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ABSTRACT 

A large class of flows and stocks series related to production, 

shipments, sales and inventories are affected by trading-day or calendar 

variations. Trading-day variations represent the "within-month variations" 

due to the number of times a particular day or days of the week occur in a 

calendar month. These variations are systematic and may strongly influence 

month-to-month comparisons. Whenever present they are usually removed 

*  together with seasonality and other effects, such as moving-holiday 

variations, to obtain a clearer signal of the short-term trend-cycle 

component, which is used for decision making by socio-economic agents. 

A deterministic trading-day model developed by Young (1965) is 

currently used by the X-ll-ARIMA (Dagum, 1980) and the Census Method 

II-X-ll variant (Shiskin, Young and Musgrave, 1967) to estimate trading-day 

variations. This deterministic model assumes that the daily weights are 

fixed and estimated using least squares. As long as the relative weight of 

daily activities is constant throughout the length of the chosen span of 

the series, this nodel produces reasonable estimates. However, that is not 

always a realistic assumption. For exemple, in retail trade, store opening 

hours and, hence, consummer shopping patterns have changed over the last 

decade; there are nany more retail outlets open on Sundays, and even 

the week stores keep longer hours than previously. 

Hie purpose of this paper is to introduce a general stochastic model 

Lt allows for gradual changes of the daily activity coefficients used to 

calculate trading-day variations. The model is presented in a state-space 

form and estimated using the Kalman filter and fixed interval smoother. 

Examples of the stochastic and deterministic models are given for real 

data. 

Key words: Fibonacci line search, fixed interval smoother, Kalman filter, 

maximum likelihood estimation, method of scoring, spectral 

densities. 
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R.ESUWE 

Un grand nombre de series de flux et de stock relies a la production, 
ventes et inventaires sont affectees par la rotation des jours ou l'effet 

du caleridrier. La composante de rotation des jours représente les 

variations intra-mensuelles causées par la distribution des jours dans le 

mois (ex: 4 lundis .....4 vendredis, 5 sainedis et 5 dimanches clans un mois 

de 30 jours). Ces variations sont systétnatiques et peuvent fortement 

influeçees les comparaisons entre les mois. Ainsi, lorsque ces variations 

sont présentes dans une série, elles sont généralement soustraites avec la 

saisonnalité et possibleinent d'autres effets, tel que l'effet de Paques, 

pour obtenir un estimé plus précis de la tendance-cycle. 

Un inodèle déterministe, developpé par Young (1965), est utilisé par les 

les méthodes Xl1-ARMMI (Dagum, 1980) et Xli (Shiskin, Young et Musgrave, 

1967) pour l'estimation de la composante de rotation des jours . Ce modéle 

assume que les poids des jours et leur patron hebdomadaire restent 

constants a travers une période pre-détertninée de la série. Pour certaines 

series socio-économiques cette hypothèse peut être discutable. 

Cet article présente un modèle stochastique général pour i'estimat ion 

de la coTnposante de rotation des jours. La méthode d'estimation est 
discutée et les modèles déterministe et stochastique soot appliqués a des 

it- 	 tt 	 If! 
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0 	I. Introduction 

A large class of flows and stocks series related to production, 

shipments, sales and inventories are affected by trading-day or calendar 

variations. Trading-day variations represent the "within-month variations" 

due to the number of times a particular day or days of the week occur in a 

calendar month. These variations are systematic and may strongly influence 

month-to--month comparisons. Whenever present they are usually removed 

together with seasonality and other effects, such as moving-holiday 

g 

	

	

variations, to obtain a clearer signal of the short-term trend-cycle 

component, which is used for decision making by socio-economic agents. 

A deterministic trading-day model developed by Young (1965) is 

currently used by the X-ll-ARIMA (Dagum, 1980) and the Census Method 

II-X-ll variant (Shiskin, Young and Musgrave, 1967) to estimate the 

trading-day component. This deterministic model assumes that the daily 

weights remain constant throughout the chosen span of the series. 

Similarly, deterministic models for trading-day variations were discussed 

by Cleveland and Devlin (1980 and 1982), Hilimer (1982), Cleveland and 

Crupe (1983), Hilimer, Bell and Tiao (1983), Bell and Hilimer (1983), 

Kitagawa and Gersch (1984) and Salinas and Hilimer (1987). For some 

socio-economic time series this assumption might be too restrictive and a 

stochastic model for trading-day variations be more adequate. This is 

particularly true for series affected by changes in store opening hours 

which affect consumer shopping patterns and by more retail outlets open on 

Sundays. 

	

I 	The main purpose of this study is to introduce a general stochastic 

model of trading-day variations for gradually changing daily coefficients. 

Section 2 gives a definition of trading-day variations. The stochastic 

model together with the deterministic model are discussed in section 3. 

S 	 Section 4 deals with the estimation procedure of the stochastic model. In 

	

I 	section 5, the stochastic and deterministic models are applied to two real 

series affected by trading-day variations. Finally, section 6 gives the 

conclusions of this study. 

0 
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Definition of Trading-Day Variations 

Let it  i-1,2.. . ,7 represent the effects of daily activity on 

Monday, Tuesday,..., and Sunday in month t. The effect attributed to the 

number of times each day of the week occurs in month t defines what is 

known as trading-day variations or effects. In this study, we define the 

trading-day effect in month t as: 

6 
Dt - E(jt - t)(Xjt - X70, 	(2.1) 

i-i 
where Xj 	i-'l,...,7 denotes respectively, the 	number 	of 	Mondays, 

Tuesdays,. .., and Sundays in month t. If all the jt's  are equal, there is 

no trading-day effect. Similarly, for the month of February, except in leap 

year, Xft X7 i-l...,6, and there is no trading-day effect. For notational 

convenience, 	let 6 it - 	 it-t 	i-1,.. . .,6 	and 	Tit - Xj-X7. The 6t's 

represent the difference between 	the 	Monday, 	Tuesday,..., 	and Saturday 

effects 	it  and the average of the daily effects 	for 	month t. 	The 

difference between the Sunday effect and the average of the 	daily effects 

is: 1 b 6 - 

i7-et - 	-E 6jt. (2.2) 
i-i 

Deterministic and Stochastic Models for Trading-day Coefficients or 

Daily Weights. 

The estimation of trading-day variations in X-11-ARIMA and Census 

Method II X-ll variant is done sequentially after other variations, namely, 

seasonality and trend-cycle are removed from the data. Other model-based 

seasonal adjustment methods estimate trading-day variations simultaneously 

with the remaning components via an iterative process where the seasonality 

and the trend-cycle are initially assumed to follow very simple stochastic 

models. Hence, given a time series, say yt  we assume: 

Yt - Dt + et, 	t-1,.. .,T 	(3.1) 

where et-NID(O,02)  and T is the number of observations. 

The deterministic trading-day variations model developed by Young 

(1965) assumes that Sj - 	for all t. 	In this case, equation (2.1) 	is 
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reduces to: 	

6 
Dt  - Z 6jT 	 (3.2) 

i—i 

where the &j's denote fixed parameters and are estimated by ordinary least 

squares (OLS). 

A general stochastic model for the trading-day coefficients can be 

written as follows: 

6 
Dt - SitTit (3.3.a) 

i—1 
with 

(l-B)t - xt 	(3.3.b) 

where 

It - (6 	..... 6 6t)' 	(3.4.a) 

Xt - (Xlt... ,X6t)' 	(3.4.b) 

NID( 0 , 02x1 6). 	(3.4.c) 

Here, B denotes the backshift operator (B.t - .t-l) and 16 is the identity 

matrix of order 6. 

. 	The rational behind model (3.3.b) is to adjust locally a polynomial 

of degree k to the trading-day coefficients. The degree of difference k 

can be selected using Akaike's criterion discussed in section 4.6. 

In this study, we will focus our attention on k—1 and 2. When k—1, 

the model is the well-known random walk model which has been previously 

used by Monsell (1983) and Dagum and Quenneville (1988). For k-2 the model 

(3.3.b) assumes that the daily coefficients behave locally as a straight 

line and will be called here the quadratic model. 

The stochastic model (3.3.b) for k—1 and k-2 is written in 

state-space form and the estimates of §..t  together with their mean squared 
error matrices are estimated with the Kalman filter. Smoothed estimates 

are obtained using the fixed interval smoother. 	Finally, 	maximum 

likelihood estimators are used to estimate the parameters a2 and 

4. Estimation of the Stochastic Models. 

A brief description of the Kalmart filter and the fixed interval 

smoother follows. 
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4.1 The Kalman Filter and Fixed Interval Smoother. 

The state space model consists of a measurement equation, namely, 

Yt - 	' tt + 	E., 	t-1,. . . ,T 	(4.1) 

and a transition equation, namely, 

- 0 t-i. 	+ 	, 	t-1,. .. ,T 	(4.2) 

where at  is an mxl state vector, Z t  is a mxl fixed vector, C is a fixed mxm 

matrix and the errors e 	and 	are independent. It is further assumed that 

et-NID( 0 ,c 2 ) and nt-NID( 0 , 02Q) where Q  is a fixed mxm 	matrix 	and 	a2  is a 

scalar. 	Although Q may depend on 	unknown 	parameters 	it 	is 	regarded as 

being fixed and known for the purpose of the Kalman filter. 

Let 	tl  be the minimum mean squared estimator (MNSE) of 	 t-1  based 

on all the information up to and including t-1, and let a2Pt-i  be 	the 	MSE 

matrix of 	t-l' 	i.e., 	the covariance matrix of 	t.l-2t..l. 	The MMSE of 

given 	t-1  and 	, 	is then: 

tIt-1 - Gati 	 (4.3) 

with MSE matrix: 

tlt-1 - GP..iG' 	+ Q. 	(4.4) 

Once Yt  becomes available, this estimator of p t  can be updated as follows: 

it - 	 + P1iztvt/ft 	(4.5) 

with MSE matrix: 

Pt 	- 	'1t-1 	- 	 (4.6) 

where 

Vt - yt 	-t'tIt-1 	(4.7) 

- 	t'Ptit.it + 	1. 	(4.8) 

Starting values 	o  and P0 are 	needed 	to implement the Kalman filter given 

by 	(4.3) 	to 	(4.8). 

The 	Kalman 	filter 	yields 	the 	MMSE of 9 t , given the information 

available 	up to time t. 	However, once all the observations are available, 

a better estimator can be obtained. One 	of 	the 	techniques 	for computing 

such estimators 	is 	the 	fixed 	interval 	smoother. 	The 	fixed 	interval 

smoother 	is 	a 	set 	of 	recursions 	which 	start 	with 	the Kalman filter 

estimates 	aT 	and 	and work backwards. 	If 	tIT and a2PtIT,  denote the 

smoothed 	estimate 	and 	its 	covariance 	matrix, the smoothing equation is 

given by: 

tT - 	+ P*t(at+lIT - Cat) 	(4.9) 

with 
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where 	
tIT - 	

+ p*(pp)(p*), 	
(4.10) 

W  
- PtC'(Pt+i,t)'. 	 (4.11) 

4.2 State SDace Representation of the Two Stochastic Models. 

A convenient state-space representation of the random walk model 

for the trading-day coefficients (3.3) and (3.4) along with the observation 

equation (3.1) is obtained through the following equivalences with the 

transition equation (4.2) and the measurement equation (4.1): 

- .t , 	' t - (Tlt,...,T6t), it - et, 	(4.12) 

G-16, !1t_tandQ_a 2 /c 2I&. 

For the quadratic model, k-2, the equivalences are given by: 

- [.t''.t-l'J' 	' t - (Tit,...,T6t,Q6'), it - e, 

C - 216 16, Rt - t and Q _F2x/a216 0 

16 0 	
[ 0 
	0 	(4.13) 

It is clear from (4.12) and (4.13) that Q depends on the unknown 

• parameters o 2x/c 2 . The estimation of this parameter and a 2  as well as the 

estimation of the initial conditions o and P0 are discussed in the next 
sections. 

4.3 Estimation of the Initial Conditions. 

For a stationary process, the theoretical mean value and covariance 

matrix of the state vector can be used to initiate the Kalman filter. 

However, for a nonstationary process the theoretical mean and covariance 

matrix cannot be defined. In order to obtain initial estimates of Qo and 
P0 we apply the Kalman filter over a time-reversed series. First we define 

a new series wtyT..t+l. The w series is obtained by reversing the order of 

the y's series; that is, wi -yT ,  w2-yT..1 and so on until w-y. The Kalman 

filter is applied on this transformed series to predict gj. In the random 

walk model (k-l) the estimate of 20  is T+ljT and the estimate of P0 is 

P#T lJT  where 9# t  and P#t  are the estimates of the state vector and 

covariance matrix of the w series. In the quadratic model (k-2) the 

estimate of no and P0 are obtained by rearranging the sub-matrices of 
9#T+21T and P#T+21T. In applying the Kalman filter to the w series, the 

initial estimate of the state vector 2 #0 is taken to be equal to the zero 

vector, P#O equal to kI where k is a large constant and the remaining 
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parameters of the w series are computed using the Fibonacci line search 

method described in the next section. 

4.4 Estimation of the Parameters o 2 1ci 2_anc a 2  

Maximum Likelihood Estimators (MLE) are used for the estimation of 

the parameters a 2x/a 2  and c2.  Using the prediction error decomposition 

(Harvey 1981a), the likelihood function, L, can be written as follows: 

T 	T 
-2logL - Tlog2ir + Tlogor 2  + E logf + c-2Z v 2 t/ft 	(4.14) 

t—1 	t—1 
where T is the number of observations and Vt  and ft  are defined by (4.7) 

and (4.8). 

Differentiation of (4.14) with respect to a leads to a 2 , the MLE 

of a2 , given by: 

A 	 T 
02 - T - lZ v2 t/f 	(4.15) 

t—1 

The 	scalar parameter, a 2 , may be concentrated out of the 

log-likelihood function leaving the concentrated log-likelihood function: 

A 	 T 

	

-2logL - T1og2r + T +Tloga 2  + S logf 	(4.16) 
t—1 	 0 

Numerical optimization has to be carried out with respect to the 

remaining parameter a2X/a2  to find its MLE. The Fibonacci line search 

method (Bazaraa and Shetly, 1979) is used to find the maximum between zero 

and one. This assumes that the noise in the signal a t  is less than the 

noise in the measurements Yt  This estimate is further improved using the 

method of scoring (Harvey, 1981b). A brief description of the method of 

scoring follows. 

Let x -a X 21a2 be the unknown parameter to be estimated. The method 

of scoring is the iterative scheme: 	 a 

- (i-l) + 11(x(i1)) DlogL(x()) 	(4.17) 

where 	(i) is the estimate of x at the i-th iteration, 1(x) is the Fisher 

information number evaluated at x, DlogL(x) is the derivative of the 

log-likelihood function evaluated at x and (°) is the estimated parameter 

obtainded from the Fibonacci line search. 
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. 

From (4.14) DlogL is: 

d 
_L 
dx 

The density of the 

simplify the notation. 

innovation is: 

og(L) - Z _log(p). 	 (4.18) 
t-1 dx 

innovation process (4.7) is here symbolized by Pt to 

The derivative of the log-likelihood of the t-th 

d 	-1 d 	-2 -1 	d 	-2 -2 2 d 
__log(p) - - •t -ft - 	t Vt_Vt + .5a 	 Vt_ft. 	(4.19) 

	

dx 	dx 	dx 

The derivatives of f t  and Vt  are computed recursively from the Kalman 

filter equations (4.3) to (4.8) starting with the derivatives of AO  and P0 

equal to zero. 

The Fisher information number is given by: 

d 	2 
1(x) - E(_Log(L)) 

dx 
(4.20) 

0 

T 	d 	2 

	

- E E (_log(p)). 	(4.21) 
t-1 dx 

Since the innovations Vt  are independent and normally distributed with mean 

zero and variance c 2 ft it follows that 

d 	 2 	-2 d 	2 	-2 -1 d 	2 

	

E (__log(p)) -(-) + a ft  (_Vt) 	(4.22) 
dx 	 dx 	dx 

from which (4.20) is easily derived. 

The above discussion applies when the log-likelihood (4.14) is 

maximized. In our context, it is the concentrated log-likelihood (4.16) 

that has to be maximized. However it can be easily verify that: 

	

d 	d 	A 

	

_log(Lc) - _log(L(c 2 )) 	(4.23) 

	

dx 	dx 

where the right hand side of (4.23) is the derivative of the log-likelihood 

A 

evaluated at 

An asymptotic t-statistic can be constructed for the parameter 

aX/a, as follows: 

21O2 / Var(c 2/a2 ) l/ 2 . 	(4.24) 

An estimate of the variance of the MLE of this paramater is provided by the 

. 

	

inverse of the Fisher information number. 
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4.5 Outliers detection and accomodation. 

In 	practice, 	the 	parameters 	are estimated from the data and the 

Kalman 	filter 	is 	used 	conditional 	on 	the 	estimated 	values 	of 	the 

parameters. 	In the application of the 	stochastic 	model 	to 	real 	series 

(section 5), we found that outliers in 	the 	data 	strongly 	influence 	the 

estimation 	of 	both 	the parameters and the state vectors. 	In both cases, 

whenever an observation is identified as an outlier, it is treated as if it 

was missing. 

4.6 Tests Procedures for the Selection of the Model. 

We use the asymptotic t-statistic (4.24) to distinguish between the 

random walk model and 	the 	deterministic 	model. 	A 	large 	value 	of the 

t-statistic leads 	to 	the 	rejection 	of 	the 	null 	hypothesis 	that 	the 

trading-day 	coefficients are deterministic. 	In the quadratic model (k-2), 

the 	null hypothesis is HO: 	and the alternative is Hl: 

where 	xt 	is 	purely 	random. 	In this 	case, 	the 

acceptance of HO does not imply the acceptance of 	the 	random 	walk 	model 

since it is possible that 	t-14t2  is 	not 	significantly 	different 	from 

zero, which would imply to accept the deterministic model. 

The degree of difference k adequate for each series can be selected 

using 	Akaike's criterion (AIC) as discussed in Kitagawa and Gersch (1984). 

The AIC for a particular k is: 

AIC(k) - -2log(maximized likelihood) + 2(6k+l). 	(4.25) 

The 	value 	of 	k for which AIC(k) is smallest is the best model. 	Here the 

number 	6k refers to the dimension of the initial state vector and 1 is for 

the parameter a2/a2,  both having to be estimated. 

5. Application. 

The deterministic and the two stochastic models for the estimation 

of the trading-day coefficients were applied on a large sample of real 

series affected by trading-day variations. The series were from the 

sectors of Retail Trade, Wholesale Trade, Imports and Exports. 

All the series were first seasonally adjusted using the X-ll-ARIMA 

method without ARIMA extrapolations and with the default options. 

Therefore, the input y series is the irregular series I obtained from Table 

B-13 and transformed by the following equation: 

a 
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. Yt - ('ti100 - 	1)Nt 	(5.1) 

where N is the number of days in month t. 

The estimation of the stochastic 	trading-day 	coefficients, 	in 	a 

typical application, 	is done iteratively as follows: 

Stepi: A 	first 	estimation 	of 	the parameter a2/c2  is obtained with the 

Fibonacci 	line 	search 	on 	the time-reversed w series given fixed 

initial conditions 	-Q and P#0_.kI  (k-21 in the applications given 

below). 

Step2: The 	initial 	conditions 	g.rj 	and 	P0 	are 	estimated 	from 	the 

time-reversed w series with 	the 	estimated 	parameter 	a2/o2  from 

stepi. 

Step3: A second estimation of the parameter 	with the Fibonacci line 

search is done on the original series with the 	initial 	conditions 

from step2. 

Step4: A third and final estimation of the parameter aX2/a2 is 	done 	with 

the method of 	scoring. 	If 	the 	procedure 	leads 	to 	a negative 

estimate, the initial estimate from step3 is used. 

. Step5: The trading-day coefficients are estimated from the original series 

with the Kalman filter and the fixed interval 	smoother 	using 	the 

parameter °2'°2  from step4 and the initial conditions from step2. 

To illustrate we use two exemples with real data. The first 

example is the series (I) of Total Retail Trade Sales for All Stores in 

Nova-Scotia from January 1977 to December 1986 and the second example is 

the series (II) of Total Retail Trade Sales for Department Stores in Canada 

from January 1977 to December 1986. The input data as obtained from 

equation 5.1 for both series are given in Tables 1A and lB. 

Table 2 gives a summary of the estimation method for the signal to 

noise ratio 0x2/a2. For both series the AIC(k) is smallest with kl 

suggesting that the random walk model is preferred over the quadratic 

model. The results of the t-test further suggest that the random walk 

model is appropriate for the series (I) whereas the deterministic model is 

more appropriate for the series (II). 

Graphs of the daily coefficients for both series are provided in 

. 	figures lA and lB. 	Clearly the stochastic model allows for a moving 

behaviour of the daily coefficients. For the series (I), the graphs of the 
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coefficients under the stochastic models have similar paths but the 

quadratic model (k-2) exagerates the amplitude. For the series (II), the 

graphs of the coefficients under the random walk model are almost straight 

lines. This agree with the result from the t-test suggesting that the 

deterministic model is appropriate for this series. 

Next a frequency domain analysis was conducted on both the original 

series and the trading-day adjusted series which is defined as the original 

series minus the estimated trading day component. Estimates of the 

trading-day component from five procedures are compared, namely , the 

deterministic (Det), the random walk without smoothing (Ka(k-l)), the 

random walk with smoothing (Sm(k-l)), the quadratic model without smoothing 

(Ka(k-2)) and the quadratic model with smoothing (Sm(k-2)). Tables 3A and 

3B provides the estimates of the spectral densities using the Parzen window 

for a band of frequencies between .3278 and .3722. The spectral densities 

of the input series are charactarized by a peak at the frequencies around 

.35. This is typical of series affected by trading-day variations as shown 

by Cleveland and Devlin (1980). For both series, the largest reduction in 

power is given by the random walk model with smoothing. However in series 

(II) the difference beteween the deterministic and random walk model is 

very small, in accordance with the result obtained from the t-test. 

6. Conclusions. 

We have introduced two stochastic models 	for 	trading-day 

coefficients and compared them with the deterministic model developed by 

Young (1965). The stochastic models are given in a state-space form and 

the parameters are estimated by the Kalman filter and fixed interval 

smoother. We have provided a solution to the problem of estimating the 

parameters and initial conditions of the Kalman filter and applied tests 

statistics to distinguish between alternative models. Two real case 

studies are thoroughly discussed to illustrate when the deterministic and 

the stochastic models are adequate. 

It 

p 
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. 	TARLE IA 

Total Retail Tr 	Salis - All Stores - iva Scotia (I) 
Trarfoimi Irregular Series1  

Year Jan Fey Mar Apr May Jxi Jul Aug Sep Oct Nov Ec 

-583 447 -223 342 693 
-99 585 -503 -155 -36 

1344 -1287 -230 1136 -954 
488 -275 	696 -333 -1167 

11 -817 	514 -239 490 
-732 293 -168 -177 874 
-513 639 -739 -631 958 
383 -206 -337 910 -928 

1008 -865 	30 530 -1289 
-788 393 	777 -640 -194 

77 161 -221 -300 574 -641 -363 480 
78 -883 -34 243 -559 -11 558 -182 
79 272 -428 935 -1113 171 1062 -921 
80 44 712 -756 -136 1212 -903 -62 
81 720 499 -657 695 409 -651 233 
82 84 -443 -230 1251 -1097 0 682 
83 -563 -796 1613 -640 -1307 1451 73 
84 -865 638 407 -552 330 795 -1350 
85 693 -288 285 186 128 -475 -139 
86 1514 161 -1202 705 608 -438 -184 

(1) Entries have to be nultiplied by 10 

TABLE lB 

Total Retail Trade Sales - Epartnt Stores -Canada (II) 
Transfornd Irregular Series' 

Year Jan Fey Mar Apr May Jx Jul Aug Sep Oct Nov tc 

77 -225 270 -243 871 -721 -765 234 	288 490 -562 309 -173 
78 -338 -65 810 -315 81 -31 -827 -202 1473 -652 78 217 
79 -396 -731 1833 -1233 168 119 -655 1230 -598 -12 102 -585 
80 962 470 -780 -440 1181 -1680 938 	-8 170 248 -600 -565 
81 1955 -437 -1076 352 -358 611 -149 -273 -317 1014 -362 298 
82 -315 105 -569 603 -273 -642 623 -270 421 -370 -157 481 
83 -240 -24 1476 -1735 -1455 1630 104 	8 215 -353 -649 886 
84 -719 897 63 -941 -27 1143 -1006 -222 293 -213 830 -514 
85 118 -504 537 257 528 -1401 -090 1451 -995 -116 756 -676 
86 738 -603 -87 492 1390 -1917 453 	100 -191 436 -405 214 

(1) Entries have to be iiultiplied by 10 

0 
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TABLE 2 

&nDary of the estimation proceóire for 0x21o2 . 

(I) 	(II) 

step( 1 ) 	k-i 	k-2 	k-i 	k-2 

Stepi 	.0153 	.00031 .00031 .00031 
Step3 	.0103 .00006 .00031 .00004 
Step4 	.0103 .000026 t( 2) .000043 
.rx( 3 ) 	-211 	-170 	-179 	-132 
t-test(4) 2.18 	1.79 	.049 	1.77 

Refer to section 5 for cfinitic*i 
Non-Available: Method of scoring leads to a rgative estimate 
Ref.: equation (4.25) 
Ref.: equation (4.24) 

¶ 
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• 	Table 3A 
Total Retail Trade Sales - All Stores - va Scotia (I) 
Spectral cienaities for the original and trading-day adjusted series 
for selected freciixies. 

freq 	Y 	1t 	Ka(1-1) n(1-1) Ka(k-2) 	(k'-2) 

.3278 1.1695 9.1319 6.4164 5.7778 7.3873 7.0939 

.3333 0.6797 3.6927 2.9862 2.3540 4.3460 6.0100 

.3389 5.3868 1.5177 0.9303 1.2743 1.4574 6.1753 

.3444 23.8114 2.0735 2.0121 1.6289 0.7589 4.1351 

.3500 37.6602 6.9724 5.2330 3.5292 3.0434 4.2020 

.3556 22.5998 9.6120 7.1576 5.2519 6.4855 4.7701 

.3611 5.5827 4.8960 5.2180 3.9993 5.8694 2.7787 

.3667 1.4694 1.5090 1.9696 1.7508 2.2158 1.1023 

.3722 1.5816 2.6025 1.2286 1.9509 0.5728 1.6986 
stui: 99.9411 42.0077 33.1518 27.5171 32.1365 37.9660 

Y: original, Det: Trading-day adjusted by the deterministic nodel 
Ka(k-l): Trading-day adjusted with the coefficients fran the rarrkui walk 

nodel witb.it 9loothing 
n(k-1): Same as Ka(k-1) but with .sTlcothing 

Ka(k-2): Same as Ka(k-1) but with the quadratic uixlel(k-2) 
n(k-2): SaIE as &n(k-1) but with k-2 

Table 3 
Total Retail Trade Sales - 

. 

DeparthEnt Stores 	Canada (II) 
Spectral derities for the original and trading-day adjusted series 
for selected freq.Eies. 

freq Y Det Ka(k-l) 	D(Q4) Ka(e-2) &n(k-.2) 

.3278 0.6511 2.0879 1.7716 	1.8740 	2.1924 	2.9300 

.3333 0.7347 1.1348 0.8986 	1.0175 	1,6366 	3.8936 

.3389 4.5313 1.4962 1.0203 	1.3066 	3.0590 	6.3690 

.3444 15.7876 1.9041 1.4534 	1.5555 	3.5352 	5.4069 

.3500 21.1031 1.4258 1.5010 	1.2729 	2.0801 	3.0818 

.3556 11.6191 1.3611 1.5608 	1.5225 	1.6078 	3.7332 

.3611 5.1573 1.7703 1.7976 	1.9902 	2.2078 	3.6070 

.3667 3.8195 3.2686 3.1939 	3.3355 	2.5901 	2.3057 

.3722 3.0257 5.1427 4.7810 	4.9885 	2.3659 	2.2241 
suu: 66.4294 19.5915 18.9782 17.8632 21.2749 33.5513 

Y: original. Det: Trading-day adjusted by the deterministic nodel 
Ka(k-l): Trading-day adjusted with the coefficients from the rarian waik 

nodal with*.it smoothing 
n(k.-1): Same as Ka(k-l) but with .wothing 

Ka(k-2): Same as Ka(k-1) but with the quadratic nodel(k'-2) 
Sa(k-2): Same as n(10-1) but with k-2 

0 
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