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ABSTRACT 

This paper presents a method for the approximation of the variance of 

X-ll-ARIMA estimates. The method uses structural models in a state space 

form, the Kalman filter and the fixed interval smoother. 

Stochastic models are assumed for the trend-cycle, seasonal and 

irregular components of a time series. These models are fitted to the 

X-ll-ARIMA components to estimate the parameters needed in the Kalman 

filter. The Kalman filter and the fixed interval smoother are applied to 

the original series to obtain stochastic estimates of the trend-cycle, 

seasonal and irregular components. Confidence intervals are constructed 

around these stochastic estimates. Finally, the variances of the 

X-ll-ARIMA values are approximated by the variances of the stochastic 
estimates if the X-ll-ARIMA values fall within the confidence intervals of 
the stochastic estimates. 

Key words: Kalman filter, fixed interval smoother, trend-cycle, seasonally 

adjusted, month to month change and ratio. 
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RESUME 

Cet article présente une méthode pour l'approximation 	de 	la 	variance 
des données corrigées de leurs variations 	saisonnières 	par 	le 	progiciel 
X-ll-ARHMI. 

La mdthode utilise une formulation de vecteur d'etat et le filtrage 	de 
Kalman. 	Des 	modèles 	stochastiques 	sont 	définis 	pour 	les 	composantes 

ri 

cyclo-tendancje].le, saisonnière et irréguliere de la 	série 	chronologique. 
Ces 	modèles sont ajustés a la decomposition du X-ll-ARMNI pour obtenir les 
estimés 	des 	paramétres nécessaires au filtrage de Kalman. 	Le filtrage de 
Kalman 	et 	le 	lissage 	sur un intervalle fixe sont appliques sur la série 3. 
originale pour obtenir des estimés "stochastiques" des 	composantes 	de 	la 
série ainsi 	que 	leurs 	variances. 	Des 	inter-valles 	de 	confiance 	sont 
construits autour des 	estimés 	stochastiques 	de la série désaisonnalisée. 
Finalement, 	la 	variance de l'estimé "X-ll-ARMMI" est approximee par celle 
de 	l'estirné 	stochastique 	si 	l'estimé 	X-ll-ARMMI 	est 	inclus 	dans 
l'interval].e de confiance de l'estimé stochastique. 

) (2. 
(6. 
(9. 
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1. INTRODUCTION. 

The need for the development of standard errors of seasonally adjusted 

data as published by statistical bureaus has a long standing. The 

President's Committee to Appraise Employment and Unemployment Statistics 

(1962) recommended: "that estimates of the standard errors of seasonally 

adjusted data be prepared and published as soon as the technical problems 

have been solved". Seventeen years later, the National Commission on 

Employment and Unemployment Statistics (1979) reemphasized the importance 

of standard errors for seasonally adjusted series and urged the Census 

bureau to undertake research to develop them. In response to this goal, 

Wolter and Monsour (1981) developed a procedure based on the linear filters 

of the Method II-X-11-varjant (Shiskin, Young and Musgrave, 1967) to 

calculate the variance of seasonally adjusted data. These authors 

considered two situations, one, where the components were assumed as 

deterministic and thus only the sample variability contributes to the 

variance of the seasonally adjusted value; and, two, where the components 

are assumed to be stochastic processes and the nonstationary part of the 

time series is removed by fitting a polynomial in time. This procedure 

offered a simplified approximation to the variance of the X-ll estimates 

given the two assumptions on the kind of variability that affected the data 

and the fact that the linear filters themselves are an approximation of 

what the method really does to actual series. 	With the same kind of 

reasoning, Burridge and Wallis (1984) developed ARIMA models 	that 
approximate the various filters used by the X-ll variant to estimate the 

time series components and derived measures of variance using Kalman 

filters. Similarly, measures of the asymptotic variance could be 

calculated from the ARIMA model developed by Cleveland and Tiao (1976) as 

an approximation of the symmetric filters of the X-ll variant. Hillmer 

(1985) made a major contribution for computing variances of the components 

estimates from model based procedures such as Hillmer and Tiao (1982) and 

Burinan (1980); and generalized Pierce (1980) results for the revision of 

current seasonally adjusted data. Hillnier (1985) calculated the total 

variance as the sum of the conditional asymptotic variance (from the case 

in which a doubly infinite realization is available) and the variance from 

the forecasts and backcasts values that are needed to replace the missing 
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observations from the future and the past when dealing with actual series. 

The studies, concerned with measures of variance of seasonally adjusted 

data from the X-ll-variant, approached the problem in relation with its 

linear filters. These linear filters, however, are approximations of what 

the method really does under the assumptions of: (1) additive 

decomposition, (2) no treatment of extreme values, (3) no trading-day 

variations and (4) only the standard option is applied to estimate the 

seasonal and trend-cycle components. 

The main purpose of this paper is to present a new procedure that 

approximates the variance of the components as really estimated from actual 

data by the X-ll-ARIMA method (Dagum, 1980) with or without ARIMA 

extapolations, In the latter, the results from X-11-AR1MA are close to 

those from the X-ll variant, 

The new procedure basically consists of assuming structural models for 

the trend-cycle, the seasonal and the irregular components which are first 

fitted to the corresponding X-ll-ARIMA estimates to obtain the parameters 

needed for the Kalman filter. The Kalman filter and smoother are then 

applied to the observed data to obtain structural model estimates of the 

components. The variance of the X-11-ARIMA components are approximated by 

the variance of the estimates given by the structural models if the 

X-ll-ARIMA estimates fall within the confidence intervals of the structural 

estimates, 

2. THE X-11-ARIMA METHOD AND THE BASIC STRUCTURAL MODEL. 

The X-ll-ARIMA seasonal adjustment method assumes that a series Y can 

be decomposed into the trend-cycle C, the seasonal St and the irregular 

variations 't either in an additive manner: 

Yt Ct + St+It , 	 (2.1) 
a multiplicative manner: 

Yt - CSI 	 (2.2) 
or, a logarithmic manner: 

log Yt  - log C + log S + log It. 	(2.3) 

This method is based on moving averages or linear smoothing filters 

implying that the time series components are stochastic and thus, cannot be 

closely approximated by simple functions of time over the entire range of 
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the series. The X-ll-ARIMA method consists of extending the original 

series at each end with extrapolated values from seasonal ARIMA models and 

then seasonally adjusting the extended series with a combination of the 

X-ll filters and the ARIMA model extrapolation filters. 

The basic structural model as discussed by Harvey and Todd (1983) and 

Harvey (1984) has the form: 

Yt - Pt + i + it 	t—1,,. ..,T 	 (2.4) 
where p t , 7 t  and it are the trend ,seasonal and irregular components 
respectively. 

The process generating the trend is of the form: 

Pt- J4t-i + 	+ ,, 	 (2.5) 
and 

fit - flt-1 + ct 	 (2.6) 
where ' and ct are normally distributed independent white noise processes 
with zero means and variances C,7 2  and C c 2  respectively. The essential 

feature of this model is that it is a local approximation to a linear trend 

and the level and slope both change slowly over time according to a random 

walk model. 

The process generating the seasonal component is defined by: 

s-i 

it - -Z it-j + 't 	 (2.7) 
i-i 

where wt  is distributed as NID(O,c,2 ) and s is the number of "seasons" in 

the year. The seasonal pattern is thus slowly changing but by a process 

that ensures that the sum of the seasonal components over any s consecutive 

time periods has an expected value of zero and a variance that remains 

constant over time. The disturbances qt, ct and wt  are independent of 
each other and of the irregular component it, distributed as NID(O,a 2 ). 

In our context, the errors terms n t  and ct are restricted to be equal 
for the reasons to be given later. 
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3. KALMAN FILTER AND FIXED INTERVAL SMOOTHER. 

In this context and for the case of monthly observations, the state 

space model consists of a measurement equation: 

Yt - 	+Ct (3.1) 
and a transition equation: 

- Ctl + Dr t 	 (3.2) 
where 

z'— (1 0 1 0 0 0 0 0 0 0 0 0 0 ) 	 (3.3) 
is a fixed vector. 

- 	(ILt st it 7t-]. 1'tio) (3.4) 
is the state vector and 

1100000000000 10 

10 
O 0 -1 -1 	-1 -1 	-1 -1 	-1 -1 	-1 -1 -1 0 1 

00 

00010 00000000 00 

0000 100000000 00 
C -OO 0 0 	0 1 	0 0 	0 0 	0 0 0 	D -OO 

00000 01000000 00 

0000 000100000 00 

00 0000 10000 00 
00000 00001000 00 

0000 000000100 00 

00000 00000010 00 (3.5) 
are 	fixed matrices. The signal variance vector 

Mt - "t ) (3.6) 
is normally distributed with mean zero and covariance matrix or2Q, 

Q - diag(o2,/c2 c2w/0 2  ) 
and a 2  is the variance of et, distributed NID(0,a 2 ) independently of Lt. 

Let a t  be the minimum mean square estimate (MMSE) of ci t  and a 2 Pt 	its 
covariance matrix, i.e. c 2Pt - E[ - 	][t 	- The MMSE of t+l given 
a t  and Pt  is then given by: 

t+lt - Ct (3.7) 
with MSE matrix: 

Pt+11t - CPC' + DQD'. (3.8) 
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OnceYt+lbecomes available, the estimate of i l can be updated as follows: 

At+l - t+lt + t+lvt+l 	 (3.9) 
t+i - (I-Kt+lz')Pt+i,t 	 (3.10) 

vt+l 	- 	't+lIt 	 (3.11) 

t+1 - t+iit.Jt+i 	 (3.12) 
- &'P+i1 + 1. (3.13) 

Starting values fflo and P0 and knowledge of the covariance matrix Q are 

needed to implement the Kalinan filter given by (3.7) to (3.13). 

The Kalman filter yields the MuSE of 	given the information available 

up to time t. However, once all the observations are available, a better 

estimator can be obtained. One of the techniques for computing such an 

estimator is the fixed interval smoother. The fixed interval smoother is a 

set of recursions which start with the Kalman filter estimates aT and 

and works backwards. If A tI T and O 2PtIT denote the smoothed estimates and 

its covariance matrix, the smoothing equations are given by: 

tT - At + * t(t+i.i'r - C) 	 (3.14) 
with 

tIT - Pt + P*t(pt+lIT - Pt+llt)P*tI 	 (3.15) 
where 

P*t - PtC'(Pt+i,t)-l. 	 (3.16) 

4. ESTIMATION OF ao ,  P0 AND Q. 

In its additive variant, X-11-ARIMA decomposes Y 	into the sum of a 

trend-cycle C, a seasonal St and an irregular 1t. Similarly, the structural 

model decomposes Yt into the sum of a trend p, a seasonal 7t and an 

irregular Ct. 

The structural models for the trend u t  and the slope fi t  are fitted to 
the X-11-ARIMA trend-cycle estimates c to estimate a  ,,2 and C c 2. This is 

done by making the structural slope (fit) equal to the month to month change 

in the X-ll-ARIMA trend-cycle (Ct - Ct..i) and the structural trend (pt) to the 
X-ll-ARIMA trend-cycle (Cr). Under these assumptions for ju t  and fir. 
equations (2.5) and (2.6) reduce to: 

CI—C1 + (Ctl-ct2) + nt 	(4.1) 

C-C1 - C.1-c2 + c 	 (4.2) 
It follows from (4.1) and (4.2) that , - 

ct• The estimates of 
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and dc 2  are now derived. 

From equations (2.5) and (2.6) we have: 

A 

- C1-c•2 	
(4.3) 

- Ctl+(Ctict2) 	(4.4) 
from which it is deduced: 

17t -  Ct.2Ctpct2 	 (4.5) 
and 

- Ct-2Cti+c2. 	 (4.6) 
* 	 A 

From (4.5) and (4.6) r equals ct1 and therefore: 
A 	T 

a 2  - C c 2  - (T2) 4  x (Ct2ctl+ct2)2 	(47) 
t-3 

Similarly, the structural model for the seasonal. component 7tisfitted 
to the x-ii-jij seasonal estimates St to estimate a 

W 2. This is done by 
approximating the structural seasonal component () by the X-ll-ARIM 
seasonal component (St). From (2.7): 

11 

	

- -Z Stj 	 (4.8) 

from which it is derived: 	
j—1 

A 	12 
Wt - Z Stj 	 (4.9) 

and therefore: 	
i-i 

TA 

	

- (T-lly 1  Z Wt2. 	 (4.10) 
t—1 1 

Finally, the structural model for the error c t  is fitted to the 
X-11-ARIMA irregular estimates I, from which: 

T 

	

a 2  - T' Z i2. 	 (4.11) 
t— 1 

The estimate of the initial State vector cto requires knowledge of 

lo) 	Since S.10 to S0 are not readily available from 

X-11-ARIM the first eleven month of data are used to estimate all by 

ll(Cll,Cll.ClO,Sll,Sl0,...,S 1 )s and the Kalrnan filter is started at time 

t-12. The initial covarjance matrix P11 is taken to be k113 where k is a 

large constant and 113 is the identity matrix of order 13. 
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5. VARIANCE OF X-11-ARIMA SEASONALLY ADJUSTED DATA. 

.l Additive Decomposjtjo. 

The Kalman filter and fixed interval smoother as described by equations 

(3.7) to (3.16) are applied using the above initial state vector, covarjance 

matrix of the initial state vector and the estimates of the noise variances 

a 2  Cc 2  a 2  and o2.  

The X-ll-ARIMA seasonally adjusted data is defined by: 

- C+I  
Similarly, the structural seasonally adjusted data is defined by: 

A 	 A A 

- 14t+ct: 	 (5.2) 
A 	* 	 A 

where 7 t , p t  and t t  are the structural estimates of 	pt  and 

The variance of the seasonally adjusted structural estimate is defined 
by: 

- E[;t-i] 2 	(53) 
and is given by c72PIT(3,3), where tIT(3'3) is the third row, third column 
element of Confidence intervals at the 95% level for the seasonally 

adjusted structural estimates are obtained by adding plus or minus twice the 

standard deviation of the estimates. Finally, the variances of the 

X-ll-ARll.tp, estimates are approximated by the variances of the structural 

estimates if the X-11-ARIMA estimates fall within the confidence intervals 

of the structural estimates. 

52 Logarithmic and Multiplicative Decompositions 

For the logarithmic and multiplicative decompositions, the structural 

models for the trend u t  are fitted to log C, for the seasonal it to log S 
and for the irregular e t  to log 1t. Confidence intervals are constructed 

for log Yt  - log y and by taking the antilog of the results, confidence 

intervals around the structural estimates are obtained. Final estimates of 

the variances are obtained by squaring the length of the confidence 
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intervals divided by 4. 

6. VARIANCE OF X-11-ARIMA, SEASONALLY ADJUSTED MONTH TO MONTH CHANGES. 

In the analysis of seasonally adjusted data, comparisons of month to 

month changes are often done to assess the direction and magnitude of the 

short-term trend. 

The method discussed here allows the estimation of the variance of 

changes between any two months included in the state vector. The change in 

the structural seasonally adjusted data betwen month t and t-a, for a—i,. ,lO 
is given by: 

(Yt 7t )(Yta•yt) 	 (6.1) 
with variance: 

E (( 7ta7ta)(ltlt)1 2_ 

which is: 	
E(7t a t a ) 2  + E(it-)2 	 (6.2) 

(6.3) 
for the smoothed structural estimate. 

In the multiplicative and logarithmic decompositions, month to month 

changes in the structural estimates become month to month ratios when the 

data is transforineci back to its normal scale by taking the antilog of the 

results. 

7. VARIANCE OF THE X-11-ARfl4A, TREND-CyCLE LEVELS AND MONTH TO MONTH 
CHANGES. 

In recent years it has become also important to provide estimates of the 

trend-cycle as complement to the seasonally adjusted data. This is very 

important for series that are highly volatile and for which month to month 

comparisons do not give clear signals of the short-term trend (Dagurn, Huot, 

Morry, 1988). For an additive decomposition, the variance of the 

trend-cycle estimates from X-ll-ARIMA are approximated by those of the 

corresponding structural model. Month-to-month changes in the structural 
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trend-cycle are given by: 

ot -  t-1 - fit-i + It - fit-i + t - fit. 	(7.1) 
An estimate of the change in the structural trend-cycle is thus provided 

by the structural estimate of the change with variance: 

v(t) - E[fit-fi]2 - 02PtIT(2,2) 	(7.2) 
for the smoothed structural estimate. 

8. APPLICATIONS, 

The results of this paper are applied to the Canada Total of Unemployed 

Male, Aged 25 and Over (UM) for the period January 1975 to December 1986. 

The official X-11-ARIMA decomposition for this series is of the additive 

type with one year of forecast from an ARIMA model ( 0 , 1 , 2 )(0,1,1)12 On the 
log-transformed series. The estimates of the noise variances and ratios of 

noise variances are provided in Table 1 where (A), (L), (M) denote the 

additive, logarithmic and multiplicative decomposition models respectively. 

For the logarithmic and multiplicative models the variances shown are 

associated with the log-transformed components. By comparing the estimates 

of ow 2 it can be seen that the structural model fits better the logarithmic 

than the multiplicative X-il-ARIMp. decomposition model. This is due to the 

fact that in the logarithmic decomposition model of X-ll-ARIMA the seasonal 

factors for a given year are forced to add up to zero whereas in the 

multiplicative decomposition model their arithmetic mean is forced to 1 

instead of their geometric mean. The estimaed ratios of a, 7 2 /c,r 2  and 
indicate how smooth the structural seasonally adjusted series are. 	A small 
estimate of a,7 2/c 2  with a large estimate of a,2/7 2  give a smooth structural 

seasonally adjusted series since a large amount of noise is passed to the 

seasonality. On the other hand, a large estimate of c 7 2 /Q 2  with a small 
estimate of 	gives a more erratic structural seasonally adjusted 
series. 

Figure lA.i shows the original series and the seasonally adjusted 

series. Figure 1A.2 shows the X-11-AR1MA seasonally adjusted series with the 

smoothed seasonally adjusted structural estimates. Figure 1A.3 shows the 

seasonally adjusted X-11-ARIt.t& series and the confidence intervals 

constructed around the smoothed seasonally adjusted structural series. 
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Figure 1A.4 shows the confidence intervals for the difference between the 

X-11-ARIMA seasona].j.y adjusted series and the smoothed seasonally adjusted 

structural series. Whenever one of the two lines cross the horizontal line 

drawn at zero, the null hypothesis of no difference between the estimates 

has to be rejected at level 95%. Figure 1A.5 shows the relative difference 

in percentage of the smoothed seasonally adjusted structural to the 

seasonally adjusted X-ll-ARIMA estimates (the relative difference is defined 

as: 100 (Structural - X-11- ARIMA)/X-11JIt.c) Figure 1A.6 shows the 

variances of the smoothed seasonally adjusted structural estimates. In all 

figures the first two years of data are not shown, the first year is 

excluded because it is used in the estimation of the initial state vector 

and the second year, because the non-smoothed structural estimates have too 

high variance caused by setting the initial covariance matrix as 100000 I. 

The structural estimates give an excellent fit of the X-11-ARI 

estimates as shown by figure 1A.2 and figure 1A.3. In figure 1A.4 there are 

only 4 time points where the null hypothesis has to be rejected, a quantity 

smaller than 5% of the observations The relative differences between the 

smoothed seasonally structural estimates and the X-11-ARIMA seasonally 

adjusted estimates (figure 1A.5) are very small (maximum is -2.78%) but 

autocorrelated It would be quite unrealistic to expect pure white noise in 

the relative differences (or in the differences) as it would mean that the 

X-11-ARIMA decomposition would have been perfectly modelled. This means 

that the exact model behind the convolution of the X-ll-ARIMp. filters and 

the innovations of the series would have been perfectly identified. In 

figure 1A.6 the graph of the smoothed variances versus time has a concave 

shape with jumps every year. The variances are the smallest in the middle 

of the series which is not only intuitive but also in accordance with the 

results obtained by Wolter and Monsour (1981) for other series. 
All figures lB show the X-11-ARI 	trend-cycle estimates and structural 

trend-cycle estimates equivalent to the figures in lA. In figure lB.4 there 

are only 4 time points where the null hypothesis has to be rejected. As in 

the case of the seasonally adjusted series, the relative difference in the 

trend-cycle estimates are small and autocorre].ated. 

All figures lC show the month to month changes in X-11-ARIMA and 

structural estimates. Figure 1C.1 shows the changes in X-ll-ARIMA seasonally 

adjusted estimates {(Yt - St)(ytis t i)J with the change in the smoothed 
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seasonally adjusted structural estimates (see equation (6.1)). 	Confidence 
intervals (equation (6.2)) are provided in figure 1C.2. 	Values falling 

above (below) the zero line indicate increasing (decreasing) changes in the 

seasonally adjusted UM series. Particularly, it stands out the period from 

September 1981 till November 1982 with the only exception of October and 

November 1981 and January 1982. May 1981 till December 1982 corresponded to 

the deep Canadian recession. Figure 1C.4 shows the variance of the change 

in the smoothed seasonally adjusted structural series. 

Figure 1C.5 shows the change in X-11-ARIMA trend-cycle estimates 

(Ct - Ct..i) with the smoothed structural slope estimates (8) (see equation 

(7.1)). Confidence intervals are provided in figure 1C.6. It should be 

noted that according to these confidence intervals, the trend-cycle changes 

were different from zero and increasing during the period May 1981 - 

December 1982. The trend-cycle changes are different from zero and 

decreasing particularly, during March - October 1983. Figure 1C.7 shows the 

confidence intervals for the difference between the change in the X-ll-ARIMA 

and the smoothed structural slope estimates. There are are only 3 time 

points outside the confidence intervals. Variances of the smoothed 

structural slope estimates are provided in figure 1C.8. 

Policy and decision makers have always been concerned with the turning 

points in the business cycle. Consequently, it is important to assess if a 

change of direction in either a current seasonally adjusted value or a 

current trend-cycle estimate indicate the presence of a turning point. 

Given the whole series span from January 1975 to 1986, the month to 

month change in the seasonally adjusted series where different from zero and 

increasing for May 1981 and the whole period September 1981-November 1982 

with the exception of October and November 1981 and January 1982. Using the 

series from January 1975 till May 1981 and adding one month at a time, we 

wanted to identify when these changes would have been detected. 

Table 2A provides the confidence intervals constructed around the month 

to month changes of the smoothed seasonally adjusted structural estimates as 

an approximation to the confidence intervals of the corresponding X11-ARIMA 

estimates. It can be seen that the change from April to May 1981 was 

significantly different from zero and remained so when more data were added 

to the series. The month to month changes of the crent seasonally 

adjusted values since September 1981 till November 1982 were good estimators 
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of the corresponding "historical" values obtained when the series ended in 

December 1986. Given the amount of irregularity in the UN series, we used 

the MCD (Month for Cyclical Dominance) measure of X.11-ARIMA as an indicator 

of the length of the month-span where the contribution of the cyclical 

variations surpassed those of the irregulars. For the UN series the MCD is 

equal to 2 indicating that to assess the direction of the short term trend 

comparisons must be made between the current seasonally adjusted values and 

2_jnonths before. 

Table 2B shows the confidence intervals for the 2-month span changes of 

the UM series. The results show that these changes were significantly 
different from zero and positive since June 1981 with only two exceptions, 

August-June and November-September 1981. The historical estimates of the 

trend-cycle indicated that the month-to-month changes increased during the 

whole period since May 1981 till December 1982 in agreement with what was 

observed with the 2-month span of the seasonally adjusted estimates. 

On the other hand, as shown in Table 2.C, the current trend-cycle 

estimates performed poorly. Their month-to-month changes failed to detect 

the increases for the months of May, June, July and August and only when 

September 1981 became available all the revised trend-cycle estimates 

conformed to the corresponding historical estimates of change. Daguni and 

Laniel (1987) have shown the need for revising the current trend-cycle 

estimate when more data become available for the corresponding filters of 

X-11-ARIMA leave a considerable amount of irregularity in the most recent 

estimates. We reached the same conclusions in this study. On the other 

hand, as shown in Table 2A and 2B, the need for revising the current 

seasonally adjusted series during the current year is not so strong. These 

results conform with those given by Daguni (1982.a and 1982.b) concerning the 

revisions of the seasonal adjustment filters of X-11-ARIM. 

9. CONCLUSIONS 

This study has introduced a method for the approximation of the variance 

of the X-11-ARfl4A estimates. 	The method basically Consists of fitting 

simple structural models to the Xl-11-ARIMA estimates to obtain the initial 

state sector, its covariance matrix and the signal-noise ratios variances 

needed for the Kalniai-i filter. 
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The Kalman filter and smoother are applied to the observed values to 

obtain structural model estimates of the components. The variances of the 

X-11-ARIMA components are approximated by the variances of the structural 

model estimates If the former fall within the confidence interval of the 

latter. We illustrated with the series Canada Total Unemployed Male - Aged 

25 years and over and calculated the variances for the seasonally adjusted 

values and the trend-cycle estimates of X-ll-ARIMA. Furthermore, given the 

importance of providing variances for the changes in the components, we 

calculated and analysed the results from month-to-month changes in the 

current and historical (final) values of the May 1981 - December 1982 period 

corresponding to the deep Canadian recession. Our results indicated that 

the month-to-month changes of the current seasonally adjusted series are 

better predictors of the fin],, changes than those of the current trend-cycle 

estimates. However, in order to get a better assessment of the final short 

trend-cycle, it was necessary to calculate the variances of 2-month span 

comparisons for the current seasonally adjusted values. 

This method was applied to other series and performs better whenever the 

decomposition is additive or log-additive and the series can be extrapolated 

with simple ARIMA models. Although not shown here, it can also be applied 

to series affected by trading-day variations. 
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TABLE 1 

Caiwla Total Ureployed Male - Aged 25 and Over. 
Estiirate of the roise varjarces ard ratios. 

Deca-nposition C, 2 c,,2 a2 2/a2  C 21c72  nodel 

(A) 6.06 4.34 53.59 .1132 .0809  3.40x10 5  3.21x10 4  6.57x10 4  .0512 .4885  3.31x10 4  2.86xlCr 2  6,67x10 4  .094 42.68 

TABLE2A 

Carda Total Urip1ed Male - Aged 25 and Over. 
95% Confidene Intei:vals for (Yt -St)- (Ytlsti) using the 
ConfiderEe Intervals for the thange in the 
&m)ot±d Seasonally Adjusted Stnxtural Estimates. 

date 	May 81 	Jun. 81 	Jul. 81 	Aug. 81 	Sep. 81 	Oct. 81 Nov. 81 	Dec. 81 
May 81 (10.63,28.42) 
Jun.81 (10.75,29.02) (-2.52,15.77) 
Jul.81 (10.79,29.06) (-2.05,16.23) (-6.83,11.49) 
Aug.81 (10.66,29.04) (-2.15,16.24) (-7.02,11.37) (-17.44,0.99) 
Sep.81 (11.33,29.64) (-2.03,16.28) (-6.60,11.71) (-16.75,1.58) (18.25,36.60) 
Ct.81 (10.84,29.44) (-2.01,17.40) (-7.06,12.34) (-16.75,2.66) (17.64,37.06) (-3.22,16.24) 
Nov.81 ( 8.94,29.42) (-2.33,18.15) (-7.71,12.77) (-17.14,3.35) (16.69,37.18) (-3.78,16.78) (-16.40,4.14) 
ic.81 ( 8.86,30.04) (-2.53,18.65) (-7.79,13.38) (-17.23,3.95) (16.77,37.95) (-3.71,17.47) (-15.41,5.77) (27.1248.23) 
May 82 ( 9.55,28.94) (-0.88,19.81) (-7.79,13.42) (-17.49,3.73) (17.61,38.83) (-3.71,17.51) (-15.21,6.01) (28.43,49.45) 
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rANE2B 

anada Total Ur1oyed Male - Aged 25 and Over. 
5% Confid&e Intervals for CIt -St) - (Yt..2-St..2) using the 
onf1dere Intervals for the thange in the 
xothed Seasonally Mjusted Stnctural Estimates. 

late 	Mar. to 	Apr. to 	May. to 	Jun. to 	Jul. to 	Aug. to 	Sep. to 	Oct. to May 81 	Jun. 81 	Jul. 81 	Aug. 81 	Sep. 81 	Oct. 81 	Nay. 81 	Dec. 81 

lay 81 (-4.63,13.16) 
u.81 (-4.11,14.15) (17.35,35.66) 
i]..81 (-3.84,14.44) (17.88,36.15) (0.26,18.57) 
ug.81 (-3.97,14.41) (17.70,36.08) (0.03,18.42) (-15.26,3.16) 
p.81 (-2.44,14.87) (18.45,36.76) (0.52,18.84) (-14.19,4.13) (10.67,29.02) 

ct.81 (-3.93,15.47) (17.73,37.14) (0.63,20.03) (-14.10,5.30) (10.60,30.01) (24.13,43.59) 
bv.81 (-4.61,15.88) (16.85,37.33) (0.20,20.68) (-14.60,5.88) ( 9.79,30.38) (23.15,43.65) (- 9.99,10.61) 
ec.81 (-4.67,16.51) (16.91,38.10) (0.27,21.45) (-14.43,6.75) (10.13,31.31) (23.65,44.83) (- 8.54,12.65) 
äy 82 (-5.94,13.44) (18.36,39.05) (1.67,22.88) (-14.68,6.54) (10.73,31.95) (24.51,45.73) (- 8.31,12.91) 

ABLE 2C 

anada Total Ur1oyed Male - Aged 25 and 0vr. 
5% Confidere Intervals for C ,, -C4 using the 
xlfiderke Intervals for the Smxthed Stn.ctural Slope fl. 

(22.30,43.40) 
(23.83,44.85) 

t.e 	May 81 	Jun. 81 	Jul. 81 	Aug. 81 	Sep. 81 	Oct. 81 	Nov. 81 	Dec. 81 

y 81 (-5.49,1.84) 
si.81 (-2.85,3.49) (-3.16,4.32) 
11.81 (-1.14,4.45) (-1.05,5.48) (-1.47,6.28) 
zg.81 (-1.17,3.67) (-1.03,4.42) (-1.34,4.97) (-2.02, 5.49) 
p.81 ( 0.20,4.77) ( 0.96,5.87)  (1.28,6.82) ( 1.27, 7.72) (1,03, 8.64) 
:t.81 ( 0.79,5.28) ( 1.93,6.58) ( 2.72,7.72) ( 3.20, 8.83) (3.40, 9.97) (3.02,10.79) 
iv.81 ( 0.70,5,09) ( 1.79,6.24) ( 2.57,7.19) ( 3.07, 8.05) (3.29, 8.90) (2.95, 9.49) (2.32,10.01) 
c.81 (0.94,5.51) (2.38,6.96) (3.63,8.28) (4.76, 9.58) (5.73,10.92) (6.18,12.03) (6.25,13.07) (6.05,14.08) 
y 82 (0.39,5.34) ( 1.99,6.96) (3.50,8.47) ( 5.(,10.02) (6.67,11.65) (8.07,13.05) (9.40,14.39) (10.72,15.78) 
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