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- résumé -

Ce document propose une méthode d’'étalonnage simultané de systémes de
séries socio-économiques. Chaque composante du systéme doit se conformer a
ses jalons annuels, ce qu’accomplit déja 1'étalonnage conventionnel. Les
composantes régionales (disons) doivent en plus se sommer au total national
étalonné pour chaque période de temps, ce qu’accomplit 1la méthode
d’étalonnage simultanée proposée. La méthode fonctionne également pour les
systémes de séries classifiées par régions et par industrie. En plus de
satisfaire leurs jalons, les composantes doivent alors s'additionner et a
leur total régional et A& leur total industriel respectifs. La méthode
spécifie 1'étalonnage comme une regression 4 la Chow et Lin (1971), en y
incorporant 1le critére de pPréservation de mouvement fréquemment utilisé
pour l’étalonnage (Denton, 1971). La technique d'estimation par les
Moindres carrés généralisés permet en effet pareille incorporation. Le
traitement simultané de plusieurs séries avec contraintes d'agrégation est
rendu possible par les Moindres carrés généralisés conjoints (Theil, 1971).

- abstract -

This paper presents a method for benchmarking systems of socio-economic
time series. Each component of the system must comply with its benchmarks,
which is already accomplished by conventional benchmarking. The regional
(say) series must also add to the benchmarked national total for each
period of time, which 1is accomplished by the simultaneous benchmarking
method proposed. The method also works for systems of series classified by
region and by industry. The components must then add both to their
regional totals and to their industrial totals (and satisfy their
benchmarks) . Following the Chow and Lin (1971) approach, the method
specifies benchmarking in the regression framework by incorporating the
commonly used benchmarking criterion of movement preservation (Denton,
1971) into the regression. This incorporation is made possible by the
Generalized Least Squares estimation technique. The simultaneous
processing of several series is achieved by means of Joint Generalized
Least Squares (Theil, 1971).

KEYSWORDS : Benchmarking, Interpolation, Quadratic Minimization, Iterative
Proportional Fitting






1. INTRODUCTION

Many of the socio-economic time series published by statistical
agencies are subject to benchmarking. Benchmarking arises when a given
variable is measured at different periodicities, for instance monthly and
annually, quarterly and annually, annually and quinquennially. In this
paper, the more frequent periodicity will be referred to as sub-annual ;
and the less frequent, as annual. The "annual" series is generally more
reliable than the "sub-annual®™ and is therefore considered as a benchmark
to the sub-annual series. Benchmarking is then the process of adjusting
the sub-annual series, so that it becomes consistent with the values of the
corresponding annual benchmark series; namely, so that the yearly totals of
the former are equal the values of the latter (in the case of flow series).

The series affected by benchmarking are generally part of a system of
series, bound together by additivity (or linear) constraints. Additivity
constraints typically occur when a variable is measured at different levels
of geographical and/or industrial aggregation. For example, the Retail
Trade series for the regions of a country should add up to the national
aggregate for each period of time, both annually and sub-annually. The
problem addressed by this paper is that individual (proportional)
benchmarking each series generally destroys additivity at the sub-annual
level. The proposed simultaneous benchmarking solution produces series
which satisfy both their own annual benchmarks and additivity to the
aggregate.

Section 2 illustrates the problem of benchmarking a system of regional
series. Before providing a solution, Section 3 shows how a variant of the
Chow and Lin (1971) interpolation method can be wused to benchmark
individual series, according to the movement preservation principle
established by Denton (1971). The Chow and Lin formulation of benchmarking
has the distinct advantage of casting the oproblem in the more familiar
regression analysis framework. That formulation also proves very
economical computationnally. This provides the feasibility basis of the
simultaneous benchmarking methods proposed in Section 4 and 5, which derive
from the theory of Joint Generalized Least Squares (Theil, 1971). The
method presented in Section 4 makes it possible to process over S0 regional
monthly series on 5-year intervals, subject to (60) aggregation
constraints. Section 5 generalizes the approach to handle series available
by regions and by industries, which must add up both to regional and
industrial totals and satisfy their benchmarks. Section 6 discusses 1lssues
related to benchmarking and is followed by a conclusion.

The paper somewhat follows the structure recommended by Ehrenberg
(1982) for technical papers: Illustrations and results are presented as
early as possible, followed by methodological details and background
discussion. The paper provides ample techniecal - as opposed to
methodological - details for those potentially interrested in programming
the method. The more "statistical" reader may skip some of those details.



Table 1: Original regional series Xr,t, regional benchmark values y, p,
individually benchmarked series zir,t' simultaneously benchmarked series
Zr,t accompanied by relevant statistics.
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2. PRESENTATION OF THE SIMULTANEOUS BENCHMARKING PROBLEM

The three first columns of Table 1 contain three regional original
unbenchmarked series xj1., X9, and x3¢. The first original series is the
sum of the other two, Xj¢=xo¢+x3y for all t. Columns 4 to 6 displays the
annual benchmarks yi,, yop and ¥3m of the three series (which also sum up).
The original series do not add up yearly to their respective benchmarks.
This is the problem solved by individual benchmarking. Columns 7 to 9
display the individually benchmarked series zl1¢, 2zl and zlj., obtained
by means of the proportional variant of the Denton (1971) method modified
by Cholette (1984): Each of these series zl . 1is as proportional as
possible to its original series Xyt (more details below) and yearly adds up
to 1its benchmarks y,n. The problem is now that the first series is no
longer the sum of the other two, zl1 . not equal to zloe+zlq, for some t.



The percentage aggregation discrepancies d¢ recorded in column 10 reach as
high as 2.8% (in absolute value). This is the problem addressed by the
simultaneous benchmarking. Except for small rounding errors (which are not
the problem addressed herein), the resulting simultaneously benchmarked
series z,¢ in column 11 to 13 add up to their benchmarks and sum over
regions. They are as proportional to the original series as possible in
the circumstances.

Under additive benchmarking (instead of proportional), there 1is
generally no simultaneous benchmarking problem. Each individually
benchmarked series zirt i1s equal to a linear combination of its original
values Xre and of its benchmarks Yrm (see equation @8 LAGE ) " “The welghts
of that combination are also the same for all series (provided all
benchmarks have same reference periods across series). The additivity of
the X;¢’'s and of the Yrm'S implies that of the zirt’s.

zl) = Lyx; + LyYy

iy = Ag=y ¥, = Le(Xg + X3) + Ly(Yz + Y3)
X1 = X5 + X3 3 = L.Xo + LyYy + LyX3 + Ly¥3
= z1i, + zi,
where Zil is a vector containing zilt (&=L, . ;D) land similarly for Ziz,

213, s Yg and ¥4 @nd Xj, X3 and Xj. In other words, additive
benchmarking of the sum (over regions) is equal to the sums of additively
benchmarked components.

For very seasonal series 1like those in Table 1, additive benchmarking
is not advisable and could result in negative benchmarked values for low
seasons of small series. Simultaneous benchmarking is then appropriate., A
variant of the Chow and Lin interpolation method lends itself to
benchmarking and to simultaneous benchmarking.

3. BENCHMARKING AS A REGRESSION PROBLEM

The original purpose of the Chow and Lin (1971) method is to derive a
sub-annual series zy from its known annual values Ym and from Q related
series Xg¢ known sub-annually.

3.1 The regression Model
The desired and related series obey an econometric relationship:

Q
(SE TSI ol B W vty ¥ dgpd | ssl, 4., T
q=1
or in matrix algebra:
3. 1.2 % - X Iy + e, E(e e') = v
byl T bym@ "W byl ¥ by T by T

Matrix V is the known covariance matrix of the residuals, to be specified
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later. The parameters in I' are to be estimated on the annual values of X
and Z. The latter are given by

(8.1.3) Y - B 2
Mby 1l MBnT Tl

where M is the number of year in the series and B is the annual sum matrix
operator. For a quarterly flow series (say):
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The annual version of equation (3.1.2) accordingly writes

(3.1.4) BZ = Y=BXTI+Be or
(3PN %) X | SIS e E(eg eg') =B VB = Va
where X,=B X stand for the annual wvalues of X. The Generalized Least

Squares (G.L.S.) estimate of I' is then [*= (Xa'Va']-Xa)‘1 Xa'Va‘lY. Chow
and Lin show that the resulting best linear unbiased sub-annual estimates
are

(a%1.5) o S TYrwE (B v ElY e

which are the regression "predicted" values. For the purpose of
benchmarking, there 1is only one related series (Q=1), which 1is the
unbenchmarked version of the desired series, and I is known and equal to 1.
(One could formally specify that in (3.1.2), estimate with G.L.S. with
extraneous (prior) information on I' (Durbin, 1953; Alba, 1988) and arrive
at (3.1.5) and (3.1.6)). Solution (3.1.5) then reduces to

(3-1pfinl | 2 = "X 'WHAS (B Y BYUL G e | Segiid - G U
Tbyl Tbyl TbyM MbyM MAaby -1t Tby 1l Tby M Mby 1

where U=Y-BX contains the annual discrepancies between the benchmarks and
the original series and W=VB’(BVB')-l is the weight matrix to be applied to
the discrepancies. The benchmarked series is then equal to the original
plus sub-annual corrections WU interpolated between the annual
discrepancies U. The solution can also be expressed as

(3.1.6") Z = LyX + LyY.

where Ly=(I-WB) and L,=W. The estimates are a linear combination of the
unbenchmarked series and of the benchmarks.

Benchmarking according to equation (3.1.6) requires the inversion of a
M by M matrix. In other words, the size of the inversion depends on the
number of years M in the series and not on the number of observations T,
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Furthermore, if V were known algebraically, so would be VB’ and BVB'.
These considerations matter for individual benchmarking and become crucial
for simultaneous benchmarking.

3.2 Relation between Generalized Least Squares and Quadratic Minimization
The next question is then what is an appropriate covariance matrix V.
It is well known that G.L.S. with a covariance matrix V is equivalent to
minimizing a criterion V-1 on the residuals. (The covariance matrix V is
precisely the inverse of the corresponding criterion matrix V-1; and vice
versa.) As pointed out by Bournay and Laroque (1979) and Alba (1979, 1988),
estimatin% (3.1.2) with G.L.S. amounts to minimizing the objective function
(Z-XI')*'V-1(2-XI'). Many benchmarking methods are in fact based on this
minimization (rather than on regression), subject to constraints (=1 L8 T
The resulting Langragian augmented objective function is (with Q=1, I'=1):

(3.2.1) (B-BD'vi@Ez-x-24a.62-1)
This lead to the solution:
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The solution for Z can be achieved by performing the matrix inversion by
parts, if V-1 is invertible. The resulting expression for Z is then
exactly (3.1.6). This establishes the G.L.S. regression as a particular
case of quadratic minimization. (1f v-1 is not invertable, solution
(3.2.1') is valid, except the inversion cannot be performed by part.)

A widely accepted benchmarking criterion V-1 is that of movement
preservation established by Denton (1971). This principle is popular with
time series builders, because - as will be seen - it is easy to understand
and explain.

The additive variant of movement preservation
For the additive variant of benchmarking, v-1l is the quadratic first
(or second) difference operator:

o+

fd. %~ v-1 % pp, D =

(T-1) by T

S e e —

O O g . T L1
With that criterion matrix V-1, the objective function (3.2.1) specifies
that the benchmarked series Z is as parallel as possible to the original X.

In other words, the movements in Z are close as possible to those in X,
which is the definition of movement preservation.

As stated however, matrix V-1l is singular, so that one cannot obtain
the corresponding V required for the G.L.S. solution (3.1.6). The
following redefinition of D entails an invertible v-1;



[ 1L-«a 0 0 0 0]
[ 0 1 -a 0 0]
(3.2.3) D - [ ]
[ ]
(Tak) by T { o,y I ipY = ]
[ IO 1RO, . 1. ., 1]
where a is chosen lower but very close to 1.0 (e.g. 0.9999999) , Such a

value of a causes an infinitesimal sacrifice to the movement preservation
criterion (3.2.2). Furthermore matrix V is now known algebraically:

[ a al al-1 ]
B 1 a al-2
V = [ al a i I B al-3 )
(3.2.4) [ ) 1'31 / 8-
Ty - | ]
E aT‘l ai‘z aT‘3 o . i %

The scalar 1 / (1-a2) will be ignored because it cancels out in (@505
The availability of a matrix V (without 1/(1-a2)) corresponding to e
makes solution (3.1.6) applicable. Furthermore, as a tends towards 1, the
G.L.S. solution (3.1.6) tends to the quadratic minimization solution
(3.2.1') with V-1 as in (3.2.2) (Bournay and Laroque, 1979 Pe. 208

The weights W of solution (3.1.6) - and L; and Ly of, (3 L6 DIEN= e
independent of the series X and Y considered. For additive benchmarking
the same weights may be applied to any series (interval) of the same length
(provided the reference periods of the benchmarks are homogeneous, see
Sectiion 8.3.)

The proportional variant of movement preservation
For the proportional variant of movement preservation (and of
benchmarking), the criterion is normally
{ /=g @
V1 -xLop Ll X =iied 1/x9
(3.2.5) O :
(
[

with D as in (3.2.2). Under that definition of V'l, the objective function
(3.2.1) reduces to Z'V’lZ, which specifies that the proportion of Z to X is
as constant as possible. Although justifiable per se, this criterion may be
seen as an approximation of the growth rate movement preservation
Z(z¢/2¢.1- xt/xt_l)2 (Smith, 1977; Monsour and Trager, 1979). Redefining D
as 1in (3.2.3) results into a non-singular V-1 and a readily known
covariance matrix:

[ €31 €12a £1302 ... flTQT_é
[ 212 422 €23 ... €ppal-
(328 L4 = T-3

§3n2° £32& £33 ... {37
T By*E
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where €1j - Xi X4 / X In simultaneous benchmarking, dividing by the
average X of the xi's is essential for relative calibration purposes. The
knowledge of V makes solution (3.1.6) applicable. As obvious from (3 328.6)),
the weights of proportional benchmarking depend on each series interval
considered.

3.3 Generalization for Benchmarks with Varying Reference Periods
For many applications of benchmarking, it is convenient to redefine
matrix B in a more general manner:

columns: o Pl T2 P2

E AT, ot L NG g ek Bere ]

[ 'a™Q (0180 | (o H (03 (0N LBl one 1 1 (G4 ]

(3. 3r915) By =M1 5 ]

( . ]

Mby T [ s 2 s ]

[ ]
where 1, and pp are the reference periods of the benchmarks. This
reformulation allows for benchmarks referring to the calendar year (e.g.
=03, 25, . Pm~Tptll); for benchmarks referring to the fiscal years
(e.g. ry=4,16,28,...; p=tut+ll); for benchmarks of stock series (e.g.
Tim=iL 20 24 36T, <" p=Tn); for benchmarks referring to more or less than 12

consecutive months; for benchmarks not available every year; etc. As a
result, M now stands for the number of benchmarks (instead of years) in the
series. For index series, whose annual values correspond to the average of
the year, one should simply multiply the benchmarks by |12 foxksd,

3.4 Statistical Properties of the benchmarked series

One by-product of regression analysis is usually an estimate of the
covariance of the predicted (interpolated) values of in terms of the
covariance of the residuals. This assumes however that the regressor
variables are deterministic, that is not subject to error. In other words,
the errors originate from the regressand (and from omitted variables). For
benchmarking, the regressand and the regressor variables are respectively Z
and X - more precisely their annual values Y and X4 - so that the
assumption 1is grossly untenable. Indeed the benchmarks Y are supposed to
be more reliable than the original series X. The opposite assumption would
be more appropriate: the error originates from the regressor X and not from
the regressand Y.

Bournay and Laroque (1979) consider both polar cases. Using the
notation adopted in this document, the first case is:

(S Y = - X Fl-me E(eglX) = 0
M by dl -8 by I L.by L Bfe, EA =B B MR WL

which 1is the case examined in Section 3.1, where the errors originate from
the benchmarks. The second case is:

CIRE D) Xa - YA § + en, E(eglY) = 0
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Mibw L SWeby 1 X By 1 E(e; eg') =B VB =V,

where the errors originate from the original series. In (3.3.2), the
Tegressors are the benchmarks Y instead of the unbenchmarked data X. In the
first case, the authors find the Chow and Lin solution (3.1.5); and in the
second,

Z - (1/6%) [X - VB'(BVB')-1 (BX - &%)
(3.3.3)
= (1/6%) [X + VB'(BVB’)-1 (ys* . BX)

Since for benchmarking, according to the movement preservation principle,
both T and § equal 1, both (3.1.5) and (3.3.3) reduce to (3.1, 6 Nile
conclude that (in the trivial regression case considered) both polar cases
yield the same solution. The interpretation of solution (3.1.6) can then
be that the error originates either from Y or from X (or from both). We
select the second, - only acceptable -interpretation. This statistically
legitimizes casting the benchmarking problem in the regression framework.

This conclusion also entails - in the additive case at least - that
(3.1.6’') can be used to derive the covariance Z, of the benchmarked values
from the covariance Zy of the unbenchmarked series

(3,34 Tz = Lx T Ly’ + Ly Ty Ly

where the covariance Zy of Y is presumably equal to zero.

This section showed how benchmarking can be casted in the regression
framework. The resulting solution (3.1.6) proves economical in terms of
calculations and required computer memory.

4. BENCHMARKING A SYSTEM OF "REGIONAL" SERIES

Based on the developments of the Section 3, a feasible solution to the
problem of benchmarking a system of R "regional" time series is proposed.
For each period of time, the regional benchmarked series Z,¢ (r>2) must sum
to the aggregate series Z21¢.

R
(4.1) 21,e - 2 Zr,e = O, t=1,...,T.
r=2

The first region is defined to be the sum of the others. The simultaneous
benchmarking problem will be seen as one of Joint Generalized Least Squares
J.G.L.S. (Theil, 1971).

4.1 Derivation of the Solution
In the J.G.L.S. framework, the Chow and Lin model of equation (3.1.2)
becomes

( 21
( 22
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(4.2)

]
]
]
]

; ]
(R+1)T by 1 [ éR ]
[-Xp+Xo+...+Xp ]

o -

where the X,'s are the original regional series and ey are the corrections
made to them in order to obtain the desired benchmarked series Zy. The
bottom partitions of (4.2) specify that the corrections are such that
additivity (4.1) is satisfied. If the original series already satisfy
additivity, then d=-X;+Xp+...+Xp 1is equal to zero. The partitions then
means that the correction made to the aggregate series X] to obtain Z; are
equal to the sum of the corrections made for the component series X, to Xp,
for each t. In the standard benchmarking situation d is usually equal to
zero. This is not the case however if the benchmarking problem arises from
seasonally adjusting a system of series.

Assuming independance across regions, the covariance matrix of the
emrers im (4.2) fds:

[ Vil 0 = 0 vy ]

[ 0 Vo e 0 -V ]

V = [ d . ]

(4.3) [ ]
(R+1)T by [ . . " : ]
(R+1)T ( 0 0 = Vr SVelikl

[ Vi -Vo e, -Vr Vi gl

where V. is the calibrated covariance matrix of region r defined in (3.2.6)
and V.=V1+Vo+...4Vp. This specification of V assumes that the dependances
accros regions can only occur through additivity. (If this is deemed
insufficient, one could replace the 0 partitions by appropriate
interregional covariance matrices. However, this would tremendously
increase the scale of the required computations.) The appropriate matrix B
becomes:

e B 0 R

("4 By ffl 0 g

B = [ . ]

(4.4) ( ]
(RM+T-M) by ( . 3 ]
L) [0 0 B 9 1

[ ]

0] 0 a1 0 J
where matrix J is a T-M by T operator which eliminates one aggregation
constraint per year (for which there is a benchmark) in (4.2). For

instance, for 2-year quarterly series starting in the first quarter, J
would be:

1 la
6 by 8

CO OO0k
[l eNoNel o)
COoOOK-HOO
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HOOOOO
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Indeed, one can show that one such constraint per year is redundant. (The
dimensioning of (4.4) assumes that each series has the same number M of
benchmarks). The resulting vector of discrepancies U is then
4.5) et 10y ? U5 2 e Up’ 10700 )|

lbyM 1byM l1byM 1by T-M

where U, stand for the "annual" discrepancles Yp-BeXy and U.=J(-X1+Xo+ ...
+Xp). The matrix to be inverted is

[ ByViBy* O - 0 B1viJ’ 1]

[ 0 ByVyBy' ... 0  -BoVoJ' ]

BVB' = [ : . z d ]

(4.6) [ ]
(RM+T-M) by [ 2 : o 5 ]
(RM+T-M) [ 0 0 ... BpVgBp'-BpVpJ’]

[ JV1B1'-JVpBy' ... -JVgBp' JV.J* ]

The solution corresponding to (3.1.6) is then

a:73 zZ = 5 vV B’ (BV B')-1 U
(R+1)T (R+1)T  (R+L)T (RM+T-M) (RM+T-M)
by 1 by 1 by (RM+T-M) by (RM+T-M) by 1

For computational purposes, it is convenient to reexpress (4.7) as:

(4.8) _ vy ' v W
where
(4.9) Be(evEla-d u, - - e ... SRt Bl

with H partionned like U in (4.5). On noting the content of V and B, (4.8)
reduces to:

Z, = X1 + Vl By H G Vi JH, = 2.0l Vl(Bl'Hl G| BETR )
(4.10)
2, = X, + Ve(By'H. - TH.), r>1

For 50 monthly series over S-year intervals (R=50, T=60), the dimension
of BVB' are 305 by 305. That matrix is invertible on mainframe computers
and standard software (e.g. SAS) now available to statistical agencies.
(Furthermore, it 1is possible to invert that matrix by parts.) The bigger
matrices V and B (3000 by 3000 and 305 by 3000) do not have to be stored.
Only their non-zero partitions need to be generated and monentarily stored
as their need arises, that is in building BVB’ in (4.6) for inversion in
(4.9) and in doing the calculations in (4.10).

The proposed order of calculations also provides an opportunity (since
Xy, V¢ and Br are available in (4.10)) to obtain the individually

benchmarked series

(4.11) 2T S VB B VLB TS e Log s
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These series are usefull to compare each simultaneously benchmarked to the
corresponding individually benchmarked series. Table 1 also displays the
percentage discrepancies d . between the two.

4.2 Alterability Coefficients and Alternative Benchmarking Criteria

In a system of series, some components - e.g. the aggregate and the
bigger regions - are more reliable than others. The Statistician may then
want the more reliable components to be closer to the values they would
obtain under individual benchmarking. In other words, the more reliable
series should absorb less of the adjustment required by regional additivity
(4.1); and the less reliable, more of the adjustment. This can be achieved
by means of relative alterability coefficients ar, 0 < a. <1 (Federal
Reserve Board, 1962). These coefficients are the inverse of the weights
given to each component or "cell" in the litterature.

Alterability coefficients are incorporated into simultaneous
benchmarking by merely multiplying each covariance matrix Ve by a,.
Choosing aj=aj=...=ap for instance, would tend to yield series z,. which
equally depart from their zirc. In other words, the adjustment required by
regional additivity would tend to be equally distributed among series. The
simultaneously benchmarked series of Table 1 were obtained with
alterability coefficients, a3=0.5 and ag=a3=1.0. Thus the aggregate series
tend to absorb half as much of the additivit{ adjustment, as testified by
the percentage discrepancies between Zre and 2%, (columns 14 to 16).

The alterability coefficients thus make it possible to virtually
"impose" the values of the individually benchmarked aggregate series on the
components, by chosing a; relatively small (e.g= 0.0019%: ox,; G specify the
benchmarked aggregate as the resultant of the benchmarked components, by
chosing aj relatively high and ay relatively small for r>2; or, any
variation between those two poles. (The second pole is analogous to
"indirect" seasonal adjustment of an aggregate, see Dagum 1980). The
higher reliability of some components (whether aggregate or not) is likely
to improve that of the less reliable components. Indeed, the alterability
coefficients combine to the regional additivity constraints (4.1) operate
as a cross-validation tool.

In the context of simultaneous benchmarking, other criteria besides
movement preservation are justifiable. For a series Zye with unreliable
movement for instance, one may prefer a proximity criterion. The
appropriate covariance matrix Vy 1is then a diagonal matrix with diagonal
elements £, = xrtz/ﬁr: Xy being the average of Xyre (and the identity
matrix for additive benchmarking). Proximity specifies the benchmarked
series z,. to be more or 1less close (depending on the alterability
coefficient a, chosen) to the original series x,p, with no specific concern
about movement preservation. In individual benchmarking, the proximicy
criterion is reputed to cause discontinuity between years. This is somewhat
prevented in simultaneous benchmarking, because the movement preserved for
the other series will cause some kind of preservation for z,,. through the
additivity constraints. In other words, the movement of Zye is governed by
addivity alone, instead of by movement preservation and additivity. The
proximity criterion is used by the Federal Reserve Board (1962) and the
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Bank of England (1972) and used by Statistics Canada (Taillon, 1988) to
rebalance flow of funds series after seasonal adjustment.

4.3 Preliminary Benchmarking

Table 1 also displays preliminary benchmarked values for the sixth year
of the series. That year 1{s incomplete and has consequently no annual
benchmark. Preliminary benchmarking is designed to avoid movement
discontinuity between the years with benchmarks and the current year.
Failure to perform preliminary benchmarking is 1likely to embarass the
statistical agency and to complicate decision making by the users of the
series.

Definition (3.3.1) of matrix By allows for preliminary benchmarking.
Indeed, for p,.u<T, there is simply no benchmark for periods from peMtl
to T. For those periods, the benchmarked series Zrr is uniquely determined
by the movement preservation principle and additivicy. In order to
calculate those values, it is not necessary to recalculate (4.9) and (4.10)
each time a new observation becomes available. It is sufficient to specify
the last benchmarked value Zrrt, for the last year with a benchmark, as a
unique and temporary benchmark ¥r]1 referring to period t’ (p1=r1=t’). This
reduces solution (4.7) to

(4.7") zZ = p 40" ¥R (B v B')-1 U
(R+1)T'  (R+1)T' (R+1)T’ (R+T') (R+T'-1)
by 1 by 1 by (R+T’-1) by (R+T’-1) by 1

where T’ {is the number of current observations plus 1, and M of (4.7) was
replaced by 1. In other words, premilinary benchmarking requires much less
calculations than normal benchmarking. Solution (4.7') should also be
implemented by means of (4.9) and (4.10).

For individual benchmarking, the simplifications are still greater: The
preliminary benchmarked values are uniquely determined by the movement
preservation principle. This results into a Z, totally proportional to X
(since there are no other constraints). The preliminary benchmarking
factor simply repeat the last one calculated for the last current year:

Er = 'ZgWEEn * X, t=tftlpatal, . ..
(For additive benchmarking the formula is Zy = (zt.-xt:) e )

Preliminary benchmarking and alterability coefficients are also
relevant when benchmarking a two-dimensional system of series.
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5. BENCHMARKING A SYSTEM OF SERIES BY REGION AND BY INDUSTRY

Benchmarking also arises in situations where the series are classified
in R "regions" and N “"industries". Each series must satisfy its own
benchmarks. The sum over the industries for a given region r must also add
to the regional aggregates (totals) Zrie:

N
(5591) 2r,1,t - b2, Zr,n,t 0, r=1,...,R; t=l1,...,T;
n=2

Similarly, the sum over the regions for a given industry n must add to the
industrial aggregates zjp::

R
(5.2) Zil,n,t ~ZZrne = O, n=1,...,N; t=1,...,T;
re=
Again the first region is defined as the sum of the other regions; and

similarly for the first industry.

The grand total z);¢ can indifferently be expressed as the sum over
regional totals zj)¢ to zpj¢ or the sum over the industrial totals Z12¢ to
Z]Nt- Constraints (5.1) and (5.2) express it both ways and are therefore
redundant. That redundancy can be eliminated by actually dropping the
constraints pertaining to anyone of the regions or of the industries. The
Nth set of industrial constraints in (5.2) is dropped. This reduces the
total number of constraints to (R+N-1)T.

Section 5.1 considers the problem of benchmarking the whole system
containing the R*N series. Section 5.2 considers a scaled down and
problably more practical version of the problem, where only the (R+N-1)
regional and industrial aggregates z))., 290t -+~ ZRAt, BIQE: ZIBe) bbb
ZINt are calculated. Section 5.3 enquires into adjusting the remaining
series Xpne (r>1 and n>l1) to conform to their respective regional and
industrial aggregates z)j¢, ..., ZR)1t, Z12¢, --.» Z)Ne Without resorting to
simultaneous benchmarking.

5.1 Benchmarking the Whole System of R*N Series

Because of the size of the matrices involved, the developments are
based on only 3 regions and 3 industries (R=3, N=3). The regression model
of equation (4.2) becomes:

( 211 ] 5 [ e]] ]

[ 79 ] [y " Zoy 4 [ €] ]

[ Zy ] b %3yl ( e3) ]

( 217 ] LY miget [ e12 ]

[ 222 ) [ X939 ] [ €99 )

( Z33 ] [ X33 ] ( e32 ]

@ 1.0) [ 213 B =0 Xy el | e13 ]
( 223 ] [ X3 ) ( Sgal ]

(RN+R+N-1)T ( 233 ] [ X33 ] ( e33 ]
by 1 [ -X)1+X31+4X3; | [y G54 [ e11-e1-e3y )
“X)2+X0+X37 | iy @ & b e12-2p0"%05 |



[ -X13+X23+X33 | [ 78 I [ e13-e33-e33 ]

[ -X11+X12+X13 ] [ afy ] e11-e12-e13 ]

[ -X21+X22+Xp3 ] I e21-e22-€23 ]
Assuming independence, the covariance matrix of the error terms in (5.1.1)
is

[ V1 Ua Vil ]

( Vgl Vil Vaas

( VL ai ]

( iz V12 A ~: )

[ L) g ) Wiz |

[ Vg V5o )
(5.1.2) V = | Vi3 Vi3 Vi3 ]

( Va3 -V23 Vo3 4
(RN4RHN-1)T [ Va3 -Va3 ]
by (RMRIN-L)T [ V3 -Vo1 -Va1 V.1 Vi1 -Vo1 )

( V12 Voo V3o V.o V12 Voo ]

( V13 V23 -V33 V3. 2lipg) Vgl

[ V11 V12 W3 Vig Vig"¥ag 4. ]

[ V21 V22 Va3 Vo Vg V53 V2. ]
where only the non-zero partitions are indicated. Matrix Ven is  the
calibrated covariance of series Zrng. defined in (3.2.6) and possibly
multiplied by an alterabilty coefficient: and V. n and V.. are respectively

VintVontVin and Vy1+V,9+V,3. The appropriate matrlx B becomes

o
=
=

f?
=

B3l

(5.1.3) B =

J
J

]

]

]

]

]

]

B3 ]
]

]

]

]

]

J ]
]

T e Y Y Y Y P e e e e —

J
(ROM-(B+N-1)T by (RN)T+(R#N-1)(T-M)

where the B,,’'s have dimension M by T (assuming equal number of benchmarks

per series); and the matrix J, T-M by« T Matrix J was defined in
Section 4.1. The resulting vector of discrepancies U is then

L5 4)) Wit [\ Uy " Wit | BRI g ¢ g Sl G g Tor

where U, , stand for the "annual" discrepancies Yrn-BrnXrns and U.,

J(-X1p+XoqtK3n) and Up.=J(-X r1*Xy2+X;3). The matrix to be inverted is

BV 1J’
-BVp1J

BV{1J’ ]
BVp1J*]
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( BVB'31 -Bu31J’ ]
( BVB'12 i ol BuyoJ° ]
( BVB' 22 ~BuyaJ ~BzaJ’]
( EVB'32 -BV3J° ]
BVBI - [ BVBIE Bvl}]" BVI}I' ]
( BVB’ 23 -BUp3J* ~BV3J’]
( BVB’33 -BV33J*
(JBVY) ' -JBV); ' -JBV3; * .08 JV11J*-JVa1J° )
[ JBV12’ -JBVyy' -JBV3p’ JV.oJ! ~JViaJ" JVoad’]
( JBV13’ -JBV23" -JBV33’ JV.3]" -JV 3" JVpaJ')
[JBVy;* JBVy,’ JBV] 3’ JV1J° -V T -3V 3d" IV ]
[ JBVq1' -JBVp’ -JVBy3' V1 Iy  JVp3 Vo J’]
(5.1.5) (RIM+R+N-1) (T-M) by (RN)M+R+N-1)(T-M)

where BVB,, and BV, stand for BrnVrnBrn' and BpnVi, respectively. The
solution corresponding to (4.7) is then

(5.1.6) 2 - g % vV B’ (B vB)-l U
(RN+R+N-1)T RNM+(R+N-1) (T-M)
by 1 by RNM+(R+N-1)(T-M)

For computational purposes, it is convenient to reexpress (5.1.6) as:

(%1 =79 Z = X + VB’ H

where

(5.1.8) H=(BVB')-l U

is partionned like U: H' = (Mg~ LHgo! ... Hao’ Hga' H.y' H.o' .3 8

H2.'] On noting the content of V and B, (5.1.7) reduces to:
Zrn = Xpp + Vpen(Bpp'Hpp +J (H.op + Hy.)) r=l, n=1,...,N
Zrn = Xen + VenBpp'Hpp - J (Hop + Hel)) 1>, nel

S Zrn = Xpp + Vpn(Bep'Hpp - J (H.p - Hp.)) 1>1, l<n<N

Zyn = Xpp + Vpn(Bep'Hpn - J Hop) 31, neN

For 9 monthly 5-year series pertaining to 3 regions and 3 industries,
the dimension of the matrix BVB’ to invert in (5.1.5) is 320 by 320; and
300 by 300, for 30 quarterly 5-year series, pertaining to 5 regions and 6
industries. Such calculations are feasible. Their usefulness however is
questionable - especially for monthly series. Indeed, the ability to
process such 3 regions and 3 industries may be insufficient, especially
when considering that one of the regions is the sum of the other (and
similarly for the industries). Real situations involve more than 10
regions and 10 industries, in which case the dimension of BVB’ would be
prohibitive: more than 1545 by 1545 for 5-year monthly series; and 785 by
785 for S5-year quarterly series. Examining BVB’
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[ \Bng P12 ]
[ (RN)M (RMOM ]
[ by (RN)M by (R+N-1)(T-M)]
(5.1.10) A | & [ ]
% Poo’ Pog ]
[ (R+N-1)T ]
[ ]

by (R+N-1)(T-M)

where P11 is the block-diagonal (and non-singular) part of (5.1.5), reveals
that the size of the matrix originates mainly from Py2 (and Pjj3). The size
of Pyp depends heavily on the number of observations T of the series,

whereas that of Pq) depends on the number M of benchmarks (years).

One solution to that computational problem is to collapse regions and
industries into fewer and larger groups, to carry out simultaneous
benchmarking at that level, and then to repeat the process within each
group. One could also collapse monthly series into quarterly series, carry
out benchmarking at the quarterly level, and then benchmark the monthly
data to the quarterly benchmarked values obtained. One could also combine
both the regional-industrial and the temporal collapsing strategies.

5.2 Benchmarking the R+N-1 Regional and Industrial Aggregates

As mentionned in the iIntroduction to this section, a more economical
solution to benchmark a system of series classified by region and industry
is the following. First benchmark only the regional and the industrial
totals (2,7, r=l,...,R and Z1n, n=2,...,N) together. Second, somehow
process the remaining series to be consistent with those totals (and their
benchmarks). This second step is examined in Section 5.3. This sub-section
examines the first step, where the number of series to simultaneously
process is reduced to R+N-1, instead of RN in Section 5.1. The approach
now presented is of course also relevant when the statistical agency
publishes only the regional and the industrial aggregates. (The other
series may be available to the agency but not released - as time series at
least - to the public.)

The regression model of equation (4.2) then becomes:

( 211 ] [ X3 1 ( e11 ]
( 221 ] ( YT [ €21 ]
( - ] [ T [ ' ]
( ] [ ] [ ]
[ . ] [0 o ( . ]
[ Zg1 ) [ X1 ] [ ey |
(S RN [ Z12 = 1 SN e12 ]
[ 213 ] [ el [ gl "]
e 2 A A [ : ]
( ] ( ] ( ]
( . ] ] | =Bl [ 4 ]
(R+N+1)T by 1 | Zillg ] [ X1y ] ( e1N ]
[-X11+X21+. . -+XR]_ ] [ 0 ] [611-621- ...-eR]1 ]
[-X11+X12+. <N ) { 0 ] [ell'eIZ' ...-e1N |

where Z)) is the grand total over regions and industries. The covariance of



the errors in (5.2.1) is then:
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where all the partitions were defined in Section 5.1.
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@ 0 N.: 0 0 0 ... BVBjy O -BVinJ' ]
[JBVyy'-JBV2y’ ... -JBVRy' O 0] - 0] JV.1J3’ JV11J’ ]
[JBV11’ 0 - 0 -JBVy,’ -JBV13' ...-JBVyy' JVy113’ IV ]

(R+N-1)M+2(T-M) by (R+N-1)M+2(T-M)

where the matrices are defined in Section 5.1. The solution corresponding
to (4.7) is then

(5.2.6) z - Z. 0 vV B’ (B VB)-1 U
(R+N+1)T (R+N-1)M+2(T-M)
by 1 by (R+N-1)M+2(T-M)

which is conveniently rewritten as:

@ .25 Z - X 4+ VB’ H

where

(5.2.8) H=-(BVB')-l U

is pamsigned dile Wi H'v = [ HiS%s . Hpi' Hao® ... Wyl H.{’ Hj.' ] On

noting the content of V and B, (5.2.7) reduces to:
213 = X33 + Vy3(By31'Hyy +J (H.q + Hy.)) (r=n=1)
(5.2.9) Zrl = Xp1 + Vpy(Bey'Hey - J H.1) r>1 (n=1)
Z1n = Xin + Viu(Bip'Hyg - J Hy.) >l  (r=1)

For 45 monthly 5-year series pertaining to 20 regions and 25
industries, the dimension of the matrix BVB’ to invert is 330 by 330; and
for the corresponding quarterly series, 250 by 250. Such calculations are
feasible and begin to be usefull, especially when combined with the
regional-industrial collapsing strategies described in Section 5.1. The
bigger matrices V and B do not have to be stored. Only their non-zero
partitions need to be generated and momentarily stored as their need
arises, in building BVB' for inversion in (5.2.8) and 1in doing the
calculations in (5.2.9).

If one intends, by means of alterability coefficients, to "impose™ the
grand total to the regional and to the industrial series (which is likely
to happen), one could apply the method of Section & to the R regional
aggregates with low a; and then to the N industrial aggregates with low aj.
This would enable one to process a larger number of series. Under the
latter method or that presented in this sub-section, Table 2, is obtained,
where the aggregates series in the margins (first row and column) add to
the grand total zjj..
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Table 2: Contingency table containing the simultaneously benchmarked
aggregate regional series z,j. and aggregate industrial series Zlnt and the
unbenchmarked component series Xypn.

Totals + ISinPdb ulisge s e s

-

Zp iyl v 21 2. 21,3,¢ .. Z1,N,t
+

R 22,1, + X2 2 ¢ 0 3.t -+« X2 Nt
e +

& &5 & ok M3 9 € X3,3,¢ JE SRR T
i +
[0 +
n +
s -
+

ZR,1,£ + Xp 2 ¢ XR 3, ¢t -« + XRN,t

5.3 Iterative Proportional Fitting Coupled With Individual Benchmarking

The problem with Table 2 is that the component series Xrnt» r>1 and
n>1l, do not add up their corresponding row and column aggregate series Zrit
and Zyne. Additivity can be restored by means of Iterative Proportional
Fitting or "raking" (Bishop, Fienberg and Holland, 1975; Brackstone and
Rao, 1979). 1In the context of Table 2 raking consists of adjusting each
column n to the its total, by multiplying it by an adjustment factor S
equal to the ratio of the corresponding desired and actual totals; of
adjusting each row to its total in the same manner: of re-adjusting the
columns; of re-adjusting the rows; and so on. This method is known to
converge.

In the context of benchmarking, there are problems with the
2-dimensional raking just described. First, it is not likely to preserve
the period-to-period movement of the component original series X q¢.
because each time period, 1i.e. each of the T tables 1like Table 2; 1s
processed separately. Second, the 2-dimensional raking just described will
not satisfy the benhmarks Yrnm ©f the components series Xynt. However this
second problem may be corrected by 3-dimensional raking, processing one
year (of tables 1like Table 2) at the time. The two first dimensions
consist of the regional and the industrial totals Zlnt 8nd zyq¢;  and the
third dimension, of the benchmarks Yrnm for a given year. The problem
remaining is the possibility of movement discontinuities between years,
since each year of values Xpent 1s processed separetaly. However, this
method may represent an acceptable trade-off between quality and
feasibility in many situations.

A more satisfactory solution consists of the following steps.

1) First individually benchmark the component series Xy . (r>1, n>1l) of
Table 2.

2) Tablulate the resulting benchmarked series zirnt in a table like
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Table 2, with the simultaneously benchmarked series 2rit and Zjpe in
the margins, and perform 2-dimensional raking. The resulting series
add up to the margins but do not comply with their benchmarks.

3) Re-benchmark the raked component series individually and
re-tabulate.

4) Re-rake.
Repeat steps 3) and 4) until convergence.

Our experience indicates that this sequence of individual benchmarking
with raking does converge to a consistent system of benchmarked series.
Alterability factors can also be built into the raking process by modifying
the raking factors as follows. If fr is the factor for row r, the modified
factor is £f'r(n) = 1+(fp-1)*a,, (O=a,,=<1). Convergence takes longer but
does takes place.

The raking approach (with or without alterability coefficients) also
works for a system of regional series. Raking can therefore also be
considered as a substitute to the simultaneous benchmarking method of
Section 4,

6. DISCUSSION

The sequence of individual benchmarking and raking, just outlined, and
the simultaneous benchmarking, presented in Sections 4 and 5, displays
strikingly similar results, both in terms of movement and level of the
benchmarked series. That raking approach could therefore be considered as
an approximation to simultaneous benchmarking. The latter may be used to
provide a justification for, and a standard against which alternative and
simpler approaches may be assessed. However, that comparison and raking,
which certainly deserves more attention, are not the subject of this paper.

Perhaps because simpler or "ad hoc" methods have been used to restore
the consistency of systems of benchmarked series, there is to our knowledge
no published litterature on the subject, apart from the Federal Reserve
Board (1962) and the Bank of England (1972) which include very little
mathematical details. A more technical unpublished reference 1is Taylor
(1963). A forthcoming - and probably the most comprehensive reference to
date (apart from this document) - is Taillon (1988). Both these authors
view the problem as a constrained quadratic minimization programme and are
based on the proximity criterion. This paper views the problem through the
framework of regression analysis, which is - as explained in Section 3 - a
particular but more familiar case of quadratic minimization.

An issue 1is starting to emerge in the literature: whether the
benchmarks should be considered as fully reliable or not. For individual
series, Hillmer and Trabelsi (1988) proposed a method (based on ARIMA
modelling) in which the benchmarked series does not necessarily have to
comply with the benchmarks. These non-binding benchmarks are merely extra
observations from which to derive the sub-annual estimates. In our
opinion, in many situations, the benchmarks are in some respects less
reliable than the unbenchmarked series (Cholette, 1987a, 1987b). 1If this
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paper has considered them as binding, it is simply assumed that, prior to
simultaneous benchmarking, a consistent set of reliable annual benchmarks
were established for the system of series considered. It is possible to
devise a simultaneous method in which the benchmarks would not necessarily
be binding. Using quadratic minimization Cholette (1979, 1987b) developped
such a method. However, it does no lend itself to application to large
enough systems of series.

7. SUMMARY AND CONCLUSIONS

This document proposed formal methods to benchmark systems of
socio-economic time series, in which the components series must add to
aggregate series and comply to their benchmarks. The methods incorporate
the accepted benchmarking principle of movement preservation (Denton, 1971)
into the regression framework. The “regression” is solved by Joint
Generalized Least Squares (Theil, 1971). Apart from the methodological
familiarity, one advantage of the resulting approach is the dramatic
reduction in the scale of the calculations made possible by the Chow and
Lin (1971) particular solution.

With the methods presented, and with the computers and the standard
software now available to statistical agencies, one can (for instance)
simultaneously benchark a system including over 50 regional monthly series
over 5-year intervals; a system including over 30 quarterly series
cross-classified in 5 regions and 6 industries (over 5-year intervals); a
system including over 45 monthly series representing 20 regional totals and
25 industral totals which have to sum to a common grand total. With some
expertise in matrix algebra, it may be possible to expand that capacity.
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