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ABSTRACT

DETERMINISTIC AND STOCHASTIC MODELS FOR THE ESTIMATION OF
TRADING-DAY VARIATIONS
by
Estela Bee Dagum and Benoit Quenneville
Statistics Canada

A large class of flows and stocks series related to production,
shipments, sales and inventories are affected by trading-day or calendar
variations. Trading-day variations represent the "within-month variations”
due to the number of times a particular day or days of the week occur in a
calendar month. These variations are systematic and may strongly influence
month-to-month comparisons. Whenever present they must be removed together
with seasonality to obtain a clear signal of the short-term trend-cycle
component, which is used for decision making by socio-economic players.

The X-11-ARIMA (Dagum, 1980) and the Census Method I1-X-11 wvariant
(Shiskin, Young and Musgrave, 1967) use the deterministic trading-day model
developed by Young (1965). This model assumes that the daily weights and
the weekly pattern remain constant throughout the chosen span of the
series, For some socio-economic time series this assumption might be
questionable,

This paper presents two stochastic models for trading-day variations
that allow a moving behavior of the daily coefficients. The estimation
method is discussed and the deterministic and stochastic models are applied

on both simulated and real series.






RESUME
MODELES DETERMINISTE ET STOCHASTIQUES POUR L’ESTIMATION DE
LA COMPOSANTE DE ROTATION DES JOURS
par
Estela Bee Dagum et Benoit Quenneville

Statistique Canada

Un grand nombre de séries de flux et de stock reliés a la production,
ventes et inventaires sont affectées par la rotation des jours ou l'effet
du calendrier. La composante de rotation des jours représente les
variations intra-mensuelles causées par la distribution des jours dans le
mois (ex: 4 lundis,..., &4 vendredis, 5 samedis et 5 dimanches dans un mois
de 30 jours). Ces variations sont systématiques et peuvent fortement
influegées les comparaisons entre les mois. Ainsi, lorsque ces variations
sont présentes dans une série, elles doivent étre identifiées avec la
saisonnalité pour obtenir un estimé plus prégis de la tendance-cycle.

Les méthodes X11-ARMMI (Dagum, 1980) et X11 (Shiskin, Young et
Musgrave, 1967) utilisent un modéle déterministe pour 1l’estimation de la
composante de rotation des jours developpé par Young (1965). Ce modéle
assume que les poids des jours et leur patron hebdomadaire restent
constants a4 travers une période pré-déterminée de la série. Pour certaines
séries socio-économiques cette hypothése peut étre discutable.

Cet article présente deux modéles stochastiques pour 1l’estimation de la
composante de rotation des jours. La méthode d'estimation est discutée et
les modéles déterministes et stochastiques sont appliqués sur des séries

simulées et réelles,






I. Introduction.

A large class of flows and stocks series related to production,
shipments, sales and inventories are affected by trading-day or calendar
variations. Trading-day variations represent the "within-month variations"
due to the number of times a particular day or days of the week occur in a
calendar month. These variations are systematic and may strongly influence
month-to-month comparisons. Whenever present, they must be removed
together with seasonality to obtain a clear signal of the short-term trend
(trend-cycle) of the series.

The X-11-ARIMA (Dagum, 1980) and the Census Method II-X-11 variant
(Shiskin, Young and Musgrave, 1967) estimate trading-day variations using a
simple regression model developed by Young (1965). This model assumes a
deterministic behaviour in the sense that the daily weights and the weekly
pattern remain constant throughout the chosen span of the series. For some
socio-economic time series, however, this assumption may be too restrictive
and a stochastic model for trading-day variations be more adequate.

The main purpose of this study is to introduce two stochastic
models of trading-day variations for gradually moving daily coefficients.
Section 2 gives a definition of trading-day variations. The two stochastic
models are discussed in section 3 together with the deterministic model.
Section 4 deals with the estimation procedure of the stochastic models. In
Section 5, the deterministic and the two stochastic trading-day variation
models are tested on simulated data. In section 6, the three models are
applied to two real series affected by trading-day variations. Finally,

section 7 gives the conclusions of this study.






2. Definition of Trading-Day Variations.

Let £4¢ i=1,2,...,7 represent the effects of daily activity on
Monday, Tuesday,..., and Sunday in month t. The overall effect attributed
to the number of times each day of the week occurs in month t defines what

is known as trading-day variations or effects. That is,

7
Ee = Z {1eXy¢ (2.1)
where Xit i=1,...,7 denotes respectively, the number of Mondays,
Tuesdays,..., and Sundays in month t.
1 7/
Let {¢ = 1/7Z €1t be the average of the daily effects and Xt be the
i=1
number of days in month t. Then we can reparametrize (2.1) as follows:
6 B ] .
E¢ = Z(Eit-€¢) (Xip-Xg¢) + £e(Xe-365.25/12) + £+(365.25/12) (2829
i=1

Equation (2.2) decomposes the overall effect E¢ An thrée parts:. (i) The
trading-day effect, (ii) the length-of-month effect and (iii) the month
effect.

The trading-day effect in month t is given by the first term of
eguatifon’ §2352) , ‘that is:

6 —
De = Z(€1e-€¢) (Xie-X7¢) 2.%

If all the £i¢'s are equal, there is no trading-day effect. Similarly, for
the month of February, except in leap year, Xy¢=X7 i~1,...,6, and there is
no trading-day effect. For notational convenience, let bi¢ = fit'gi
=, .., 6l fand Tit = Xi{¢t-X7¢. The §j¢'s represent the difference between
the Monday, Tuesday,..., and Saturday effects §€it and the average of the
daily effects E;, for month t. The difference between the Sunday effect
! 6

and the average of the daily effects is £17-€¢r = -Z &4¢-

The second term Et(xt-365.25/12) reprisents the length of month
effect and is usually attributed to seasonality.

Finally, the third term Et(365.25/12) represents the average effect
in month t if all the months would be of equal length and is usually

attributed to the trend-cycle component.






g

Under the assumption that the trend-cycle and seasonal variations
have been adequately estimated and removed from the data, the trading-day
effects definition (2.1) reduces to definition (Z 8)A iMe E¢=D¢.

3. Deterministic and Stochastic Models for Trading-day Coefficients or
Daily Weights.

Given a time series, say y,, where already the trend-cycle and

seasonal fluctuations have been removed, we assume:
Mg = R e T (Bl

where et~NID(0,02) and T is the number of observations.

In this section, we introduce three models for the estimation of
D¢, namely, a deterministic model, a random walk model and a random walk
model with a random drift.

The deterministic trading-day variations model developed by Young
(1965) assumes that 6i¢ = 6¢ for all ¢, In this case, equation (2.3)
reduces to:

6
i=1
where the 6;'s are considered as fixed parameters and estimated using

ordinary least squares (OLS).
The random walk model proposed by Monsell (1983), can be written as

follows:
6
De = = 614¢Ti¢ (3.3.a)
i=1
with
8le = 8ley + x¢ ¢3.3%)
where
8le = (6lye, ..., 610" (3.4.a)
2l i Ml e xeid * (3.4.b)
xle - NID(0,02, 1¢). (3.4.¢)

Here, Ig is the identity matrix of order 6.
Finally, the second stochastic model discussed in this paper
assumes that the vector of daily coefficients follews a random walk model

wikth & Wwaldeom - drxift. That is-
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Dy = g 625, Ty (345.a)

with )
§2¢ = §2¢.1 + 2ea1 * xe (3.58)
B¢ ™ 2p=d Ay (3.5.¢)

where

ézt - (521t'----526t) (3.6.a)
2= K oy e hrie) (3.6.b)
Xt = (x1¢+---Xx6¢) (BLi6xTch
Ye = (P16, .- %6¢) (3.6.4)
Xt ~ NID(0,02, 1) (3.6.e)
¥e - NID(0,02¥1¢) (3.6.£)

Here x: and y. are mutually independent. Equations (3.5.b) and
(3.5.¢) give a local approximation to a linear trend 1in the daily
coefficients. The level and slope of the trend are assumed to be generated
by stochastic processes.

The two stochastic models (3.3.b) and (3.5.b-3.5.c) are written in
state-space forms and the estimates of Qit i=1,2, together with their mean
squared error matrices are estimated with the Kalman filter. Smoothed
estimated are obtained using the fixed interval smoother. Finally, maximum
likelihood estimators are used to estimate the remaining hyper-parameters
02, azx/o2 and 02¢/02.

4. Estimation of the Stochastic Models.

The estimation of the stochastic models is made using the Kalman
filter and the fixed interval smoother. A brief description of these two

now follows.

4.1 The Kalman Filter and Fixed Interval Smoother.

The state space model consists of a measurement equation, namely,
Ve = Zhgle ¥ el ol S NE (4.1)
and a transition equation, namely,
arp=i\Gaol Mir £ "np, =1, ..., T (((9%72))
where a; is an mxl state vector, 2y is a mxl fixed-vector, G is a fixed mxm
matrix and the errors e and 5, are independent. It is further assumed that

ct~NID(O,02) and gt~NID(0,aZQ) where Q is a fixed mxm matrix and o2 is a






scalar. Although Q may depend on unknown parameters it is regarded as
being fixed and known for the purpose of the Kalman filter.

Let ar.1 be the minimum mean squared estimator (MMSE) of a¢_1 based
on all the information up to and including t-1, and let °2Pt-1 be the MSE
matrix of ar.}, i.e., the covariance matrix of a¢.1-2¢.1- The MMSE of g,
given ar_; and Py .} , is then given by:

ag|t-1 = Gac-} (4.3)

with MSE matrix:
Be |6 1r= CBELENS Gy (4.4)
Once y. becomes available, this estimator of ar can be updated as follows:
ac = ag|t-1 * Peje-12eve/fe (4.5)

with MSE matrix:
Pt = Peje-1 - Peje-12¢2¢ " Peje-1/fe (4.6)

where

e S0 el (4.7)
ok = Et'Pt|t-1§t Sl (4.8)

Starting values ap and Py are needed to implement the Kalman filter given
by (4.3 o (4. 8).

The Kalman filter yields the MMSE of at, given the information
available up to time t. However, once all the observations are available,
a better estimator can be obtained. One of the techniques for computing
such estimators 1is the fixed interval smoother. The fixed interval
smoother is a set of recursions which start with the Kalman filter
estimates ar and Py, and work backwards. If at|T and °2Pt|T' denote the

smoothed estimate and its covariance matrix, the smoothing equation is

given by:
ac|T = ac + P'eaes1)T - Cap) (4.9)
with
Peyr = Pp + P¥e(Pey1 T-Peal)e) (P*) (4.10)
where
P¥e = PG’ (Peyye) L. (4.11)

4.2 tate ace Representation of the Two Stochastic Models

A convenient state-space representation of the random walk
stochastic model for the trading-day coefficieants (3.3) and (3.4) along
with equation (3.1) is obtained through the following equivalences with the

transition equation (4.2) and the measurement equation (4.1):






ak = ﬁlc- 't = (Tlt.---.Tﬁt). € ™ €, (4.12)
G = Ig, me = x¢ and Q = 02, /021,
For the random walk model with a random drift, described by

equations (3.5) and (3.6), the equivalences are given by:

Q' = [ﬁzt'- 2t 1. &' = (Tyg, ... Tgeil6'), €t = eqs
G =|Ig Ig, n¢ =(x¢jand Q = a2x/0216 0
0 Ig ﬁch 0 024/021 (4.13)

It |is eclear from (4.12) and (4.13) that Q depends on the unknown
parameters azx/a2 in the first model, and a2x/02 and 02¢/02 in the second
model. These parameters along with 02 are called hyper-parameters since
they represent the parameters of the a-priori distribution of the state
vector. Their estimation as well as the estimation of the initial
conditions gg and Py are discussed in the next section.

4.3 Estimation of the Initial Conditions and the Hyper-Parameters.
4.3.1 Estimation of the Initial Conditions.

One way of deriving the initial estimate ag of gag with its
covariance matrix a2P0 is by assuming that the state vectors ay are
deterministic instead of stochastic over the first K observations. This
leads to the regression model (3.2) for the random walk model and to
gzt - 520 + tpp for the second stochastic model. The estimated covariance
matrix of ag from the regression provides an estimate of 02P0 from which Py
is easily obtained. We will refer to this approach as Method 1.

There are two other ways of estimating ap and Py for the random
walk model. These follow:

Method 2: First we define a new series we=yr.p41- The w series is
obtained by reversing the order of the y's series; that is, W1=YT, W=yT.1
and so on wuntil wr=yj. The random walk model for the trading day
coefficients 1is fitted to the w series. The Kalman filter is applied on
this transformed series to predict gg as Q#T+1|T and Py as P#T+1|T where
g#t and P#c are the estimates of the state vectors and covariance matrices
of the w series. In applying the Kalman filter to this transformed series,
the initial estimate of the state vector g#o is taken to be equal to Qg,
P#o equal to kIg where k is a large constant (21 in the simulation
discussed in section 5) and the hyper-parameters of the w series are
computed using the method described in section 4.3.2.

Method 3: Same as method 2, but with Q#O and Py estimated as in method 1






using the w series,.
4.3.2 Estimation of the Hyper-Parameters.

Maximum Likelihood Estimators (MLE) are considered for the
estimation of the hyper-parameters. Using the prediction error
decomposition (Harvey 1981), the likelihood function, L, can be written in

the form:
14 el§
-2logL = Tlog2x + Tlogo? + T logf, + o725 v2,/f, (4.14)
t=1 t=1

where T is the number of observations and vy and £y are defined by (4.7)
and (4.8).

A

Differentiation of (4.14) with respect to ¢ leads to o2 , the MLE
of 02, given by:
~ i
02 = -1z v2 /f, (4.15)
t=1
The scalar parameter, 02, may be concentrated out of the

log-likelihood function leaving the concentrated log-likelihood function:

T
-2logL, = Tlog2x + T +Tlogo? + = logf, (4.16)
t=1

Numerical optimization has to be carried out with respect to the
remaining parameters (a?-x/o2 for the first model and azx/az, 02¢/02 for the
second model) to minimize the right hand side of the equation (4.16). This
can be done by using the Fibonacci line search method for the random walk
model and the Davidon-Fletcher-Powell algorithm (Bazaraa and Shetly, 1979)
for the random walk model with random drift. In both cases the parameters
are bounded between 0 and 1. For the random walk model, this assumes that
the noise in the signal g is less than the noise in the measurements Yt -
4.4 Qutliers detection and accomodation.

In practice, the hyper-parameters are estimated from the data and
the Kalman filter 1is used conditional on the estimated values of the
hyper-parameters. In the application of the first stochastic model to real
series (section 6), we found that outliers in the data strongly influence
the estimation of both the hyper-parameters and the state vectors. In both
cases, a strategy for outliers detection and accommodation has to be used.

Whenever an observation is identified as én outlier, its innovation

(ve) 1is set equal to its expectation, namely zero, and the Kalman gain






(Pr|c-12¢/f¢) 1is also set to zero. That is, the observation is treated as
if it was missing but counted in the total number of observations.

Once the hyper-parameters are estimated, an estimate of o2 is
available. It can be shown that the innovation sequence vt~NID(0,azfc)‘
The outlier identification for the purpose of estimating the state vector
ar is straightforward. Any observation whose innovation is outside a
confidence interval (2.50ft1/2 in the application described in section 6)
built around zero is declared an outlier and its value is set equal to its
closest bound.

4.5 est Procedure for the Selection of the Stochastic Model

Based on the assumption that the daily coefficients change slowly
through time, the initial state vector is obtained with Method 1 of section
4.3. A test procedure to select the more adequate stochastic model for a
given series is applied. The test is based on the hypothesis that pg5 = 0
in the initial state vector which is estimated assuming deterministic
coefficients over the first K observations. (K=36 in the Application
section). Such a test 1is easily performed and it is not discussed any

longer (ref. Drapper and Smith (1981) section 2.10).

5. Simulations.

5.1 Numerjcal Methods for the Estimation of the Hyper-Parameters,

Given the importance of the hyper-parameters value in the
estimation procedure of the two stochastic models a pilot test was carried
out for three well known algorithms on a set of four simulated series with
different values of azx/a2 and a2¢/02. The series were generated using the
ini®ial Setate vector gg - (-25, -20, -15, 20, 25, 30) and o2=25. The
numerical methods were programmed with SAS using PROC MATRIX.

Table 1A shows the hyper-parameter values obtained for the three
models, deterministic, random walk (called Model One) and random walk with
a random drift (called Model Two). The deterministic model is estimated
with the regression approach, the Model One hyper-parameters are estimated
with the Fibonacci 1line search and Newton-Raphson; the Model Two
hyper-parameters are estimated using the Davidon-Fletcher-Powell and the
Newton-Raphson algorithms. Table 1A shows that there are no large
differences in the hyper-parameter values given by the three algorithms






except in case 3 between the Fibonacci and Newton-Raphson algorithms. This
discrepancy is reflected in table 1B showing that the mean squared error
between the simulated series and the estimated values favours the Fibonacci
algorithm. Both tables also indicate how the deterministic model
deteriorates if the series 1is generated from a random walk model with a
random drift (cases 3 and 4). Finally, the CPU time (in seconds) needed
for the various procedures is shown in table 1C. For Model One, the
Fibonaceci algorithm takes less time in cases 3 and 4. For Model Two, the
Davidon-Fletcher-Powell algorithm takes less time in cases 1 and 2.

The Newton-Raphson algorithm involves the evaluation of the second
derivatives of the log-likelihood function, the Davidon-Fletcher-Powell
algorithm involves the first derivatives and no derivatives are needed for
the Fibonacci line search. Mainly because of implementation considerations,
we selected the Fibonacci algorithm in Model One and the
Davidon-Fletcher-Powell algorithm for Model Two. These two algorithms are
applied on a larger set of values for the hyper-parameters in the next
section.

5.2 Validatjon of the models,

A larger study has been done to evaluate the performance of the two
stochastic and the deterministic models for the trading-day coefficients on
simulated data. The data were simulated with a fixed initial vector
ag = (-25, -20, -15, 20, 25, 30) and varying values of 02. azx/a2 and
a2¢/02. Each simulated series corresponds to a monthly series from January
1977 to December 1986. On a given set of data, the adjustment using the
three methods is compared with the adjustment using the true values of the
initial state vector and the hyper-parameters. The comparison criteria are
the estimates of the hyper-parameters and the mean squared error (MSE) of
the adjustment defined as:

120 &
MSE = 1/120 £ (y.-y.)?2 (S 1)
t=1
The significance 1level of the test procedure described in section 4.5 was

also computed. Results are presented in Table 2.

Cases 1 to 10 simulate the deterministic models 1i.e. ozx/a2 and
02¢/02 are zero. The true values are obtained by using the Kalman filter
and fixed interval smoother of Model Omne with ozx/a2 equal to zero. In the

deterministic model, the estimates of 02 are quite close to the actual
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values of o2, the MSE's are increasing as 02 increases but are all quite
low. In Model One most of the estimates of the hyper-parameter a?-x/a2 are
equal to .000313 which is the smallest value that could be obtained with
the Fibonacci algorithm using 16 evaluations of the log-likelihood
function. In all but case 10, the significance level of the test described
in section 4.5 is below 10%. In Model Two, all the estimates of the
hyper-parameters azx/a2 and 02¢/02 are zero. This is simply because the
algorithm did not move from its initial starting value, which {s obtained
by a grid search in the square delimited by the points (0,0), (0,.5),
GESEIRSand JG-5; .5) .

Cases 11 to 26 simulate the random walk model, i.e. Model One or
Model Two with 02¢/02 equal to zero. In those cases the true values are
obtained by using the Kalman filter and fixed interval smoother of Model
One with the actual values of the hyper-parameters and the initial state
vector. When the hyper-parameter azx/a2 is very small (Cases 11, 12, 16)
the deterministic model works well. In the other cases the deterministic
model deteriorates as azx/a2 Increases. The adjustment obtained with Model
One is quite good when the MSE is compared with the MSE of the true values.
As in the deterministic cases, the estimates of the hyper-parameters azx/a2
and 02¢/02 in Model Two did not move from their initial starting values.

Cases 27 to 42 simulate the random walk model with random drift
where azx/a2 equals zero in all cases. Although not shown here (for space
reasons) trading-day coefficients generated from this model where very
unrealistic. This 1is reflected in the MSE of the deterministic and Model
One adjustments. It has to be noticed that the estimate .99967 of the
hyper-parameter azx/02 in Model One is the largest value that could be
obtained with the Fibonacci algorithm with 16 measurements. Even if the
fit obtained under Model Two is acceptable in comparing the MSE with the
MSE under the true values the estimates of the hyper-parameters are usually
quite poor.

These results seem to indicate that for real applications the
random walk model (Model One) and the deterministic model should be
adequate for most of the cases observed.

5.3 Statistical Properties of the Estimation Method for the Random Walk
Model (Model One),

This section concentrates on the statistical properties of the
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estimation methods for the initial state vector ap and the hyper-parameters
”Zx/az and 0?2 of the random walk model. Three methods for the estimation
of the initial state vector gp were presented in section 4.3.1. From those
methods, five sets of estimates of the hyper-parameters are available. We
shall call them Method 4 to Method 8 and they are:
1) Method 4: Use ap and Py of Method 1 and estimate the hyper-parameters
applying the Fibonacci line search algorithm on the y series.
ii) Method 5: The hyper-parameters of the y series are estimated by the
estimated hyper-parameters of the w series used to derive agp in Method 2.
iii) Method 6: Using ap of Method 2, estimate the hyper-parameters
applying the Fibonacci algorithm on the y series.
iv) Method 7: Same as Method 5 but with Method 3 instead of Method 2
v) Method 8: Same as Method 6 but with Method 3 instead of Method 2.

A simulation is done by generating 100 replicates with fixed
@0 = (-0.8, -0.4, 0, 0.3, 0.6, 0.4), 02, /02-.0028 and o2-.21. Each
replicate is a time series of 120 observations corresponding to a monthly
series from January 1977 to December 1986. For each replicate the eight
methods, described above, are applied by taking the first five years and
adding one year at a time until the ten years are used. Since gp is a
vector, the mean absolute deviation (MAD) of ap defined by:

6
MAD - 1/6.2 lagi-a0il @5 32)

is computed for each method (1,2,3;-}n each replicate. The mean of the MAD
and the standard error of the mean by number of years of data used were
computed over all replicates. Results are given in Table 3A. The mean, the
standard error and the 95% confidence intervals of o2x/a2 are given in
Table 3B and 3C respectively. The mean and standard error of the mean of o2
are given in Table 3D.

Looking at Table 3A it might be surprising that the entries under
Method 1 are different, However, this occurs because the regression is
done over the first 36 non-outliers observations, and depending on the
length of the series the outliers are not the same. For the purpose of
estimating the initial state vector g, it can be seen that Methods 2 and 3
are much better than Method 1. Methods 2 and 3 are both comparable. The
advantage of Method 2 over Method 3 is that the former does not need the

evaluation of the initial state vector Q#O of the w series since it is set






. "

to zero.

From Table 3C it can be seen that the wvalue .0028 of the
hyper-parameter azx/a2 is contained in the confidence intervals of Method &4
(9 Years), Method 5 (All Years), Method 6 (All Years), Method 7 (77 "Ea™ 10
Years) and Method 8 (9 Years). Methods 4 and 8 (except 9 Years)
underestimate the parameter a2x/az. From Table 3B it has to be noted that
the standard errors for the mean for Methods 5 and 6 are larger than the
other methods. This explains why the confidence intervals under Methods 5
and 6 do contain the true value of .0028. The effect of the initial states
vectors a®; and ap, and their MSE matrices P#3 and Py can be seen by
comparing Method 5 with Method 7 and Method 6 with Method 8. 1In both cases
the mean of the estimates of the hyper-parameter under Methods 5 and 7 are
much larger than under Methods 6 and 8.

From Table 3D it is obvious that the estimator of 02 is biased
downward. Furthermore, the value .21 is not included in any of the 95%

sonfidence integvals gonstructed around the means.
6.. . Applisatipn.

The deterministic and the two stochastic models for the estimation
of the trading-day component were applied on a large sample of real series
affected by trading-day variations. The series belonged to the sectors of
Retail Trade, Wholesale Trade, Imports and Exports.

All the series were first seasonally adjusted using the X-11-ARIMA
method without ARIMA extrapolations and assuming the multiplicative model.
“herefore, the input y series is the irregular series I obtained from Table
B-13 and transformed by the following equation:

Vau: = (Lp /100 - 1)Ng (61D
where Ne is the number of days in month t.

The test procedures for the selection of the stochastic model lead,
in most cases, to the acceptance of the null hypothesis. Also, in most
cases, the estimation of the hyper- parameters azx/a2 and 02¢/02 under the
second stochastic model gave the initial starting value (0,0).

In this section we shall discuss two representative cases. The
first case is the series of Total Retail Trade Sales for Department Stores

in Canada (D650062) from January 1977 to December 1986 and the second case
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is the series of Total Retail Trade Sales for All Stores in Nova-Scotia
(D650350) from January 1977 to December 1986. The data (ref: equation 6.1)
for both series are given in Tables 4A and 4B.

Method 2 and Method 6 are selected for the estimation of the
initial state vector and hyper-parameters of the random walk model. The
hyper-parameters are computed with and without the outliers strategies
(section 4.4) using 8, 9 and 10 years of data for both series. The results
are given in Table 5.

It is apparent that the outliers replacement reduces the estimates
of the hyper-parameter azx/a2 since too large innovations will be reduced.
It can also be seen for the Total Retail Trade - Canada that the outliers
replacement stabilizes the estimates of azx/a2 (This was also noticed in
the other cases studied).

Graphs of the daily coefficients for both series are provided in
figures 1A and 1B. Clearly the random walk model, with or without
smoothing, allows for a moving behaviour of the daily coefficients. 1In the
case of total Retail Trade-Canada, the estimate of the hyper-parameter
azx/a2 has a value of .00031 and the smoothed daily coefficients are almost
a straight line. On the other hand, the hyper-parameter a2x/a2 of total
Retail Trade-Nova Scotia has a value of .00971 and the smoothed daily
coefficients show a well marked evolution through the years.

The trading-day coefficients and components were computed under the
deterministic and the random walk models with and without smoothing to
investigate their behaviour. Three tests of hypotheses were done; namely,
Hl) the trading-day components obtained under the random walk model with
smoothing are equal to the trading-day component under the deterministic
model, H2) the trading-day components obtained under the stochastic model
without smoothing are equal to the trading-day components obtained under
the deterministic model, and H3) the trading-day components obtained under
the random walk model without smoothing are equal to the trading-day
components obtained under the random walk model with smoothing. In the
above three hypotheses, the second set of coefficients was considered to be
known and fixed. Graphics for the three tests are provided in figure 2.
The wupper line (UL) and lower line (LL) give the-95% confidence intervals

defined as follows:
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UL = y¢2 - yf + 1.96(var(y, 2))1/2 (6.2)

LL = ye8 - yef - 1.96(var(ya))1/2
where for Hl, y¢? is the trading-day component under the random walk model
with smoothing and ytf is the estimated trading-day component under the
deterministic model. Similar equations are defined for H2 and H3. The
graphics show that when the hyper-parameter ozx/o2 is large (case D650350),
the hypotheses Hl and H2 are rejected. In fact, for Hl and H2 there are
respectively 13 and 12 time points excluding zero. Notice that there are
no trading-day components in February during non-leap year and this is why
the two lines meet at zero. For the D650062 series, none of the hypotheses
can be rejected.

Next a frequency demain analysis was conducted on the input series
and the trading-day adjusted series defined as the series obtained by
subtracting the estimated trading day component from the original series.
Three estimates of the trading-day component were compared, they are: the
deterministic, the random walk without smoothing and the random walk with
smoothing. Graphs of the spectral densities are given in figures 3A and
3B.

The spectral density of the input series are characterized by a
peak at the frequencies around .348. This is typical of such series as
shown by Cleveland and Devlin (1980).

For the series Total Retail Trade - Canada, the spectral densities
of the trading-day adjusted series are all similar and the power around the
.348 frequency has been removed from the three adjusted series. For this
series it does not seem that a more sophisticated method than the
deterministic model is needed to remove the trading-day component. This is
indicated by the small value of the estimate of ozx/o2 and by the spectral
densities of the adjusted series.

For the series Total Retail Trade - Nova Scotia, the powers at the
frequencies around .348 of the trading adjusted series are quite different.
It can be seen that the power at the .35 frequency is reduced from 37.66
for the original series to 6.97 for the deterministic model, to 3.65 for
the random walk without smoothing and to 2.84 for the random walk with

smoothing. -






7. Conclusions.

In this study a random walk model and a random walk model with
random drift for trading-day coefficients are introduced and compared with
the deterministic model used in X-11-ARIMA. We provide a solution to the
problem of estimating the hyper-parameters and initial conditions of the
stochastic models. A simulation with a large number of series indicated
that in real applications the random walk model and the deterministic model
should be adequate for most cases observed. The simulation also showed
that the MLE of 02 tends to be biased downward but the estimator of azx/a2
is unbiased in the random walk model.

Two real case studies are thoroughly discussed to illustrate where

the deterministic and the random walk models can be adequate.
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TABLE 1
Similation for Numerical Methods

1A Estimates of the Hyper-Parameters

Case Input el Model One Model Two

Fibo? R DFP* R

RRYRAYR R R Ay R A 2 2R AR R AR 202

. § 258 L0 0 22.44 20.10 .00031 19.98 .00023 19.97 O G A7 98§10 0
2 g5, 61 0 ,24.48-22.14 00631 21.90 .00023 24.32 O 0= 2010 1 /@ 0
B 5258 O .001 166.76 13.18 .38100 137.24 .00076 12.38 .25 @rwlil 851 .25 0
4 D Ol . G0 159.56 13,88 27350 14.78°.35526.12.80 .25 O 921294 |7, 25 0
(1) DM: Deterministic Model

(2) FIBO: Fibonacci Algorithm
3) W Newton-Raphson Algorithm
(4) DFP: Davidson-Fletcher-Powell Algorithm

1B. Mean Squared Error

Case IM Model One Model Two
FIRO MR DFF W
l, B (61 $ 1595 7 Wa3d - 2324
2 2,98 Bl  2.86, 2.8 2.73
3 10.72 3.43 9.73 3.40 3.47
4 10.64 8102 " (T30 G3k48, . 344
1C. SAS CPU Time (Secords)
Model One Model Two
Case IM FIBO R DFP R
11 iy 295 2,99 7262 21.98
2 -4 2:52 25 R 19181 22.09
3 e 2.53 25640 1982 15579
4 6y +2.53 16.01 19.74 15.81
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VALIDATION OF THE MODELS

Cage  TNPUT 5.L. $§2335 3?:?2;10 MODEL ONE MODEL TWO
ailo’ ;'02 o 82 MSE 8% MSE o;Toz 82 MSE o;(|o Toz o2 MSE
1 0 0 100 83.17 100.06 0 95.98 2.97 .000313 92.25 3.1z 0 0 . =8940, 39
2 0 0 100 97.16 87.18 0 84.10 2.69 .000313 79.79 2.81 0 ¢ PorEs- — .48
3 = 4 50 SERW GNeT O ki Va8 Tulges 3070 1 %7 0 (v e
4 8 .50, #5.58 5180, 0. 829" 1.5 LGORR: 40k .1 73 0 0 .- @i. 4’ Pl
5 4 "9 . 26 By AR 4 or . AMedde w86 bopabad 20080 . 85 0 0 - ' 20" et
6 0 0 2% 2858 sy - 9 WM 76 elesEs - 29es e 0 0 29.30 “4.08
7 0 r8 g 3.5 980 Rldeof ~288 sraoe- MGONaRE oalel s 0 0 233 .54
8 0 0 '2.5 61.69 2.47 0 2.45 .37 .000313 2.32° .40 0 0 2.28 .50
9 0 0= 7025 E8CE2 0222 0 0228 .023 <.000913 0216 ®2é 0 o . -.0088 . 0N
10 0 Troirreod B w0268 . 0 . S007F T 031 . B0Rs aaL- 1055 4 0 0  ,.0268 058
11 .00025 0 100 42.68 110.51 1.63 114.85 2.46 .000313 108.70 2.63 0 6~ Lofam 2380
12 .0005 0 50 93.84 48.01 1.14 51.33 1.71  .00093 45.80 1.73 0 0 " .m.65s 2032
L3, -00%: 0 98 82,64 29.03 .72 27.89 2.08 .00003 ¢ #5.38 ' 1.87 "o 0 % 2%.04 2208
& R 0° ~BET WIS, -y 49 - W.17-1.37Y O aapirr + ¥ o 0 0 2.34 .69
15~ @ 0 @28 GRa] v 5025 ., 14=- 4 B9 2806 1 lEa T TR | e 0 .052 T
16 .0025 0 100 57.53 96.29 2.90 106.72 2.96 .000313 101.15 2.64 u 0 98.60 3.69
1100 085 707 - 5D4i66.23 47007 2.00 '6LM48.3.34 00907 43R 9.32 0 0 . 51.99 2480
18 .01 0,425 488,70 26.85 11473 4legt3.76 JUBlL . 20 fa .S 0 il b ila . 7228
T S 0% 2.5 Nua 3Bl 9.27 .98 1t 083. 65 B4t R 1. 08—\ 25 0 I .96
20 .025 0 100 8.82 104.99 4.63 324.94 13.36 .0165 109.129 4.81 0 0 ledpes 708
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21
22
23
24
25
26
2,
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

O IR 0 OoOwaFo loliE | o, e O & e

y 2 - Cont'd.
2 VALIDATION OF THE MODELS
Sk e S?SEQ;IC MODEL ONE MODEL TWO

oi]o’ a* 8?2 MSE 82  MSE O;Toz o2 MSE o;To o‘;To’ o? MSE
(0] S0k 298] 'SZME). 4.26 1694 WQile .0372 61.09 4.47 0 0 98.09- /¢ (010]
0 25 26.47 19.58 3.17 20585 #183.02. . 062 221,52 320 25 0 13.64 3.22
0 2057 7039 2.87 1.36 2 )] ) g 2 | 4.82 1.39 5 0 4.31 1.36
o 100 0 89.97 758 198SEERcENa ol 0g - L1938 109.29 S 225 0 100.87 b7
0] S0 ..001 47.38 4,92 22371 44.79 .7385 35.61 4.96 a5 0 5738 4.99
(o) 25 12.85 24.59 4.21 6876.79 81.29 .999¢ 2L (0l I S TR 25 0 43.76 4.54
.00025 100 .13 110.73 4.79 | 3803.64 59,14 «».352 68.06 7.40 525 0 Si. 3% 7/ 8L c]
.0005 50 (0] 20, 23 2.62 6370 77.89 .36913 39.74 4.48 adS 0 33.65 4.27
~00I 25 0 18.80 3B~ 3222 S5-17" - 162 11.913 4.07 -9 0 N2NL7 4.02
<0 245 (0] 2.74 1524 *121140 44.83 .99967 5.18 JU- 0 . 005 3.35 It 1)
b { 202'S (0 -024 «134 3304 56.03 .99967 11.66 .620 1 .207 L0807 .1547
0025 100 0 72.44 5.06 10016 96.39 .99967 52457 e 103 .052 .001e6 58.00 5.54
. 005 50 0 51,34 4.50 32646 175.65 .99967 120.31 5.98 1 .06 11.59 S92
A(0)8 215 0 18.59 3.01 6873 80.05 .99967 25.49 3.84 928 .007 1213 3.95
(P 255 (0] 2.36 1.13 38311 190.78 .99967 90.43 1E63 .62 .047 2.29 1.33
4025 100 (0] 104.47 6.99 160899 390 .99967 365.76 8.52 .48 (o), 66.79 b7 2Nk
.05 50 0] 64.33 5.41 216242 453 99967 594,55 7.87 .41 .027 58.013 6.06
ol 25 (0] 24.95 4.05 220361 457 .99967 615 6.42 .79 B1L(0) 15.69 4.36
1 2R5 (0] 2.76 1,33 322922 554 «99967 12213 S0 1 .24 10.50 9870
+25 100 0 GO L7 8.69 4300301 2020 .99967 5445 15.99 1 .245 90, 92 920
1) 50 (0] S, 22 5.36 3775864 1894 «99967 10310 16.61 ] .278 85.02 6.01
1 25 0 23.88 4.49 801191 872 .99967 5007.86 11.79 1 .24 84.97 4.99
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. Table 3A

Mean and Standard Error of the Mean for MAD by
Number of Years and Methods

No. Method 1 Method 2 Method 3
Years Mean ST Mean Std Mean Std

9 .193 . 760 SESN SgovE .160 540
6 .194 .793 162" Sy 41624 . 561
. 7 .190 .782 1SSy, DI 157 .538
8 .189 .768 S0 - 4492 oI5l 526
9 .192 .762 149 489 J4oE-© 518
& 10 .193 .748 VG 490 .145 508
| Table 3B

A

Mean! and Standard Error of ithe Memx’2 for cr2x/o2 (.0028)
by Number of Years and Methods

Method 4 Method 5 Method 6 Method 7 Method 8

no.
_. Years Means SID Means SID Means SID Means SID Means SID
5 0.180 0.232 0.83 3.081 0.520 2.378 0.193 0.272 0.18 0.284
6 0.200 0.220 0.696 2.368 0.411 1.595 0.213 0.244 0.188 0.254
7 0217 O}2GE 0470 1.0083 0293 0.607 0.265 0.248 0.210 0.2%
| 8 0.224 0.201 0.409 0.772 0.252 0.428 0.254 0.244 0.205 0.231
| 9 0.253 0.228 0.398 0.637 0.257 0.38 0.291 0.302 0.232 0.287
10 0.242 0.192 0.371 0.704 0.244 0.409 0.262 0.230 0.207 0.251

(1) Entries have to be multiplied by 10-Z A
(2) Entries have to be multiplied by 10-3
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d Table 3C

. 95% Confidence Intervals! of o2, /02 (.0028)
by Number of Years and Methods

Method 4 Method 5 Method 6 Method 7 Method 8
No.
Years lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

0.135 0.226 0.230 1.438 0.05% 0.986 0.140 0.246 0.128 0.240
0.157 0.243 0.232 1.160 0.099 0.726 0.165 0.261 0.138 0.238
0.176 0.257 0.272 0.669 0.174 0.412 0.217 0.314 0.166 0.25
0.184 0.263 0.258 0.561 0.168 0.336 0.206 0.302 0.160 0.250
0.208 0.298 0.273 0.523 0.182 0.333 0.231 0.350 0.176 0.289
0.204 0.279 0.233 0.509 0.163 0.326 0.216 0.307 0.158 0.256

OW®~NOW

. 1

(1) Entries habe to be multiplied by 10-¢

Table 3D

Mean and Standard Errorl of the Mean for o2 (.21)
by Number of Years and Methods

Method 4 Method 5 Method 6 Method 7 Method 8

1o,
Years Means SID Means SID Means SID Means SID Means SID

.. 0.174 0.480 0.162 0.489 0.166 0.481 0.174 0.471 0.170 0.464
0.176 0.426 0.169 0.426 0.168 0.426 0.175 0.433 0.172 0.420
0.179 0.38 0.170 0.380 0.173 0.377 0.178 0.381 0.176 0.375
0.179 0.366 0.173 0.361 0.177 0.363 0.179 0.360 0.179 0.357
0.179 0.334 0.173 0.330 0.116 0.33% 0.178 0.328 0.177 0.333
0.179 0.299 0.173 0.299 0.177 0.302 0.178 0.302 0.178 0.299

O VWO W

(1) Entries have to be muiltiplied by 10-Z






Table 4A

T05). S

Total Retail Trade Sales - Department Stores -Canada

Transformed Irregular Seriesl

Year Jan Fev Mar Apr May Jun Jul Aug Sep Oct Nov Dec
77 -225 270 -243 871 -721 -765 234 288 490 -562 309 -173
/8 -338 65 810 -315 81 -31 -827 -202. 1473 -652 78 217
79 -396 -731 1833 -1233 168 119 -6551230 -598 -12 102 -585
80 962 470 -780 -440 1181 -1680 938 -8 170 248 -600 -565
8l 1955 -437 -1076 352 -358 611 -149 -273 -317 1014 -362 298
82 -315 105 -569 603 -273 -642 623 -270 421 -370 -157 481
83 -240 -24 1476 -1735 -1455 1630 104 8 215 -353 -649 886
8 -719 897 63 -9%41 -27 1143 -1006 -222 293 -213 830 -514
85 118 -504 537 257 528 -1401 -090 1451 -995 -116 756 -676
86 738 -603 -87 492 1390 -1917 453 100 -191 436 -405 214
(1) Entries have to be miltiplied by 10-3

Table 4B

Total Retail Trade Sales - All Stores - Nova Scotia

Transformed Irregular Seriesl

Year Jan Fev Mar Apr May Jun Jul Aug Sep Oct Nov Dec
77 161 -220 -300 - 576 ' -641 -363 480 -583 447 -223 U2 . 693
78 -883 -3 243 -559 -11 558 -182 -99 585 -503 -155 -36
794 292 428y | 936 <1113 I1 1062 -921: 1344 -1287 -230 113  -954
80 44 712 -75% -136 1212 -903 -62 488 -275 696 -333 -1167
gl*" 730 0%, -657 695, 4090 -651 233 11 -817 514 -239 490
82 8 -443 -230 1251 -1097 0 682 -732 293 -168 -177 874
83 -563 -796 1613 -640 -1307 1451 73 -513 639 -739 -631 958
84 -865 638 407 -552 330 795 -1350 383 -206 -337 910 -928
85 693 -288 285 186 128 -475 -139 1008 -865 30 530 -1289
86 15164 161 -1202 705 608 -438 -184 -788 393 777 -640 -19%

(1) Entries have to be multiplied by 10-3
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Table 5

Hyper Parameters Estimates

Total Retail Trade Sales Total Retail Trade Sales
Department Stores - Canada All Stores - Nova Scotia

Without Replacement With Replacement Without Replacement With Replacement
of Outliers of Outliers of Outliers of Outliers

no.
Years B /7 o BgZ L gl 2 2T

8 0.01033 0.21730 0.00031 0.21760 0.03225 0.09530 0.02098 0.09670
9 0.00407 0.24340 0.00031 0.20680 0.02912 0.09880 0.01158 0.10890
10 0.00031 0.26330 0.00031 0.20480 0.02098 0.11360 0.00971 0.12230
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FIGURES 1A
D650062 - DEPARTMENT STORES - CANADA
TRADING- DAY COEFFICIENTS
——— deterministic
----3 random walk without smoothing
TT==! random walk with smoothing
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FIGURES 18
D650350 — TOTAL RETAIL TRADE SALES - NOVA SCOTIA
TRADING-DAY COEFFICIENTS
: deferministic
ceeereneel random-wolk without smoothing
~===:i random walk with smoothing
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FIGURES 2
TEST OF HYPOTHESES
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SPECTRAL DENSITIES
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