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ABSTRACT 

Two strategies have been followed for the development of 

model-based seasonal adjustment methods. One, where each of the 

unobserved components, trend-cycle, seasonal and irregular is 

assumed to follow a normal stochastic process of the ARIMA class 

and the other, where the observed data are assumed to follow an 

ARIMA process and from it similar kind of models are derived for 

the components. The first approach is known as "structural" and 

the second, as the "reduced-form" given their similarities to the 

problems of identification of structures from the data in 

econometrics. 

This paper discusses the major properties and operational 

limitations of these two approaches. It also analyses the 

salient characteristics of the empirical comparisons made between 

model-based seasonal adjustment methods and the X-ll-ARIMA which 

is used by the majority of government statistical agencies. 

Keywords: structural, reduced-form, model based seasonal 

adjustment, Kalman filter, ARIMA models, X-11-ARIMA. 



R E S U M E 

Deux approches ont été utilisées jusqu'à maintenant dans le 

développement des méthodes paramétriques de désaisonnalisation. 

La premiere suppose que chacune des composantes inobservables, la 

tendance-cycle, la saisonnalité et les irréguliers suit un 
processus stochastique normal de type ARMMI. La deuxième presume 

que les données observées suivent un processus ARMMI utilisable 

pour la deduction de modèles semblables représentant les 

composantes de la série. Etant données les similitudes avec les 

modèles économétriques linéaires, la premiere approche est connue 

comme étant celle de forme structurelle et la deuxième, de forme 

réduite. 

Cette étude traite des principales propriétées et 

limitations de ces deux approches. On y analyse également les 

résultats d'une comparaison empirique entre les deux méthodes 

paramétriques de désaisonnalisation et X-ll-ARMMI, cette dernière 

étant celle utilisée par la majorité des agences statistiques 

gouver nementales. 
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1. Introduction 

During the last decade a great effort has been made by re-

searchers to develop seasonal adjustment methods based on the 

decomposition of univariate time series models. These univariate 

time series models mainly belong to the class of Gaussian ARIMA 

(autoregressive integrated moving average) stochastic process or 

minor variants from it. 

Two procedures have been followed for the development of 

model-based seasonal adjustment methods. One, where each of the 

classical unobserved components, trend-cycle, seasonal and 

irregulars, is assumed to follow a Gaussian stochastic model and 

the other, where the observed series is assumed to follow an 

ARIMA model and from it similar kinds of models are deduced for 

the components. Engle (1978) called the first approach 

"structural" given its similarity to the problem of identifica-

tion of a class of structures consistent with a given reduced-

form in econometric models. The second approach is referred to 

as the "reduced-form", again, given its analogy to that which is 

observable or identifiable from the data in econometrics. 

The main purpose of this article is to summarize the major 

properties of the two approaches and problems encountered in 

their implementation. Section 2 discusses the structural form of 

model based seasonal adjustment methods. Section 3 analyses the 

assumptions of the reduced-form approach and discusses results 

obtained in most empirical studies where comparisons have been 

made with the X-11-ARIMA method. Finally, section 4 gives the 

conclusions of this investigation. 
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2. 	STRUCTURAL APPROACH TO MODEL-BASED SEASONAL ADJUSTMENJ' 

METHODS 

The first structural model seasonal adjustment methods were 

based on simple regression models where each unobserved component 

was assumed to follow a deterministic function of time. The 

extension of regression methods to include stochastic models for 

each component was first introduced by Hannan (1967) who filtered 

the original series to remove the trend and modeled the seasonal 

component with trigonometric functions multiplied by first-order 

autoregressive processes. These models were stationary and later 

were extended to non-stationary processes by several authors, 

among them, Hannan, Terrell and Tuckwell (1970), Grether and 

Nerlove (1970) Pagan (1973, 1975), Engle (1978), Cleveland (1979) 

Akaike (1980) , Kitagawa and Gersch (1984) , Harvey (1984) 

Burridge and Wallis (1984) , Durbin (1984) and Maravall (1985) 

The first basic assumption is that a time series Yt can be 

additively decomposed into a trend-cycle, a seasonal and an 

irregular component. Thus, 

Yt = Ct + St + It 	(1) 

These three components are assumed to be uncorrelated random pro-

cesses and the signal extraction problem is to estimate St and 

remove it from Yt to obtain a seasonally adjusted series 

ya. From the theory of signal extraction given in Whittle 

(1963) 	for stationary processes 	and extended by Hannan 



(1967), Sobel (1967); and Cleveland and Tiao (1976), for non-

stationary processes, the minimum mean squared error (MMSE) pre-

dictor of St, given a complete realization of Yt is the or-

thogonal projection (conditional mathematical expectation if Yt 

is normal) 

St = E(St I {Yt }) = Fs(B)Yt 	(2) 

Fs(B) = Fs(B)/I'y(B) 
	

(3) 

Where Fs(B) is a linear symmetric filter (a polynomial in the 

backshift operator B) resulting from the quotient of the two 

autocovariance functions (equivalently the spectra) FS(B) and 

ry(B) corresponding to the seasonal and original series respec-

tively. In theoretical and empirical works, linear models are 

postulated for the components and the autocovariances are 

expressed as functions of the model's parameters. 

Since the structural approach refers to modeling the unob-

served components with ARIMA processes, Engle (1978) called these 

latter UCARIMA models. Corresponding to each structural model 

(which has unobserved endogeneous variables) is a reduced form 

model that includes only observable variables. This reduced form 

model will also be an ARIMA model. The problem is to identify 

the structural models and to estimate the parameters of these 

models. 

Using a general ARIMA representation, the structural models 

of equation (1) can be written by, 
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c (B)Ct = Oc(B)lt 	 (4) 

s(B)St = 0s(B)E2t 	 (5) 

It = 'it 	 (6) 

Where 	Et and 	t are uncorrelated normally distributed 

purely random processes. 	cb(B), 	s(B), 	Oc(B) and 	Os(B) 

are polynomials in B of degree p, r, q and s respectively. 

In order to calculate Fs(B) of equation (2), Pagan (1975) 

suggested the use of the Kalman filter. The Kalman filter was 

developed by Kalman (1960) and later by Kalman and Bucy (1961) 

for engineering problems. It provides a set of recursive formu-

las which calculate the mean and variance of the unobserved 

components at each time conditioned on a particular information 

set Q . If ( includes all past and current data on the observed 

variables, then the problem is one of filtering. If current data are 

not included, it is a problem of forecasting and if future data 

are included it is a smoothing problem. Additional information, 

generally assumed known, is the mean and variance of the initial 

conditions. 	In order to use the Kalman filter, equations (1), 

(4) , (5) and (6) can be put in a state space form as follows, 

Yt = HTXt+ flt 	; t0,1,2,... 	(7) 

Xt+l = FXt + G+1; t0,1,2,... 	(8) 

Equation (7) is called the observation or measurement equa- 

tion. 	Yt is the output vector (although in most of applica- 

tions is a scalar) of observables; 	HT is a transposed matrix 

of known constants. 

Equation (8) is called the state vector or transition equa- 
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0 	0 ..1 0 
o O. .0 0 

1 0...0 0 
0 

0 0,..] 0 

F1 = (13) 

I 

tion. 	17t and 	are uncorrelated normal random variables 

with zero means and covariance matrices Q and R respectively. 

The state space representation of equation (1) together with the 

ARIMA models of (4), (5) and (6) becomes, 

Xt = (Xt,) 	)T 	 (9) 

Xit  

 

X2t = (St,St-1 ... St-r-1  2t,2,t-1) .... 2,t-s+1) 

 

F = Block Diagonal Fl,F2 
	

(12) 

1 	0. .10 	0 

(1 	1 . 	. 	. 	i) 	0 

F2 is equal to F1 but with parameters from the model for 

St. 

I 10 ... 0l0  ... 000...000  ... 0I 
GT= 	 I 

	

0...000.. .010.. .010... 0 	(14) 
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HT = [lO ... OlO  ... O II 
	

(15) 

= 2t)T Q = diag Lu2 ,2 1 	(16) 

R = 	(scalar) 	
E 1 	2 	

(17) 

Usually the state vector Xt+l must be augmented to convert 

the transition equation into a first-order Markov system. The 

specification is complete under the assumption that the initial 

vector X0 is known to be normally distributed with mean X0 

and covariance OP0 1 _1<oo . 	Usually Xo and P0,_1  have to be 

chosen by the researcher and this can be a difficult task. 	If 

the series is stationary, this problem is simplified for the 

optimal choice is then X0=0, the unconditional mean and 

P0,_1=P, the steady state covariance or P0 1 _1 equal to the 

unconditional variance of Xt. If no information is available 

about the levels of the components when the process began, a poor 

guess of X0 together with Po,_l  causes the filter to attach 

too much weight to a misleading information and a long time could 

elapse before the incoming data dominates the initial choice. 

The Kalman filter calculates the conditional expectation 

Xt+k of Xt+k  and its covariance matrix 	t,t-s-k  given the in- 

formation set 	t+k of observed values Y0, 	Yt+k, 

the 	initial conditions Lj and P0,_1  and the variances 

ci, ci, 2  anda . The essential simplification of the Kalman fil-

ter is to assume that the optimal estimate at time t depends only 

on the optimal estimate at time t-1 and the new observation Yt. 

A set of prediction equations and of updating equations make 



the 	Kalinan filter. 	The first set gives the recursions for 

	

Pt,t-1, 	and 	Pt,t 	(t=0,l,2,..). 	The 	second 

set permits to update these preliminary values when more observa- 

tions are added. This is called smoothing and there are three 

basic smoothing algorithms: fixed point, fixed lag and fixed 

interval. 

EXAMPLE. The majority of the structural models assumed for 

the components of a given time series, whether in theoretical or 

empirical studies, are generally very simple. One of the main 

reasons being that the estimators of these components can be un-

stable for complex models because the initial conditions X 0  

no,..]. and the variances of the transition and measurement equa-

tions must be known or estimated a priori by the researcher. 

The most commonly used structural models are a random walk 

for the trend-cycle and a stationary process for the seasonal. 

That is, 

= Ct 	+ St + t 	 (18) 

	

ACt = s t-i + r t 	 (19) 

At = it 

(l+B+B2 ..+BSl)St=2t 	(20) 

where 	C t, 	and 	are independently normally dis- 

tributed variables with zero means and variances G ,G , 

and o 	respectively. 	For quarterly data, the transition equa- 

tions for the structural model above is, 



- 

C t 

I  

1 	11 
I 
I 

C t-1 I 
I 

I 
I  0 	1 t-1 Cit 

I 
I 

- --------4 
I I I 

xt = 
S 

t - - -1 	-1 	-1 
I 
I 

st_i + 2t 
I 
(21) 

s t_i 0 	1 	0 	0 S_•2 0 I 

S t2 
I 
I '0 	1 	0 ' - 	I 

S t-3 

I 
I 
I 

The corresponding measurement equation is 

= (1,0,1,00) Xt + fl 	 (22) 

with the covariance matrices of the disturbances in the transi- 

tion equation being 

0 2  

0 

Q = (23) 

0 

0 

and R = G 	(a scalar) TI 
The reduced form of this structural model is a particular 

case of the (0,1,1) (0,1,1) ARIMA class that has been found often 

adequate for many economic time series. 
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3. OREDUCED-FORMu APPROACH TO MODEL-BASED SEASONAL ADJUSTMENT 

METHODS 

The "Reduced-Form" approach to ARIMA model-based seasonal 

adjustment methods is operationally older than the structural 

approach and has reached a much more advanced stage of 

development. In fact, there exist already computer packages that 

enable the use of this procedure for seasonal adjustment. The 

two notable examples are the MSX (signal extraction) developed by 

Burman (1980) and the model-based seasonal adjustment method by 

Hillmer and Tiao (1982). Their basic principle is to find an 

ARIMA model that adequately fits the observed series and then to 

derive from it ARIMA models for the seasonal and non-seasonal 

components which are uniquely determined under certain 

conditions. 

Several authors have been preoccupied with the development 

of this type of seasonal adjustment method. Pierce (1978) sug-

gested using a combination of ARIMA and deterministic models for 

the estimation of the trend-cycle and the seasonal components. 

Box, Hilimer and Tiao (1978) started with a (0,1,1) (0,1,1) ARIMA 

model and derived models for the components consistent with this 

overall model. This approach was extended by Burman (1980) and 

Hilimer and Tiao (1982) to include other ARIMA models. 

Similar to the structural approach, the reduced form 

approach to model-based seasonal adjustment methods assumes that 

a time series, usually denoted by Z can be decomposed into 

S and Nt  which are mutually independent seasonal and non-

seasonal components (Nt can be further decomposed into trend- 
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cycle and noise). 	the estimation of St and Nt can be 

obtained from the signal extraction theory as discussed in 

section 2. 

Assuming, 

zt = St + Nt 	 (24) 

and supposing the component models 

s(B)St = 0 s(B)bt 	 (25) 

n(B)Nt = 6 n(B)Ct 	 (26) 

where the pairs of polynomials in the backshift operator B, 

, 	, 	, °n(B) 	and 	s(B) , 	n(B) 	have 

no common roots and b and c are mutually independent, iid N(O,a) 

and N(O,o) 	respectively, then the corresponding model for 

Z is (Cleveland, 1972) 

= IT*(B)a 	 (27) 

where *(B) 	s (B) n (B) and 	(B) ando are determined from 

z(B) = Fs (B) + 
	

(28) 

where F 	F 	F s and 	n are the autocovariance generating 

functions such that, 
O(B)O(F)c5 	+ 8 (8)0 S  (F)02 

n  

q(B) q(F) 

with FBl 	If the roots of 	4 5 (B) and 	(B) are greater 
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or equal to 1, then in accordance with the signal extraction 

theory, 

= Fs(B)Z 	 (30) 

and 

	

Nt = F(B)Zt 	 (31) 

where 

a 2 e (B)@ (F)*(B)*(F) 
Fs(B).r5(B)/rz(B) = b s 

c O* (B) O*(F)4(B)(F) 

- 	a 2 0 (B)O (F)(B)q(F)  bb 	S 	n 	n 	(32) -  

a 2 0* (B) e* (F) 
a 

and 

F(B) = 	20 (B) 

a 2 0*(B)O* (F)(B)(F) 
a 

- 	(B)O (F)q (B)q (F) 	(33) - 	cn 
G 2 0* (B) e* (F) 
a 

In practise, St and Nt are non-observables but an ad-

equate model can be obtained for the data. In order to derive 

consistent models for each component, assumptions have to be 

made. Bell and Hilimer (1984) make the following assumptions for 

models of St and Nt to be uniquely determined from a model 

for Z t. 

Z = St+Nt 

{St) and {Nt} are mutualiy independent 

Z 	follows 	a 	known 	ARIMA 	model 	*(B)Z t= e*(B)at 
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St follows an unknown ARIMA models(B)St - Os(B)bt 

Nt follows an unknown ARIMA rtdeln(B)St = 

5(B) and 0 (B) have no common roots. 

5(B) = 1+B+. . 

the order of 

02b = 	var(bt) is as small as possible consistent with 

assumptions 1-8. 

Given assumptions 1-8, Hilimer and Tiao (1982) showed that 

cJ2b must lie within a given 	interval 	E a 2 , 0 2b1 and 

then the models for St and Nt are uniquely determined once a 

Gb is chosen. 	They called this decomposition, an admissible 

decomposition. 	If 	2b 	(the minimum value within the 

interval) is selected, the decomposition is called canonical. 

This 	canonical 	decomposition minimizes 	the 	variance 	of 

( 1+B+B 2+_+B 11 )st making the seasonal component as stable as 

possible. 

Burman (1984) , Dagum and Laniel (1984) , Maravall (1984) 

and others, have argued that the definitions of the seasonal is 

too restrictive. In fact, Dagum and Laniel (1984) showed that if 

the series for Z 	follows a (0,1,1) (0,1,2)12 ARIMA model, 

then the canonical decomposition gives the unreasonable result of 

a non-seasonal component with seasonality. 	The amount of 

seasonality will be greater, the greater the value of the 02 



- 14 - 

parameter relative to the 	0 1. 	The assumptions 1-8 limit 

seriously the class of ARIMA models that can be decomposed to the 

one with a seasonal factor equal to (0,1,1). This restriction is 

relaxed in the method developed by Burman (1980) that enables a 

seasonal factor (P,D,Q)S where P,Q<2. 

To satisfy assumption 6 and let say P=1, Burman's method 

transfers the non-seasonal root to the non seasonal operator. 

Maravall (1984 ) 	pointed out that if the ARIMA model contains a 

factor (1+B) with 	<0 or AR(2) factors with complex roots for 

seasonal periods, the decomposition done with Bell and Hilimer's 

criteria would also have seasonality in the non-seasonal 

component. Furthermore, Pierce and Maravall (1984) showed that the 

variances of the revisions of the seasonal and trend-cycle 

component are maximized with the canonical decomposition. 

3.1 Results from Empirical Applications and Comparisons with X-

11-AR I MA 

Several authors have applied the reduced-form of the ARIMA 

model-based seasonal adjustment method either using Burman's MSX 

or the Hilimer and Tiao (1982) versions. Among the various 

empirical studies we can mention, Burman (1980), Hillmer, Bell 

and Tiao (1983), Bilongo and Carbone (1985), Laniel (1985), den 

Butter, Coerien and van de Gevel (1985), and Scott (1986). In 

each of these studies the results obtained were compared with 

those given by X-ll-ARIMA (Dagum, 1980) with and without the 

extrapolation option. In this latter case, the X-11-ARIMA 
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closely approximates the census Method II-X-ll-Variant (Shiskin, 

Young and Musgrave, 1967) 

A thorough analysis of the comparisons made between the 

reduced-form model-based procedures and X-11-ARIMA leads to the 

following conclusions. 

The majority of the series used in these various empirical 

studies were highly aggregated macroeconomic series which 

followed the simple (0,1,1) (0,1,1) ARIMA model. In rare oc-

casions the non-seasonal operator showed p=2 and/or q=2, and 

in only one occasion p=3. For the seasonal operator, P was 

always equal to 0 and Q equal to 1. When Q  was equal to 1, 

was generally greater than 0.80, indicating highly stable 

seasonality. For example, in Hillmer, Bell and Tiao, (1983) 

of the 76 series analyzed, 56 series have 0>0.80 and 67 

have 0O.70. 

Scott (1986) showed that for rather irregular series the MSX 

package often reduced the seasonal operator to zero and 

calculated a deterministic seasonality. 

From the viewpoint of the size of the revisions of the 

seasonal estimates, the various authors used different 

definitions and loss functions making it almost impossible 

to draw conclusions outside their particular cases. 

It was also observed that: 	a) if the series were affected 

by trading day variations and these were not a prior removed 
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from the ARIMA modeling of X-11-ARIMA, this method would 

produce larger revisions as compared with the model-based 

procedure. The reason for this being the fact that ARIMA 

models cannot adequately pick up trading day variations. 

Hilimer, Bell and Tiao (1983) and den Butter, Coenen and van 

de Gevel (1985) did not remove these variations, when 

present, before ARIMA modeling by X-ll-ARIMA and 

consequently the results were unfavorable to the latter. 

The X-ll-ARIMA enables the user to eliminate a prior trading 

day's variations but this is not done automatically when 

using the default option. 

In a current experimental new version, the automatic 

removal of trading day variations is available as a default 

option if a user asks for ARIMA modeling. This modification 

is being introduced to avoid wrong applications of this 

program as done by the above authors or others not 

familiarized with it. 

b) the total revision in all these empirical studies was 

measured under the assumption that a "final" estimate is ob-

tained after three or four years are added to the last 

observations. While this is true for X-ll-ARIMA (default 

option) since it takes three and a half years for the con-

current asymmetric filter to become almost symmetric; it is 
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not valid for the model-based procedure. 	This is 

particularly relevant when the value of 0 is large, as was 

the case for most of the series analyzed. In fact, for ()= 

0.80 the annual consecutive revisions are small but it takes 

at least 8 years more for the concurrent value to become 

final. By truncating the total revisions to three or four 

years only, the results will always show smaller revisions 

as compared to the X-11-ARIMA default option. 

3. 	Assuming that the estimated 0 is accurate, values ofEJ ~?:0.80 

or the presence of deterministic seasonality suggest that 

the default option of X-ll-ARIMA should not be appiied. In 

such cases, longe seasonal moving averages available in 

this program can be used, e.g. the 3 x 9 m.a.. However, the 

problem of whether the estimated parameter valueis 

correct still remains. In fact, it is already well known 

that we can obtain very different values depending on the 

estimation procedure. Laniel (1985) obtained for the series 

he analysed a 8 equal to 0.77 with uncndjtjonl least 

squares and equal to 0.88 with maximum likelihood. For 

these two parameter values the model based decomposition 

method produced significantly different seasonal patterns 

for the same series. 
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4. CONCLUSIONS 

The "structural" approach to ARIMA model-based seasonal ad-

justment is still in its infancy. Its greater contribution has 

been the introduction of the Kalman filter to estimate the state-

space representations of the ARIMA models assumed for each compo-

nent. However, it requires a good deal of exploratory work and 

subjective judgement to assess the level of the components before 

the process begins. Poor initial conditions causes the filter to 

attach too much weight to this misleading information and a long 

time may elapse before the incoming data dominates the initial 

choice. The estimation of the relative variances of the distur-

bances corresponding to the component models in the transition 

equations poses a serious challenge, particularly, when the 

component models depart from simple processes. Because of this, 

in most cases the models assumed are the random walk or the ran-

dom walk with a random drift. These assumptions lead to the 

simple (0,1,1) (0,1,1) model which can already be adequately esti-

mated by X-ll-ARIMA. 

On the other hand, the reduced-form approach of ARIMA model-

based seasonal adjustment has reached a stage where it could be 

implemented. Two important computer programs have been 

developed, MSX by Burman (1980) and another by Hilimer and Tiao 

(1982) but, the assumptions that enable a unique decomposition 

from a given ARIMA model fitted to the observed data are highly 

restrictive. They limit the class of ARIMA models that can be 

fitted to real series to the (p,d,q) (P,D,Q)S type where p and q<3 

and P,Q,<1. 
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Furthermore, as discussed in section 3.1, the majority of 

the empirical studies have been done on series that belong mostly 

to the simple (0,1,1) (0,1,1) class or minor variants of it and 

where the value of 0 is usually greater than 0.70 which implies 

highly stable seasonality. 

The comparisons were made with the default option of X-ll-

ARIMA but a more appropriate selection of options already avail-

able in this program would give similar results for most cases. 

In fact, Cleveland and Tiao (1976) have shown that in an additive 

decomposition, the standard (default option) symmetric filter of 

census Method II-X-11 variant (similar to that of X-11-ARIMA) 

follows a model of the (0,1,1,) (0,1,1) type. But different sets 

of seasonal moving averages and trend-cycle filters can be 

chosen by the users and thus, the X-11-ARIMA method can deal 

adequately with more complex stochastic models than the 

(0,1,1) (0,1,1) type. Furthermore, this program enables the 

application of different seasonal filters for each month which 

implies that the seasonal models for each month are not equal. 

Series with this characteristic cannot be adequately estimated 

with the current ARIMA model - based procedures which assume that 

the seasonal model is the same for each month. 

In conclusion, unless the class of ARIMA models that can be 

estimated by model-based seasonal adjustment methods is enlarged 

to cover a broader spectrum of series, and some of its estimation 

problems are solved, these seasonal adjustment methods are still 

far from being a substitute of X-11-ARIMA as it is currently used 

by statistical agencies. 
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