(A |

Variance of X-11-ARIMA Estimates
-A Structural Approach
by

Estela Bee Dagum and Benoit Quenneville

Methodology Branch Direction de la methodologie

11-614
no.88-25
c. 1

Canada







Working paper TSRAD-88-025E
Time Series Research And Analysis Division
Methodology Branch

Statistics Canada

Variance of X-11-ARIMA Estimates
-A Structural Approach

by

Estela Bee Dagum and Benoit Quenneville

Time Series Research and Analysis Division
13-K R.H. Coats Bldg.

Statistics Canada

Ottawa (Ontario)

Canada

KlA 0OTé6

October 1988

This is a preliminary version. Do not quote without author’s permission.

Comments are welcome.






ABSTRACT

This paper presents a method for the approximation of the wvariance of
X-11-ARIMA estimates. The method uses structural models in a state space
form, the Kalman filter and the fixed interval smoother.

Stochastic models are assumed for the trend-cycle, seasonal and
irregular components of a time series. These models are fitted to the
X-11-ARIMA components to estimate the parameters needed in the Kalman
filter. The Kalman filter and the fixed interval smoother are applied to
the original series to obtain stochastic estimates of the trend-cycle,
seasonal and irregular components. Confidence intervals .are constructed
around these stochastic estimates. Finally, the wvariances of the
X-11-ARIMA values are approximated by the variances of the stochastic
estimates if the X-11-ARIMA values fall within the confidence intervals of

the stochastic estimates.

Key words: Kalman filter, fixed interval smoother, trend-cycle, seasonally

adjusted, month to month change and ratio.



RESUME

Cet article présente une méthode pour l'approximation de 1la wvariance
des données corrigées de leurs variations saisonniéres par le progiciel
X-11-ARMMI.

La méthode utilise une formulation de vecteur d'état et le filtrage de
Kalman. Des modéles stochastiques sont définis pour les composantes
cyclo-tendancielle, saisonniére et irréguliére de la série chronologique.
Ces modéles sont ajustés a la décomposition du X-11-ARMMI pour obtenir les
estimés des paramétres nécessaires au filtrage de Kalman. Le filtrage de
Kalman et 1le lissage sur un intervalle fixe sont appliqués sur la série
originale pour obtenir des estimés "stochastiques" des composantes de 1la
série ainsi que leurs variances. Des intervalles de confiance sont
construits autour des estimés stochastiques de la série désaisonnalisée.
Finalement, 1la variance de l'estimé "X-11-ARMMI" est approximée par celle
de 1'estimé stochastique si l'estimé X-11-ARMMI est inclus dans

1’intervalle de confiance de 1'estimé stochastique.
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1. INTRODUCTION.

The need for the development of standard errors of seasonally adjusted
data as published by statistical bureaus has a long standing. The
President’s Committee to Appraise Employment and Unemployment Statistics
(1962) recommended: "that estimates of the standard errors of seasonally
adjusted data be prepared and published as soon as the technical problems
have been solved". Seventeen years later, the National Commission on
Employment and Unemployment Statistics (1979) reemphasized the importance
of standard errors for seasonally adjusted series and urged the Census
Bureau to undertake research to develop them. In response to this goal,
Wolter and Monsour (1981) developed a procedure based on the linear filters
of the Method II-X-ll-variant (Shiskin, Young and Musgrave, 1967) to
calculate the variance of seasonally adjusted data. These authors
considered two situations, one, where the components were assumed as
deterministic and thus only the sample variability contributes to the
variance of the seasonally adjusted value; and, two, where the components
are assumed to be stochastic processes and the nonstationary part of the
time series is removed by fitting a polynomial in time. This procedure
offered a simplified approximation to the variance of the X-11 estimates
given the two assumptions on the kind of variability that affected the data
and the fact that the linear filters themselves are an approximation of
what the method really does to actual series. With the same kind of
reasoning, Burridge and Wallis (1984) developed ARIMA models that
approximate the various filters used by the X-1l variant to estimate the
time series components and derived measures of variance using Kalman
filters. Similarly, measures of the asymptotic variance could be
calculated from the ARIMA model developed by Cleveland and Tiao (1976) as
an approximation of the symmetric filters of the X-11 wvariant. Hillmer
(1985) made a major contribution for computing variances of the components
estimates from model based procedures such as Hillmer and Tiao (1982) and
Burman (1980); and generalized Pierce (1980) results for the revision of
current seasonally adjusted data. Hillmer (1985) calculated the total
variance as the sum of the conditional asymptotic variance (from the case
in which a doubly infinite realization is available) and the variance from

the forecasts and backcasts values that are needed to replace the missing



observations from the future and the past when dealing with actual series.
The studies, concerned with measures of variance of seasonally adjusted
data from the X-1l-variant, approached the problem in relation with {ts
linear filters. These linear filters, however, are approximations of what
the method really does wunder the assumptions ofi: () additive
decomposition, (2) no treatment of extreme values, (3) no trading-day
variations and (4) only the standard option 1is applied to estimate the

seasonal and trend-cycle components.

The main purpose of this paper 1is to present a new procedure that

approximates the variance of the components as really estimated from actual
data by the X-11-ARIMA method (Dagum, 1980) with or without ARIMA
extapolations. In the latter, the results from X-11-ARIMA are close to
those from the X-11 variant.

The new procedure basically consists of assuming structural models for
the trend-cycle, the seasonal and the irregular components which are first
fitted to the corresponding X-11-ARIMA estimates to obtain the parameters
needed for the Kalman filter. The Kalman filter and smoother are then
applied to the observed data to obtain structural model estimates of the
components. The variance of the X-11-ARIMA components are approximated by
the variance of the estimates given by the structural models if the
X-11-ARIMA estimates fall within the confidence intervals of the structural

estimates,

2. THE X-11-ARIMA METHOD AND THE BASIC STRUCTURAL MODEL.

The X-11-ARIMA seasonal adjustment method assumes that a series Y¢ can
be decomposed into the trend-cycle Cy, the seasonal S¢ and the irregular

variations I., either in an additive manner:

YR 08, & 1T, , W L)

a multiplicative manner:
Yo = CcS I 2 2)

or, a logarithmic manner:
log Yy = log C¢ + log S¢ + log Ig. (24,235

This method is based on moving averages or linear smoothing filters
implying that the time series components are stochastic and thus, cannot be

closely approximated by simple functions of time over the entire range of



the series. The X-11-ARIMA method consists of extending the original
series at each end with extrapolated values from seasonal ARIMA models and
then seasonally adjusting the extended series with a combination of the
X-11 filters and the ARIMA model extrapolation filters.

The basic structural model as discussed by Harvey and Todd (1983) and
Harvey (1984) has the form:

T = pol R Slee [otel. ... .F (2.4)
where u,, v, and €¢¢ are the trend ,seasonal and irregular components
respectively.

The process generating the trend is of the form:

By =weay Pilcop + ng. (2:5H
and

Bt = Be.1 + (¢, (2.6)
where ny and (. are normally distributed independent white noise processes
with zero means and variances o,,2 and a§2 respectively. The essential
feature of this model is that it is a local approximation to a linear trend
and the level and slope both change slowly over time according to a random
walk model.

The process generating the seasonal component is defined by:

s-1
‘yt- -z ‘yt_j +h)t (2'7)
j=1
where w, is distributed as NID(O,awz) and s is the number of “"seasons" in

the year. The seasonal pattern is thus slowly changing but by a process
that ensures that the sum of the seasonal components over any s consecutive
time periods has an expected value of zero and a variance that remains
constant over time. The disturbances ¢, {¢ and we are independent of
each other and of the irregular component €¢, distributed as NID(O,UZ).

In our context, the errors terms Nt and { are restricted to be equal

for the reasons to be given later.



3. KALMAN FILTER AND FIXED INTERVAL SMOOTHER.

In this context and for the case

space model consists of a measurement equation:

and a transition equation:

where

is a fixed vector.

z2’=(1010000000000)

Yt = g'gt + (t

of monthly observations, the

@r = Cap.1 + Dz
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is the state vector and
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is normally distributed with mean zero and covariance matrix azQ,

Q = diag(az,’/a2 azw/a2 )

and 02 is the variance of ¢4, distributed NID(O.az) independently of Ie.

Let a; be the minimum mean square estimate (MMSE) of ar and ath its

covariance matrix, i.e. oth - E{ay - acllae - apl’.

8¢ and P, is then given by:

2t+1|t = Cag
with MSE matrix:
Pt+1lt - CPtC' + DQD'.

The MMSE of a,,] given

(), 29,

(3.8)



Once Y¢41 becomes available, the estimate of @t+]1 can be updated as follows:

8t+4]1 = 8t+1|c + KeslVesl (3.9)
Pee1 = (T-Kes12')Preqe (3.10)
Yorl & Yool - 2'8c+1c (3.11)
Keel = Pee1)ez/fen (3.12)
fee1 = 2'Pryn)ez + 1. (3.13)

Starting values apy and Py and knowledge of the covariance matrix Q are
needed to implement the Kalman filter Biven by (3.7) sal(3 BN

The Kalman filter yields the MMSE of a¢ given the information available
up to time t. However, once all the observations are available, a better
estimator can be obtained. One of the techniques for computing such an
estimator is the fixed interval smoother. The fixed interval smoother is a
set of recursions which start with the Kalman filter estimates aT and Pr,
and works backwards. If a¢|T and athlT denote the smoothed estimates and

its covariance matrix, the smoothing equations are given by:

8¢|T = 8¢ + P*t(aee1T - Cap) (3.14)
with

Peyr = Pe + P*t(Pt+1]T 3 Pt+1|t)P*t' (3.15)
where

PR~ PeC'(Pryye) L. . (3.16)

4. ESTIMATION OF ag, Po AND Q.

In its additive variant, X-11-ARIMA decomposes Y. into the sum of a
trend-cycle C¢, a seasonal S, and an irregular I¢. Similarly, the structural
model decomposes Y, into the sum of a trend B, a seasonal <v¢ and an
irregular e..

The structural models for the trend ke and the slope B are fitted to
the X-11-ARIMA trend-cycle estimates Ce¢ to estimate 0"2 and agz. This is
done by making the structural slope (Be) equal to the month to month change
in the X-11-ARIMA trend-cycle (C¢-Ce¢.1) and the structural trend (ug) to the
X-11-ARIMA trend-cycle (C.). Under these assumptions for se and B¢,
equations (2.5) and (2.6) reduce to:

Ce=Ce.1 + (Ce.1-Ce.2) + n¢ (4.1)
Cu-G8M/T Cr1:Coop-# O (4.2)
It follows from (4.1) and (4.2) that "t = - The estimates "of 0"2



and ogz are now derived.

From equations (2.5) and (2.6) we have:

A

Be = Ct.1-Ce.2 (4.3)
pr = Ce1#(Ceo1-Ce.p) )
from which it is deduced:
Nt = Ce-20p.14Ce 9 (4.5)
and
;t - Ct-2Ct-1+Ct_2. (4.6)

A A

From (4.5) and (4.6) Nt equals (., and therefore:
A~ A T
ol = op2 = (T-2)-1 23(ct-2ct_1+ct_2)2 (4.7)
t—
Similarly, the structural model for the seasonal component vy, is fitted

to the X-11-ARIMA seasonal estimates St to estimate awz. This is done by

approximating the structural seasonal component (y.) by the X-11-ARIMA

seasonal component (ST 1) 0! 7 ) €
~ 1
jar -3 S (4.8)
j=1
from which it is derived:
A 12
vy = £ S¢_y (4.9)
=1
and therefore:
A~ T A
B2 SCT-1 )40 2. (4.10)
t=11

Finally, the structural model for the error €r is fitted to the

X-11-ARIMA irregular estimates 1., from which:

. i
B4 T70) B30 (4.11)
t=1
The estimate of the initial state vector ag requires knowledge of
(uo,ﬁo,1o.1_1,...,1_10). Since S.10 to Sp are not readily available from
X-11-ARIMA the first eleven month of data are wused to estimate ajp by
211-(C11,Cll-Clo,Sll,Slo,. ..+51)’ and the Kalman filter is started at time
t=12. The initial covariance matrix P11 is taken to be kI13 where k is a

large constant and I13 is the identity matrix of order 13.



5. VARIANCE OF X-11-ARIMA SEASONALLY ADJUSTED DATA.

5.1 Additive Decomposition,

The Kalman filter and fixed interval smoother as described by equations
(3.7) to (3.16) are applied using the above initial state vector, covariance
matrix of the initial state vector and the estimates of the noise variances
anz, a§2, °w2 and 02.

The X-11-ARIMA seasonally adjusted data is defined by:

Ye-Sg = Ce+lgp (5. Aty
Similarly, the structural seasonally adjusted data is defined by:

A A A~

Yt"'t = “t"'(t (5.2)

where v, p¢ and € are the structural estimates of Yt,» M and €.
The variance of the seasonally adjusted structural estimate is defined
by:

E{(¥Ye-7e) - (Ye-70) 12 = E[ve-7¢)2 (5.3)
and is given by 02Pt|T(3,3). where Pt|T(3,3) is the third row, third column
element of Pe|T- Confidence intervals at the 95% level for the seasonally
adjusted structural estimates are obtained by adding plus or minus twice the
standard deviation of the estimates. Finally, the variances of the
X-11-ARIMA estimates are approximated by the variances of the structural
estimates if the X-11-ARIMA estimates fall within the confidence intervals

of the structural estimates.

5.2 logarithmic and Multiplicative Decompositions,

For the logarithmic and multiplicative decompositions, the structural
models for the trend u, are fitted to log Cp, for the seasonal Yt to log S¢

and for the irregular ¢, to log I¢. Confidence intervals are constructed
A

for log Y. - log Yt and by taking the antilog of the results, confidence
intervals around the structural estimates are obtained. Final estimates of

the variances are obtained by squaring the length of the confidence



intervals divided by 4,
6. VARIANCE OF X-11-ARIMA SEASONALLY ADJUSTED MONTH TO MONTH CHANGES.

In the analysis of seasonally adjusted data, comparisons of month to
month changes are often done to assess the direction and magnitude of the
short-term trend.

The method discussed here allows the estimation of the variance of
changes between any two months included in the state vector. The change in
the structural seasonally adjusted data betwen month t and t-a, for a=1,.,10
is given by:

Yeve) - (Ve g=ve-a) (643
with variance:

Iy A

E[{ (Yt’Vt)'(Yt-a'Tt.a)}'{(Yt"Yt) ’(Yt-a'Vt-a) ) ]2 =

E[ (7t-a"7t.a) '(’Yt"Yt_) ]2-

~ A

E(vt-a-vt-a)z + E(vt-vt)z “2E[(ve-1-7-1) (Ye-7e) ] (6.2)
which is:
az(Pt'T(3+a,3+a)+Pt|T(3, 3)-2P¢|1(3,3+a)) (6.3)

for the smoothed structural estimate.

In the multiplicative and logarithmic decompositions, month to month
changes in the structural estimates become month to month ratios when the
data is transformed back to its normal scale by taking the antilog of the

results.

7. VARIANCE OF THE X-11-ARIMA TREND-CYCLE LEVELS AND MONTH TO MONTH
CHANGES.

In recent years it has become also important to provide estimates of the
trend-cycle as complement to the seasonally adjusted data. This 1is very
important for series that are highly volatile and for which month to month
comparisons do not give clear signals of the short-term trend (Dagum, Huot,
Morry, 1988). For an additive decomposition, the wvariance of the
trend-cycle estimates from X-11-ARIMA are approximated by those of the

corresponding structural model. Month-to-month changes in the structural



trend-cycle are given by:
He = BERl R Be-1 + e =aBuad +o6ie = Be. 4.1
An estimate of the change in the structural trend-cycle is thus provided

by the structural estimate of the change with variance:

V(Be) = E[B¢-B)? - 02Pt|T(2.2) (7.2)

for the smoothed structural estimate.

8. APPLICATIONS.

The results of this paper are applied to the Canada Total of Unemployed
Male, Aged 25 and Over (UM) for the period January 1975 to December 1986,
The official X-11-ARIMA decomposition for this series 1is of the additive
type with one year of forecast from an ARIMA model (0.1,2)(0.1,1)12 on the
log-transformed series. The estimates of the noise variances and ratios of
noise variances are provided in Table 1 where (A), (L), (M) denote the
additive, logarithmic and nultiplicative decomposition models respectively.
For the logarithmic and multiplicative models the variances shown are
associated with the log-transformed components. By comparing the estimates
of aw2 it can be seen that the structural model fits better the logarithmic
than the multiplicative X-11-ARIMA decomposition model. This is due to the
fact that in the logarithmic decomposition model of X-11-ARIMA the seasonal
factors for a given year are forced to add up to zero whereas in the
multiplicative decomposition model their arithmetic mean 1is forced to 1
instead of their geometric mean. The estimated ratios of anz/a2 and awz/o2
indicate how smooth the structural seasonally adjusted series are. A small
estimate of anz/a2 with a large estimate of awz/oz glve a smooth structural
seasonally adjusted series since a large amount of noise is passed to the
seasonality. On the other hand, a large estimate of 0,72/02 with a small
estimate of owz/a2 gives a more erratic structural seasonally adjusted
series.

Figure 1A.1 shows the original series and the seasonally adjusted
series. Figure 1A.2 shows the X-11-ARIMA seasonally adjusted series with the
smoothed seasonally adjusted structural estimates. Figure 1A.3 shows the
seasonally adjusted X-11-ARIMA series and the confidence intervals

constructed around the smoothed seasonally adjusted structural series.
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Figure 1A.4 shows the confidence intervals for the difference between the
X-11-ARIMA seasonally adjusted series and the smoothed seasonally adjusted
structural series. Whenever one of the two lines cross the horizontal line
drawn at zero, the null hypothesis of no difference between the estimates
has to be rejected ét level 95%. Figure 1A.5 shows the relative difference
in percentage of the smoothed seasonally adjusted structural to the
seasonally adjusted X-11-ARIMA estimates (the relative difference is defined
as: 100 (Structural - X-11-ARIMA)/X-11-ARIMA) . Figure 1A.6 shows the
variances of the smoothed seasonally adjusted structural estimates. In all
figures the first two years of data are not shown, the first year is
excluded because it is used in the estimation of the initial state vector
and the second year, because the non-smoothed structural estimates have too
high variance caused by setting the initial covariance matrix as 100000 1.

The structural estimates give an excellent fit of the X-11-ARIMA
estimates as shown by figure 1A.2 and figure 1A.3. In, Flgubelds 4 ithdne are
only 4 time points where the null hypothesis has to be rejected, a quantity
smaller than 5% of the observations. The relative differences between the
smoothed seasonally structural estimates and the X-11-ARIMA seasonally
adjusted estimates (figdre 1A.5) are very small (maximum is -2.78%) but
autocorrelated. It would be quite unrealistic to expect pure white noise 1in
the relative differences (or in the differences) as it would mean that the
X-11-ARIMA decomposition would have been perfectly modelled. This means
that the exact model behind the convolution of the X-11-ARIMA filters and
the innovations of the series would have been perfectly identified. In
figure 1A.6 the graph of the smoothed variances versus time has a concave
shape with jumps every year. The variances are the smallest in the middle
of the series which is not only intuitive but also in accordance with the
results obtained by Wolter and Monsour (1981) for other series.

All figures 1B show the X-11-ARIMA trend-cycle estimates and structural
trend-cycle estimates equivalent to the figures in 1A. In figure 1B.4 there
are only 4 time points where the null hypothesis has to be rejected. As in
the case of the seasonally adjusted series, the relative difference in the
trend-cycle estimates are small and autocorrelated.

All figures 1C show the month to month changes in X-11-ARIMA and
structural estimates. Figure 1C.1 shows the changes in X-11-ARIMA seasonally

adjusted estimates [(Yt-St)-(Yt_l-St_l)] with the change in the smoothed
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seasonally adjusted structural estimates (see equation (6.1)). Confidence
intervals (equation (6.2)) are provided in figure 1C.2. Values falling
above (below) the zero line indicate Increasing (decreasing) changes in the
seasonally adjusted UM series. Particularly, it stands out the period from
September 1981 till November 1982 with the only exception of October and
November 1981 and January 1982. May 1981 till December 1982 corresponded to
the deep Canadian recession. Figure 1C.4 shows the variance of the change
in the smoothed seasénally adjusted structural series.

Figure 1C.5 shows the change in X-11-ARIMA trend-cycle estimates
(C¢-Ce.1) with the smoothed structural slope estimates (By) (see equation
(7.1)). Confidence intervals are provided in figure 1C.6. It should be
noted that according to these confidence intervals, the trend-cycle changes
were different from zero and increasing during the period May 1981 -
December 1982. The trend-cycle changes are different from zero and
decreasing particularly, during March - October 1983. Figure 1C.7 shows the
confidence intervals for the difference between the change in the X-11-ARIMA
and the smoothed structural slope estimates. There are are only 3 time
points outside the confidence intervals. Variances of the smoothed
structural slope estimates are provided in figure 1C.8.

Policy and decision makers have always been concerned with the turning
points in the business cycle. Consequently, it is important to assess if a
change of direction in either a current seasonally adjusted value or a
current trend-cycle estimate indicate the presence of a turning point.

Given the whole series span from January 1975 to 1986, the month to
month change in the seasonally adjusted series where different from zero and
increasing for May 1981 and the whole period September 1981-November 1982
with the exception of October and November 1981 and January 1982. Using the
series from January 1975 till May 1981 and adding one month at a time, we
wanted to identify when these changes would have been detected.

Table 2A provides the confidence intervals constructed around the month
to month changes of the smoothed seasonally adjusted structural estimates as
an approximation to the confidence intervals of the corresponding XI11-ARIMA
estimates. It can be seen that the change from April to May 1981 was
significantly different from zero and remained so when more data were added

to the series. The month to month changes of the current seasonally

adjusted values since September 1981 till November 1982 were good estimators
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of the corresponding "historical" values obtained when the series ended in
December 1986. Given the amount of irregularity in the UM series, we used
the MCD (Month for Cyclical Dominance) measure of X-11-ARIMA as an indicator
of the length of the month-span where the contribution of the cyclical
variations surpassed those of the irregulars. For the UM series the MCD is
equal to 2 indicating that to assess the direction of the short term trend
comparisons must be made between the current seasonally adjusted values and

2 months before.

Table 2B shows the confidence intervals for the 2-month span changes of
the UM series. The results show that these changes were significantly
different from zero and positive since June 1981 with only two exceptions,
August-June and November-September 1981. The historical estimates of the
trend-cycle indicated that the month-to-month changes increased during the
whole period since May 1981 till December 1982 in agreement with what was
observed with the 2-month span of the seasonally adjusted estimates.

On the other hand, as shown in Table 2.C, the current trend-cycle
estimates performed poorly. Their month-to-month changes failed to detect
the increases for the months of May, June, July and August and only when
September 1981 became available all the revised trend-cycle estimates
conformed to the corresponding historical estimates of change. Dagum and
Laniel (1987) have shown the need for revising the current trend-cycle
estimate when more data become available for the corresponding filters of
X-11-ARIMA leave a considerable amount of irregularity in the most recent
estimates. We reached the same conclusions in this study. On the other
hand, as shown in Table 2A and 2B, the need for revising the current
seasonally adjusted series during the current year is not so strong. These
results conform with those given by Dagum (1982.a and 1982.b) concerning the

revisions of the seasonal adjustment filters of X-11-ARIMA.

9. CONCLUSIONS

This study has introduced a method for the approximation of the variance
of the X-11-ARIMA estimates. The method basically consists of s BoLic (5] 0y
simple structural models to the X1-11-ARIMA estimates to obtain the initial
state sector, its covariance matrix and the signal-noise ratios variances

needed for the Kalman filter.
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The Kalman filter and smoother are applied to the observed values to
obtain structural model estimates of the components. The variances of the
X-11-ARIMA components are approximated by the variances of the structural

model estimates if the former fall within the confidence interval of the

latter. We illustrated with the series Canada Total Unemployed Male - Aged
25 years and over and calculated the variances for the seasonally adjusted
values and the trend-cycle estimates of X-11-ARIMA. Furthermore, given the
importance of providing variances for the changes in the components, we
calculated and analysed the results from month-to-month changes in the
current and historical (final) values of the May 1981 - December 1982 period
corresponding to the deep Canadian recession. Our results indicated that
the month-to-month changes of the current seasonally adjusted series are
better predictors of the final changes than those of the current trend-cycle
estimates. However, in order to get a better assessment of the final short
trend-cycle, it was necessary to calculate the variances of 2-month span
comparisons for the current seasonally adjusted values.

This method was applied to other series and performs better whenever the
decomposition is additive or log-additive and the series can be extrapolated
with simple ARIMA models. Although not shown here, it can also be applied

to series affected by trading-day variations.
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TABLE 1

Canada Total Unemployed Male - Aged 25 and Over,
Estimate of the moise variances ard ratios.

Decomposition °ﬂ2 OL? a2 0,72/'02 oL?/bz
model

@A) 6.06 4.3 53.59 1132 .0809
(L) 3.40x1070  3.21x10°% 6.57x10°% .0512 .4885
M) 3.31x10°% 2.86x10°2 6.67x10°% .04%4 4268
TABLE 24

Canada Total Unemployed Male - Aged 25 and Over.

95% Confidence Intervals for (Yt'st)'(Yf-l'St-l) using the
Confidence Intervals for the Change in the

Smoothed Seasonally Adjusted Structural Estimates.

date May 81 Jun. 81 Jul. 81 Aug. 81 Sep. 81 Oct. 81 Nov. 81 Dec. 81

May 81 (10.63,28.42)

Jun.81 (10.75,29.02) (= 2455200115, 77y

Jul.81 (10.79,29.06) (-2.05,16.23) (-6.83,11.49)

Aug 81 (10.66,29.04) (-2.15,16.24) (-7.02,11.37) (-17.44,0.99)

Sep.81 (11.33,29.64) (-2.03,16.28) (-6.60,11.71) (-16.75,1.58) (18.25,36.60)

Oct.81 (10.84,29.44) (-2.01,17.40) (-7.06,12.3%) (416175, 266}, (17, 64, 37906) (8 22860245

Nov.8L ( 8.84,29.42) (-2.38,18. 15) (-#.71:12./77) (-17.14,3.35) (16.69,37.18) (-3.78,16.78) (-16.40,4.14)

Dec.81 ( 8.86,30.04) (-2.53,18.65) (=7 . 70T, 3 1Y 23 13 85 (16:77,37495) -390 17.40) (15781, 5. 77)¢ (2% 12 45008]
May 82 ( 9.55,28.94) (-0.88,19.81) (-7.79,13.42) (-17.49,3.73) (17.61,38.83) (-3.71,17.51) (<15 2005 O (28.43,49 .45)



SR

[ABLE 2B

anada Total Unemployed Male - Aged 25 and Over.

158 Confiderce Intervals for (Ye-S¢)-(Yp.2-S¢.2) using the
onfidence Intervals for the Change in the

moothed Seasonally Adjusted Structural Estimates.

late Mar. to Apr. to May. to Jun. to Jul. to Aug. to Sep. to Oct. to
May 81 Jun. 81 Jul. 81 Aug. 81 Sep. 81 Oct. 81 Nov. 81 Dec. 81

ay 81 (-4.63,13.16)

un. 81 (-4.11,14.15) (17.35,35.66)

ul.81 (-3.84,14.44) (17.88,36.15) (0.26,18.57)

ug.81 (-3.97,14.41) (17.70,36.08) (0.03,18.42) (-15.26,3.16)

¢p.81 (-2.44,14.87) (18.45,36.76) (0.52,18.84) (-14.19,4.13) (10.67,29.02)

ct.81 (-3.93,15.47) (17.73,37.14) (0.63,20.03) (-14.10,5.30) (10.60,30.01) (24.13,43.59)

ov.81 (-4.61,15.88) (16.85,37.33) (0.20,20.68) (-14.60,5.88) ( 9.79,30.38) (23.15,43.65) (- 9.99,10.61)

ec.81 (-4.67,16.51) (16.91,38.10) (0.27,21.45) (-14.43,6.75) (10.13,31.31) (23.65,44.83) (- 8.54,12.65) (22.30,43.40)

ay 82 (-5.94,13.44) (18.36,39.05) (1.67,22.88) (-14.68,6.54) (10.73,31.95) (24.51,45.73) (- 8.31,12.91) (23.83,44.85)

ABLE 2C

anada Total Unemployed Male - Aged 25 and Over.
)% Confidence Intervals for Ce-Ce.1 using the
nfidence Intervals for the Smwothed Structiral Slope B;.

te  May 81 Jun. 81 Jul. 81 Aug. 81 Sep. 81  Oct. 81 Nov. 81 Dec. 81

1y 81 (-5.49,1.84)

.81 (-2.85,3.49) (-3.16,4.32)

.81 (-1.14,4.45) (-1.05,5.48) (-1.47,6.28)

881 (-1.17,3.67) (-1.03,4.42) (-1.3,4.97) (-2.02, 5.49)

p-81 ( 0.20,4.77) ( 0.96,5.87) ( 1.28,6.82) ( 1.27, 7.72) (1.03, 8.64)

.81 (0.79,5.28) ( 1.93,6.58) ( 2.72,7.72) ( 3.20, 8.83) (3.40, 9.97) (3.02,10.79)

v.81 (10.70,5.09) ( 1.79,6.24) ( 2.57,7.19) ( 3.07, 8.05) (3.29, 8.90) (2.95, 9.49) (2.32,10.0L)

c-81 (0.84,5.51) (2.38,6.96) ( 3.63,8.28) ( 4.76, 9.58) (5.73,10.92) (6.18.12.03) (6.25.13.07) ( 6.05,14.08)
y 82 (0.39,5.34) (11.99,6.96) (3.50,8.47) ( 5.04,10.02) (6.67,11.65) (8.07,13.05) (9.40.14.39) (10.72.15.78)
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