
11 

11-614 
no.88-03 •c. 2  

S 



. 

. 

0 



H- 	T( 
C , ' 

- 	Working Paper No TSRAD-88-003E 

Time Series Research and Analysis Division 

Methodology Branch 

DETERMINISTIC AND STOCHASTIC MODELS 

FOR THE 

ESTIMATION OF TRADING-DAY VARIATIONS 

by 

Estela Bee Dagum and Benoit Quenneville 

STATISTICS STATISTIQUE 
CANADA 	CANADA 

o APR28 
AVR 	.1998 

LIBRARY 
BIBLIOTH EOUE 

Time Series Research & Analysis Division 

13-K, R.H. Coats Bldg. 

Statistics Canada 

Ottawa (Ontario) 

Canada 

K1A OT6 

January, 1988. 

Invited paper presented at the IV Annual Research Conference of the U.S. 

Bureau of the Census, March 1988. 

0 



. 

. 

0 



- I - 

ABSTRACT 

DETERMINISTIC AND STOCHASTIC MODELS FOR THE ESTIHATION OF 

TRADING-DAY VARIATIONS 

by 

Estela Bee Dagum and Benoit Quenneville 

Statistics Canada 

A large class of flows and stocks series related to production, 

shipments, sales and inventories are affected by trading-day or calendar 

variations. Trading-day variations represent the "within-month variations" 

due to the number of times a particular day or days of the week occur in a 

calendar month. These variations are systematic and may strongly influence 

month-to-month comparisons. Whenever present they must be removed together 

with seasonality to obtain a clear signal of the short-term trend-cycle 

component, which is used for decision making by socio-economic players. 

The X-ll-ARIMA (Daguin, 1980) and the Census Method II-X-ll variant 

•  (Shiskin, Young and Musgrave, 1967) use the deterministic trading-day model 

developed by Young (1965). This model assumes that the daily weights and 

the weekly pattern remain constant throughout the chosen span of the 

series. For some socio-economic time series this assumption might be 

questionable. 

This paper presents two stochastic models for trading-day variations 

that allow a moving behavior of the daily coefficients. The estimation 

method is discussed and the deterministic and stochastic models are applied 

on both simulated and real series. 
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. 	 RESUME 

MODELES DETERMINISTE ET STOC}IASTIQUES POUR L'ESTINATION DE 

LA COMPOSANTE DE ROTATION DES JOURS 

par 

Estela Bee Dagum et Benoit Quenneville 

Statistique Canada 

Un grand noaibre de series de flux et de stock relies a la production, 

ventes et inventaires sont affectées par la rotation des jours ou l'effet 

du calendrier. La composante de rotation des jours représente les 

variations intra-inensuelles causées par la distribution des jours dans le 

xnois (ex: 4 lundis,..., 4 vendredis, 5 samedis et S dirnanches dans un mois 

de 30 jours). Ces variations sont systématiques et peuvent forternent 

influecees les comparaisons entre les rnois. Ainsi, lorsque ces variations 

sont présentes dans une série, elles doivent étre identifiées avec la 

• 	saisonnalité pour obtenir un estiiné plus précis de la tendance-cycle. 

•  Les méthodes Xll-ARMMI (Dagum, 1980) et Xli (Shiskin, Young et 

Musgrave, 1967) utilisent un modéle déterministe pour l'estimation de la 

composante de rotation des jours developpe par Young (1965). Ce modèle 

assume que les poids des jours et leur patron hebdomadaire restent 

constants a travers une période pré-déterminee de la sérle. Pour certaines 

series socio-éconoiniques cette hypothese peut étre discutable. 

Cet article presente deux modèles stochastiques pour l'estirnation de la 

composante de rotation des jours. La méthode d'estirnation est discutée et 

les modèles déterministes et stochastiques sont appliqués sur des series 

simulées et réelles. 
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0 
	I. Introduction. 

A large class of flows and stocks series related to production, 

shipments, sales and inventories are affected by trading-day or calendar 

variations. Trading-day variations represent the "within-month variations" 

due to the number of times a particular day or days of the week occur in a 

calendar month. These variations are systematic and may strongly influence 

month-to-month comparisons. Whenever present, they must be removed 

together with seasonality to obtain a clear signal of the short-term trend 

(trend-cycle) of the series. 

The X-ll-ARIMA (Dagum, 1980) and the Census Method II-X-ll variant 

(Shiskin, Young and Musgrave, 1967) estimate trading-day variations using a 

simple regression model developed by Young (1965). This model assumes a 

deterministic behaviour in the sense that the daily weights and the weekly 

pattern remain constant throughout the chosen span of the series. For some 

socio-economjc time series, however, this assumption may be too restrictive 

and a stochastic model for trading-day variations be more adequate. 

The main purpose of this study is to introduce two stochastic 

models of trading-day variations for gradually moving daily coefficients. 

Section 2 gives a definition of trading-day variations. The two stochastic 

models are discussed in section 3 together with the deterministic model. 

Section 4 deals with the estimation procedure of the stochastic models. In 

Section 5, the deterministic and the two stochastic trading-day variation 

models are tested on simulated data. In section 6, the three models are 

applied to two real series affected by trading-day variations. Finally, 

section 7 gives the conclusions of this study. 
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2. Definition of Trading-Day Variations. 

Let 	1-1,2,...,7 represent the effects of daily activity on 

Monday, Tuesday,..., and Sunday in month t. The overall effect attributed 

to the number of times each day of the week occurs in month t defines what 

is known as trading-day variations or effects. That is, 

7 
Et - E itXit 	 (2.1) 

i-i 
where Xj 	i-i,. ..,7 denotes respectively, the 	number 	of 	Mondays, 
Tuesdays,..., and Sundays in month t. 

7 
Let 	- 1/7E ejt be the average of the daily effects and X be the 

i-i 
number of days in month t. Then we can reparametrize (2.1) as follows: 

6 
E - E(it - t)(Xit -x70 + t(xt-365.25/12) + 	( 36525/12 ) 	(2.2) 

i-i 
Equation (2.2) decomposes the overall effect Et in three parts: (i) The 

trading-day effect, (ii) the length-of-month effect and (iii) the month 

effect. 

The trading-day effect in month t is given by the first term of 

equation (2.2), that is: 

6 
Dt - E(jt - t)(Xjt-X70 	(2.3) 

i-i 
If all the cit's are equal, there is no trading-day effect. Similarly, for 

the month of February, except in leap year, Xj-X7 i-i, .. . ,6, and there is 

no trading-day effect. 	For notational convenience, let 6it - it - t 
i-1,.. .,6 and Tit - Xjt -X7. 	The 6i t 's represent the difference between 

the Monday, Tuesday,..., and Saturday effects it and the average of the 

daily effects Tt , for month t. The difference between the Sunday effect 
6 

and the average of the daily effects is j7 - et - 	6 it 
i-1 

The second term t(Xt - 365.25/12) represents the length of month 

effect and is usually attributed to seasonality. 

Finally, the third term et( 3 65.25/12) represents the average effect 

in month t if all the months would be of equal length and is usually 

attributed to the trend-cycle component. 
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Under the assumption that the trend-cycle and seasonal variations 

have been adequately estimated and removed from the data, the trading-day 

effects definition (2.1) reduces to definition (2.3), i.e. Et-Dt. 

3. Deterministic and Stochastic Models for Trading-day Coefficients or 

Daily Weights. 

Given a time series, say Yt'  where already the trend-cycle and 

seasonal fluctuations have been removed, we assume: 

yt - Dt + et, 	t-1,.. .,T 	(3.1) 
where etNID(O,or2 ) and T is the number of observations. 

In this section, we introduce three models for the estimation of 

Dt, namely, a deterministic model, a random walk model and a random walk 

model with a random drift. 

The deterministic trading-day variations model developed by Young 

(1965) assumes that 6 j - t for all t. In this case, equation (2.3) 

reduces to: 

	

Dt - ESiTit 	 (3.2) 

where the 6's are considered as fixed parameters and estimated using 

ordinary least squares (OLS). 

The random walk model proposed by Monsell (1983), can be written as 

follows: 

6 
Dt 	E 6 1 jtTit 	(3.3.a) 

i-1 
with 

	

- 1 t-1 + Xt 	(3.3.b) 
where 

t - (611,.. ' 16t)' 	(3.4.a) 

	

- (Xlt , ...,x6t)' 	(3.4.b) 

	

NID(O , a2xI6). 	(3.4.c) 

Here, 16 is the identity matrix of order 6. 

Finally, the second stochastic model discussed in this paper 

assumes that the vector of daily coefficients follows a random walk model 

with a random drift. That is: 



. 

0 



-4- 

D 	... E62. tTit (3.5.a) 

with 

- 	 2 t-1 + 	t-1 +Xt (3.5.b) 

Pt - 	t-1 + 1t (3.5.c) 

where 

- 	 ( 2 1t , • .,8 2 6t) (3.6.a) 

At 	- 	(P1t...,P6t) (3.6.b) 

Xt - 	 (Xlt , .. . .X6) (3.6.c) 

tt - 	(lt..• 	•'6t) (3.6.d) 

NID(O , a2X1 6) (3.6.e) 

NID(O,a 2 I6) (3.6.f) 

Here Xt and 	t  are mutually 	independent. 	Equations 	(3.5.b) 	and 

(3.5.c) 	give a 	local 	approximation 	to 	a 	linear 	trend 	in the daily 

coefficients. The level and slope of the trend are assumed to be 	generated 
by stochastic processes. 

The two stochastic models (3.3.b) and (3.5.b-3.5.c) are written in 

state-space forms and the estimates of §i t  i-1,2, together 

squared error 

with their 	mean 

matrices are estimated 	with 	the 	Kalman 	filter. 	Smoothed 
estimated are obtained using the fixed interval smoother. Finally, maximum 

likelihood 	estimators 	are used to estimate the remaining hyper-paraineters 

02 	C2X1a2 and 

4. Estimation of the Stochastic Models, 

The estimation of the stochastic models is made using the Kalman 

filter and the fixed interval smoother. A brief description of these two 

now follows. 

4.1 The Kalinan Filter and Fixed Interval Smoother. 

The state space model consists of a measurement equation, namely, 

	

Yt - 	+ €, t-1,...,T 	(4.1) 

and a transition equation, namely, 

+ .t' t-1,. . . ,T 	(4.2) 

where at is an mxl state vector, z t  is a mxl fixed-vector, C is a fixed mxm 

• 	matrix and the errors € and 	are independent. It is further assumed that 

( t-NID(O,0 2 ) and rzt-NID(0,0 2Q) where Q is a fixed mxm matrix and a2 is a 
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• 	scalar. Although Q  may depend on unknown parameters it is regarded as 

being fixed and known for the purpose of the Kalman filter. 

Let 	be the minimum mean squared estimator (MMSE) of t..l based 

on all the information up to and including t-1, and let a 2Pti be the MSE 

matrix of t-l' i.e., the covariance matrix of at..l -at.1. The MMSE of at, 

given t-1 and pt-i , is then given by: 

tIt-1 - G..1 	 (4.3) 

with MSE matrix: 

Ptiti - GP1G + Q. 	(4.4) 

Once yt becomes available, this estimator of q t  can be updated as follows: 

it - 	[-1 + Ptit.i&tvt/ft 	(4.5) 
with MSE matrix: 

Pt 	t1t -1  - tIt-].t&t'PtItl/ft 	(4.6) 
where 

It - Yt 	t'.tlt-1 	(4.7) 

ft -  t't1t-lt + 1. 	(4.8) 

Starting values ao and P0 are needed to implement the Kalman filter given 

by (6.3) to (4.8). 
W 	 The Kalman filter yields the MNSE of a t , given the information 

available up to time t. However, once all the observations are available, 

a better estimator can be obtained. One of the techniques for computing 

such estimators is the fixed interval smoother. The fixed interval 

smoother is a set of recursions which start with the Kalman filter 

estimates AT and FT, and work backwards. If atIT and 02tT' denote the 

smoothed estimate and its covariance matrix, the smoothing equation is 

given by: 

tJT - it + p*(a 	- °t) 	(4.9) 

with 

tIT - 	
+ p*(pp)(p*) 	

(4.10) 
where 

- PtG'(Pt+11t) 1 . 	(4.11) 

4.2 State Space Rei,resentation of the Two Stochastic Models. 

A convenient state-space representation of the random walk 

stochastic model for the trading-day coefficients (3.3) and (3.4) along 

. 

	

	with equation (3.1) is obtained through the following equivalences with the 

transition equation (4.2) and the measurement equation (4.1): 
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- .&1 t, z.'t - (Tit,...,T6t), et - et, 	(4.12) 
w 	 C - 16, t - xt and Q - 02x/a21 6. 

For the random walk model with a random drift, described by 

equations (3.5) and (3.6), the equivalences are given by: 
.qt , 	rr2 ' 	' 1 	 ,'' 	 T 	" ' 12. t , 	t i, A 	h - 	1t,. 	' 6t'6 	' 	t 	et, 

	

C ."[

161 16, flt - 	and Q - k2x/a216 	0 	1 
o '6 	tj 	[ ° 

	a2 /a 2 I6J 	(4.13) 

It is clear from (4.12) and (4.13) that Q depends on the unknown 

parameters a 2X/02  in the first model, and a 2X/c72  and a 2 /c 2  in the second 

model. These parameters along with a 2  are called hyper-parameters since 

they represent the parameters of the a-priori distribution of the state 

vector. Their estimation as well as the estimation of the initial 

conditions go and P0 are discussed in the next section. 
4,3 Estimation of the Initial Conditions and the Hyper-Parameters, 

4.3.1 Estimation of the Initial Conditions. 

One way of deriving the initial estimate 10 of cto with its 
covariance matrix a 2P0 is by assuming that the state vectors a t  are 

. 

	

	deterministic instead of stochastic over the first K observations. This 

leads to the regression model (3.2) for the random walk model and to 

+ t0 for the second stochastic model. The estimated covariance 

matrix of po from the regression provides an estimate of c2P0 from which P0 

is easily obtained. We will refer to this approach as Method 1. 

There are two other ways of estimating 20 and P0 for the random 

walk model. These follow: 

Method 2: First we define a new series wtyT..t+l. 	The w series is 

obtained by reversing the order of the y's series; that is, wl -yT, w2-yT.1 
and so on until wT-yl. The random walk model for the trading day 

coefficients is fitted to the w series. The Kalman filter is applied on 

this transformed series to predict go as T+lIT and P0 as P#T+1IT where 
a#t  and P are the estimates of the state vectors and covariance matrices 

of the w series. In applying the Kalman filter to this transformed series, 

the initial estimate of the state vector a#O is taken to be equal to 0-6 

p#0 equal to k16 where k is a large constant (21 in the simulation 

discussed in section 5) and the hyper-parameters of the w series are 

• 	computed using the method described in section 4.3.2. 

Method 3: 	Same as method 2, but with q#O and P0 estimated as in method 1 
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• 	using the w series. 

4.3.2 Estimation of the Hyper-Parameters. 

Maximum Likelihood Estimators (MLE) are considered for the 

estimation of the hyper-parameters. Using the prediction error 

decomposition (Harvey 1981), the likelihood function, L, can be written in 

the form: 

T 	T 
-2logL - Tlog2r + Tloga 2  + E logf + ci 2E v2 t/ft 	(4.14) 

	

t.-1 	t.-1 
where T is the number of observations and Vt and ft are defined by (4.7) 

and (4.8). 

A 

Differentiation of (4.14) with respect to a leads to a 2  , the MLE 
of a2 , given by: 

A 	 T 

	

- TE v2t/f 	 (4.15) 
t-1 

The 	scalar parameter, a 2 , may be concentrated out of the 

log-likelihood function leaving the concentrated log-likelihood function: 

-2logL0  - Tlog2ir + T +Tlogc 2  +Elogf 	(4.16) 

•  Numerical optimization has to be carried out with respect to the 

remaining parameters (a2 /a 2  for the first model and a 2 /c 2 , a2*1a2  for the 

second model) to minimize the right hand side of the equation (4.16). This 

can be done by using the Fibonacci line search method for the random walk 

model and the Davidon-Fletcher-Powell algorithm (Bazaraa and Shetly, 1979) 

for the random walk model with random drift. In both cases the parameters 

are bounded between 0 and 1. For the random walk model, this assumes that 

the noise in the signal p t  is less than the noise in the measurements Yt• 

4.4 Outliers detection and accomodation. 

In practice, the hyper-parameters are estimated from the data and 

the Kalman filter is used conditional on the estimated values of the 

• hyper-parameters. In the application of the first stochastic model to real 

series (section 6), we found that outliers in the data strongly influence 

the estimation of both the hyper-parameters and the state vectors. In both 

• 	cases, a strategy for outliers detection and accommodation has to be used. 

Whenever an observation is identified as an outlier, its innovation 

(Vt) is set equal to its expectation, namely zero, and the Kalman gain 
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• 	(Ptit..i&t/f) is also set to zero. That is, the observation is treated as 

if it was missing but counted in the total number of observations. 

Once the hyper-parameters are estimated, an estimate of a2 is 

available. It can be shown that the innovation sequence vt-NID(0,02ft). 

The outlier identification for the purpose of estimating the state vector 

t is straightforward. Any observation whose innovation is outside a 

confidence interval (2.5Qf 1/2  in the application described in section 6) 

built around zero is declared an outlier and its value is set equal to its 

closest bound. 

4.5 A Test Procedure for the Selection of the Stochastic Model. 

Based on the assumption that the daily coefficients change slowly 

through time, the initial state vector is obtained with Method 1 of section 

4.3. A test procedure to select the more adequate stochastic model for a 

given series is applied. The test is based on the hypothesis that P0 - Q 

in the initial state vector which is estimated assuming deterministic 

coefficients over the first K observations. 	(K-.36 in the Application 
section). 	Such a test is easily performed and it is not discussed any 

longer (ref. Drapper and Smith (1981) section 2.10). 

5. Simulations. 

5.1 Numerical Methods for the Estimation of the Hyper-Parameters, 

Given the importance of the hyper-parameters value in the 

estimation procedure of the two stochastic models a pilot test was carried 

out for three well known algorithms on a set of four simulated series with 

different values of a 2xla2  and a2 /a2 . The series were generated using the 

initial state vector ao  - (- 25, -20, -15, 20, 25, 30) and or 2-25. The 

numerical methods were programmed with SAS using PROC MATRIX. 

Table 1A shows the hyper-parameter values obtained for the three 

models, deterministic, random walk (called Model One) and random walk with 

a random drift (called Model Two). The deterministic model is estimated 

with the regression approach, the Model One hyper-parameters are estimated 

with the Fibonacci line search and Newton-Raphson; the Model Two 

hyper-parameters are estimated using the Davidon-Fletcher-Powell and the 

. 	Newton-Raphson algorithms. Table LA shows that there are no large 

differences in the hyper-parameter values given by the three algorithms 
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• 	except in case 3 between the Fibonacci and Newton-Raphson algorithms. This 

discrepancy is reflected in table lB showing that the mean squared error 

between the simulated series and the estimated values favours the Fibonaccj 

algorithm. Roth tables also indicate how the deterministic model 

deteriorates if the series is generated from a random walk model with a 

random drift (cases 3 and 4). Finally, the CPU time (in seconds) needed 

for the various procedures is shown in table 1C. For Model One, the 

Fibonacci algorithm takes less time in cases 3 and 4. For Model Two, the 

Davidon-Fletcher-powell algorithm takes less time in cases 1 and 2. 

•  The Newton-Raphson algorithm involves the evaluation of the second 

derivatives of the log-likelihood function, the Davidon-Fletcher-powell 

algorithm involves the first derivatives and no derivatives are needed for 

the Fibonacci line search. Mainly because of implementation considerations, 

we selected the Fibonacci algorithm in Model One and the 

Davidon-Fletcher-powell algorithm for Model Two. These two algorithms are 

applied on a larger set of values for the hyper-parameters in the next 

section. 

. 	5.2 Validation of the models. 

A larger study has been done to evaluate the performance of the two 

stochastic and the deterministic models for the trading-day coefficients on 

simulated data. The data were simulated with a fixed initial vector 

go — (- 25, -20, -15, 20, 25, 30) and varying values of a2, 021cj2 and 

Each simulated series corresponds to a monthly series from January 

1977 to December 1986. On a given set of data, the adjustment using the 

three methods is compared with the adjustment using the true values of the 

initial state vector and the hyper-parameters. The comparison criteria are 

the estimates of the hyper-parameters and the mean squared error (MSE) of 

the adjustment defined as: 

120 	A 

MSE — 1/120 E Yt - Yt) 2 	(5.1) 
t-1 

The significance level of the test procedure described in section 4.5 was 

also computed. Results are presented in Table 2. 

Cases 1 to 10 simulate the deterministic models i.e. 	02x/a2 and 

are zero. The true values are obtained by tising the Kalman filter 

and fixed interval smoother of Model One with c 2 /a2  equal to zero. In the 

deterministic model, the estimates of a 2  are quite close to the actual 
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. 	values of a 2 , the MSE's are increasing as a 2  increases but are all quite 

low. In Model One most of the estimates of the hyper-parameter 02X/C 2  are 

equal to .000313 which is the smallest value that could be obtained with 

the Fibonacci algorithm using 16 evaluations of the log-likelihood 

function. In all but case 10, the significance level of the test described 

in section 4.5 is below 10%. In Model Two, all the estimates of the 

hyper-parameters a 2 /a 2  and a 2 /c 2  are zero. This is simply because the 

algorithm did not move from its initial starting value, which is obtained 

by a grid search in the square delimited by the points (0,0), (0,.5), 

(.5,0)and(.5,.5). 

Cases 11 to 26 simulate the random walk model, i.e. Model One or 

Model Two with o 2 1a 2  equal to zero. In those cases the true values are 

obtained by using the Kalman filter and fixed interval smoother of Model 

One with the actual values of the hyper-parameters and the initial state 

vector. When the hyper-parameter c72X/c2 is very small (Cases 11, 12, 16) 

the deterministic model works well. In the other cases the deterministic 

model deteriorates as a 2 10 2  increases. The adjustment obtained with Model 

. One is quite good when the MSE is compared with the MSE of the true values. 

As in the deterministic cases, the estimates of the hyper-parameters a2/a2 

and a 2 102  in Model Two did not move from their initial starting values. 

Cases 27 to 42 simulate the random walk model with random drift 

where o 2 /02  equals zero in all cases. Although not shown here (for space 

reasons) trading-day coefficients generated from this model where very 

unrealistic. This is reflected in the MSE of the deterministic and Model 

One adjustments. It has to be noticed that the estimate .99967 of the 

hyper-parameter a 2 /a2  in Model One is the largest value that could be 

obtained with the Fibonacci algorithm with 16 measurements. Even if the 

fit obtained under Model Two is acceptable in comparing the MSE with the 

MSE under the true values the estimates of the hyper-parameters are usually 

quite poor. 

These results seem to indicate that for real applications the 

random walk model (Model One) and the deterministic model should be 

adequate for most of the cases observed. 

5.3 Statistical Properties of the Estimation Metho-d for the Random Walk 

S Model (Model One). 

This section concentrates on the statistical properties of the 
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estimation methods for the initial state vector gj and the hyper-parameters 

(72X/02 and a2 of the random walk model. Three methods for the estimation 

of the initial state vector gt were presented in section 4.3.1. From those 

methods, five sets of estimates of the hyper-parameters are available. We 

shall call them Method 4 to Method 8 and they are: 

tethod 4: Use go and P0 of Method 1 and estimate the hyper-paraineters 
applying the Fibonacci line search algorithm on the y series. 

Method 5: The hyper-parameters of the y series are estimated by the 

estimated hyper-parameters of the w series used to derive go in Method 2. 

Method 6: 	Using Ao  of Method 2, estimate the hyper-parameters 
applying the Fibonacci algorithm on the y series. 

Method 7: Same as Method 5 but with Method 3 instead of Method 2. 

Method 8: Same as Method 6 but with Method 3 instead of Method 2. 

A simulation is done by generating 100 replicates with fixed 

go - (- 0.8, -0.4, 0, 0.3, 0.6, 0.4), a 2x/a 2_. 0028  and a 2-.21. Each 

replicate is a time series of 120 observations corresponding to a monthly 

series from January 1977 to December 1986. For each replicate the eight 

methods, described above, are applied by taking the first five years and 

adding one year at a time until the ten years are used. Since 20 is a 

vector, the mean absolute deviation (MAD) of ao  defined by: 
6 

MAD - 1/6 E IaOi - aoiI 	 (5.2) 
i-i 

is computed for each method (1,2,3) in each replicate. The mean of the MAD 

and the standard error of the mean by number of years of data used were 

computed over all replicates. Results are given in Table 3A. The mean, the 

standard error and the 95% confidence intervals of a2X/c 2  are given in 

Table 3B and 3C respectively. The mean and standard error of the mean of a2 

are given in Table 3D. 

Looking at Table 3A it might be surprising that the entries under 

Method 1 are different. However, this occurs because the regression is 

done over the first 36 non-outliers observations, and depending on the 

length of the series the outliers are not the same. For the purpose of 

estimating the initial state vector 20, it can be seen that Methods 2 and 3 

are much better than Method 1. Methods 2 and 3 are both comparable. The 

advantage of Method 2 over Method 3 is that the former does not need the 

evaluation of the initial state vector of the w series since it is set 
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10 	to zero. 

From Table 3C it can be seen that the value .0028 of the 

hyper-parameter a2 > /or2 is contained in the confidence intervals of Method 4 

(9 Years), Method 5 (All Years), Method 6 (All Years), Method 7 (7 to 10 

Years) and Method 8 (9 Years). Methods 4 and 8 (except 9 Years) 

underestimate the parameter a 2 /a 2 . From Table 3B it has to be noted that 

the standard errors for the mean for Methods 5 and 6 are larger than the 

ther methods. This explains why the confidence intervals under Methods 5 

nd 6 do contain the true value of .0028. The effect of the initial states 

ectors and go, and their MSE matrices P#0  and P0 can be seen by 

comparing Method 5 with Method 7 and Method 6 with Method 8. In both cases 

the mean of the estimates of the hyper-parameter under Methods 5 and 7 are 

much larger than under Methods 6 and 8. 

From Table 3D it is obvious that the estimator of a 2  is biased 
1nwnwir1. Furthermore, the value .21 is not included in any of the 95% 

r'nfidence inrervi1s constructed ar)und the means 

6. Application. 

The deterministic and the two stochastic models for the estimation 

ot the trading-day component were applied on a large sample of real series 

iffected by trading-day variations. The series belonged to the sectors of 

rade, Wholesale Trade, Imports and Exports. 

All the series were first seasonally adjusted using the X-ll-ARIMA 

method without ARIMA extrapolations and assuming the multiplicative model. 

herefore, the input y series is the irregular series I obtained from Table 

B-13 and transformed by the following equation: 

Vt - (' t/100 - 1)Nt 	(6.1) 

where N is the number of clays in month t. 

The test procedures for the selection of the stochastic model lead, 

in most cases, to the acceptance of the null hypothesis. Also, in most 

cases, the estimation of the hyper- parameters a 2X/C 2  and c2 1a2  under the 

second stochastic model gave the initial starting value (0,0). 

In this section we shall discuss two representative cases. The 

. 

	

first case is the series of Total Retail Trade Sales for Department Stores 

in Canada (D650062) from January 1977 to December 1986 and the second case 
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. 	is the series of Total Retail Trade Sales for All Stores in Nova-Scotia 

(D650350) from January 1977 to December 1986. The data (ref: equation 6.1) 

for both series are given in Tables 4A and 4B. 

Method 2 and Method 6 are selected for the estimation of the 

initial state vector and hyper-parameters of the random walk model. The 

' 	hyper-parameters are computed with and without the outliers strategies 

(section 4.4) using 8, 9 and 10 years of data for both series. The results 

are given in Table 5. 

It is apparent that the outliers replacement reduces the estimates 

of the hyper-parameter a2X/a 2  since too large innovations will be reduced. 

'  It can also be seen for the Total Retail Trade - Canada that the outliers 

replacement stabilizes the estimates of a2 /a 2  (This was also noticed in 

the other cases studied). 

Graphs of the daily coefficients for both series are provided in 

figures lA and lB. Clearly the random walk model, with or without 

smoothing, allows for a moving behaviour of the daily coefficients. In the 

case of total Retail Trade-Canada, the estimate of the hyper-parameter 

. 	has a value of .00031 and the smoothed daily coefficients are almost 

a straight line. On the other hand, the hyper-paraineter c2X/a2  of total 

Retail Trade-Nova Scotia has a value of .00971 and the smoothed daily 

coefficients show a well marked evolution through the years. 

The trading-day coefficients and components were computed under the 

deterministic and the random walk models with and without smoothing to 

investigate their behaviour. Three tests of hypotheses were done; namely, 

Hi) the trading-day components obtained under the random walk model with 

smoothing are equal to the trading-day component under the deterministic 

model, H2) the trading-day components obtained under the stochastic model 

without smoothing are equal to the trading-day components obtained under 

the deterministic model, and H3) the trading-day components obtained under 

the random walk model without smoothing are equal to the trading-day 

components obtained under the random walk model with smoothing. In the 

above three hypotheses, the second set of coefficients was considered to be 

known and fixed. Graphics for the three tests are provided in figure 2. 

The upper line (UL) and lower line (LL) give the-95% confidence intervals 

defined as follows: 



. 
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UL - ya - 	+ 1.96(var(y ta)) 1/2 	(6.2) 
LL - ya - 	- 1.96(var(yta)) 1/2  

where for Hi, ya is the trading-day component under the random walk model 

with smoothing and yf is the estimated trading-day component under the 

deterministic model. Similar equations are defined for H2 and H3. The 

graphics show that when the hyper-parameter a 2X/02  is large (case D650350), 

the hypotheses Hi and H2 are rejected. In fact, for Hl and H2 there are 

respectively 13 and 12 time points excluding zero. Notice that there are 

no trading-day components in February during non-leap year and this is why 

the two lines meet at zero. For the D650062 series, none of the hypotheses 

can be rejected. 

Next a frequency demain analysis was conducted on the input series 

and the trading-day adjusted series defined as the series obtained by 

subtracting the estimated trading day component from the original series. 

Three estimates of the trading-day component were compared, they are: the 

deterministic, the random walk without smoothing and the random walk with 

smoothing. 	Graphs of the spectral densities are given in figures 3A and 

3g. 
W 	

The spectral density of the input series are characterized by a 

peak at the frequencies around .348. This is typical of such series as 

shown by Cleveland and Devlin (1980). 

For the series Total Retail Trade - Canada, the spectral densities 

of the trading-day adjusted series are all similar and the power around the 

.348 frequency has been removed from the three adjusted series. For this 

series it does not seem that a more sophisticated method than the 

deterministic model is needed to remove the trading-day component. This is 

indicated by the small value of the estimate of c72 /c 2  and by the spectral 
densities of the adjusted series. 

For the series Total Retail Trade - Nova Scotia, the powers at the 

frequencies around .348 of the trading adjusted series are quite different. 

It can be seen that the power at the .35 frequency is reduced from 37.66 

for the original series to 6.97 for the deterministic model, to 3.65 for 

the random walk without smoothing and to 2.84 for the random walk with 

smoothing. 	 - 
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7. Conclusions. 

In this study a random walk model and a random walk model with 

random drift for trading-day coefficients are introduced and compared with 

the deterministic model used in X-11-ARIMA. We provide a solution to the 

problem of estimating the hyper-parameters and initial conditions of the 

stochastic models. A simulation with a large number of series indicated 

that in real applications the random walk model and the deterministic model 

should be adequate for most cases observed. The simulation also showed 

that the MLE of a2  tends to be biased downward but the estimator of 

is unbiased in the random walk model. 

Two real case studies are thoroughly discussed to illustrate where 

the deterministic and the random walk models can be adequate. 

. 

40 
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TABLE 1 
Sinu].atic*i for &irica1 }thx1s 

IA Estinates of the Hyper-Parters 

Case 	Irç.zt 	1241 	Model One 	 l*xe1 l\..o 

Flbo2 	NO 	DFP4 	 NO 

• 	 2 22 a2Ø2 02 02 02'2 2 02/Q2 2 02X/C2 Q2/c72 a2 a2,/a2 a202 

1 	25 0 	0 	22.44 20.10 .00031 	19.98 .00023 19.97 0 0 17.98 0 	0 
2 	25 .01 	0 	24.48 22.14 .00031 	21.90 .00023 24.32 0 0 21.10 0 	0 
3 	25 0 	.001 	166.76 13.18 .38100 137.24 .00076 12.38 .25 0 11.85 .25 	0 
4 	25 .01 	.001 	159.56 13.88 .37350 	14.78 .35526 12.80 .25 0 12.29 .25 	0 

Ifl: Lterministic !kde1 
FI: Fi.bacci Algorithn 
M: Newton-Raphscxi Algorithn 
DFP: Davidscxi-F1etdr-Pc11 Algoritfin 

IS. Mea' Squared Error 

Case 

. 

UI 1k,del ( 

FIW 	NR 
!txiel Two 
DFP 	NR 

1 1.51 1.61 1.59 2.33 2.24 
2 2.99 2.81 2.86 2.83 2.73 
3 10.72 3.43 9.73 3.40 3.47 
4 10.64 3.42 3.39 3.43 3.44 

IC. SAS CRJ Time (Secoixis) 

?,de1 One t4xiel T 
Case EM fl) 	NR DFP NR 

1 .24 2.55 	2.59 7.62 21.98 
2 .23 2.52 	2.55 19.81 22.09 
3 .24 2.53 	2.64 19.82 15.79 
4 .24 2.53 	16.01 19.74 15.81 

I. 

0 
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VALIDATION OF THE MODELS 

Case 
INPUT S.L. MODEL ONE MODEL TWO 

cr  21a2  0 2 10 2  o 2  2 MSE 2 MSE 02102 MSE 0 2 1o 2  0 2 10 2  a2 MSE 
1 0 0 100 83.17 100.06 0 95.98 2.97 .000313 92.25 3.12 0 0 89.49 3.79 
2 0 0 100 97.16 87.18 0 84.10 2.69 .000313 79.79 2.81 0 0 7s.85 3.48 
3 0 0 50 58.18 41.68 0 41.21 1.59 .00093 39.22 1.17 0 0 37.91 2.51 
4 0 0 50 95.50 51.10 0 51.29 1.54 .000313 49.6 1.22 0 0 48.4 1.81 
5 U 0 25 43.97 21.11 0 21.44 .86 .000313 20.59 .88 0 0 20.83 1.37 
6 0 0 25 28.55 28.53 0 29.42 .76 .000313 27.65 .84 0 0 29.30 1.09 
7 0 0 2.5 39.39 2.46 0 2,42 .39 .000313 2.34 .45 0 0 2.37 .54 
8 0 0 2.5 61.69 2.47 0 2.45 .37 .000313 2.32 .40 0 0 2.28 .50 
9 0 0 .025 13.82 .0222 0 .0228 .023 .000313 .0216 .026 0 0 .0228 .0344 

10 0 0 .025 .5 .0268 0 .027 .031 .0034 .0222 .055 0 0 .0268 .058 
11 .00025 0 100 42.68 110.51 1.63 114.85 2.46 .000313 108.70 2.63 0 0 107.88 2.82 
12 .0005 0 50 93.64 48.01 1.14 51.33 1.71 .00093 45.80 1.73 0 0 43.65 2.32 
13 .001 0 25 22.64 29.03 .72 27.89 2.08 .00093 25.36 1.87 0 0 27.04 2.06 
14 .01 0 2.5 3.38 2.33 .56 4.17 1.37 .029 1.72 .64 0 0 2.34 .69 
15 1 10 .025 .061 .025 .14 4.49 2.06 .833 .033 .14 .5 0 .052 .14 
16 .0025 0 100 57.53 96.29 2.90 106.72 2.96 .000313 101.15 2.64 u 0 98.60 3.69 
17 .005 0 50 66.23 47.07 2.11 61.48 3.34 .00907 43.26 2.32 0 0 51.99 2.50 
18 .01 0 25 89.70 26.83 1.73 41.49 3.76 .0234 20.69 2.22 0 0 26.74 2.28 
19 .1 0 2.5 14.73 2.22 .94 14.75 3,65 .046 2.73 1.05 .25 0 1.67 .96 
20 .025 0 100 8.82 104.99 4.63 324.94 13.36 .0165 109.129 4.81 0 0 164.06 7.12 
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TI* 2 - Con t 'd. 
VALIDATION OF THE MODELS 

INPUT S.L. 
TRUE DETER- 

MODEL ONE MODEL TWO 

aIa2aja2 a 2 02 MSE 	82 MSE 02 MSE 0 2 1a 2  0 2  10 2  a2 
1p  MSE 

21 .05 0 50 29.81 57.61 4.26 167.94 10.16 .0372 61.09 4.47 0 0 98.09 7.00 
22 .1 0 25 26.47 19.58 3.17 205.85 13.02 .064 22.52 3.20 .25 0 13.64 3.22 
23 1 0 2.5 70.37 2.87 1.36 91.13 8.98 .41 4.82 1.39 .5 0 4.31 1.36 
24 .25 0 100 0 89.97 7.58 1935.25 42.04 .1938 109.29 7.53 .25 0 100.87 7.75 
25 .5 0 50 ..001 47.38 4.92 22371 44.79 .7385 35.61 4.96 .5 0 57.33 4.99 
26 1 0 25 12.85 24.59 4.21 6876.79 81.29 .9996 25.08 ' 	 4.24 .5 0 43.76 4.54 
27 0 .00025 100 .13 110.73 4.79 3803.64 59.14 .352 68.06 7.40 .25 0 57.35 7.13 
28 0 .0005 50 0 50.23 2.62 6370 77.89 .36913 39.74 4.48 .25 0 33.65 4.27 
29 0 .001 25. 0 18.80 3.31 3222 55.17 .62 11.93 4.07 .5 0 12.17 4.02 
30 0 .01 2.5 0 2.74 1.24 2140 44.83 .99967 5.18 1.57 0 .005 3.35 1.35 
31 0 1 .025 .0 .024 .134 3304 56.03 .99967 11.66 .620 1 .207 .1007 .1547 
32 0 .0025 100 0 72.44 5.06 10016 96.39 .99967 52.57 7.13 .052 .0016 58.00 5.54 
33 0 .005 50 0 51.34 4.50 32646 175.65 .99967 120.31 5.98 1 .06 11.59 5.92 
34 0 .01 25 0 18.59 3.01 6873 80.05 .99967 25.49 3.84 .28 .007 12.13 3.55 
35 0 U 2.5 0 2.36 1.13 38311 190.78 .99967 90.43 1.63 .62 .047 2.29 1.33 
36 0 .025 100 0 104.47 6.99 160899 390 .99967 365.76 8.52 .48 .02 66.79 7.73 
37 0 .05 50 0 64.33 5.41 216242 453 .99967 594.55 7.87 .41 .027 58.03 6.06 
38 0 .1 25 0 24.95 4.05 220361 457 .99967 615 6.42 .79 .10 15.69 4.36 
39 0 1 2.5 0 2.76 1.33 322922 554 .99967 1223 5.01 1 .24 10.50 1.70 
40 0 .25 100 0 99.17 8.69 4300301 2020 .99967 5445 15.99 1 .245 90.92 9.20 
41 0 .5 50 0 57.22 5.36 3775864 1894 .99967 10310 16.61 1 .278 85.02 6.01 
42 0 1 25 0 23.88 4.49 801191 872 .99967 5007.86 11.79 1 .24 84.97 4.99 
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Table 3A 

Mean and Standard Error of the Mean for HAD by 
&ither of Years and Methds 

No. 	Method 1 	Methed 2 	Method 3 
Years 	Mean Sfl) 	Mean Std 	Mean Std 

5 .193 .760 .163 .576 .16 .540 
6 .194 .793 .162 .571 .162 .561 

• 	 7 .190 .782 .155 .517 .157 .538 
8 .189 768 .151 .492 .151 .526 
9 .192 762 .149 .489 .149 .513 

• 	 10 .193 .748 .147 .497 .145 .508 

Table 3B 

A 

Mean' and Standard Error of the Mean2  for a 2 /c 2  (.0028) 

by Number of Years and Methods 

Method 4 	MethDd 5 	Method 6 	Methxl 7 	MethxI 8 

O M. 

Years Means SB) Means SID Means 5ff) Means 511) Means 511) 

5 0.180 0.232 0.834 3.081 0.520 2.378 0.193 0.272 0.184 0.284 
6 0.200 0.220 0.696 2.368 0.411 1.595 0.213 0.244 0.188 0.254 
7 0.217 0.208 0.470 1.013 0.293 0.607 0.265 0.248 0.210 0.224 
8 0.224 0.201 0.409 0.772 0.252 0.428 0.254 0.244 0.205 0.231 
9 0.253 0.228 0.398 0.637 0.257 0.384 0.291 0.302 0.232 0.287 

10 0.242 0.192 0.371 0.70 0.244 0.409 0.262 0.230 0.207 0.251 

Fritries have to be ii1tip1ied by 10 
Fntries have to be nultiplied by 10 



0 

0 



- 21 - 

• 	Table3C 

95% C jdexxe jj]l of c2 ja2  (.0028) 
by t&ziber of Years and MeUds 

Methd 4 Meth,d 5 Methxl 6 Metlxid 7 Method 8 
No. 

Years hr Upper 1.r Upper Lir Upper Lr Upper Lr Upper 

5 0.135 0.226 0.230 1.438 0.054 0.986 0.140 0.246 0.128 	0.240 
6 0.157 0.243 0.232 1.160 0.099 0.724 0.165 0.261 0.138 	0.238 

4 	 7 0.176 0.257 0.272 0.669 0.174 0.412 0.217 0,314 0.166 	0.254 
8 0.184 0.263 0.258 0.561 0.168 0.336 0.206 0.302 0.160 0.250 
9 0.208 0.298 0.273 0.523 0.182 0.333 0.231 0.350 0.176 0.289 

10 0.204 0.279 0.233 0.509 0.163 0.324 0.216 0.307 0.158 0.256 

(1) Fntries babe to be nultiplied by 10 

Table 3D 

Mean and Stardard Error' of the Mean for a2  (.21) 
by ?&ither of Years and Methods 

MethxI 4 	Method 5 	Methxi 6 	Method 7 	MethxI 8 
ro. 

Years Means SID Means SD Means 5']]) Means 51]) Means SD 

5 0.174 0.480 0.162 0.489 0.166 0,481 0.174 0.471 0,170 0.464 
6 0.176 0.424 0.169 0.426 0.168 0.426 0.175 0.433 0.172 0.420 
7 0.179 0.384 0.170 0.380 0.173 0.377 0.178 0.381 0.176 0.375 
8 0.179 0.366 0.173 0.361 0.177 0.363 0.179 0.360 0.179 0.357 
9 0.179 0.334 0.173 0.330 0.116 0.334 0.178 0.328 0.177 0.333 

10 0.179 0.299 0.173 0.299 0.177 0.302 0.178 0.302 0.178 0.299 

(1) Entries have to be cmittiplied by 10' 
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d 	Table 4A 

Total Retail Trade Sales - Departnnt Stores -Cwada 
Transfon1 Irregular Series' 

Year Jan Fey Mar Apr May Jtm Jul Aug Sep 	Oct tkv Lc 

77 -225 270 -243 871 -721 -765 234 	288 490 -562 309 -173 
78 -338 -65 810 -315 81 -31 -827 -202 1473 -652 78 217 
79 -396 -731 1833 -1233 168 119 -655 1230 -598 	-12 102 -585 
80 962 470 -780 -440 1181 -1680 938 	-8 170 	248 -600 -565 
81 1955 -437 -1076 352 -358 611 -149 -273 -317 1014 -362 298 
82 -315 105 -569 603 -273 -642 623 -270 421 -370 -157 481 
83 -240 -24 1476 -1735 -1455 1630 1(4 	8 215 -353 -649 886 
84 -719 897 63 -941 -27 1143 -1006 -222 293 -213 830 -514 
85 118 -5(4 537 257 528 -1401 -090 1451 -995 -116 756 -676 
86 738 -603 -87 492 1390 -1917 453 	100 -191 	436 -405 214 

(1) Entries have to be uultiplied by 10 

Table 4B 

Total Retail Trade Sales - All Stores - iva Scotia 
Transfornd Irregular Series1  

Year Jan Fey Mar Apr May Jxi Jul Aug Sep Oct !bv Dec 

77 161 -221 -300 574 -641 -363 480 -583 447 -223 342 693 
78 -883 -34 243 -559 -11 558 -182 -99 585 -503 -155 -36 
79 272 -428 935 -1113 171 1062 -921 1344 -1287 -230 1136 -954 
80 44 712 -756 -136 1212 -903 -62 488 -275 	696 -333 -1167 
81 720 499 -657 695 409 -651 233 11 -817 	514 -239 490 
82 84 -443 -230 1251 -1097 0 682 -732 293 -168 -177 874 
83 -563 -796 1613 -640 -1307 1451 73 -513 639 -739 -631 958 
84 -865 638 407 -552 330 795 -1350 383 -206 -337 910 -928 
85 693 -288 285 186 128 -475 -139 1008 -865 	30 530 -1289 
86 1514 161 -1202 705 608 -438 -184 -788 393 	777 -640 -194 

(1) Entries have to be nultiplied by 10 

40 
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- 	Table5 

Hyper Paraiters Estimates 

Total Retail Trade Sales Total Retail Trade Sales 
[partnEnt Stores - Cia All Stores - 	 va Scotia 

Witht Rep1aant With Replacnt WitI-xxit Replant With Replacaint 
of ()itliers 	of (Xatliers of Gitliers of Ctliers 

Years 	 a,/c2 02 

8 0.01033 	0.21730 	0.00031 	0.21760 0.03225 	0.09530 0.02098 	0.09670 
9 0.00407 	0.24340 	0.00031 	0.20680 0.02912 	0.09880 0.01158 	0.10890 
10 0.00031 	0.26330 	0.00031 	0.280 0.02098 	0.11360 0.00971 	0.12230 

I 
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FIGURES 1A 
0650062 

— DEPARTNT STORES 
— CANADA 

TRADING_DAY COEFFICIENTS 
d*formlnistic  
random walk wIthout smoothing — 

— --: random walk with Smoothing 
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FIGURES 19 
0650350 — TOTAL RETAIL TRADE SALES — NOVA SCOTIA 

TRADING—DAY COEFFICIENTS 
d.$.rminj,tic 

: rondorr-woIk without smoothing 
----: random walk with amoolhlng 
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