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- résumé - 

Ce document propose une méthode d'étalonnage simultane da systèxnes de 
series socio-économiques. Chaque composante du système doit se conformer a 
ses jalons annuals, ce qu'accomplit déjà l'étalonnage conventionne].. Las 
composantes régionales (disons) doivent en plus se sommer au total national 
étalonné pour chaque période de temps, ce qu'accomplit la méthode 
d'étalonnage simultanée proposée. La mCthode fonctionne également pour les 
systèmes de series classifiées par regions et par industrie. En plus de 
satisfaire leurs jalons, les composantes doivent alors s'additionner et a leur total regional et a leur total industriel respectifs. La méthode 
spécifie l'étalonnage comma une regression a la Chow et Liii (1971), en y 
incorporant le critère de preservation de mouvement fréquemment utilisé 
pour l'étalonnage (Denton, 1971). La technique d'estimation par les 
Moundres carrés génCralises permet en effet pareille incorporation. La 
traitement simultanC de plusicurs series avec contraintes d'agrégation est 
rendu possible par les Moundres carrés généralises conjounts (Theil, 1971). 

- abstract - 

This paper presents a method for benchmarking systerqs of socio-economic 
time series. Each component of the system must compiy with its benchmarks, 
which is already accomplished by conventional benchmarking. The regional 
(say) series must also add to the benchinarked national total for each 
period of time, which is accomplished by the simultaneous benchxnarking 
method proposed. The method also works for systems of series classified by 
region and by industry. The components must then add both to their 
regional totals and to their industrial totals (and satisfy their 
benchmarks). Following the Chow and Lin (1971) approach, the method 
specifies bencbmarking in the regression framework by incorporating the 
commonly used benchmarking criterion of movement preservation (Denton, 
1971) into the regression. This incorporation is made possible by the 
Generalized Least Squares estimation technique. The simultaneous 
processing of several series is achieved by means of Joint Generalized 
Least Squares (Theil, 1971). 

KEYSWORDS: Benchmarking, Interpolation, Quadratic Minimization, Iterative 
Proportional Fitting 





1. INTRODUCTION 
Many of the socio-economic time series published by statistical 

agencies are subject to bencbmarking. Benchinarking arises when a given 
variable is measured at different periodicities, for instance monthly and 
annually, quarterly and annually, annually and quinquennially. In this 
paper, the more frequent periodicity will be referred to as sub-annual; 
and the less frequent, as annual. The "annual" series is generally more 
reliable than the "sub-annual" and is therefore considered as a benchmark 
to the sub-annual series. Benchmarking is then the process of adjusting 
the sub-annual series, so that it becomes consistent with the values of the 
corresponding annual benchmark series; namely, so that the yearly totals of 
the former are equal the values of the latter (in the case of flow series). 

The series affected by benchmarking are generally part of a system of 
series, bound together by additivity (or linear) constraints. Additivity 
constraints typically occur when a variable is measured at different levels 
of geographical and/or industrial aggregation. For example, the Retail 
Trade series for the regions of a country should add up to the national 
aggregate for each period of time, both annually and sub-annually. The 
problem addressed by this paper is that individual (proportional) 
benchmarking each series generally destroys additivity at the sub-annual 
level. The proposed simultaneous benchmarking solution produces series 
which satisfy both their own annual benchmarks and additivity to the 
aggregate. 

Section 2 illustrates the problem of benchmarking a system of regional 
series. before providing a solution, Section 3 shows how a variant of the 
Chow and Lin (1971) interpolation method can be used to benchmark 
individual series, according to the movement preservation principle 
established by Denton (1971). The Chow and Lin formulation of benchmarking 
has the distinct advantage of casting the problem in the more familiar 
regression analysis framework. That formulation also proves very 
economical computationnally. This provides the feasibility basis of the 
simultaneous benchmarking methods proposed in Section 4 and 5, which derive 
from the theory of Joint Generalized Least Squares (Theil, 1971). The 
method presented in Section 4 makes it possible to process over 50 regional 
monthly series on 5-year intervals, subject to (60) aggregation 
constraints. Section 5 generalizes the approach to handle series available 
by regions and by industries, which must add up both to regional and 
industrial totals and satisfy their benchmarks. Section 6 discusses issues 
related to benchmarking and is followed by a conclusion. 

The paper somewhat follows the structure recommended by Ehrenberg 
(1982) for technical papers: Illustrations and results are presented as 
early as possible, followed by methodological details and background 
discussion. The paper provides ample technical - as opposed to 
methodological - details for those potentially interrested in programming 
the method. The more "statistical" reader may skip some of those details. 
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Table 1: Original regional series Xrtp regional benchmark values Yr m' individually benchmarked 	series Z,t, simultaneously benchmarked 	series 
zrt accompanied by relevant statistics. 

(1) (2) (3) (4) (5) 	(6) 	(7) (8) (9) (10) 	(U) 	(12) 	(13) (14) (15) (16) (17; 
xl,t X2,t X3,t Yl,xn Y2,m Y3,m 	zj,t Z , 5 zi3, 	dt* zl,t Z2,t Z3t dl , t* d2t* d3 , t* t 

34.4 3.9 30.5 145 30 	115 	34.2 3.3 31.9 -2.8 34.7 3.2 31.5 1.5 -1.5 -1.3 1 31.7 6.4 25.3 31.6 5.4 26.5 -0.8 31.8 5.3 26.4 0.5 -0.8 -0.3 2 37.6 13.4 24.3 37.7 11.4 25.3 2.5 37.2 11.5 25.7 -1.3 1.0 1.3 3 41.3 11.3 30.0 41.5 10.0 31.2 0.8 41.3 9.9 31.4 -0,4 -0.2 0.6 4 

35.6 5.1 30.5 173 48 	125 	36.0 4.7 31.6 -0.8 36.1 4.6 31.5 0.4 -0.6 -0.4 5 36.6 8.8 27.8 37.2 8.4 28.8 0.0 37.2 8.4 28.8 0.0 -0.2 0.1 6 48.2 19.6 28.6 49.1 19.0 29.8 0.7 49.0 19.1 29.9 -0.3 0.3 0.4 7 49.7 16.6 33.1 50.7 16.0 34.8 -0.1 50.8 16.0 34.8 0.1 -0.1 0.0 8 

42.5 6.5 36.0 204 54 	150 43.4 6.1 38.4 -2.4 44.0 6.0 38.0 1.3 -1.2 -1.2 9 45.2 11.6 33.6 46.2 10.5 36.2 -1.1 46.4 10.4 36.1 0.6 -0.9 -0.4 10 55.7 23.3 32.4 56.8 20.8 34.8 2.2 56.2 21.0 35.2 -1.1 1.0 1.1 11 
56.6 18.6 38.0 57.6 16.7 40.5 0.7 57.4 16.7 40.7 -0.4 -0.2 0.5 12 

41.4 6.8 34.7 192 52 	140 	42.0 6.3 36.3 -1.3 42.3 6.2 36.1 0.7 -0.8 -0.6 13 43.4 10.6 32.8 43.9 10.0 34.0 -0.2 43.9 10.0 34.0 0.1 -0.3 -0.1 14 50.8 20.8 30.0 51.3 19.8 31.0 1.0 51.0 19.9 31.1 -0.5 0.5 0.5 15 54.4 16.8 37.5 54.8 16.0 38.7 0.2 54.8 16.0 38.8 -0.1 -0.1 0.2 16 

46.0 6.7 39.3 212 55 	157 	46.4 6.3 40.9 -1.5 46.8 6.2 40.6 0.9 -1.1 -0.6 17 46.8 11.4 35.5 47.3 10.5 37.1 -0.6 47.4 10.4 37.0 0.4 -0.9 -0.1 18 56.3 22.8 33.5 56.9 20.8 35.2 1.5 56.4 21.0 35.4 -0.8 0.5 0.8 19 60.9 19.1 41.7 61.5 17.4 43.9 0.3 61.4 17.4 43.9 -0.2 0.3 0.0 20 

51.2 7.3 43.9 51.7 6.6 46.2 -2.1 52.2 6.7 45.5 0.9 0.4 -1.5 21 51.3 12.2 39.1 51.8 11.1 41.1 -0.8 51.9 11.3 40.7 0.3 1.5 -1.0 22 59.6 23.5 36.1 60.1 21.4 37.9 1.4 59.8 22.0 37.8 -0.6 2.9 -0.3 23 

0.38 0.98 0.77 * dr,t - (Zr,r/zirt  -1 )*100 	 average absolute * (it - (zi:jt/(z2 t+z3 t) - 1)*100 	 value of coli.tn 

2. PRESENTATION OF THE SIMULTANEOUS BENCHMARKING PROBLEM 
The three first columns of Table 1 contain three regional original 

unbenchinarked series xlt, x2t and x3t. The first original series is the 
sum of the other two, XltX2t+x3t for all t. Columns 4 to 6 displays the 
annual benchmarks ylm ,  Y2m and Y3m of the three series (which also sum up). 
The original series do not add up yearly to their respective benchmarks. 
This is the problem solved by individual berichznarking. Columns 7 to 9 
display the individually benchmarked series z 1lt, z 1 2t and z 13t, obtained 
by means of the proportional variant of the Denton (1971) method modified 
by Cholette (1984): Each of these series Z 1rt is as proportional as 
possible to its original series Xrt (more details below) and yearly adds up 
to its benchmarks Yrm• The problem is now that the first series is no 
longer the sum of the other two, z 2 1t not equal to Z 12t+z 13t for some t. 
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The percentage aggregation discrepancies dt recorded in column 10 reach as 
high as 2.8% (in absolute value). This is the problem addressed by the 
simultaneous benchmarking. Except for small rounding errors (which are not 
the problem addressed herein), the resulting simultaneously benchinarked series Zrt in column 11 to 13 add up to their benchmarks and sum over 
regions. They are as proportional to the original series as possible in 
the circumstances. 

Under additive benchmarking (instead of proportional), there is 
generally no simultaneous benchmarking problem. Each individually 
benchmarked series Zrt is equal to a linear combination of its original 
values xrt and of its benchmarks y (see equation (3.1.6'). The weights 
of that combination are also the same for all series (provided all 
benchmarks have same reference periods across series). The additivity of 
the Xrt'S and of the y's implies that of the Zrt'S. 

Z1 - LXl + LYi 

Yl - 	+ 	- Lx(X2 + X3) + L(Y2 + Y3) 

xl - x2 + x3 	- LxX2 + I.yY2 + LX3 + LY3 

-Zi 2 + Zi 3  

where Zi1  is a vector containing z1 (t-1,... ,T), and similarly for Zi 
i ,  Y2 and Y3 and X1, X2 and X3. In other words, additive 

benchmarking of the sum (over regions) is equal to the sums of additively 
benchmarked components. 

For very seasonal series like those in Table 1, additive benchmarking 
is not advisable and could result in negative benchinarked values for low 
seasons of small series. Simultaneous benchmarking is then appropriate. A 
variant of the Chow and Lin interpolation method lends itself to 
benchmarking and to simultaneous benchmarking. 

3. BENCHXARKING AS A REGRESSION PROBLEM 
The original purpose of the Chow and Lin (1971) method is to derive a 

sub-annual series Zt from its known annual values y m  and from Q related 
series Xqt known sub-annually. 

3.1 The regression Model 
The desired and related series obey an econometric relationship: 

Q 
Z t 	- 	E Xt,q 7q + et, t-1,. ..,T 

q— 1 

or in matrix algebra: 

(3.1.2) 	Z 	- 	X 	r 	+ 	e, 	E(e e') - 	V 
Tbyl 	TbyQ Qbyl Tbyl 	TbyT 

Matrix V is the known covariance matrix of the residuals, to be specified 
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later. The parameters in r are to be estimated on the annual values of X 
and Z. The latter are given by 

(3.1.3) 	Y 	— 	B 	Z 
Mbyl 	MbyT Tbyl 

where H is the number of year in the series and B is the annual sum matrix 
operator. For a quarterly flow series (say): 

a 

[11110000 
(00001111 

	

B- 	( 

MbyT 	( 	:::::::. 
(00000000 

The annual version of equation (3.1.2) ac 

	

(3.1.4) 	BZ - Y - Bxr+Be 

0000 
0000 

ordingly writes 

or 

	

Y — Xa  r + ea , 	E(ea  ea ') — B V B' - Va  

where Xa B X stand for the annual values of X. The Generalized Least 
Squares (G.L.S.) estimate of r is then r*_ (Xa'Va 1Xa) 1  Xa'Va Y. Chow 
and Lin show that the resulting best linear unbiased sub-annual estimates 
are 

(3.1.5) 	z — x r* + V B'(B V B') 1  (Y - BXr*) 

which are the regression "predicted" 	values. 	For the purpose of 
benchmarking, there is only one related series (Q-l), which is the 
unbenchmarked version of the desired series, and r is known and equal to 1. 
(One could formally specify that in (3.1.2), estimate with G.L.S. with 
extraneous (prior) information on r (Durbin, 1953; Alba, 1988) and arrive 
at (3.1.5) and (3.1.6)). Solution (3.1.5) then reduces to 

(3.1.6) 	Z 	— X + V B' (B V B'i (Y-BX) 	- X + W 	U 

	

Tbyl Tbyl TbyM MbyM 	Mbyl 	TbylTbyM Mbyl 

where U-Y-BX contains the annual discrepancies between the benchmarks and 
the original series and W-VB'(BVB') 4  is the weight matrix to be applied to 
the discrepancies. The benchmarked series is then equal to the original 
plus sub-annual corrections WU interpolated between the annual 
discrepancies U. The solution can also be expressed as 

(3.1.6') 	Z — L,X + LY. 

where L-(I-WB) and LpW. The estimates are a linear combination of the 
unbenchmarked series and of the benchmarks. 

Benchmarking according to equation (3.1.6) requires the inversion of a 
M by H matrix. In other words, the size of the inversion depends on the 
number of years H in the series and not on the number of observations T. 
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Furthermore, if V were known algebraically, so would be VB' 	and BVB'. 
These considerations matter for individual benchmarking and become crucial 
for simultaneous benchinarking. 

3.2 Relation between Generalized Least Squares and Quadratic Ninimization 
The next question is then what is an appropriate covariance matrix V. 

It is well known that G.L.S. with a covariance matrix V is equivalent to 
minimizing a criterion V- on the residuals. (The covariance matrix V is 
precisely the inverse of the corresponding criterion matrix V 1 ; and vice 
versa.) As pointed out by Bournay and Laroque (1979) and Alba (1979, 1988), 
estimating (3.1.2) with G.L.S. amounts to minimizing the objective function 
(ZXr)'V - .L(zxr). Many benchmarking methods are in fact based on this 
minimization (rather than on regression), subject to constraints (3.1.3). 
The resulting Langragian augmented objective function is (with Q—1, r—l): 
(3.2.1) (Z - X)'V 1  (Z - X) - 2 A' (B Z - Y) 

This lead to the solution: 

	

Z ] 	[ V 1  B' ]1 [V 1  0 ] [ 	X 
(3.2.11) 	( 	] 	- 	[ 	] 	( 	] [ 

	

[A] 	[ B 	0 1 	[B 	I) (Y-BX] 

The solution for Z can be achieved by performing the matrix inversion by 
parts, if V 1  is invertible. 	The resulting expression for Z is then 
exactly (3.1.6). 	This establishes the C.L.S. regression as a particular 
case of quadratic minimization. 	(If V 1  is not invertable, solution 
(3.2.1 1 ) is valid, except the inversion cannot be performed by part.) 

A widely accepted benchmarking criterion V 1  is that of movement 
preservation established by Denton (1971). This principle is popular with 
time series builders, because - as will be seen - it is easy to understand 
and explain. 

The additive variant of movement preservation 
For the additive variant of benchmarking, V 1  is the quadratic first 

(or second) difference operator: 

[ 1 -1 0 0 0 0 J 
[ 	0 	1-1...0 01 

(3.2.2) 	V1 - D'D, 	D  
[ 	 . 	 . 	 . 

(T-1)byT  
00 	0 ... l-l] 

With that criterion matrix V 1 , the objective function (3.2.1) specifies 
that the benchmarked series Z is as parallel as possible to the original X. 
In other words, the movements in Z are close as possible to those in X, 
which is the definition of movement preservation. 

As stated however, matrix V 1  is singular, so that one cannot obtain 
the corresponding V required for the G.L.S. solution (3.1.6). The 
following redefinition of D entails an invertible V1: 
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1 -a 0 0 0 0 
0 1-a...0 0] 

(3.2.3) 	D  
I . 	. 	. 	. 	.] 

	

(T-l)byT( 	. 	. 	. 

	

[ 	0 0 O ... 1-a) 

where a is chosen lower but very close to 1.0 (e.g. 	0.9999999). 	Such a 
value of a causes an infinitesimal sacrifice to the movement preservation 
criterion (3.2,2). Furthermore matrix V is now known algebraically: 

1 	a 	a2 	aT1] 
a 	1 	a 	... 	aT2] 

V - 	[ 	a2 	a 	1. 	... 	aT3] 
(3.2.4) 	( 	. 	. 	. 	(l_a2) 

TbyT  

a l aT"2 T3 	j 

The scalar 1 / (1-a2 ) will be ignored because it cancels out in (3.1.6). 
The availability of a matrix V (without 1/(l-a 2 )) corresponding to V 1  
makes solution (3.1.6) applicable. Furthermore, as a tends towards 1, the 
G.L.S. solution (3.1.6) tends to the quadratic minimization solution 
(3.2.1') with V- as in (3.2.2) (Bournay and Laroque, 1979 P. 21). 

The weights W of solution (3.1.6) - and L x  and L1  of (3.1.6') - are 
independent of the series X and Y considered. For additive benchmarking 
the same weights may be applied to any series (interval) of the same length 
(provided the reference periods of the benchmarks are homogeneous, see 
Section 3.3.) 

The proportional variant of movement preservation 
For the proportional variant of movement preservation (and of 

benchmarking), the criterion is normally 

[l/xi 0 	...] 

(3.2.5) 	
V 1  - X-1  D'D X-1 , X-1  - 	1/x 	. 

with D as in (3.2.2). Under that definition of V 1 , the objective function 
(3.2.1) reduces to Z'V 1-Z, which specifies that the proportion of Z to X is 
as constant as possible. Although justifiable per Se, this criterion may be 
seen as an approximation of the growth rate movement preservation 
E(zt/z1- xt/xt1) 2  (Smith, 1977; Monsour and Trager, 1979). Redefining D 
as in (3.2.3) results into a non-singular V 	and a readily known 
covariarice matrix: 

[ ll 	12a 13a 2 	. . . 

	

21a 	23a 	... e2TaT 2  
(3.2.6) 	V - 	[ 	31a2  e32 	33 	. . . 

TbyT  

I 
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where jj - xj xj / 21. 	In simultaneous benchmarking, dividing by the 
average 21 of the Xt'S is essential for relative calibration purposes. The 
knowledge of V makes solution (3.1.6) applicable. As obvious from (3.2.6), 
the weights of proportional benchmarking depend on each series interval 
considered. 

3.3 Generalization for Benchmarks with Varying Reference Periods 
For many applications of benchmarking, it is convenient to redefine 

matrix B in a more general manner: 

columns: 	1 	P1 
00 ...11... 10 ... 00 	000 

(00 ... 000 ... 00 ... ii 	100...] 
(3.3.1) 	By 	- 	[ . . 	. . . 	. 

. 	
* 

MbyT 	[.. 	... 

[ 	
] 

where Tm  and Pm are the reference periods of the benchmarks. This 
reformulation allows for benchmarks referring to the calendar year (e.g. 
rm 'l,l3,25 .... ; pm—rm+ll); for benchmarks referring to the fiscal years 
(e.g. rm 4,16,28,..; p—r+ll); for benchmarks of stock series (e.g. 
rm l2,24,36 .... ; prm); for benchmarks referring to more or less than 12 
consecutive months; for benchmarks not available every year; etc. As a 
result, M now stands for the number of benchmarks (instead of years) in the 
series. For index series, whose annual values correspond to the average of 
the year, one should simply multiply the benchmarks by 12 or 4. 

3.4 Statistical Properties of the benchmarked series 
One by-product of regression analysis is usually an estimate of the 

covariance of the predicted (interpolated) values of in terms of the 
covariance of the residuals. This assumes however that the regressor 
variables are deterministic, that is not subject to error. In other words, 
the errors originate from the regressand (and from omitted variables). For 
benchmarking, the regressand and the regressor variables are respectively Z 
and X - more precisely their annual values Y and X a  - so that the 
assumption is grossly untenable. Indeed the benchmarks Y are supposed to 
be more reliable than the original series X. The opposite assumption would 
be more appropriate: the error originates from the regressor X and not from 
the regressand Y. 

Bournay and Laroque (1979) consider both polar cases. 	Using the 
notation adopted in this document, the first case is: 

(3.3.1) 	Y 	- 	Xa 	r 	+ ea t 	 E(eaIX) - 0 

Mbyl Mbyllbyl 	E(ea ea ')BVg' = Va  

which is the case examined in Section 3.1, where the errors originate from 
the benchmarks. The second case is: 

(3.3.2) 	Xa 	- 	Y 	6 	+ e, 	E(eaIY) - 0 
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Mbyl Mbyllbyl 	E(eaea')—BVB' 	Va  

where the errors originate from the original series. 	In (3.3.2), the 
regressors are the benchmarks Y instead of the unbenchmarked data X. In the 
first case, the authors find the Chow and Lin solution (3.1.5); and in the 
second, 

(3.3.3) 	
Z - (1/6') [X . VB'(BVB') - i (BX - y5* )  

- (1/8*) (X + VB'(BVB')l (Y6t  - BX) 

Since for benchmarking, according to the movement preservation principle, 
both 1' and 5 equal 1, both (3.1.5) and (3.3.3) reduce to (3.1.6). We 
conclude that (in the trivial regression case considered) both polar cases 
yield the same solution. 	The interpretation of solution (3.1.6) can then 
be that the error originates either from Y or from X (or from both). We 
select the second, - only acceptable -interpretation. This statistically 
legitimizes casting the benchmarking problem in the regression framework. 

This conclusion also entails - in the additive case at least - that 
(3.1.6') can be used to derive the covariance Z z  of the benchmarked values 
from the covariance Ex  of the unbenchmarked series 

(3.3.4) 	Zz -  L, E L,,' + L E L' 

where the covariance Ey  of Y is presumably equal to zero. 

This section showed how benchmarking can be casted in the regression 
framework. The resulting solution (3.1.6) proves economical in terms of 
calculations and required computer memory. 

4. BENCHMARKING A SYSTEM OF "REGIONAL" SERIES 
Based on the developments of the Section 3, a feasible solution to the 

problem of benchmarking a system of R "regional" time series is proposed. 
For each period of time, the regional benchmarked series zrt (r>2) must sum 
to the aggregate series zit. 

R 
(4.1) 	Z1 	- E Zr t - 0, 	tl,...,T. 

r-2 

The first region is defined to be the sum of the others. The simultaneous 
benchmarking problem will be seen as one of Joint Generalized Least Squares 
J.G.L.S. (Theil, 1971). 

4.1 Derivation of the Solution 
In the J.G.L.S. framework, the Chow and Lin model of equation (3.1.2) 

becomes 

Z1 	J 	[ 	X1 	] 	( 	e 

	

X2 J 	[ 	e 
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(4.2) 	[ 	. 	] 	- 	C 	. 	I 	r+[ 	. 

	

(R+l)T by 1 1 	ZR 	I 	C 	XR I 	I 	eR 
(-X1+X2+. . .+X I 	1 	0 	] 	[ e1-e2-, . . 

where the Xr'S are the original regional series and er are the corrections 
made to them in order to obtain the desired benchmarked series Zr. The 
bottom partitions of (4.2) specify that the corrections are such that 
additivity (4.1) is satisfied. If the original series already satisfy 
additivity, then d--X1+X2-i-.. .+XR is equal to zero. The partitions then 
means that the correction made to the aggregate series X1 to obtain Z1 are 
equal to the sum of the corrections made for the component series X2 to XR, 
for each t. In the standard benchmarking situation d is usually equal to 
zero. This is not the case however if the benchmarking problem arises from 
seasonally adjusting a system of series. 

Assuming independance across regions, the covariance matrix of the 
errors in (4.2) is: 

[ 	V1 	0 	... 	0 	V1 I 
v 	

0 	V2 	... 	0 	-V2 
- 	I. 	. 

(4.3)  
(R-i-l)T by  

	

(R+l)T 	( 	0 	0 	... 	VR 	.VR I 
V1 	-V2 	... 	-VR 	V. 

where Vr is the calibrated covariance matrix of region r defined in (3.2.6) 
and V. -V1+V2-i-.. .+VR. This specification of V assumes that the dependances 
accros regions can only occur through additivity. (If this is deemed 
insufficient, one could replace the 0 partitions by appropriate 
interregional covariance matrices. However, this would tremendously 
increase the scale of the required computations.) The appropriate matrix B 
becomes: 

(4,4) 

B1 	0 	.. . 	0 	0 
0 	B2 	... 	0 	0 

B- 	[ 	. 

(RM+T-M)by 	: 
(R+l)T 	[ 	0 	0 	... 	R 	0 

0 	0 	... 	0 	J 

where matrix J is a T-M by T operator which eliminates one aggregation 
constraint per year (for which there is a benchmark) in (4.2). For 
instance, for 2-year quarterly series starting in the first quarter, J 
would be: 

[1 0 000000] 
(0 1000000] 

J- ( 0 01000001 
6by8 [0 0 0 0 1 0 0 0] 

[00000100] 
[00000010] 
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Indeed, one can show that one such constraint per year is redundant. (The 
dimensioning of (4.4) assumes that each series has the same number M of 
benchmarks). The resulting vector of discrepancies U is then 

	

(4.5) 	U' - [ U1' 	U2' 	... 	UR' 	U.' 

ibyM ibyM 	ibyM lbyT-M 

where Ur  stand for the "annual" discrepancies YrB rXr  and U.-J(-X1+x2+ 
+XR). The matrix to be inverted is 

B1V1B1' 0 	... 	0 	B1V1J' 
0 	B2V2B2' ... 	0 	-B2V2J' 

BVB'.  
(4.6) 

 (RM-4-T-M) by  
(RMi-T-M) [ 	0 	0 	... BRVRBR' BRVRJ'] 

JV1B1'-JV2z2' ... -JVB' JV.J' 

The solution corresponding to (3.1.6) is then 

	

(4.7) 	Z - 	X + 	V B' 	(B V B')'l 	U 
(R+1)T 	(R+1)T 	(R.i-1)T 	(RM+T-M) 	(RM-f-T-M) 

by 1 	by 1 by (RM+T-M) by (RM+T-M) 	by 1 

For computational purposes, it is convenient to reexpress (4.7) as: 

	

(4.8) 	Z - X + VB' H 

where 

	

(4.9) 	H.-(BVB')l U, 	H' - [H1' H2' ... H' H.'] 

with H partiotmed like U in (4.5). On noting the content of V and B, (4.8) 
reduces to: 

(4.10) Z1 - X1 + V1 B1,' H1 + V1 J H. - 	X1 + V1(31'H1 + J H.) 

Zr  - Xr  + Vr(Br'Hr - J H.), r > 1 

For 50 monthly series over 5-year intervals (R-50, T-60), the dimension 
of BVB' are 305 by 305. That matrix is invertible on mainframe computers 
and standard software (e.g. 	SAS) now available to statistical agencies. 
(Furthermore, it is possible to invert that matrix by parts.) The bigger 
matrices V and B (3000 by 3000 and 305 by 3000) do not have to be stored. 
Only their non-zero partitions need to be generated and monentarily stored 
as their need arises, that is in building BVB' in (4.6) for inversion in 
(4,9) and in doing the calculations in (4.10). 

The proposed order of calculations also provides an opportunity (since 
Xr , Vr  and 3r are available in (4.10)) to obtain the individually 
benchmarked series 

	

(4.11) 	Z 1 r 	Xr  + VrBr '(BrVrB r ')l Ur,  r-1,. . . 
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These series are usefull to compare each simultaneously bencbmarked to the 
corresponding individually benchniarked series. Table 1 also displays the 
percentage discrepancies drt between the two. 

4.2 Alterability Coefficients and Alternative Benchmarking Criteria 
In a system of series, some components - e.g. the aggregate and the 

bigger regions - are more reliable than others. The Statistician may then 
want the more reliable components to be closer to the values they would 
obtain under individual benchmarking. In other words, the more reliable 
series should absorb less of the adjustment required by regional additivity 
(4.1); and the less reliable, more of the adjustment. This can be achieved 
by means of relative alterability coefficients a r , 0 < ar 15 1 (Federal 
Reserve Board, 1962). These coefficients are the inverse of the weights 
given to each component or "cell" in the litterature. 

Alterability coefficients are 	incorporated into simultaneous 
bencbmarking by merely multiplying each covariance matrix Vr by ar. 
Choosing a1-a2-. . .-ap for instance, would tend to yield series Zrt which 
equally depart from their Zrt. In other words, the adjustment required by 
regional additivity would tend to be equally distributed among series. The 
simultaneously benchniarked series of Table 1 were obtained with 
alterability coefficients, a1-0.5 and a2-a3-1.0. Thus the aggregate series 
tend to absorb half as much of the additivitr adjustment, as testified by 
the percentage discrepancies between Zrt and Z 1rt (columns 14 to 16). 

The alterability coefficients thus make it possible to virtually 
"impose" the values of the individually benchmarked aggregate series on the 
components, by chosing a1 relatively small (e.g. 0.001); or, to specify the 
benchmarked aggregate as the resultant of the benchmarked components, by 
chosing a1 relatively high and ar relatively small for r>2; 	or, any 
variation between those two poles. 	(The second pole is analogous to 
"indirect" seasonal adjustment of an aggregate, see Daguin 1980). The 
higher reliability of some components (whether aggregate or not) is likely 
to improve that of the less reliable components. Indeed, the alterability 
coefficients combine to the regional additivity constraints (4.1) operate 
as a cross-validation tool. 

In the context of simultaneous benchmarking, other criteria besides 
movement preservation are justifiable. 	For a series Zrt with unreliable 
movement for instance, 	one may prefer a proximity criterion. The 
appropriate covariance matrix Vr  is then a diagonal matrix with diagonal 
elements Ert - Xrt2/r, 2ir being the average of Xrt (and the identity 
matrix for additive benchmarking). Proximity specifies the benchinarked 
series Zrt to be more or less close (depending on the alterability 
coefficient ar chosen) to the original series Xrt, with no specific concern 
about movement preservation. In individual benchmarking, the proximity 
criterion is reputed to cause discontinuity between years. This is somewhat 
prevented in simultaneous benchniarking, because the movement preserved for 
the other series will cause some kind of preservation for zrt through the 
addicivity constraints. In other words, the movement of zrt is governed by 
addivity alone, instead of by movement preservation and additivity. The 
proximity criterion is used by the Federal Reserve Board (1962) and the 
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Bank of England (1972) and used by Statistics Canada (Taillon, 1988) to 
rebalance flow of funds series after seasonal adjustment. 

4.3 Preliminary Benchmarking 
Table 1 also displays preliminary benchmarked values for the sixth year 

of the series. 	That year is incomplete and has consequently no annual 
benchmark. 	Preliminary benchniarking is designed to avoid movement 
discontinuity between the years with benchmarks and the current year. 
Failure to perform preliminary benchmarking is likely to embarass the 
statistical agency and to complicate decision making by the users of the 
series. 

Definition (3.3.1) of matrix Br allows for preliminary benchmarking. 
Indeed, for PrM<T, there is simply no benchmark for periods from PrM+l to T. For those periods, the bencbmarked series Zrt is uniquely determined 
by the movement preservation principle and additivity. In order to 
calculate those values, it is not necessary to recalculate (4.9) and (4.10) 
each time a new observation becomes available. It is sufficient to specify 
the last benchmarked value Zrt I , for the last year with a benchmark, as a 
unique and temporary benchmark Yrl referring to period t' (p1—r1—t'). This 
reduces solution (4.7) to 

(4.7 1 ) 	Z - 	X + 	V B' 	(B V B' 1 	U 

	

(R+l)T' 	(R+l)T' (R+l)T' 	(R+T') 	(R+T'-l) 

	

by 1 	by 1 by (R+T'-l) 	by (R+T'-l) 	by 1 

where T' is the number of current observations plus 1, and M of (4.7) was 
replaced by 1. In other words, premilinary benchmarking requires much less 
calculations than normal benchinarking. Solution (4.7') should also be 
implemented by means of (4.9) and (4.10). 

For individual benchmarking, the simplifications are still greater: The 
preliminary benchmarked values are uniquely determined by the movement 
preservation principle. This results into a Zt totally proportional to Xt 
(since there are no other constraints). The preliminary benchmarking 
factor simply repeat the last one calculated for the last current year: 

Zt - 	* Xt, t-t'+1,t'+2,... 

(For additive benchmarking the formula is zt - (ZtsXt) + Xt.) 

Preliminary benchmarking and alterability coefficients are also 
relevant when benchmarking a two-dimensional system of series. 
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5. BENCHMARKINC A SYSTEM OF SERIES BY REGION AND BY INDUSTRY 
Benchmarking also arises in situations where the series are classified 

in P. "regions' and N "industries". Each series must satisfy its own 
benchmarks. The sum over the industries for a given region r must also add 
to the regional aggregates (totals) zrit: 

N 
(5.1) 	zr,1,t - E Zr,n,t - 0, r-l...,R; t-1,... ,T; 

n-2 

Similarly, the sum over the regions for a given industry n must add to the 
industrial aggregates zint: 

R 
(5.2) 	Zl,n,t - E Zr n t - 0,  

r-2 

Again the first region is defined as the sum of the other regions; and 
similarly for the first industry. 

The grand total zilt can indifferently be expressed as the sum over 
regional totals z21t to zRit or the sum over the industrial totals zl2t to 
zlNt. Constraints (5.1) and (5.2) express it both ways and are therefore 
redundant. That redundancy can be eliminated by actually dropping the 
constraints pertaining to anyone of the regions or of the industries. The 
Nth set of industrial constraints in (5.2) is dropped. This reduces the 
total number of constraints to (R+N-1)T. 

Section 5.1 considers the problem of benchmarking the whole systex 
containing the R*N series. 	Section 5.2 considers a scaled down and 
problably more practical version of the problem, where only the (R+N-l) 
regional and industrial aggregates zllt, z21t,..., zRlt, Zl2t, Z13t 
zlNt are calculated. 	Section 5.3 enquires into adjusting the remaining 
series Xrnt (r>l and n>l) to conform to their respective regional and 
industrial aggregates zllt, ..., 	..., z]ft without resorting to 
simultaneous benchmarking. 

5.1 Bencbmarking the Whole System of R*N Series 
Because of the size of the matrices involved, the developments are 

based on only 3 regions and 3 industries (R-3, N-3). The regression model 
of equation (4.2) becomes: 

Z11 	J ( 	 X11 	J [ 	 e11 
Z21 I [ 	 X21 	

] [ 

Z31 	] [ 	 X31 	J [ 	 ej 
Z12 	] [ 	 X12 	J [ 	 e12 
Z22 	] [ 	 X22 	] ( 	 e22 
Z32 	] ( 	 X32 	 ] [ 	 e32  
Z13 ] 	- [ 	 X13 	] r + { 	e13 
Z23 	] [ 	 x23 	j [ 	 e23 
Z33 	] ( 	 X33 	

) ( 	 e33 
.X1j+X21+X31 I ( 	 0 	I ( 	 e11-e21-e31 
-x12+x22+x32 

[ 	 0 	] e12-e22-e32 

(5.1.1) 

(RN+R+N-1)T 
by 1 
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-X13+x23+x33  ] 	 [ 	 0 	] [ 	 e13-e23-e33 	I 
( 	 -x11+x12+x13  I 	[ 	 0 	1 [ 	 e11-e12-e13 I 
( 	-X21+X22+X23 J 	[ 	 0 	1 ( 	 e21-e22-e23 	I 

Assuming independence, the covariance matrix of the error terms in (5.1.1) 
is 

V11 
V21 

V31 
VU 

V22 
V32 

Vjj 
V23 

V11 -V21 -V31 	
V33 

V12 -V22 -V32 
V13 -723 -V33 

V11 	V12 	V13 
V21 	-V22 	-723 

V11 V11 
-V21 V21 
-V31 

VU V] 
-V22 -V22 
-V32 

V13 V13 
-V23 -V23 
-V33 

V.1 V11 -V21 
V.2 V12 V22  

V.3 -V13 V23 
V11 -VI2 V13 V1. 
-V21 V22 V23 V2. 

(5.1.2) V - 

(NfR4N-1)T 
by (RN+R-+I-1)T 

where only the non-zero partitions are indicated. Matrix Vrn  is the calibrated covariance of series zt, defined in (3.2.6) and possibly 
multiplied by an alterabilty coefficient; and V. and V r * are respectively 
Vln+V2n+V3n and Vrl+Vr2+V r3. The appropriate matrix B becomes: 

(5.1.3) B - 

B11 
B21 

31 
B12 

B22 
B32 

B13 
B23 

B33 
J 

J 
J 

J 
J 

(RN)M4-(R+N-1)T by (RN)T+(R-fN-1) (T-M) 

where the Brn 's have dimension M by T (assuming equal number of benchmarks 
per series); and the matrix J, T-M by T. Matrix J was defined in 
Section 4.1. The resulting vector of discrepancies U is then 

(5.1.4) 	U' - [ U11' U' ... U32' U33' U.1' U.2 U.3' U1.' U2.') 

where Urn  stand for the annua1T 	discrepancies Yrn - BrnXrn ; 	and 
J( - Xi n+x2+x3) and Ur.J(Xrl+X r2+Xr3) The matrix to be inverted is 

BV11J' 	BV11J' 



WME 

	

[ 	'31 	 -BV31J' 	J BVB']2 	 BV12J' 	BV12J' 

	

BVW 	 -BV223' 	-BV223'] 

	

[ 	 '32 	32' 	J 

	

BVB' - [ 	 BVB'13 	BV13J' BV13J' 

	

[ 	 BVB'23 	-WJJ' 	-BV23J'] 

	

I 	 '33 	33J' 	] [J' 	'2l' 	3l' 	 JV. 
i' 	V21j'J 

	

[ 	12'22'32' 	..W•2.J' 	-JVjJ' 3V22J'] 

	

[ 	 JBV13t-J]3V23'-JBV33' 	JV.3J'-JV13.J' JVJ'J 
['1u' 	12' 	JBv13' 	uJ' -1i2J' -"iJ' "i ' 

'23' 	21 JV22 'p23 	'2 •'' I 

	

(5.1.5) 	(RN)Mf(R+N-l)(T-M) by (RN)M+(R.s-l)(T-M) 

where BVBrn  and BV stand for BrnV j.B' and BVrn  respectively. The 
solution corresponding to (4.7) is then 

	

(5.1.6) 	Z 	- 	X + 	V B' 	(B V B' 1 	U 
(RN+R-i-N-i)T 	RNM+(R+N-1) (T-M) 

	

by 1 	 by RNM+(R+N-l)(T-M) 

For computational purposes, it is convenient to reexpress (5.1.6) as: 

	

(5.1.7) 	Z 	- 	X + VB' H 

where 

	

(5.1.8) 	H-(BVB') 1  U 

is partionned like U: H' - [H11' H12' ... H32# H33' H.1' H.2' H.3' H1.' 
H2.'] On noting the content of V and B, (5.1.7) reduces to: 

Zrn  - Xrn  + Vrn(B'H 	+ J (H. p  + Hr.)) r-1, n-i,... ,N 

	

(5.1.9) 	
Zrn  - Xrn  + Vrn(Zrn Hrn  - J (H. p  + Hr.)) r>1, n-i 

Zrn  - Xrn + Vrn (Brn 'H 	- J (H.1 - Hr.)) r>1, 1<n<N 

Zrn  - Xrn  + Vrn(Brn 'Hrn  - J H.) r>1, n-N 

For 9 monthly 5-year series pertaining to 3 regions and 3 industries, 
the dimension of the matrix BVB' to invert in (5.1.5) is 320 by 320; and 
300 by 300, for 30 quarterly 5-year series, pertaining to 5 regions and 6 
industries. 	Such calculations are feasible. Their usefulness however is 
questionable - especially for monthly series. Indeed, the ability to 
process such 3 regions and 3 industries may be insufficient, especially 
when considering that one of the regions is the sum of the other (and 

	

similarly for the industries). 	Real situations involve more than 10 
regions and 10 industries, in which case the dimension of BVB' would be 
prohibitive: more than 1545 by 1545 for 5-year monthly series; and 785 by 
785 for 5-year quarterly series. Examining ByE' 
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I 

	

Pil 	P12 
((RN)M 	(RM)M 

(5.1.10) 	BV 	
- 	[ by (RN)M 	by (R+N-1)(T-M)] 

[ 	 ] 

	

l2' 	P22 	1 
(R+N-1)T 

by (R-4-N-1)(T-M)] 

where P11 is the block-diagonal (and non-singular) part of (5.1.5), reveals 
that the size of the matrix originates mainly from P22 (and P12). The size 
of P22 depends heavily on the number of observations T of the series, 
whereas that of P11 depends on the number M of benchmarks (years). 

One solution to that computational problem is to collapse regions and 
industries into fewer and larger groups, to carry out simultaneous 
benchmarking at that level, and then to repeat the process within each 
group. One could also collapse monthly series into quarterly series, carry 
out benchmarking at the quarterly level, and then benchmark the monthly 
data to the quarterly benchmarked values obtained. One could also combine 
both the regional-industrial and the temporal collapsing strategies. 

5.2 Benchmarking the R+N-1 Regional and Industrial Aggregates 
As mentionned in the introduction to this section, a more economical 

solution to benchmark a system of series classified by region and industry 
is the following. 	First benchmark only the regional and the industrial 
totals (zn, r-1,. . .,R and ZIn, n-2,...,N) together. 	Second, somehow 
process the remaining series to be consistent with those totals (and their 
benchmarks). This second step is examined in Section 5.3. This sub-section 
examines the first step, where the number of series to simultaneously 
process is reduced to R+N-1, instead of RN in Section 5.1. The approach 
now presented is of course also relevant when the statistical agency 
publishes only the regional and the industrial aggregates. (The other 
series may be available to the agency but not released - as time series at 
least - to the public.) 

The regression model of equation (4.2) then becomes: 

zll 
z21 

ZR1 
z12 
z13 

Z1N 
+Xpj 
+X1N 

xli] C 	e11 
x21 ] 

I 
J 

[ 	 e21 
I 
I 

] 

XR1] 
I 
C 	ei 

x12 	] r+[ 	e12 
x13 ] 

I 
I 

e13 
C 
C 

I 
X1N] 

( 

I 	elN 
O 	J (e11-e21-. . 

. - eRl 
O 	] [e11-e12.. . 

. -elN 

(5.2.1) 

(R+T+l)T by 1 

where Z11 is the grand total over regions and industries. The covariance of 
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the errors in (5.2.1) is then: 

V11 	0 	... 	0 	0 	0 	... 	0 	V11 	V11 o 	V21 	... 	0 	0 	0 	. . * 	0 	-V21 	0 
( 	. 	. 	 . 	. 	. 	 . 	. 	•1 
( 	. 	. 	 . 	. 	. 	 . 	. 	•1 o 	0 	... 	VR1 	0 	0 	... 	0 	-Vp 	0 1 (5.2.2) 	[ 0 	0 	... 	0 	V12 	0 	... 	0 	0 
[ 0 	0 	... 	0 	0 	V13 	... 	0 	0 	-V131 
( 	 . 	 . 	 . 	 . 	 . 	 . 	

. 

( 	 . 	 . 	 . 	 . 	 . 	 . 	
. 

( 	 . 	 . 	 . 	 . 	 . 	 . 	 . 	
. (R-i-N+1)T 	[ 0 	0 	... 	0 	0 	0 	... 	V1N 	0 

by (R+N+1)T f V11 	-V21 ... 	-VR1 	0 	0 	... 	0 	V.1 	V11 o 	0 	... 	0 	-V12 -V13 ... 	-V1N V11 	V1. 

where all the partitions were defined in Section 5.1. Matrix B becomes: 

	

(B11 	0 	... 	0 	0 	0 	... 	0 	0 	0 

	

o 	B21 	... 	0 	0 	0 	... 	0 	0 	0 

	

O 	0 	... 	BR1 	0 	0 	... 	0 	0 	0 
(5.2.3) 	( 0 	0 	... 	0 	B12 	0 	... 	0 	0 	0 

	

0 	0 	... 	0 	0 	B13 	... 	0 	0 	0 

(R+N-1)M+2T 	[ 0 	0 	... 	0 	0 	0 	... 	B1N 	0 	0 

	

by (R+N-1)+2(T.M) [ 0 	0 	... 	0 	0 	0 	... 	0 	J 	0 

	

(0 	0 	... 	0 	0 	0 	... 	0 	0 	J 

where the matrix J has dimensions T-M by T and is defined in Section 4. 
The resulting vector of discrepancies U is 

(5.2.4) 	U, - f Uj1'...  UR1' U12' ... 	U1N' U.1' U].'J 

where Urn  stand for the "annual" discrepancies YrnBrnXrn ; 	and 
J(Xl+X2fl+x3) and Ur.J(Xr1+Xr2+Xr3). The matrix to be inverted is 

[BVB11 	0 	... 	0 	0 	0 	... 	0 	BV11J' BV11J' 
0 	BVB21 ... 	0 	0 	0 	... 	0 	-BV21J' 0 

0 	0 	... BVBR1 	0 	0 	... 	0 	-BVR1J' 0 (5.2.5) 	[ 	0 	0 	... 	0 	RVB12 	0 	... 	0 	0 
0 	0 	.. 	0 	0 	BVB13 ... 	0 	0 	-BV13J' 
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0 	0 	... 	 0 	0 	0 	
... BVB1N 	0 	-BV1NJ' [JBV11'-JBv21' 

... -JBV1' 0 	0 	... 	 0 	Jv.1j' jv11j' 
[JBV11' 	0 	... 	 0 -JBV12'-JBV13' . . .-JBV' JV11J JV1.J' 

(R+N-1)M+2(T-M) by (R+N-1)Mi-2(T-M) 

where the matrices are defined in Section 5.1. The solution corresponding 
to (4.7) is then 

(5.2.6) 	Z 	- 	X + 	V B' 	(B V B 1 ) - 1 	U 
(R+N+-1)T 	 (R+N-1)M+2(r-M) 
by 1 	 by (R+N-1)M+2(T-M) 

which is conveniently rewritten as: 

(5.2.7) 	Z 	- X + VB 	H 

where 

(5.2.8) 	H—(BVB') - i U 

is partionned like U: H' - [ H11'... HR1' H12' 
... H1N' H.1' H1.' ] On 

noting the content of V and B, (5.2.7) reduces to: 

Z11 - + V11(Z11 1 H11 + J (H.1 + H1.)) 	(r—n—i) 

(5.2.9) 	Zn - 	Xri + Vrl(Bni'Hri J H.1) r>1 	(n—i) 

Zin  - 	Xln  + Vln(Bin 'Hin  - J H1.) ri>1 	(r—i) 

For 45 monthly 5-year series pertaining to 20 regions and 25 
industries, the dimension of the matrix BVB' to invert is 330 by 330; and 
for the corresponding quarterly series, 250 by 250. Such calculations are 
feasible and begin to be usefull, especially when combined with the 
regional-industrial collapsing strategies described in Section 5.1. The 
bigger matrices V and B do not have to be stored. Only their non-zero 
partitions need to be generated and momentarily stored as their need 
arises, in building BVB' for inversion in (5.2.8) and in doing the 
calculations in (5.2.9). 

If one intends, by means of alterability coefficients, to "impose" the 
grand total to the regional and to the industrial series (which is likely 
to happen), one could apply the method of Section 4 to the R regional 
aggregates with low a1 and then to the N industrial aggregates with low a1. 
This would enable one to process a larger number of series. Under the 
latter method or that presented in this sub-section, Table 2, is obtained, 
where the aggregates series in the margins (first row and column) add to 
the grand total 2llt• 
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Table 2: Contingency table containing the simultaneously benchmarked 
aggregate regional series zrlt and aggregate industrial series Z1t and the 
unbenebmarked component series Xrnt 

Totals + I n d u s t r i e s 
+ 

IIlIIII(t'I''' 
Z1 + 

II 
Zj 2 t 
IIII 	liii 

	

Zl,3,t 	. 	. 

	

I-tII 	ItIII 	III 	III 1111 	I 
+ 

R Z2,1,t + X2,2,t X2,3,t 
e + 
g Z3,l,t + X3,2,t 3,3,t 	. 	. 	. i + 
0 . + 
n . + 
S + 

+ 
Zj , 	p 1 	t + XR,2,t XR,3,t 	. 	. 

5.3 Iterative Proportional Fitting Coupled With Individual Benchmarkjng 
The problem with Table 2 is that the component series xt, r>l and 

ri>l, do not add up their corresponding row and column aggregate series Zrlt 
and Z1t. Additivity can be restored by means of Iterative Proportional 
Fitting or "raking" (Bishop, Fienberg and Holland, 1975; Brackstone and 
Rao, 1979). In the context of Table 2 raking consists of adjusting each 
column n to the its total, by multiplying it by an adjustment factor f, 
equal to the ratio of the corresponding desired and actual totals; 	of 
adjusting each row to its total in the same manner; 	of re-adjusting the 
columns; of re-adjusting the rows; and so on. This method is known to 
converge. 

In the context of benchmarking, 	there are problems with the 
2-dimensional raking just described. 	First, it is not likely to preserve 
the period-to-period movement of the component original series Xrnt, because each time period, i.e. 	each of the T tables like Table 2, is 
processed separately. Second, the 2-dimensional raking just described will 
not satisfy the benhmarks Yrnm of the components series Xrflt. However this 
second problem may be corrected by 3-dimensional raking, processing one 
year (of tables like Table 2) at the time. The two first dimensions 
consist of the regional and the industrial totals Zint and zrlt; and the 
third dimension, of the benchmarks Yrnin for a given year. The problem 
remaining is the possibility of movement discontinuities between years, 
since each year of values Xrnt is processed separetaly. However, this 
method may represent an acceptable trade-off between quality and 
feasibility in many situations. 

A more satisfactory solution consists of the following steps. 

1) First individually benchmark the component series Xrflt (r>l, n>l) of 
Table 2. 

2) Tablulate the resulting benchmarked series Zrnt in a table like 
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Table 2, with the simultaneously benchmarked series Zrlt and Zlflt in 
the margins, and perform 2-dimensional raking. The resulting series 
add up to the margins but do not comply with their benchmarks. 

Re-benchmark the raked component series individually and 
re - tabulate. 

Re-rake. 

Repeat steps 3) and 4) until convergence. 

Our experience indicates that this sequence of individual bencbmarking 
with raking does converge to a consistent system of benchmarked series. 
Alterability factors can also be built into the raking process by modifying 
the raking factors as follows. If fr  is the factor for row r, the modified 
factor is f'r(n) 	l+(fr l)*arn  (0:5a ~l). 	Convergence takes longer but 
does takes place. 

The raking approach (with or without alterability coefficients) also 
works for a system of regional series. 	Raking can therefore also be 
considered as a substitute to the simultaneous benchmarking method of 
Section 4. 

6. DISCUSSION 

The sequence of individual benchmarking and raking, just outlined, and 
the simultaneous bencbmarking, presented in Sections 4 and 5, displays 
strikingly similar results, both in terms of movement and level of the 
benchmarked series. That raking approach could therefore be considered as 
an approximation to simultaneous benchmarking. The latter may be used to 
provide a justification for, and a standard against which alternative and 
simpler approaches may be assessed. However, that comparison and raking, 
which certainly deserves more attention, are not the subject of this paper. 

Perhaps because simpler or "ad hoc" methods have been used to restore 
the consistency of systems of benchmarked series, there is to our knowledge 
no published litterature on the subject, apart from the Federal Reserve 
Board (1962) and the Bank of England (1972) which include very little 
mathematical details. A more technical unpublished reference is Taylor 
(1963). A forthcoming - and probably the most comprehensive reference to 
date (apart from this document) - is Taillon (1988). Both these authors 
view the problem as a constrained quadratic minimization prograiwne and are 
based on the proximity criterion. This paper views the problem through the 
framework of regression analysis, which is 

- as explained in Section 3 - a 
particular but more familiar case of quadratic minimization. 

An issue is starting to emerge in the literature: 	whether the 
benchmarks should be considered as fully reliable or not. For individual 
series, Hilimer and Trabelsi (1988) proposed a method (based on ARIMA 
modelling) in which the benchmarked series does not necessarily have to 
comply with the benchmarks. These non-binding benchmarks are merely extra 
observations from which to derive the sub-annual estimates. In our 
opinion, in many situations, the benchmarks are in some respects less 
reliable than the unbenebmarked series (Cholette, 1987a, 1987b). If this 
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paper has considered them as binding, it is simply assumed that, prior to 
simultaneous benchmarking, a consistent set of reliable annual benchmarks 
were established for the system of series considered. It is possible to 
devise a simultaneous method in which the benchmarks would not necessarily 
be binding. Using quadratic minimization Cholette (1979, 1987b) developped 
such a method. However, it does no lend itself to application to large 
enough systems of series. 

7, SUMMARY AND CONCLUSIONS 
This document proposed formal methods to benchmark systems of 

socio-econonijc time series, in which the components series must add to 
aggregate series and comply to their benchmarks. The methods incorporate 
the accepted benchmarking principle of movement preservation (Denton, 1971) 
into the regression framework. The "regression" is solved by Joint 
Generalized Least Squares (Theil, 1971). Apart from the methodological 
familiarity, one advantage of the resulting approach is the dramatic 
reduction in the scale of the calculations made possible by the Chow and 
Lin (1971) particular solution. 

With the methods presented, and with the computers and the standard 
software now available to statistical agencies, one can (for instance) 
simultaneously benchark a system including over 50 regional monthly series 
over 5-year intervals; a system including over 30 quarterly series 
cross-classified in 5 regions and 6 industries (over 5-year intervals); a 
system including over 45 monthly series representing 20 regional totals and 
25 industral totals which have to sum to a common grand total. With some 
expertise in matrix algebra, it may be possible to expand that capacity. 
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