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RESUME 

La désaisonnalisation des series socio-
economiques continue d'être un sujet qui 
attire beaucoup d'attention. 

Une etape éssentielle avant toute 
désaisonnalisation est de tester les series 
pour la presence significative de saisonnalité 
soit detérministe ou stochastique. Les tests 
standard du type ANOVA ne sont pas adequats 
cars ii ignorent la possibilité de résidus 
autocorrelés. 

Cet article introduit un test de F 
nodifié pour la presence de saisonnalité 
détenniniste. Des tests pour la saisonnalité 
stochastique sont aussi discutés. Les divers 
tests sont illustrés avec plusieurs exemples. 
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ABSTRACT 

The adjustment of economic and social time series 

for seasonal variation has been and continues to be 

the subject of much attention. As a first step towards 

seasonally adjusting a series, it is essential to test for 

the presence of deterministic as well as stochastic seasona-

lities in time series. The standard ANOVA tests for 

seasonalities are inappropriate, as they do not allow for 

the likely possibility that observations are autocorrelated 

This paper discusses certain modified F-tests for determi-

nistic seasonalities. Tests for stochastic seasonalities 

are also discussed. The test procedures are illustrated 

by several numerical examples. 

Key Words and Phrases: Two-way correlations; stable and 

moving seasonalities; Dependent quadratic forms; 

Modified F-tests; Seasonal adjustments. 
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I. INTRODUCTION 

Seasonal adjustment procedures are widely employed in the analysis of economic data. 

One of the main reasons for the adjustment of economic and social time series for seasonal 

variation is that seasonal components represent the effects of non-economic factors that are 

exogeneous to the economic system and hence are uncontrollable. 

There are various methods available to deseasonalize a time series. The U.S. Bureau of 

the Census Method I14-1 1 variant developed by Shiskin, Young and Musgrave (1967) and the X-

11-ARIMA version developed by Dagum (1975, 1980) are widely used by government agencies and 

statistical bureaus. These seasona' adjustment methods are based on moving average techniques. 

Kenny and Durbin (1982) provided some methods of improving the performance of the X-11 

seasonal adjustment procedures. Wallis (1982) suggested procedures for seasonal adjustment 

and revision of current data by linear filter methods. The seasonal adjustment procedures links 
to Box-Jenkins ARIMA modelling has been discussed, among others, by Box, Hillmer and Tiao 

(1978), Pierce (1978), and Burman (1980). Recently Box, Pierce and Newbold (1987) focussed 
on current and projected trends in order to deseasonalize a time series. Burridge and Wallis 

(1985) presented a Kalman filter formulation of the 'model-based" methods to perform seasonal 

adjustment. However, there are situations where the seasonality in a time series may not be 

significant. In such cases, the adjustment for seasonality is unnecesary. This suggests testing 

for the presence of seasonatity in a time series before making seasonal adjustments. But, very 
little discussion has appeared in the literature on such testing problems. 

The X-11-ARIMA procedure developed by Dagum tests for seasonality and for moving 
seasonality before making any seasonal adjustment. Pierce (1978) has also discussed tests for 
deterministic as well as stochastic seasorialities. But, both X-1 1-ARIMA and Pierce's 

procedures test for seasonality use standard F-tests. The use of standard F-tests, however, 
may give misleading results as the auto-correlation in the series used to define the numerator 

and denominator of the F-ratios invalidate the standard distribution theory. In an effort to 
come to grips with this distributional problem, Dagum, Huot, 
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and Marry (1988) discuss tests for empirical seasonality. In the 

sequel we present modifications to F-tests for the presence of 

deterministic and stochastic seasonalities and discuss distribution 

theory for our tests. 

In Section 2, we discuss the model for seasonal components. A four 

moment approximation to the distribution of a modified F statistic for 

testing the deterministic seasonality is discussed in Section 3. An 

alternate approximation using standard F-ratios with modified degrees 

of freedom is discussed in Section 4. In Section 5, tests for 

stochastic seasonalities are given. An example illustrating the use 

of the tests is discussed in the last section. 

2. THE MODEL 

The multiplicative seasonal model for a time series 	is 

. 	
- Ct X t E , 	(2.1) 

where C, S 	and E 	 are, respectively, the trend-cycle, seasonal, 

and irregular factors of Y, all at time t. Many economic series 

exhibit exponential growth and, for these, the multiplicative model is 

most appropriate. For other series, however, an additive model may be 

more appropriate and this is directly related to the multiplicative model 

by taking logarithrris. If y - log Y ' c - log C, etc., then (2.1) 

becomes 

yt - Ct + at + et 	
(2.2) 

which is the additive seasonal model. 

0 	
Suppose y 	follows a SARMA(p, q) (P, Q) 	process. That is, 



1 

a 
• (B) V (B)y - K + e (8) 

q 	
0 (B5) a , 	(2.3) 
Q P 	p st 

. 

where •(B) Oq (B) are polynomials in B of degrees p and q 

respectively; 'V(8') OQ (B) are polynomials in 	of degrees p 

and Q respectively, K* is a constant and a t 13 a component of a 

white noise process with zero mean and variance a. If deterministic 

and stochastic trend and seasonality are both present, the trend and 

seasonal components of the observable series y 	 can be written as 

follows (cf. 	Box, Hilimar and Tiac (1978), Pierce (1978)1: 

•(B)Dp(B')Ct - L aa 	+ W(B)t 	(2.4) 

• ( B ) t'p ( B5)3 t 	+ 

where: the elements {a.)i  a nd (b.}  are respectively trend and 

seasonal dummy variables; {} and {d}  are two independent Gaussian 

white-noise processes with zero means and variances a and 

respectively; 1(B) and 11(3) are polynomials in B of degrees less 

than or equal to max(p + Ps, q + Os). It then follows from (2.2), (2.3) 

and (2.4) that 

o 	8 (Ba) a - v(B) 	+ T (B) d + • (B) X' (B 3 ) e 	, 	(2.5) 
q 	0 t 	V 	t 	p 	P 	t 

and 

- E cz 1  . 
i

a 	+ E 	, b. 
t 	3 3t 

Thus, the time series (y} may be modelled as 

• (B) 'i (B3)y 	+3 	+U - c1 
p 	P 

(2.6) 

where c 1  - E a. a 
it 
 is the deterministic trend component, s 	 - E b 	 Iit 

is the deterministic seasonal component, and 



u - 9 (8) 9 (83)a (2.7) t 	q 	Q 

is the stochastic component. A series displays deterministic seasonality 

is nonzero; it possesses stochastic seasonality if T1 ( B ) dt  is 

nonzero. As it is unnecessary (cf. Pierce (1978, p.247)) to separate 

stochastic trend from the irregular component in order to seasonally 

adjust a series, we will concentrate on the deterministic trend free 

series for testing the presence of deterministic seasonality components. 

Let z - •(B)cV(95)Y - c 1 	be the deterministic trend free 

series. This {z} series will be referred to as the series of 

seasonal irregular differences. For the multiplicative model, 

the {z}  series will be referred to as the series of seasonal irregular 

ratios. Hence, to test for seasonality, we consider the model 

zt 	it 	
, 	(2.8) 

S  
where 3 	 is the deterministic seasonal component, and u 	is the 

residual which, at least, contains stochastic seasonal and irregular 

components. 

3. TESTS OF DETERMINISTIC SEASONA.LIT 

Suppose there are k seasons in a year and there are kn observations 

in a time series of n years. Writing z(t) 	for z 	in (2.8), one 

may arrange the kn observations in a stacked vector 

	

(z', 	. . ., z', 	. . ., z') ', 	where 	z, 	[z{ (i - l)n + 1), 	. . 

	

1 	. 	k 	1 

z{(i - 1) n + j], 

	

z{in})' is an n X 1 column vector containing 

the n seasonal-irregular differences (ratios) under the ith season 

(i 	1, . . ., k) , z( (i - l)n + j} 	being the jth observation (j - 1, . . ., ii) 

under the same (ith) season. Then for t - {(i - 1)n + j}, the model 



(2.8) may be written as 

z{(i - 1)n + 	- 3 1 ((i - 1)n + 	+ u{(i - 1) rt + 

(3.1) 

The equation (3.1) may be re-expressed as 

z. 
1. 	 11 (j) - s 	(j) + u(i) 	(3.2) 

where z.(j) is the seasonal-irregular difference for the ith season 

(i - 1, . . ., k) in the jth year (j - 1, . . ., n) . For much economic 

seasonal data, the deterministic seasonal component s 1 .(j) in (3.2) 

contains additive seasonal and annual effects. Then, the model (3.2) 

may be written as 

z, 
1 	 1 
(j) - L +a. 	

J 	1. 
+ 	+ u.(j) 	(3.3) 

where p. is a suitable constant, a, is the ith seasonal effect and 

j3. is the jth annual effect. Thus the ats and 3's in (3.3) 

represent, respectively, the stable and moving seasonalities of the 

series. To test for the presence of deterministic seasonality, one 

tests the hypothesis that 3 1 ,(j) - 0 in (3.2). In the notation of 

(3.3) this test is equivalent to testing the hypotheses: 

H 
01 1 

:a. 	11 i - 0 vs H :a * 0 for at least one i, 	(3.4) 

and 

- 0 vs H 12 :3. * 0 for at least one j. 	(3.5) 

The purpose of the next Section is to discuss test criteria analogous to 

the classical F-tests for tsting the hypotheses in (3.4) and (3.5) 
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3.1 Tests for Stable Seasonality 

Denote by L 	the kn x kn covariance matrix of Z, where Z 

is a kn-dimensional vector containing seasonal-irregular differences 

(ratios) . Let 02  0 	denote the covariance between the jth and j'th 
j a 	j' 

years for season i (i - l ..., k) . Also let a 
a  X 

	 , denote the 

covariance between the j-th and j'th years when the months are separated 

by h - Ii - ri 	for i * r, 	i, r - 1, . . ., k. 	For instance, if I 

denotes the March season and r denotes the June season, then 

h - Ii - ri - 13 - 61 - 3. Thus, a 2 X (3)  would mean the covariance 
a 	jj' 

between the jth and j'th years for any two seasons lagged by 3. Then 

the covariance matrix 	of 1* may be written as 

- A1 A2 ... Akl 

Al E Alk2 

. 

	

F] 
	 (3.6) 

Ak3 L 

where 	2 (a,) 	and Ah - 	for it j' - 1, . . ., n and 
a 	

. . 
a 

h 	Ij - ri > 0, 	i, r - 1, . . ., k. 

Now when testing for the presence of stable seasonality, one tests the 

hypothesis H 0 :a, - 0 (3.4), where aj  is the ith season effect as in 

(3.3) . In connection with inferences about parameters in ANOVA models 

with autocorrelated errors, Brillinger (1980) used the Fourier transform 

of the data and proposed modified F-statistics as functions of the 

frequency X for testing the row or column effects. Sutradhar and 

[I 
	MacNejil (1989) use modified time domain F-statistics in testing for 

row and/or column effects. Since, in practice, time series data are 

. 



collected sequentially in time or space, we follow Sutradhar and MacNeil]. 

(1989) and test the above hypothesis by using a modified F-statistic 

F* defined by 

- (0 1 /03 )((fl - 1)C 3 /C 1 ), 	 (3.7) 

where: 

k - 	- 

	

Q 	Z (2, (.) - z 1 
- 
	1 	I 

i-i 

k 	n 2 

	

Q 	- 	L 	E (z. (j) - !. (.) - 	(j) + 	
()) 

3 	3. 	1. 	S 	S 
i-i j-i 

n 	k 	 k 	n 
with 	i . (.) 	L a. 1  (j)/n, 	S  (j) = 	3. 

a, (j)/k, 	and 	(') 	E 	
1 

E z (j)/kn; 
1 	 S 

i-i 	 i-i 	 i-i j-1 

and 
nn 	k-i 

C -- 	E 	L{a 	- 	2 	(h)} 
1 	n j-1 j'=i 	ii' 	k(k - 1) 	h-i 	ii' 

n 
C 	I [{ Z a 	- Z a 	/(n - a 

i-i 	ii 	ii' 

k-i n 	n 	k-i n 
2 

	

 
k(k - 1 { £ 	£ 	£ (k - h) 	- £ 	E (k - h) X/(n - 1))], 

-  h-i j-i j'-1 	h-i 3*j' 

where 	and X 
(h)

are given by (3.6) 
tt l  

For significance testing one needs to know the p-value of the 

statistic, namely, Pr(F 5  > f*), where f 1  is the data based value of 

F*. Note that the quadratic forms Q and Q 	 are not independent. 

This dependence between the quadratic forms makes the derivation of the 

exact distribution of the test statistic F 5 , mathematically intractable; 

hence we seek a suitable approximation. We consider 



Pr(F ~ f') - Pr({d1Q1 - f*Q} 2: 01, 	(3.8) 

40 
where d 1  - (n - 1)C 3 /C 1 . Sutrad1ar and MacNeill (1989) give a Gaussian 

approximation to the distribution of 

	

Q - d1Q1 	f*Q3, 	(3.9) 

for the case when k and n are sufficiently large. In the following 

sub-section, we provide a finite sample approximation based on the first 

four moments of Q. 

3.1.1 A Four Moment Approximation 

Rewrite Q  in (3.9) as 

	

Q - m 1 q + m 
 2  q 

 2 , 	 (3.10) 

where m 1  - d 1  - (n - 1)C 3 /C 1 , m2  - f', q - 	
- Z**A 1 Z*, and 

q 2  - Q3 	Z*IA 2 Z*, and where 

A1 
- ( ( Ik - 

k1Uk) ® Ui/n, 

	

A2 
- 
N I k - k'Uk) ® ' n - 	

- k1Uk) ® 

where I 	 is the k x k identity matrix, Uk  is the k )( k unit 

matrix, and ® is the Kronecker product. Under the assumption tht 

u( .j) 	in (3.3) 	follow a SARMA (p, q) (P, Q) 	process, Z 	has a 

kn-dimensional normal distribution with mean vector m*  and covariance 

matrix £* (3.6), where m* 
- 

(m , . . ., m . ..... , m kn ) ' 	 with 
 

m 	
j ii - 	 i 

+ a + 0 . For h, t, u, v - 1, 2, 	let 

0 	s(h) - trace AhZ 



3(h, t) - trace AhZ AL E*  , 

s(h, t, U) - trace AhL *  ALE* AE* , 

(h, t, u, v) 	trace A L* A £* A L* A E, 
h 	& 	u 	v 

and 

T(h) — trace m *l Ahm *  

T(h, t) — trace m* AhE * A&m *  

T(h, t, U) - trace m* A h 	u 
L* A Z A m * 

t  

and 

T(h, t, u, v) = trace m*'A h 	£ 
L* A Z 	

u  
A Z 	v 

A ni 

Then the mixed cuxnularits of q 1  and q2  up to order four are as follows: 

I( 1 (h) - S(h) + T(h) 

t) - 2S(h, t) + 4T(h, t) 

K 3 (h, £, u) — 8S(h, t, u) + 8[T(h, t, u) + T(h, u, £) + T(u, h, £j 

and 

u, v) — 16(S(h, t, u, v) + S(h, tL, v, u) + S(h, v, t, u)) 

+ 16({T(h, t, u, v) + T(h, t, v, U) 

+ T(h, V 1  t, U) + T(v, h &, u)} 

+ (T(h, u, t, v) + T(h, u, vo t) 

+ T(h, v, u, £) + T(v, h, u, t)} 

+ {T(u, h, t, v) + T(u, h, v, 
. 



+ T(u, v, h, t) + T(v, u, h, t)}). 

Next, one obtains the first four cumulants of Q (3.10) as: 

2 
w 1  - Z mhkl(h) 

h-i 

	

2 	2 

	

-I 	Z mhmtK2(h, t) 
h-i t - i 

	

2 	2 	2 
w - Z Z Z mhmtm K3 (h, t, u) 

h-i t i 
 

and 

2 	2 	2 	2 
w 4 	L E m n t u v 4 

m m m K (h, t, u, v) 
h=i t-i u-I v-i 

The mean, standard deviation, skewness and kurtosis of the distribution 

of Q  are as follows: 

I.L(Q) - 

1 	1 

(42(Q)} 2 - w2 2  , 

I 	I 
- w3 /w2 2  

and 

3 2 (Q) - (w 4 /w) + 3. 

The distribution of Q  is approximated by a Johnson (1949) curve 

which has the same first four moments, and then P r0 ~ 0) is computed. 

The algorithm AS99 due to Hill, Hill and Holder (1976), among others, is 



available for fitting the Johnson curve by moments. 

3.1.2 Teat for Stable S.aaonality for (0, 1) (0, 1) 12 grror 

Proc.e: A Special Case 

Let 8 	be the covariance between any two seasonal-irregular 

differences lagged by r. When seasonal-irregular differences (Z*) 

follow a (0, 1) (0, 1) 	process, the covariances are 

2 
- a2  (1 + 02H1 + 82), 8 - -a2 (l + 8), 

8 	- a2  o e 6 - a2  8(1 + 92), 6 	- 6 
3+1 	s-i s-1 	a 	s 	a 

with the remaining covariances being zero. The computations of the first 

four moments of Q require L (3.6) to be known, where L 	is the 

kn x kn covariance matrix of V. For ii years and k 	12 seasons, 

the component matrices of Z 	are: 

8 8  0... 0 0 o 
0 0 

3 0 s 

o o 0 	...6 6 0 

0 0 o...8 8 
3 0 

nX n 

. 

. 

S 



a 

. 

8 	6+ 	0 	. . . 	0 	0 

8 	8 	6 	... 
s-i 	1 	s+l 	0 	0  

A1  - 

o 	o 	0 	... 	6 	8 1 	s+1 

o 	0 	0 	... 	6 	8 
s-i 1 

nX n 

6 	0 	0 	... 	0 	0 
s-i 

6 	8 

	

 
s-i 	o 	... 	o 	o 

1  

6 	8 	6 	... 
1 	s-i 	

0 	0 
 

o 	o 	0 	... 	6 	0 
s-i 

o 	0 	0  
1 	s-i 

and A. - 0 for i - 2, .. ., 10. 
1 

The modified F-test statistic F* (3.7) or equivalently the statistic 

Q in (3.10) requires C 3  and C 1  to be known. For the special 

(0 1  1) (0, 1)12 process, the appropriate formulas for C 1  and C 3  are 

as follows: 

A 11  - 

0 



- (1 + 92) (1 + 
02) - 2(1 - !) e(1 + 

9 2 )  

+ (1 + (1 - 1)/11) 01 + 82) - (4/11) (1 - 	) 9 0 	(3.11) 

and 

C3  - (1 + 0 
2 
 ) (1 + 92) + (2 8/n ) (1 + 0 2 ) 

+ (0/6) (1 + e2) ci - 1/1n) 

- (0 0/6n) (n/li - 2(n - 2)/11(n - 1) - 2). (3.12) 

3.2 Tests for Moving Seasonality 

To test for the presence of moving seasonality, one tests the hypothesis 

(3.5), namely, 	M0 43, - 0, against H 1 :. * 0 for at least one 

j, j - 1, . . ., n. By calculations similar to those for F*, the appropriate 

modified F-statistic for testing the above hypothesis can be shown to be: 	0 
(Q 2 /Q 3 ) { (k - 1) C 3 1C 2 ), 	 (3.13) 

where 

n 
2 

- k E ( 	(j) - 	(.)) 	, 
i - i 

n 	k-i n 
C 	( E 	. + ( 2/k) L 	(k - h) 
2 	n 	

h-i j' -1  

n 	k-i 

- n - 	
Z 	+ (2/k) 	- h ) ). ( h ) }) 

j*j' fl 	h-i 

and Q 	 and C 3  are as in (3.7). 

Let f**  be the data based value of F**. In order to render a 

decision concerning the null hypothesis H0:I3 - 0, we require 	S 



P (F** Z! f**) 	That is, we compute 
r 	

Pr(Q* -> 0), 	(3.14) 

where 	- b1q + b2q , and where 

b 1  - (k - 1)C 3 /C2  

b2 - _f** 

q - Z*#B 1 1* 

q; - z* 1 3 2 z* 

with 

B
1 
 - [U k 
	n 
0 (I - n 	

n 
1U ))/K, B 2  - A2 , 

where A2  is given by (3.10). Replacing A l . A2  by B 1 , B2 , and 

m 1 , m2  by b 1 , b2  the four moments of Q*  follow from the four 

moments of Q. The r the distribution of Q* is approximated as before 

by a Johnson (1949) curve which has the same first four moments. 

3.2.1 Test -  for Moving Seasonality for the (0, 1) (0, 1)12 error 

Process: A Special Case (continued) 

The kn X kn covariance matrix Z 	of Z 	remains the same as 

for the test of stable seasonality. The modified F-statistic F**  (3.13), 

or equivalently the statistic Q* in (3.14), requires C 3  and C2  to 

be known. For the (0, 1) (0, 1)12 process C 3  is already given in 

(3.12) . The appropriate formula for C 2  is given by 

0 	C 
2 -  (1 + 92) (1 + 92) - (9/6) (1 + 

92) 
(11 - 1/n) 



+ (20/n) (1 + 0 2 ) + ( 0 0/6) (1 - 22/n - (n - 2)/n(n - 1)). (3.15) 

. 

4. TEST Of A GENERAL LINEAR HYPOTHESIS 

Using the notation of (3.1), we rewrite model (3.3) as 

z{(i - 1) n + j} - 	+ 0 + u((i - l)n + j), 	(4.1) 

where z{ (1 - i)n + j} are the stacked observations read as 

z(i), z(2), . . . , z(n), z(n + 1), . . •, z(kn) . 	Equation (4.1) can 

be expressed as 

+ (J 
	

(4.2) 

where 

	

- (z(1), z(2), 	..., z(n), z(n + 1), 	..., 

	

(U (1), u (2), 	. . . , u (n) , u (n + 1), 	. . •, u (kn) ) 

	

- (a 1 , 	. . ., a ) , 	3 )f  

and X is the kri x (k + n) design matrix given by 

	

it 	0' 	. 	. 	. 	Of 	I 

	

n 	n 

0 	1' 	. . . 	
of 	I 

n 	n 

	

0' 	Of 	. 	. 	. 	1' 	I 
n 	n 

where 	(1, 1, 	. . 	1xn' 	
0 - (0 1  0 1  . . ., 01xn' 	

and I 	is the 

n x n identity matrx. 

We consider the test of a general linear hypothesis 



- 0 	 (4.3) 

where C is a suitable matrix corresponding to certain given constraints. 

For the case when U 	in (4.2) has normal distribution with mean 	0 and 

covariance matrix Z, Berndt and Savin (1975) have discussed Wald, 

likelihood ratio (LR), Lagrange multiplier (LM) •id max-root (MR) 

tests for testing the linear hypothesis (4.3). In the context of seasonal 

analysis of Canadian murders, McLeod, MacNeill and Bhattacharyya (1985) 

e the Wald, and LR tests for testing a linear hypothesis similar to 

1 .3) . Berndt and Savin (1975) have shown that the Wald, LR, LM, and 

MR tests based on exact distributions conflict with each other when 

.:cHed to a given data set. In a later paper, Berndt and Savin (1977) 

showed that even in the asymptotic case, the Wald, LR and 124 tests 

yield conflicting inferences. For the case when U 	follows the 

AR(1) process, Sutradhar and Bartlett (1989) have shown by a simulated 

experiment that the Wald test is too liberal and the LR test has 

c.:nvergence problems for certain values of •, where • is the 

coefficient of AR(1) process. More specifically, Sutradhar and 

Bartlett consider the model 

z.(j) - ji + a. 1. 	2. + u.(j), 

u. 2.  (j) - • u 2.  .(j - 1) + a. 2.  (j) 

where a.(j) is the component of a white noise series and test 

H 0 :cz. - 0 for all i - 1, . . ., k, 	for k - 2, 3. Under the null 

hypothesis, the Wald and the LR statistics have asymptotically chi-square 

distributions with k - 1 degrees of freedom. Based on 2000 simulations, 

they have shown that for n - 100, for example, the Wald test overestimates 

the significance levels. The amount of bias increases as I,I increases. 



It is shown in Sutradhar and Bartlett 	(1989) that for 	• 	- 	-0.8(0.1)0.6, 

the LR test is almost unbiased in estimating the significance level. 	The LR 

test overestimates the significance level for the cases when $ - 0.7 and 

0.8. For • - -0.9, and 0.9, the test has convergence problems and highly 

overestimates significance levels, since they are based only on cases 

where convergence was achieved. Thus, the use of the Wald and the LR 

tests (specially Wald) for testing the linear hypothesis with SARM?. 

3 	 :j.:erai, and these te5t3 wl  

J'.:3sei 	.:rter 	in 'h i i 	 :.1per. 

For the regression model when the components of U' 	re unccrre1ted, 

ne te33 the I:.r 	'chesi3 (4.3) by using the classical F-statistic 

oi;en by 

F 	
(Cy - Cy)'(C(X'X) 1 C 1 ) 1 (Cy - Cy)/q 	(44) 

('* - Xy) 1  (Z' - Xy) / (kn - k - 	- 1) 

where y is the ordinary least square estimate of y, and q is the 

rank of C. For the model (4.2) when the error term U 	has covariance 

£', the F-statistic (4.4) is inappropriate, since the dependence among 

observations implied by the model alters the amount of information 

provided by the observations. Similarly to (3.7) and (3.13), one may 

modify the F-statistic (4.4) by adjusting the biases induced by 

correlations among observations. The modified F-statistic is given by 

- 	q(trace(I - 
(4.5) 

(kn - k - n - 1) (trace 

where: F is given by (4.4), L' is the covariance of (.1', and 	0 



D 1  - R'(RR') 1 , with R - C(X'X) 1  x ' , 	- X(X'X) 1  X' 

The statistic F in (4.5) may be expressed as 

- 	 trace(I - D2)L* J 	U*ID1J* 	
. 	 (4.6) F- 

	

trace D 1 Z* 	U'(I - D2)U* J 
Now to find the p-value, one may use the four moment approximation 

discussed in Section 3.1.1. Alternately, one may compute the significance 

level by using the well-known Satterthwaite approximation as discussed 

below. 

4.1 Satterthwaite Approximation 

Let f be the observed value of F. We need to compute 

Pr(F _> f) - Pr(U*'(d*D1 - f(I - D 2 )) u 2! 01, 	(4.7) 

where U - N(0, L*), d* 	trace (I - D2 )L*/trace D 1L*. Let L*2  u 	5* 

so that 8* - N (0, 1) . The the probability in (4.7) reduces to 

Pr[8* 1 L* 2  (d*D1 - f(I - D 2 ))Z* 2  5* 2. 0). 	(4.8) 

rther, this probability is equivalent to 

r 	n 
Pr({ 	

2 
/ 	p 	

2 	
~ 1), 	(4.9) 

j=1 i i  j-s+1 

here 	2! ... 2!X >0-X 	-...-X >), 	~ 	~ ... 2:X 

re the eigenvaluesof (d*D 1 _ fU - D 2 ))*. In (4.9), Xdenotes 

hi-square variable with 1 degree of freedom. The probability in (4.9) 

may be expressed as 

is Pr IF 	- 1 
, 	 (4.10) 

1'2 	
a 1  J 

E 



where F 	denotes the usual F-ratio with degrees of freedom 	and 

with 

r 	r 

 jMl 
- ( £ •)2 / 	

2 

i-i •1 

n 	n 	2 
£ X) 2/ £ 

2 - j-s+1 	j-s+l 

and where 

r 	r 
a - E X / E X 

j-1 	i-i j 

n 	n 

	

b - E X,/ E 	X..I. 
j=s+l 	j=s+i. 

If 	and C 	 are fractions, the probability is computed through 

interpolation. 

5. TESTS OF STOCHASTIC SEASONALITY 

Recall model (2.8), zt 
- 5

.  + Ut, for seasonal irregular 

differences. In this model, s 	 is the deterministic seasonal
it  

component and u 	is the stochastic component. However, by (2.5) and 

(2.7), u 	has the form 

u
t  - TI V 	t 

(B)d + 4ru  (B) 4 
t 	p + • (B) CI)(B3)et 

where Ii (B)dt is the seasonal component of u, and where IYU (B)Tt 

and $(B)b(B)e 	are nonseasonal components. Since 

+ • (B)cV(B ' ) e 	r , u 	is the sum 

u_s2+r# 	(5.2) 	. 



• 	of two components, seasonal (signal) and nonseasonal (noise). 

Now, the stochastic properties of the stationary series u 	can be 

assessed via its sample autocorrelation function. In general, there will 

be a nonseasonal filter that will eliminate whatever low-order auto- 

correlation (trend) from u 	that was not eliminated previously. Let 

h(B) be the appropriate nonseasonal filter. Then 

ü
t  -3 2t 	t (5.3) 

where 

t - h(B)u 

3 2t - h (B)TI v (B)dt - h(B) 32t 

and 

. 	 t - 

In (5.3), v 	is white noise and 
32t 

 is autocorrelated only at 

seasonal lags. It then follows from (2.7) that 

t 
- h(B) 0 (B) e Q (B3)a , 	(5.4) 

q  

where a 	is the white noise. Thus one may write 

ut - 	 (5.5) 

and 

32t 	
(B)d t F 	 - 	 ( 5.6) 

where g(B) u h(B) Oq(B) 8 (B) , and g(B) - h(B) fl(B)dv  with 

dt being white noise. Then the estimate 
32t 

 that minimizes 

- 32t 	
is  



-2 - 	- 
- 	ad g(B)g(F) 

2t - -2 	
, 	(5.7) 	. 

a g (B)g (F) 
a u 	u 

(Cf. Pierce (1978, p.244)] where F - 	1 is the forward shift operator. 

Next, the seasonal component 
32t 
 of U 	 in (5.2) is estimated as 

32t - h
1  (B) 3 2t 	(5.8) 

Roughly speaking, the non-zero s 	 in (5.2) indicates the presence 

of stochastic seasonality. Since 
32t 

 is autocorrelated only at seasonal 

lags, one may detect the presence of stochastic seaonality by testing 

p 3 	, P 	 - 0, . .., etc, where p 	is the autocorrelation of 3 
2t 
 at 

lag s, s being the seasonal period. The null hypothesis H 0 :p - 0 

may be tested by using the normal statistic 

z - 
	 S 	

(5.9) 

	
. 

5 	
est. s.d.(? 

S 

(cf. McLeod (1978), Ansley and Newbold (1979)]. Similarly, one may 

test p 2 	0, p 3 	0, ... etc. The rejection of the null hypothesis would 

lead to the conclusion that the series Contains stochastic seasonality. 

6. NU)RICAL DISCUSSION 

Airline Series 

Consider the airline series of monthly passenger totals for 

international air travel for the period from 1949 to 1960. This 

series has been analyzed by Box and Jenkins (1976, Tables 9.1, p.  304), 

among many others. Box and Jenkins parameterized the data in terms of 

the seasonal multiplicative model (0, 1 1  1) X (0 1  11 1)12.  Let  {w} 

denote the original monthly passenger totals and {z}  denote the 



deterministic trend free series, i.e.,, z 	By expres3ing z
12 

in the form of (2 	8), namely, z - 3 	 + Ut, and by using a Gaussian
it  

approximation for large k and n, Sutrad.har and MacNeill (1989) have 

shown that the {z}  series contains neither stable nor moving 

seasonalities. In practice, the season size k may be very small. For 

example, in a quarterly series k - 4. In such cases, it may be 

appropriate to use a finite sample approach for testing for the 

presence of stable and moving seasonalities. Since the approximations 

developed in Section 3.1 and 3.2 do not require large k or n, we use 

these approximations in order to test for the presence of stable as 

well as moving seasonalities in the airline series, where k - 12 and 

n - 12. 

In testing for the presence of stable seasonalities, we find 

f* - 0.6588 by (3.7), fore - 0.4129, 8- 0.4503, and cy2 - 0.00117. We then 

compute p(Q ;! 0) by (3.10), where Q  is the linear combination of the 

two quadratic forms in normal variables. This probabilty calculation 

requires the first four moments of Q. The moments calculation is 

straight-forward as all T(.)s vanish in the equations for mixed 

cumulants of the two quadratic forms. This is because, under the 

H 0 : aj 	0 (3.4), m*A 1  - rn* A2  - 0 where m*, A l . and A2  are given 

in section 3.1.1. The first four moments of Q are: 
I 	 I 

j.,t
1 
 (0) - 0.0640, {J.12(Q)}2 - 0.0929, 

1 
- 0.9876, and 0 2 (Q) - 4.6421. 

Then we use the algorithm AS99 due to Hill, Hill and Holder (1976) to 

approximate the distribution of Q  by a Johnson (1949) curve which has 

• 	the same first four moments and obtain 

Pr(Q ~! 0) - 0.7370 . 	 (6.1) 



Since this p-value is very large, we do not reject the null hypothesis 

that the series does not contain stable seasonality. 

In testing for the presence of moving seasonality, we find 

** 
f 	- 1.1308 by (3.13) for 8 - 0.4129, and e - 0.4503. In computing 

aa 	** 	 * 	 * 
Pr(F >f ), or Pr(Q 2! 0)(3.14), the four moments of Q are calculated 

in a manner similar to that of Q. But unlike the mixed cunulants of 

the two quadratic forms of the linear combination Q, all T(.)s do not 

vanish in the equations for mixed cumulants of the two quadratic forms 

* 
of the linear combination Q . The non-zero T(.)s are: T(2), T(2,2), 

T(2,1,2), T(2,2,2), T(2,1,2), T(2,1,2,2), T(2,2,1,2). 	The first four 

* 
moments of Q are computed as 

I 	* 	 * I 
-0.0303, 	(42 (Q ))2 - 0.1011, 

1 	 a 
{01(Q )}2 - 0.932, and 0 2 (Q ) - 4.5445. 

Then by fitting the Johnson curve as before we obtain 

* 
Pr(Q 2! 0) - 0.3297. 	 (6.2) 

Since this p-value is also large, we do not reject the null hypothesis 

that the series does not contain moving seasonality. Thu5 the moment 

approxiamtion, and the asymptotic normal test in Sutradhar and 

MacNeill (1989) reach the same decision in favour of the null 

hypothesis, namely, that there is no deterministic seasona].ity present 

in the airline series. 

Canadian Export Series 

The data file for this study contains export records of Canada 

from 1972 to 1981. The purpose of this section is to test for the 

presence of seasonality in the export data, where seasonality 

represents the composite effect of climatic and institutional events 	0 
which repeat more or less regularly. In order to test for the 



presence of seasonality, it is necessary to detrend the data. The 

Canadian export data (w}  and its ACF and PACF are shown in Figures 

1(a), 1(b), and 1(c) respectively. The ACF and PACT suggest 

[INSERT FIGURES 1(a), 1(b) 	1(c) HERE) 

differericing to make the data trend free. We find that the data 

{w} can be adequately modelled as a (0,1,1) process with 0 - 0.8083, 

and a2  - 105.52'S. The (z}  can be adequately modelled as a (0,0,1) 

process with 0 - 0.8083, and a2  - 105.5215. The {z} series, where 

z - Vw, and its ACF and PACF are plotted in figures 2(a), 2(b), and 

2(c) respectively. Since {z}  is stationary, we can assume that 

+ Ut as in (2.8), where a 	 is the deterministic seasonal
it  

ccmponerit consisting of stable and moving seasonalities, and u is the 

S 
[INSERT FIGURES 2(a), 2(b), 2(c) HERE) 

residual which may contain stochastic seasonal, and irregular 

components. Re-express z in the form of (3.3) , that is, 

z,(j) - I.L + a, + 	+ 

where a, is the ith season effect and '. is the jth annual effect, 

and where z.(j) is the detrended export for the ith (i 	1 1 .. .,12) 

season of the jth (j - 1,2,..., 10) year. For 8 - 0.8083, the 

modified F-statistics for testing the H 0 : a. - 0, and H 0 : 0 = 0 

were found, respectively, to 'e 

* 
f - 2.4283, and f 	- 0.9338 

By calculations similar to those for the analysis of the airline series, 

• 	

we find 	

* 34 
Pr(F 	f ) - Pr(Q 2! 0) - 9.64 X 10 



** 	 * 
Pr(F ** 2 f ) - Pr(Q 2 0) 	0.4604 

* 
Since the p-value of the F -test is very small, we conclude that the 

stable seasonality in the Canadian export data is highly significant. 

The cc-values represent the magnitude of the seasons effect. The 

general effect L is found to be 0.0995, and the 12 u-values of the 

export data are: 

• 5.27, -9.12, 0.78, -1.44, 9.63, 1.07, 

-4.08, 0.42, 2.07, 2.11, 2.32, -8.94. 

** 
Furthermore, as the p-value of the F -test is large, we do not reject 

H 0 : 3i. - 0, and conclude that there is no moving seasonality in 

the series. The n-values represent the years effect. The 10 n-values 

of the export data are: 

Oj • -0.16, 0.82, 0.94, -0.47, -0.82, -0.53, 

0.67, -1.09, -0.18, 0.93. 

Since the stable seasonality is significant, one should seasonally 

adjust the Canadian export series before using it for further economic 

planning. The seasonal adjustment can be done by using the X-11-ARIMA 

method developed by Dagum or by using the model building approaches 

of Box, Hilimer, and Tiao (1978), Pierce (1978), Burman (1980), for 

example. However, discussion of various seasonal adjustment procedures 

is not the concern of the present paper, as we are mainly concerned 

about the testing procedures for the detection of the presence of 

stable and moving seasonalities in the data. 

We also apply the Satterthwaite approximation described in 

Section 4.1 to test for the presence of stable and moving 

seasonalities in the Canadian export data. Testing for the presence 

of stable seasonality is equivalent to testing the H 0 : Cy 	0(4.3), 



where y - (a 1  ... 1ak,fl. . .,) 	and C is the (k - 1) X (k + n) ratrix 

given by C - [G,0], where 

G - i 

1 -1 0 0 	. . 	. 	0 

1 0 -1 0 	. • 	. 	0 

1 0 0 -1 	. . 	. 	0 

1 0 0 0 	...-1 (k - 1) x k 

and 1 0' is the (k - 1) x n null matrix. Equations (4.4) through (4.10) 

yield 	19.296, C 2 	71.36, and a 	0.878, b - 6.161. Since 

Pz(F 1971  > 25.96) < 0.01, we reject the null hypothesis and conclude 

that the series contains significant stable seasonality. Similarly, we 

test for the presence of moving seasonality which is equivalent to 

testing the hypothesis H 0 : C7 - 0, where )' is a (k + n) X 1 vector as 

before and C is the (n - 1) x (k + n) matrix given by C - (0,H), where 

1 	-1 	0 	0 	. . . 	0 

1 	0 	-1 	0 	. . . 	0 

H- 

1 	0 	0 	0 	. ..-1 	(n-1)Xn 

• 	and '0' is the (n - 1) X k null matrix. In this case we obtain 

- 8.37, C 2 - 73.40, and a - 15.53, b - 2.41, and compute 

a 

. 



Pr(F873  > 1.3589) • 0.2291. Since this p-value is large, we conclude 

there is no significant moving seasonality in the data. Thus the four 

moment approximation and the Satterthwaite approximation provide the 

same conclusions regarding the significance of stable as well as 

moving seasonalities of the Canadian export series. 

Notice that in testing for the presence of stable and moving 

seasonalities in the airline as well as the Canadian export data, both 

series were detrended by taking appropriate differences. The differencing 

technique to detrend the data is quite suitable when data contain 

mostly stochastic trend. In a general situation, one may use other 

detrending techniques which are suitable for removing both deteriinistic 

and stochastic trend from the data. The X-11-ARIMA procedure developed 

by Dagum (1975, 1980), for example, may be used for detrending the data. 

We detrend the Canadian export data by using the appropriate steps of 

the X-11-ARIMA procedure and find that the detrended data follow a 

(0, 1) (011)12  process with 

- 0.2765, 81 - 0.2995 and a2 	37.1523 

The model (2.8), namely, zt-it + u, is then fitted. The ordinary 

least squares estimates of i, a and j3 1 3 are found to be: 

ji - 0.4423 

a, - 2.96, -6.22, -5.49, -7.00, 2.57, 3.59, -0.51, -0.09 
1 

1.97, 4.07, 6.37, -2.21 

and 

u -0.95, -0.17, 1.16, -0.56, -0.70, -0.31, 0.35, 	0 
0.28, 1,45, -0.55 



-- ,- 

Now to test the H0 :a1  - 0, we use, for example, the Satterthwaite 

approximation and obtain 

- 22.56, 2 - 58.83, and b 2 /a 1  - 8.89 

Since Pr(F2359  2! 8.59) = 0, we reject H 0 :U - 0 and conclude 

that the series contains significant stable seasonality. We also test 

H 0 :t3 	0 by using the Satterthwaite approximation. The modified 

degrees of freedom for the F-statistic were found to be 	11.49 

and C2 - 80.29, Since Pr(F 1180  2! 0.174) - 0.0085, we conclude that 

there is no moving seasonality in the series. Note that these 

decisions regarding the significance of stable and moving seasonalities 

remain the same as in the case where the data were detrended by using 

differencing. 

Canadian Homicide Data (TOT Series) 

The TOT data refer to all murders in Canada for the period from 

1961 to 1980, 	cluding the manslaughter and infanticide as they 

are not considered murder and are not available for the entire 

period. McLeod, MacNeill and Bhattacharyya (1985) and Dagum, Huot and 

Merry (1988) have studied this TOT series, among others. McLeod et al 

concluded that the TOT series (monthly) is not significant at 5%. 

Dagum et al concluded that there is no identifiable seasonal movement 

in the monthly murder series. We use the Satterthwaite approximation 

to examine the presence of seasonalities in the TOT series. Figures 3(a), 

3(b), and 3(c) show the monthly TOT data and its ACF, and PACF respectively. 

As these figures 

[INSERT FIGURES] 3(a), 3(b), and 3(c) HERE) 

S 

. 



suggest differencing, we consider d - 1 and find that the TOT series 

may be modelled as an (0,1,1) with e - 0.8911, and a2  - 309.233. The 

graphs for the differenced ( z t  - Vwt) series along with its ACF and PACF 

are shown in Figures 4(a), 4(b), and 4(c) respectively. In testing 

(INSERT FIGURES 4(a), 4(b), and 4(c) HERE] 

for the presence of stable seasonalities, we find 	116, C 2 
	98, 

and bt 2 /a 1  - 0.6829. Since Pr(F116 
98 

 2~ 0.6829) - 0.9756, we 

decide in favour of H 0 : a. - 0, i.e., that there is no significant 

stable seasonality in the TOT series. However, in testing for the 

presence of moving seasonality, we find 	14, 2 
	

157 and 

b 2 /a 1  - 4.22, which leads to the rejection of the H 0 : 5 . 0. Thus 

the test suggests there is a significant moving seasonality in the TOT 

series. 
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Figure 1(a) Canadian Monthly Exports (1972-198 1) 



AUTO. STAND. 
LAG CORR. ERR. 	-1 - .75 	- .5 	- .25 	0 	.25 	.5 	.75 

1 0.289 0.090 . 	:..,.. 
2 0.283 0.089  
3 0.182 0.089  
4 0.101 0.089  
5 0.199 0.088  
6 0.164 0.088 . 	:. 
7 0.086 0.087 . 	:. 
8 0.115 0.087  
9 0,008 0.087 . 	* 

10 0.095 0.086 . 	:. 
11 0.115 0.086 . 	:. 
12 0.102 0.085  
13 0.185 0.085 . 	:. 
14 -0.044 0.085 . 
15 -0.071 0.084 . 
16 -0.055 0.084 
17 -0.076 0.083 
18 -0.236 0.083  
19 -0.042 0.083 
20 -0.080 0.082 
21 -0.136 0.082 
22 -0.062 0.081 . 
23 0.012 0,081 . 	* 
24 0.086 0.081  
25 -0.003 0.080 . 	* 

fl 

Figure 1(b) 



. 

PR-AUT STAND. 
LAG CORR. ERR. 	1 - .75 	.5 	.25 	0 	25 	5 	.75 

1 0.289 0.091  

2 0.218 0.091 . 
3 0.063 0.091 . 	* 
4 -0.016 0.091 . 	* 
5 0,144 0.091 . 
6 0.077 0.091 . 
7 -0.045 0.091 . 
8 0.032 0.091  

9 -0.058 0.091 . 
10 0.062 0.091  

11 0.068 0.091  

12 0.035 0.091 . 
13 0.111 0.091  

14 -0.170 0.091 
15 -0.129 0.091 
16 -0.034 0.091 . 
17 -0.025 0.091 . 
18 -0.296 0,091 
19 0.106 0.091  

20 0.099 0.091 . 
21 -0.136 0.091  

22 0.022 0.091 
. 	* 

23 0.191 0.091 . 
24 0.135 0.091 . 
25 -0.150 0.091  

. 

Figure 1(c) 
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Figure 2(a) Trend-free Canadian monthly export series (1972-1981) 
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AUTO. STAND. 
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Figure 3(a) Canadian monthly homocide data (TOT series) (1061-1980) 
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