.i[F - KtH'j' 

initiated by P(0)t,t.i— tit-i. The covariance matrix turn out to be: 

t/t+N - t/t+N-1 - P(N)tit..iR[K(N+1)]'. 

The fixed-interval smoothing equations are given by: 

Xt/M - 	+ P t* [xt+l,,M.xt+1,t ) 

where 

*-1 - PF Pt+iit  
with covariance matrix: 

t/M - t + Pt*[Pt+l/M Pt+l/t)Pt 

Now, since the revision is independent of the error in the final 

estimate we can express the revision variance as the variance of the 

filetred value (section 3.1.2) minus the variance of the final value 

obtained through smoothing. 

Fortunately, there is no need to evaluate the revision variance in 

practice since it is already included in P, at the production of the 

filtered estimate. 

. 
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3,5 Parameters estimation variance. 	 0 
3.5.1 Definition. 

The optimal procedures described in sections 3.1.2 and 3.2.2 to estimate 

the signal and sampling variances assume that the parameters are known. In 

practice, however, the parameters are just estimated from the observations 

and then assumed to be known. 

In general unbiased estimators are used. 	This results in unbiased 

estimators of the state vector through the well known formula Em=EmEp where 

Em  denotes the expectation under the model and E denotes the expectation 

under 	the parameters estimation. 	However all the variances are 

underestimated since Vm VmEp + EmVp . The second term EmVp is the 

contribution to the variance arising from the fact that the parameters are 

not known . This is positive since it is the expectation of a variance 

which is always positive. 

In X-ll-ARIMA there are two sets of parameters. The first set of 

parameters are those of the ARIMA model used to extend the series on both 

ends and the second set of parameters are those used in the trading-day 

adjustment if the latter adjustment is needed. X-11 has no ARIMA 

parameters. 
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0 	3.5.2 Estimation. 

3.5,2.1 ARIMA parameters. 

The ARIMA component of X-11-ARIMA consist of fitting an ARIMA model to 

the series and using this model extending the series one year on both ends. 

This is done to reduce the revisions of the seasonally adjusted data by 

using an asymmetric filter closer to the symmetric filter (ref 3.3). Even if 

the revision variance is reduced, there is an additionnal source of 

uncertainty that comes from the fact that the unknown ARIMA parameters are 

estimated. 

A 	valuable 	question 	is 	whether 	the 	ARIMA 	model 	should 	be on the 

estimated 	values 	Yt  or the true population values Y. 	The modelling of Yt 

assumes 	that 	there 	is a stochastic model on yt - 't-t• 	This could be an 

acceptable hypothesis for the classical survey samplers, the idea 	being 	to 

forecast the 	future 	estimates 	at 	times 	T+l,. . . ,T+12 	and 	the 	previous 

estimates at times -11,.. .,0. Let E5  and 	V 	denote the sampling expectation 

and variance and E 	and V 	the expectation and variance under the estimation 

O method for the ARIMA parameters, then: 

V s (y*T+j ) - Es [Vp (y*T+j)] 	+ Vs (Ep (y*T+j)] 	(3.20) 

- Es[Vp(y*T+i)] + Vs(yT+j] 

where y *T+j  is the forecast value of YT+j  i-1,...,12. 	Similar results apply 

for the previous values. 	Equations (3.20) say that the sampling variance of 

the forecasted values are greater than the sampling variance of YT+i 	This 

ensures that the variance coming from the 	ARIMA 	parameters 	estimation 	is 

taken 	into 	account 	in 	the 	estimation 	of 	the 	sampling variance of the 

seasonally adjusted data. 

The modeling of Y 	instead 	of 	Yt 	assumes 	that 	Yt 	is 	a stochastic 

process. 	For 	classical 	survey 	samplers 	such 	hypothesis 	is 	usually 

unacceptable. 	In 	fact, 	samplers 	are 	usually concerned with y 	- Y t  at a 

single 	point 	in 	time, 	in 	which 	case 	there 	is 	no 	reason to assume a 

stochastic model on Y. However, models are used as 	a 	basis 	for composite 

estimation and in the model-based school. 	In the latter case, 	the 	increase 

in variance is given by EmV 	 as previously inentionned. 

40 
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3.5.2.2 Trading day parameters. 

In X-11-ARIMA 	the 	trading 	component 	is 	treated 	as 	a deterministic 

component. 	If we assume that the original series is affected by trading day 

then 	the process of removing the component can be summarized as follows: i) 

a 	preliminary 	estimation 	of 	the 	trading 	day 	component 	is done on the 

original 	series 	from which a preliminary estimation of the trend-cycle and a 

seasonality has been removed; and ii) 	the 	preliminary 	estimation 	of 	the 

trading day component is 	removed 	from 	the 	original 	series 	and 	a final 

estimation of the trading day component is performed in the same 	manner 	as 

the preliminary estimation. 

In the estimation of the trading day component it is 	assumed 	that 	the 

input series, Zt, 	is composed of a trading day component, say 	xt'19, 	and an 

irregular component i t  leading to the model: 

zt - xt'j$ + it 
where xt' is the vector 	of 	regressors, 	P 	is 	the 	vector 	of trading-day 

coefficients and i t  is assumed to 	be 	NID(O, 2 ). 	Such 	an 	assumption 	is 

obviously false, nevertheless it is a good approximation and it was the only 

feasible 	assumption 	when 	the 	adjustment was developed, see Young (1968). 

The 	estimation of the parameters P is obtained by using regression analysis 
and is not discussed here, see Dagum(1980). 

If $ 	is the estimate of P, then the final estimation of the seasonally 

adjusted data is done on the transformed series Wt - yt - x t l$* , 	where 	the 

sampling variance of wt  is given by: 

V5 (wt) - E 5 [V(wt)] 	+ Vs (Ep(wt)] 
- Es [xt 1 vp (,e* ) xt ] 	+ V 5 [y] 	(3.21) 

Equations (3.21) shows that the sampling variance of the series adjusted for 

trading 	variation 	is 	increased 	by the first term of the right hand side. 

Similar 	results 	hold 	true 	when 	the sampling variance is replaced by the 

model variance. 
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. 

4. CONCLUSION. 

S 

This report presented various sources of uncertainty in seasonal 

adjustment, with the estimation method to evaluate them. 

It is hoped that a definition of the variance of the seasonally adjusted 

data can be found. The signal variance is needed to construct confidence 

intervals around the nonseasonal component and eventual forecasts. The 

sampling variance would allow a comparison with the unadjusted figure. The 

suboptimal seasonal adjustment procedure variance concerns more the method 

used than the published figure. Similarly for the revison variance 

associated with X-ll-ARIMA. In the latter two cases, the variances provide 

measures of quality of X-11-ARIMA. As shown in this report (section 

3.4.2.2) the revision variance for the model-based procedures is easily 

obtained. Finally, the parameters estimation variance is needed to give an 

indication on the increase in the variance (either signal or sampling) 

arising from the fact that the parameters are not known. 

S 
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