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- abstract - 

This paper presents 	a unified approach 	for benchmarking 

socio-economic time series data. 	Benchmarking (e.g. 	Denton, 

1971; Hillrner and Trabelsi, 1987) consists of estimating time 

series when measurements of the target variable are available at 

differing frequencies, e.g. monthly and annually. Most 

benchniarking methods can be seen as particular cases of the 

proposed unified approach. Furthermore, the statistical 

properties available with the general model carry over to the 

previous methods, which were often developed "ad hoc". The 

unified approach, based on Generalized Least Squares with 

stochastic parameters, also encompasses interpolation and 

temporal disaggregation methods (e.g. Soot, Feibes and Lisman, 

1967; Chow-Liri, 1971). However, the paper deals mainly with 

benchmarking. 

KEYWORDS: Regression, Temporal Dis-Aggregation, ARIMA processes, 

Quadratic minimization, Proxy variables, Missing observations, 

Survey errors, Data revision 
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- résumé - 

Ce travail présente un cadre uniflé pour l'etalonnage des series 

chronologiques. L'étalonnage (ex. Denton, 1971; Hillroer et 

Trabelsi, 1987) consiste a estimer des chroniques en presence de 
mesures de la variable cible, disponibles a différentes 
frequences, ex. mensuelle et annuelle. La plupart des méthodes 

d'étalonnage apparaissent conune des cas particuliers de 

l'approche unifiée. Les propriétés statistiques disponibles pour 

cette dernière se rapportent en outre sur les premieres, souvent 

développées de manière empiriques. La cadre unifiée, base sur la 

théorie des Moindres carrés généralises a paramètres 
stochastiques, englobe égaleinent les méthodes d'interpolation 

(ex. Boot, Feibes et Lisnian, 1967; Chow et Lin, 1971). 

Cependant 1'attention portera avant tout sur l'étalonnage. 
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1. INTRODUCTION 

Statistical 	agencies 	are 	concerned with the accuracy, 

consistency, timeliness and usefulness of their socio-economic 

time series data. Benchinarking is the process of making the 

sub-annual values of a variable consistent with the corresponding 

annual values, while also improving both accuracy and timeliness, 

that is their ability to reflect the recent evolution of the 

soc jo-economic variables. 

Classic benchmarking situations arise when the data for a 

variable originate from two sources with different periodicities; 

monthly versus annual, quarterly versus annual, annual versus 

quinquenial, and most often sub-annual versus annual. For 

instance the Canadian monthly Retail Trade data originate from a 

survey while the corresponding annual values are obtained from a 

census. The resulting monthly and annual series are not 

perfectly consistent: the annual totals of the former do not 

equal the corresponding values of the latter. Traditionally, 

benchmarking has consisted of adjusting sub-annual series to make 

them consistent with annual benchmarks. In this paper, 

benchniarking will be defined more generally as optimally 

combining sub-annual and annual data to obtain more accurate 

sub-annual series. In order words, benchmarks may simply be 

treated as auxiliary observations from which to estimate the 

sub-annual series; and thus the traditional view of benchznarking 

emerges as a particular case of this more general view. 
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Less classic benchmarking situations arise when the sub-annual 

data are not measurements of the variable, but an indicator or a 

proxy for the behaviour of the variable; or when the sub-annual 

indicator values are calculated from variables related to the 

variable of interest. These indicator values are then benchmarked 

to the annual values. Strictly speaking, the problem becomes one 

of interpolation (we use this term for flow, stock and index 

series), which is necessary when the "sub-annual" data for a 

target variable are not available. Interpolation is the process 

of generating sub-annual values from annual data avaliable for 

the variable, or from annual data and related sub-annual series. 

Statistical agencies generate large segments of their National 

Accounts series by interpolation. For example, at Statistics 

Canada (1975, p. 357), the "overwhelmingly greater part - about 

75% - of the total quarterly wages and salaries estimate is 

interpolated between annual totals.., on the basis of the 

movement of payroll indexes which measure month-to-month changes 

.". 	(This was the case until 1975. A variant of this method 

is now in use.) 

Benchniarking - and interpolation - also arise in conjunction 

with the calendarjzatjon of socjo-economjc data. Calendarjzation 

is the process of converting "fiscal year" data into "calendar 

year" 	values, fiscal quarter data into calendar quarter values, 

or bundles of weekly data into monthly values. 	The lack of 

caleridarization reduces the usefuliness of the data. 	For 
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example., yearly data for different industries can be confusing if 

the data reflect different fiscal years. In some situations, 

calendarization can be achieved as a by-product of benchmarking. 

For instance, if a variable is benchmarked to fiscal year data, 

from the second quarter of a year to the first quarter of the 

following year, then calendar year values are the annual swus of 

the benchmarked series. When there is no series to benchmark, 

calendarization can be seen as an interpolation problem: the 

fiscal year data are disaggregated into monthly or quarterly 

values, and these are simply aggregated into calendar year 

values. Similarly, fiscal quarter data and weekly bundles of 

data are disaggregated into monthly and daily values respectively 

and then aggregated into calendar quarters and months. 

Although the general model presented in Section 2 applies to 

both benchmarking and interpolation (and therefore to 

calendarizat ion), attention is given mainly to benchmarking. 

Benchmarking and interpolation methods based on Quadratic 

Minimization (Boot, Feibes and Lisman, 1967; Denton, 1971; 

Cohen, MUller and Padberg, 1971; and others), reviewed by Alba 

(1979) and by Sanz (1981), will appear as particular cases of the 

general model. This will also be the case of the interpolation 

methods based on regression analysis (Chow and Lin, 1971; 

Fernandez, 1981 and Alba, 1988). One important outcome of the 

general model is to provide the variance-covariance matrix of the 
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estjmats obtained under the Quadratic Minimization and 

regression methods. Those properties were lacking in the first 

case and dubious in the second. 

Section 3 presents the recent Hillmer and Trabelsi (1987) 

ARIMA model-based benchmarking method in the framework of the 

general model and discusses its implications. Section 4 examines 

the wide-spread benchmarking methods of the Denton family 

(Denton, 1971; Helfand, Monsour and Trager, 1977; Cholette, 

1984) and proposes an extended Denton method to accomodate fiscal 

years and volatile (unreliable) benchmarks. This extended method 

also solves some implemention problems: preliminary benchmarking 

of current observations, which improves their timeliness, and 

revision of past estimates, which makes more useful. Finally, 

Section 5 discusses the suitability of the various benchmarking 

methods for certain situations and for mass application in 

statistical agencies. 
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2. THE UNIFIED APPROACH 

This section introduces a general model for benchmarking and 

interpolation, based on a regression estimated by Generalized 

Least Squares with stochastic parameters. Most existing 

benchmarking and interpolation methods can be shown to be 

particular cases of the proposed model. The general model 

consists of the following system of equations: 

(2.1a) Ys 	- 	F + e, E(e)—O, E(e e')—Ve  

(2.1b) Ya 	- 	I' + 	E, E(e)—O, E(€ 	€')—V 

(2.1c) fl(F-Yj) 	- E(,7) 	- 0, 	E(t7 	') 	- V,7 	- 

(2.1d) F 	- 	Y 	+ &', E(v)—O, E(v Li')—V 

Vector 	F 	denotes 	the 	"trueTM 	sub-annual values of the 

socio-economjc variable of interest. The estimator r* of F will 

be the benchmarked series. Vectors Y 5  and 'a denote the original 

sub-annual and the "annual" measurements (observations) 	of 

vector F. 	The annual observations Ya  are also known as 

"benchmarks". Yj is a vector of values associated with 

intervention effects in an ARIMA model assumed for I'. The ARIMA 

model is specified by the autoregressive matrix operator 11 

defined later. 	"r is a vector of values corresponding to 

auxiliary information used in estimating F. 	Matrix B is a 

generalized annual sum matrix operator defined later. Random 

vectors e, 6, ?7 and v are mutually independent with respective 

covariance matrices V e , V. V, and VL,. 
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The first two equations apply to real observations, ' and Yas 
of the variable; and the last two equations refer to prior 

information about its behaviour. Each of the four equations of 

system (2.1) will now be analysed. 

The first equation (2.1.a) states that the T sub-annual 

observations Y are equal to the "true" 	values, r, of the 

variable under question plus an error e. 	In this study, e 

follows an autoregressive process of the form, 

(2.2) 	D e 	- 	u, 	E(u) 

where D is an autoregressive 

independently distributed random 

known variance au  2. As shown in 

variance Ve  of e is o'2 [D'D)1; 

matrix CeVe  is 2 D'D. 

- 0, E(u u') - 	1 

matrix operator and u is an 

variable with mean zero and 

Appendix A, given (2.2), the 

and the corresponding criterion 

If D is equal to the following first order autoregressive 

operator, 

1-p 	1 0 0... 0 	0 01 
jO-p 1 0...0 OOj 

(2.3) 	D 	-  

(T-l)byT 	I• . . . . 	 . 

1000 o 	... O - p 1 

where p is given, 	equation (2.2) can be written as: 

(2.4) 	et 	- 	p etl + Ut, t-2,. .. 	,T, 

I a 2  for k - 0, 
E(ut) 	- 0, E(ut utk) 

- 	 I 10 forkøO. 
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where a 2  is known. 	When p—I, equation (2.4) specifies the 

movement preservation principle encountered in the widely used 

benchniarking methods of the Denton family described in detail in 

Section 4. The corrections et  made to the corresponding original 

sub-annual value Yst  to obtain the benchmarked values change as 

little as possible from one period to the next, resulting in 

estimates of r t  as parallel as possible to the sub-annual values 

Ys,t In the ARIMA model-based benchmarking procedure (Hillmer 

and Trabelsi, 1987) described in detail in Section 3, matrix D of 

(2.3) is a low order autoregressive operator. The resulting 

equation (2.4) specifies the behaviour of the sampling error et. 

When applicable, the elements of Ve  can be specified directly as 

a by-product of the survey. 

A high value of a 2  specifies that the sub-annual measurements 

Ys,t of vector r are inherently inaccurate; and a low value, 

inherently accurate (once the possible transient bias entailed by 

(2.4) has been taken into account). 

The second equation (2.1.b) of system (2.1) states that the 

M benchmark values Ya,m are equal to the appropriate sunis of the 

rt's, plus an error term Em. If m  is independently distributed, 

the covariance matrix v is y2 , and equation (2.1b) can be 

written as 

Ya,m 	(Z 	"n) 	+ f
m 	m—1,...,M, (r11 t.tT), 

(2.5) 	t1m 



	

- 	 I O e  2  for k — 0, 

	

where 	E(Et) — 0, E(e t  Etk) — I 
LO 	fork,dO. 

where g 2  is known. However, like V e , V need not be diagonal. 

The symbols Tm and ic,, in (2.5) are the reference periods of 

the benchmarks. Benchmarks covering calendar years of a monthly 

flow series have reference periods ri—i, #c1-12, 72-13, 	2-24, 

etc. 	Benchmarks covering calendar years of a monthly stock 

series (e.g. 	inventories) have reference periods r1—,c1-12, 

r2—c2-24, etc. 	This notation allows for fiscal year benchmarks 

(e.g. 	ic1-16, 72-17, 2- 28); for benchmarks with any kind 

of reference periods (e.g. r1—,c1—1, 7 2-2, c2-13, 73-14, 	c3-25); 

for benchmarks with overlapping reference periods; 	for several 

benchmarks for the same reference period; and for annual as well 

as sub-annual benchmarks. Consequently, the generalized annual 

sum matrix operator B of (2.1b) is defined as 

columns: r 
100 ... 011... 10 ... 00 ... 000 
IOO... 000 ...00...11...lOO, 

(2.6) 	. 	. 	. 	. 	. . 	. 	. 	I MbyT 	

[.. 	. . 	
. . 	.. . 

	j 

where the reference periods Tm and ocm  indicate the columns and m 

the rows to place the ones. The annual sums of the sub-annual 

observations are then B Y 5 ; and the "annual" discrepancies are 

Ya  - B Y. 
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If 	V E 2 	of (2.lb) equals 0 (which implies emO), the 

benchmarks are deterministic (i.e. fully reliable), and we shall 

refer to them as binding. (Indeed, equation (2.1b) then 

represents strict benchmarking constraints.) If V 2  is not zero, 

the benchmarks are not strictly deterministic, and we shall refer 

to them as non-binding. 

Since the Ft's  are the "true" 	sub-annual values of the 

variable under question, a 6  in (2.5) can be considered the 

standard deviation of the errors in the benchmarks. In practice, 

can be made to vary to reflect the fact that some benchmarks 

are more reliable than others. This also holds for all the other 

variances. To keep the notation simple, we refrain from such a 

generalization. 

The third equation (2.1c) of system (2.1) specifies an 

expanded ARIMA model for the socio-economic variable F. If Yj is 

equal to zero or to the mean of the series, the values of F 

behave as a pure (as opposed to an expanded) ARIMA model of the 

Box and Jenkins type (1970). For quarterly first order seasonal 

autoregressive behaviour, matrix 11 would be the following 

autoregressive operator 

F r14 	0 	0 -irj 1 	0 . 	0 	0 	0 
I 0 fflw4 	4 0 	0 •l  I 	0 	0 	0 

(2.7) 	fl  

(T-5) by T 	. 	. 	. 	. 	. 	. 	. 1 0 	0 	0 	0 	0 	0 	0...r4-94 0  

0 	0 	.1 
0 	0 	.1 

i j 



10 - 

where ri and K4  are the known regular and seasonal autoregressive 

parameters. With ir1-1, r4-1 (and Yj-O), the estimates of 1' tend 

to display a linear trend and a stable seasonal pattern; with 

ir1-1 and O<,r4<1, a decreasing seasonal pattern. 

In many cases, I' is subject to effects which are not well 

described by pure ARIMA models, e.g. trading-day and other 

calendar variations, structural changes and other deterministic 

effects. An "intervention" (Box and Tiao, 1975) is then 

desirable in the model. For this, Yj should be set equal to that 

effect. This results in an expanded ARIMA model. One can, for 

instance, impose an additive seasonal pattern S by specifying 

YLS. Similarly, one can impose an additive trading-day pattern 

by specifying Yj-R, where the elements rt of R are the monthly 

suns of the daily weights in month t. Daily weights have a 

weekly average equal to zero; 	they can either be constant 

(repeat week after week) or evolving. 	(More details about 

trading-day variations can be found in Young, 1965, and Bell and 

Hilimer, 1983.) 

In both pure and expanded ARIMA models, the departures of r. 
from the behaviour implied by the model are the innovations q t  of 

the model. The variance V, 7 -.c, 2 1 of q is known. Low values of 

c, 2  specify that the vector r follows the chosen ARIMA pattern 
very closely; and large values, very loosely. Thus, low values 

are appropriate for socio-economjc variables which behave in a 

predictable and smooth manner (e.g. population); and high 
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values, •for less predictable and more volatile variables (e.g. 

exports). In other words, high a, 2  specifies that the variable 

is not well described by ARIMA models. 

The fourth equation (2.1d) of system (2.1) is generally a 

substitute for the third equation (2.1c). Equation (2.1d) 

specifies that r behaves according to auxiliary information 

available in Y r  plus an error i'. Like e in (2.1a), v follows an 

autoregressive process of the form 

(2.8) 	C v 	- 	, 	E() - 0, E( 	') - aE2 

where C is an autoregressive matrix operator and 	is an 

independently distributed random variable with mean zero and 

known variance 2 i. The variance reflects the degree of 

accuracy of Y r , As shown in Appendix A, given (2.8), the variance 

V, of s.' is i 2  [C'C] 1 ; and the corresponding criterion matrix 

c 1,—v, 1  is a( 2  G'C. in this paper, C is equal to a low order 

autoregressive operator. 

If, for example, C is the first order autoregressive operator 

(2.3), equation (2.8) can be written as: 

(2.9) 	Vt - 	" vtl + 	t-2,. . . ,T, 

f 0 2  for k - 0, 
E(e) - 0, 	E(.t ct-k) - I 

	

[0 	forks'0. 

With p close to 1, (2.9) specifies that r t  is parallel to the 
auxiliary values Yr,t 
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A straight line behaviour can thus be imposed on r by setting 

Yr,t equal to a+bt, with a and b pre-deterinjned. The behaviour 

of related variables (Chow and Lin, 1971; Nasse, 1973; Alba, 

1988) can be imposed by setting Yr,t equal to a0 + a1 zl ,t  +• 

aQ 2Q,t 	where 	the aq 's are pre-deterinined and zqt are 

regressors (hence subsript r for r) of the variable considered. 

A constant or evolving seasonal pattern S or trading-day pattern 

R (or both) can be imposed by selecting Yr  equal to S or R. 

The four equations of system (2.1) jointly specify that the 

desired estimate of I' maximizes four criteria: (1) Depending on 

the criterion matrix Ce chosen, 1' is parallel to the original 

values Y. (2) The annual sums of r are close to the benchmarks 
(3) r behaves according to the ARIMA model chosen. (4) r 

also behaves consistent with the auxiliary information Y
r . The 

degree to which each criterion is satisfied depends on the 

relative values of the inverse of their corresponding variances: 

i.e. Cu 2 , CE 2 P c, 2  and 

System (2.1) can be written as 

(2.10) 	Y - 	X r 	+ 	U, E(U)-0, 	E(U U')-v, 

where 	' 	['k's ' 	a ' (flYj)' ''r']' 	X'- [I 	B' 	II' 	I], U'- 	fe' 	E' '' 
IVe  0 	0 01 ICe 4  0 	0 0 

and 	V 	- 	10 V 	0 01 	- c- 	(0 C 4 	0 0 
10 0 	V 17 0 10 0 	C 1 0 
L 0 0 	0 V,j 1 0 0 	o ç-lj 
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Equation (2.10) is a case of Generalized Least Squares (G.L.S.). 

The G.L.S. estimator of I' and its variance-covariance matrix are 

then respectively: I' - (X'V ]-X) -1  X'V' 1  Y and var - 

(X'VlX) - I - 0. Given the partitions of X, Y and V--C, F and ci 

can be written as 

- 	0 [V4 '"s + B'V61 '1a + 11 1 V 1  II Y + V 1, 1  Yr  
(2.11) 

- 	0 (Ce  Ys  + B C 6  Ya  + ff'C,7 11 Y + C, Yr 1 

var 	0 	- 	EVe 1  + B'Vi' B + I1'V, 1  II + V/lJ, 
(2.12) 

- 	(Ce  + B'C 6  B + fl'C,711 + 

where I' is the benchxnarked series and Ce,  C 6 , C,7  and C 1, are the 

known criteria matrices corresponding to each variance matrix. 

The criteria matrices, e.g. Ce Ve ' 1 , can be obtained directly. 

It is not necessary to generate Ve,  which does not always exist. 

Using matrix algebra identities (e.g. Hilimer and Trabelsi, 

1987), the estimator r*  can be calculated in two steps: 

(2.13) 
	- 	[Ce  + rI'c,7  II + C 1,] 1 	(Ce 's 	+ II'C,7  11 Yj 	+ C1, 'r 

- 00 	(Ce  ''s + 111C 17 11 'r' 	+ CV  Yr  J 

(2.14) 	- 	r0 	+ 	00 B' [B 110  B' + V]1 	['1a - 	rj. 

The first step (2.13) yields the estimator r0 of r when the 

benchmarks Ya  are ignored. 	The second step (second term of 

(2.14)) modifies r0 to take the benchmarks into account. 	The 

factor [°o  B'[B 00 B'+V€] 1- I is then the actual benchmarking 

operator. 	This two-step solution for r*  is feasible only if (Ce 
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1- 	I1C, II + C 3,J is non-singular, or if its inverse c2j is 

obtainable directly. In the latter case, the two-step solution 

dramatically reduces the calculations in comparison with (2.11). 

Indeed, (2.11) requires the inversion of a T by T matrix, while 

(2.14) requires only the inversion of a M by M matrix. Another 

advantage of (2.14) is the possibility to set V. equal to zero, 

in which case Ya  is deterministic. 
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3. THE ARIMA MODEL-BASED BENCHMARKING METHOD 

Unlike most of their predecessors, Hilimer and Trabelsi (1987) 

viewed benchniarking as an explicitly statistical model, as 

opposed to a numerical adjustment problem (e.g. Quadratic 

Minimization). 

3.1 The model 

The Hilimer and Trabelsi model is a particular case of the 

general model of Section 2, under the following conditions: 

Only the three first equations of system (2.1) are 

considered. 

The criterion CeV e 1  is equal to Cu 2  D'D, where D is an 

autoregressive operator, which specifies the behaviour of the 

sampling error. 

The covariance of the benchmarks is equal to V E -.a 2  I, 

	

where 	c 2  may be different from zero. 	This specifies 

non-binding benchmarks. 

The criterion C,-V, 1  is equal to 

Matrix B is the calendar-year annual-sum matrix operator. 

Under conditons (1) to (5), the general model (2.1) reduces to 

(3.1a) 	Y5  - r + e, 	E(e)-O, E(e e')-V e  

(3.1b) 	Ya  - B r + , 	 E(E)-O, E(E E')V E c E I 

(3.1c) 	II (r-Y1) 	- ', 	E('7)-O, 	E('7 '7')-V'7-a'721 
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where e, e and '1  are mutually 	independent random vectors. 

Substituting CeVe u 2 D'D,  Vc E I and C vi .V,,L_C,,. 2  I in 

(2.11) and (2.12) yields the following benchmarked series r* and 
variance-covarjance matrix 0 

(3.2) - D'D Y + a -2  B' 	'a 	+ o 211fl 	Yj], 

(3.3) var 	- 	0 	- [a D'D 	+ 	a 2  B'S + 	a 2rI'fl]i 

Making the same substitution in (2.13) and (2.14) gives the 

two-step solution for F' 

(3.4) 	
- (c7u 2  D'D + a -2 	j-1 	(a -2  D'D Y + a,1 2  n'ri 

0 	[°-2 D'D Ys  + c 2rI'rI Y], 

(3.5) 	- 	+ OO B' [B 00 ' + c2 I]-i 	['1a - B r0]. 

The philosophy underlying the ARIMA model-based approach to 

benchmarking is as follows. The sub-annual values 1' of the 

socio-economic variable are observed through the sub-annual 

observations Y. of (3.1a), which contain a sampling error e; 

similarly, the annual values B r of I' are observed through the 

annual observations ''a' which contains an error e• The annual 

discrepancies between the annual sums B Yof Y and the 

benchmarks 'a of (3.1b) originate from e and from the error c in 

the benchmarks. In other words, if both the sub-annual and the 

annual observations, Y and Y a , had no error, there would be no 

annual discrepancies and no benchinarking problem. One approach is 

thus to estimate the most likely sub-annual values, on the basis 
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As the variance Cl 2  of the benchmarks Ya  tends to 0 (as the 

benchmarks become deterministic) the weight 	2 given to ya  

increases in (3.2), and (ceteris paribus) the benchmarks 

become binding. Conversely, as CE2  tends to infinity, the 

weight tends to zero, and the benchmarks become non-binding 

and are in the limit totally ignored. 

To examine the relationship between c 2  and cr,7 2 , we assume that 

is infinite, so that the benchmarks are totally ignored. The 

problem is then to find the values which maximize the AIIMA 

criterion and the criterion adopted for the sampling error e. 

If c 2  and 	of equation (3.2) are both very small 1  the 

sub annua1 measurements Y.of the true values r are accurate 
and r behaves according to the chosen ARIMA model. In 

principle 	this 	would 	result 	in smooth and accurate 

benchmarkecj values r* . 	 - 

If a, 2  is small and a 
77 2 is large, Ys  is accurate and the true 

values r of the socio-economjc variable under study are 

inherently irregular. Little weight o, 2  is then given to the 

ARIMA criterion in (3.2), resulting in accurate but irregular 

benchmarked values very close to the "s• This occurs because 

the method can distinguish between the irregular nature of 

the 	socio-economic 	variable 	and the accuracy of its 

measurements. 
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of both Y and Y., Most benchmarking methods attempt to do this 

assuming a first difference behaviour of the errors e. In the 

ARIMA model-based approach, the model assumed for e may be more 

complex; and, more importantly, an ARIMA model is also assumed 

for the true sub-annual values F of the socio-economjc variable 

(the signal). Usually, the ARIMA model assumed for e is simple 

and depends on the characteristics of the survey design (e.g. 

rotating panels). 	The ARIMA model is identified from the 
A.  

autocovariances of e, which can be obtained from the survey, and 

is embodied in the covariance Ve.  The model for the signal F is 

first estimated on YS and then modified on the basis of the ARIMA 

model for e. The modified model is then embodied in matrix II and 

in I of equation (3.1c). 

	

• 	3.2 Some Implications of the ARIMA Model-Based Approach 

A 
The implications of the ARIMA model-based approach 	to 

benchmarking are now discussed. 	Some of them hold for the 

general model and for other benchinarking and interpolation 

methods. 

The behaviour of the benchmarked values F  is described as a 

	

$ 	function of the basic variances au 2,  a f  2  and a ,72,  which determine 

the weights au 2 , aE 	and c, 2  given to each type of observation 

Y5 , Y8  and Yj in (3.2). 
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If au2  is large and a ,, 
2 is small 	' is not accurate but F 

closely follows the ARIMA model chosen and is therefore 

smooth. Small weight a, 2  is given to Y5 ; and a large weight 

to the ARIMA criterion in (3.2). If the ARIMA model is 

correctly chosen, the benchmarked values are smoother and 

more accurate than the sub-annual measurements Y 5 . 	Again, 

this 	is because the method distinguishes between the 

irregular nature of the variable and the accuracy of its 

sub-annual measurements. 

If au 
2  and  7,72  are both large, Y is not accurate and I' is 

inherently irregular, resulting in inaccurate and irregular 

benchmarked values. 

The implications of the ARIMA criterion per se will now be 

discussed. 

The assumption that the signal F follows an ARIMA model can 

be 	verified only 	for 	series with 	relatively high 

signal-to-noise ratios. This condition is required to 

separate the signal F from the noise e. In most cases, such 

series result from high levels of aggregation, where 

improving the accuracy of the sub-annual observations is 

often not crucial. 
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(7) Even 	with a high signal-to-noise ratio (small e), the 

assumption that the signal r follows a pure (as opposed to 
expanded) ARIMA model implies that the true sub-annual values 

r 

I' are not affected by trading-day variations and other 
Ob 

deterministic and/or exogeneous effects. Pure ARIMA models 

do not capture trading-day variations and other deterministic 

effects leaving them as residuals (Bell and Hilimer, 1983). 

The example chosen by Hillmer and Trabelsi (1987) for their 

ARIMA model-based benchinarking method is strongly affected by 

trading-day variations, but the sampling error is very small, 

i.e. c 2  is much smaller than c,7 2 , so that the behaviour "is 

dictated entirely by the time series model for the survey 

(sampling] errors" (Ibid., p.  1070). Furthermore, this model 

is a first order autoregressive process with p-0.8. As in 

the Denton-type methods described in Section 4, such a model 

tends to preserve the various types of movement in the 

original series. However, the series may have large sampling 

errors, and then the weights a 2  and a, 2  given to the 

sub-annual observations and to ARIMA criterion in (3.2) can 

then be nearly equal. Consequently, the benchmarked series 

will have reduced trading-day variations, because these are 

not incorporated in pure ARIMA models. 

(8) In most benchniarking applications, et is not just the 

sampling error, but also embodies non-sampling errors, due to 

frame deterioration through time, non-response, imputation, 
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reporting errors, etc. These errors are characterized by 

biases and/or autocorrelation processes possibly different 

from that assumed for the sampLing error. In such cases, the 

ARIMA model-based approach will produce distorted results. 

Thus, if the survey design entails autocorrelation in the 

sampling error and if benchmarking is used as a technique to 

correct for it, the series must first be corrected for bias 

due to non-sampling error. Conversely, if benchmarking is 

used to correct for bias due to non-sampling error (as in the 

Denton-type methods), one should first correct for 

autocorrelation due to sampling error. 

) Finally estimating ARIMA models for both the sampling errors 

and for the original series and deriving the ARIMA model for 

the benchmarked series requires a high level of expertise. 
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4. TUE DENCHHARXING METHODS OF THE DENTON FAMILY 

Most of the benchmarking methods used by statistical agencies 

assume that the benchmarks are fully reliable and therefore 

binding. Furthermore, they are based on the minimization of an 

objective function, and that function specifies the principle of 

movement preservation formally introduced by Denton (1971). 

According to this principle, the benchmarked series should 

preserve as much as possible of the consecutive period-to-period 

(e.g. month-to-month) movement of the original sub-annual series 

- including the movement from one year to the next. Movement 

preservation takes at least two forms: preserving the 

period-to-period 1) arithmetic change and 2) proportional change. 

These two forms yield the additive and proportional variants of 

benchmarking examined in Sections 4.1 and 4.2 respectively. 

Section 4.3 	presents 	an extention of the Denton approach 

applicable to both variants. 

4.1 The Additive Variant of Movement Preservation 

The additive variant of the Denton method, modified by 

Helfand, Monsour and Trager (1977) and by Cholette (1979), 

minimizes the following objective function 

(4.1.1) 	F(F) 	- 	( 	- Y)'C 	(Ifl' - Y5 ), 

subject to the benchmarking constraints 

(4.1.2) 	 'a - B I' 



where C. — D'D and D is the first difference operator. The model 

for the residuals e-r .Y in (4.1.1) is a random walk, i.e. et — 

et..l + Ut,  where Ut is an independently distributed random 

variable with zero mean. 

Generalized Least Squares (G.L.S.) regression also implies 

minimizing an objective function eV e 4e on the residuals e. The 

additive variant of the (modified) Denton method reduces to a 

particular case of the general model, under the following 

conditions: 

Only 	the 	two first equations of system (2.1) are 

considered. 

The criterion matrix C e Ve 1  is equal to c7u2  D'D, where D 

is the first difference operator. 	This specifies movement 

preservation (see equation (2.4)). 

The covariance matrix of the benchmarks, V, is set to 

zero (hence o- E 2-O). This specifies binding benchmarks. 

Matrix B is the calendar year annual-sum matrix operator. 

The system of equations (2.1) then reduces to 

(4.1.3a) 	Ys  — r + e, 	E(e)-O, E(e e')-Ve , 

(4.1.3b) 	'1a — B r. 

Substituting Ce Qu 2  D'D and V-O (and C-C 11-O) in (2.13) and 

(2.14) yields the following benchrnarked series r* 
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- Y 	+ (-2 D'D 18' [8(2 D'D)-lB'}-1 ["ta 	B 

In (4.1.4), cancels out, and the C.L.S. estimator of the 

benchmarked series is then identical to Denton's (1971). The 

covariance matrix can be obtained by substituting C e  into (2.12) 

and by letting 'YE2  tend to zero: 

(4.1.5) 	var 	- 	lim (2 D'D + 'YE 	B'B)l 
--> 0 

However, with D equal to the strict first difference operator 

D'D is singular, so 	cannot be calculated with (4.1.4) 

(but (2.11) could be used by letting V. tend to 0). To avoid 

singularity, we redefine D as the following classical quasi-first 

difference operator (Harvey, 1981, p.  190) 

[(1-p 2 ) 1 !'2  0 0 0 ... 0 0 0 1 

	

I 	-p 	10 0...0 001 

	

I 	0 	-p1 0...0 00 
(4.1.6) 	D 	- 	. 	. 	. 	. 	. 	. 	. 

TbyT  

	

[ 	0 	00 O ... O-p 1 

where p is very close to 1.0 (e.g. 0.999999). This operator 

causes minimal distortion to the movement preservation principle, 

because the first element is negligible. Furthermore, (a2 

D'D) 1  is now known algebraically: 

f 	1 	p 	p2 	... 	T-1] 

I 	p 	1 	p 	. . . 	pT2 

	

('Yu 2  D'D)-1 - 	I 	p 2 	p 	1 	... 	T-3 
(4.1.7) 	I 	. 	. 	. 	. 	/ ( l-p 2 ). 

TbyT 
 

T-2 	-3 
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Bournay and Laroque (1979, p.  21) show that, as p tends to 1, 

the solution obtained with the quasi first difference operator 

tends in the limit towards the solution of the strict first 

difference operator. (As p tends to 1, the denominator in 

(4.1.7) tends to zero, but that zero cancels out in (4.1.4).) 

Both the additive and the proportional variants of the 

original Denton method had a first difference operator D given by 

(4.1.6) with p—i, but with the first element equal to 1. This 

operator implies an invertible D'D and a known inverse. However, 

it causes a distortion of movement preservation at the start of 

the series, which also affects subsequent years in a decreasing 

manner (Cholette, 1979, 1984). The distortion is major if the 

absolute magnitude of the first annual discrepancy is large. 

Denton seemed to be concerned with long series that have small 

annual discrepancies "a - '. The time series published by 

statistical agencies become shorter and display relatively large 

annual discrepancies. Helfand, Monsour and Trager (1977), for 

instance, report discrepancies of 4.8% and 7.8% for total sales 

series of the U.S. Retail Trade and Wholesale Trade series. in 

such situations, the serious distortions introduced by the 

initial Denton operator can easily be avoided in the manner 

described above. 
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With p not close to 1, equations (4.1.6) and (4.1.7) cause 

distortions both at the start and at the end of series if the 

first and/or the last discrepancies are large. 

With an appropriate first difference operator, all variants 

of benchmarking presented in this section successfully cope with 

systematic and large discrepancies: The level of the sub-annual 

series Y adopts that of the benchmarks Y a ,This would seem to 

imply that Y is biased and that E(e) is not zero, in violation 

of the assumption of the general model. However, since these 

benchmarking methods assume that et - et..1 + Ut, where E(ut)—O, 

then E(et) equals 0. 

4,2 The Proportional Variant of Movement Preservation 

The proportional variant of movement preservation was also 

formally introduced by Denton (1971). According to this 

principle, the benchmarked series r* is as proportional as 

possible to the original sub-annual series Y5 . Large values of 

YS  are then corrected in absolute terms more than small values. 

This is appropriate for series, in which seasonally low 

observations cannot possibly account for as much of the annual 

discrepancy as the seasonally large observations do. With 

negative annual discrepancies, this specification also tends to 

avoid negative benchrnarked values. Defendable per se, 

proportionality is also a linear approximation of growth rate 

preservation. Indeed, any two series z and x proportional to 

each ocher have identical growth rates: 
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The proportional variant of the Denton method, modified by 

Helfand, Monsour and Trager (1977) and by Cholette (1979) also 

minimizes objective function (41.1) (with a different Ce) 

subject to (4.1.2). For the same reasons given for the additive 

variant, the proportional variant can be seen as a particular 

case of the general model the following conditions: 

Only 	the first two equations of system (2.1) are 

considered. 

The 	criterion 	Ce'Ve 	is 	equal 	to 

2 diag(Y5 ) - 1  D'D diag(Y 5 ) - 1 , where D is the first 

difference operator. This specifies proportional movement 

preservation. 

The covariance of the benchmarks, V E , is set to zero. 

This specifies binding benchmarks. 

Matrix B is the calendar year annual-sum matrix operator. 

The second condition implies the following behaviour of the 

errors: 

et/ys,t - 	etl/ys,tl + Ut, 	t-2,...,T, 

(4.2.1) 	 f a 2  for k - 0, 
E(ut) - 0, E(ut Utk) - I 

L0 	fork'O. 

Appendix A shows that the autoregressive (and heteroscedastic) 

behaviour 	of 	et 	implies 	Ce Ve 	equal 	to 

i2 diag(Y5 1  DD diag(Y5 ) - I. 	Equation (4.2.1) specifies the 
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proportional movement preservation principle: The ratio of each 

correction et to the corresponding original sub-annual value Ys,t 

changes as little as possible from one period to the next, 

resulting in estimates of r t  which are as proportional as 

possible to the sub-annual observations 

The system of equations (2.1) then reduces to system (4.1.3) 

(except for a different Ve Ce 1). Substituting Ce 

cu 2  diag(Y5 ) 4  D'D diag(Y5 )l and V-O (and C,7-C,-O) in (2.13) 

and (2.14) yields the following benchniarked series r* 

(4.2.2) 	
- Y 	+ 	diag(Y5 ) 4  D'D diag(Y5 ) 1  )-1 as  

(B[c 2  diag(Y5 ) 4  D'D diag(Y5 ) 4  ]-l'j-1 ['1a - 

Since 0u 2  cancels out in (4.2.2), it is not required in 

practice, and this estimator of the benchniarked series is 

identical to Denton's (1971). 

As with the additive variant, [a u 2  diag(Y5 ) - ]. D'D diag(Y5 lJ 

of (4.2.2) is singular if D is the strict first difference 

operator. Again, redefining D as the quasi first difference 

operator of (4.1.6) entails an invertable matrix and a known T by 

T inverse: 
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l/ 'r. Under a Gamma distribution the resulting estimator is 

asymptotically efficient. For proportional bencbmarking, the 

Gamma distribution would in fact be appropriate, because it 

excludes negative observations. 

For the proportional variant, estimator (4.2.2) is then like 

Denton's numerical solution. If the mixed variant just described 

is not used, the covariance matrix of the estimates is 

undetermined. 

4.3 Extending the Denton Method 

The modified Denton approach to benchmarking discussed in 

Section 4.1 can be adapted to many applications including: 

non-fully reliable benchmarks, benchmarks referring to fiscal 

years, preliminary benchmarking and calendarization. 

4.3.1 Non-Binding Benchmarks 

In practice, the full reliability of the annual benchmarks 

are often not fully reliable (Cholette, 1988; Cholette and 

Higginson, 1987). Both variants of the modified Denton method 

easily adapted to this. 

The Additive Variant 

For the additive variant, the general model of Section 2 is 

modified in the following manner: 

(1) Only the two first equations of system (2.1) 	are 

considered. 
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u2 diag(Y) -1  D'D diag(Y 5 ) - 1 ] 1  - 

I ii 	12P 13P 2  ... eITPTI 1 
I 	21P 	e22 	23P 	- 	2TPT2 i 

(4.2.3) 	I 	31P 2 	32P 33 	3TP'r3 	f 	a 2  / (1-p 2 ) 

L: 	 J 
where ij - Ys,j Ys,j 

The solution (4.2.2) of the proportional variant works well 

numerically. It is identical to Denton's (1971) solution 

developed in the framework of Quadratic Minimization by 

minimizing (4.1.1) subject to (4.1.2). Statistically however, 

there is a problem. The inverse of the criterion matrix cannot 

be interpreted as the variance of e, because the weights 

A - D diag(Y5 ) - 1  in A e - u are not fixed. This problem is akin 

to what is konw as dependent variable heteroscedasticity. The 

variance of the observations Ys,t (ignoring Ya,m  and assuming D—I 

for the moment) is assumed to be equal to o'2yst2. The G.L.S. 

estimator (4.2.2) in then inefficient. Harvey (1981, Chapt. 

3.4) describes a slightly different specification where the 

variance of the dependent variable is proportional to the square 

of its expectation, a2E(r) 2 , and G.L.S is usable. The technique 

yields estimates which are neither proportional nor parallel to 

Ys t but mixed. The technique consists of two steps. First apply 

Ordinary Least Squares (O.L.S.) ignoring heteroscedasticity and 

calculate the O.L.S. estimates ^rt  of r t  (i.e. apply additive 

benchinarking). Second, apply C.L.S. using C 2A Ft 2  as the 

variance of the observations, therby weighing the observations by 
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u2 diag(Y5 ) - 1  D'D diag(Y) -1 ] 1  

I f1l 	e12P f13P 2  
I 	2lP 	22 '23P 

(4.2.3) 	I 	3lP 2  f32P 33 	- 

I: 
where jj - Ys,i Ys,j. 

lTPTl 1 
2TPT 2  I 

e3TPT 3  Cu2  / (1-p 2 ), 

J 

The solution (4.2.2) of the proportional variant works well 

numerically. It is identical to Denton's (1971) solution 

developed in the framework of Quadratic Minimization by 

minimizing (4.1.1) subject to (4.1.2). Statistically however, 

there is a problem. The inverse of the criterion matrix cannot 

be interpreted as the variance of e, because the weights 

A - D diag(Y5 ) -1- in A e - u are not fixed. This problem is akin 

to what is konw as dependent variable heteroscedasticity. The 

variance of the observations Ys,t  (ignoring Ya,m  and assuming D—I 

for the moment) is assumed to be equal to c2y5t2. The C.L.S. 

estimator (4.2.2) in then inefficient. Harvey (1981, Chapt. 

3.4) describes a slightly different specification where the 

variance of the dependent variable is proportional to the square 

of its expectation, a2E(r) 2 , and G.L.S is usable. The technique 

yields estimates which are neither proportional nor parallel to 

but mixed. The technique consists of two steps. First apply 

Ordinary Least Squares (O.L.S.) ignoring heteroscedasticity and 

calculate the O.L.S. estimates Art  of rt  (i.e. apply additive 
benchmarking). Second, apply G.L.S. using a2Ar,,2  as the 

variance of the observations, therby weighing the observations by 
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(2)The criterion Ce is set equal to 

(quasi) first difference operator, 

preservation. 

(3) The covariance of the benchmarks 

(for instance), which specifies 

non-binding (see eq. (2.5)). 

a 2  D'D, where D is the 

which specifies movement 

v, is set to a 2  i 

the benchmarks are 

System of equations (2.1) reduces to 

(4.3.1a) 	Ys  - I' + e, 	E(e)-O, E(e e')-Ve , 

(4.3.1b) 	Ya  - 	' + €, 	E(c)-O, E( 	e')=V E , 

where 	e and 	f 	are mutually independent random vectors. 

Substituting Ce  and V. and making C,,-ç-O in (2.13) and (2.14) 

yields the following benchmarked series r* 

(4.3.2) 
	- 	y5  + ce -1  B' (B Ce 	B' + V E ) l  [ a 	B 

- "s + [a 2 D'D] 	B' 

(B [c 2D'D]' B' + V E )' 	[a - B 

Making the same substitutions in (2.12) yields the covariance matrix: 

(4.3.3) 	var 	- (Ce  + B'C B]1 - [°u2 D'D + B'V B] 1  

The Proportional Variant 

The proportional variant of the extended Denton benchmarking 

method is obtained by replacing conditions (2) and (3) of the 

extended additive variant with the following: 

	

(2') Matrix 	Ce 	is 	set 	equal 	to 	((°2 	Y5) 
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diag(Y5 )i D'D diag(Y5 ) 4 1, 	which 	specifies proportional 

movement preservation (see eq. (4.2.1)). The average y s  of Y. 

is needed for calibration. 

(3') The covariance of the benchmarks, V ( , is redefined as 

Cc 2 diag(Y). The error term e m is then assummed to behave 

in the following heteroscedastic manner: 

(4.3.4) Em/jYam — cm 	or 	Em — 	m JYa,m' 
I c 2  Ya,rn for k — 0, where 	E(t) — 0, E(Et et.k) — I 
[0 	forkpa0. 

where cm is an independently distributed random variable with 

mean zero and known variance C c 2. Cc is the proportional 

standard deviation of the benchmarks. 

However, as was mentioned in Section 4.2, the solution for the 

proportional variant should be considered numerical, with 

undetermined covariance. 

4.3.2 Fiscal Years and Sub-A.nnual Benchmarks 

In real applications, yearly benchmarks often refer to fiscal 

years and may not be fully reliable (Cholette and Higginson, 

1987). Both the additive and proportional variants discussed 

above are easily adapted to this by letting matrix B be the 

generalized annual-sum operator (2,10). This operator also 

handles sub-annual benchmarks. 	The resulting extended Denton 
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method can be used for a variety of purposes, such as preliminary 

benchrnarking, calendarization of fiscal year data, imposition of 

"historical benchmarked values and time series linkage. 

Preliminary Benchmarking 

Yearly benchmarks are not available until well after the year 

is over, but the extended Denton approach (and the general model) 

process current as well as past observations. Preliminary 

benchmarking automatically occurs whenever the last reference 

period xM of the most recent benchmark Ya,M is smaller than the 

number T of observations in the series. This built-in process is 

the same as repeating the last additive or proportional 

correction calculated for the most recent time period with a 

benchmark; that correction is then applied to the current 

observations. (One then needs recompute benchmarking only when a 

new benchmark becomes available.) As suggested by Laniel (1986), 

the built-in preliminary benchmarking process can sometimes be 

improved by forecasting the sub-annual and the benchmark series 

and by benchmarking the artificially extended series thus 

obtained. This alternative entails recomputing benchmarking 

each time a new current observation becomes available and is thus 

much more expensive than the built-in preliminary benchmarking 

process. 

If annual discrepancies are large, preliminary benchmarking 

must be performed to avoid movement discontinuities between past 

benchmarked values and current values (Cholette, 1979, 1984). 
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Calendarization 

With fiscal year benchmarks 1  calendar year values can be 

obtained as a by-product of benchmarking, by taking the annual 

sums of the benchmarked series. Similarly, calendar quarter 

values can be obtained - whether the benchmarks reflect fiscal 

years or fiscal quarters. In the case study considered by Helfand 

et al. 	(1977), the benchmarks were actually quinquennial; 

yearly values can be generated in a similar manner. 	In the 

absence of sub-annual observations Y, calendarjzatjon can be 

viewed as a problem of interpolation (temporal disaggregation) 

between the fiscal data; or as a problem of benchmarking an 

indicator of the variable of interest. 

Historical Estimates 

The extended Denton method can also be used in such a way that 

the benchmarked series is not changed before a certain date. The 

benchmarked series starts from the historical benchmarked value. 

That value is simply specified as a sub-annual benchmark Yaj 

with r1-'c1-1, and Y5 1 i. is Set equal to the corresponding 

unbencbmarked value. This feature is very easy to implement: A 

statistical agency can decide on a maximum number of complete 

previous years 	during which 	revisions (originating from 

benchmarking) are allowed (e.g. 	two years), and implement 

accordingly. 	The feature also reduces calculations: only the 

revisable part of the series needs to be processed when an annual 

benchmark becomes available. 
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With the extended Denton method, the accuracy of the estimates 

increases as- they become more central in the series. In our 

experience, revisions should be allowed for a minimum of two 

complete years. Feibes (1968) finds that with the Boot, Feibes 

and Lisman (1967) interpolation technique, the estimates become 

insensitive to incorporation of new yearly benchmarks after three 

years. (The Boot et al. technique is a particular case of the 

additive variant of the extended Denton method if V E O, "—O and 

B is the calendar year sum operator.) 
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5. CONCLUSIONS 

This paper discussed existing benchmarking methods as 

particular cases of a general model. Earlier empirical ad-hoc 

procedures based on Bassie (1958), Friedman (1962), Lisman and 

Sandee (1964), Glejser (1966) and Boot and Feibes (1967) were not 

included in this analysis. 

For the most general and complex variant of the general model 

presented in Section 2, it is possible to have an ARIMA model for 

the benchmarked series, an ARIMA model for the survey errors, 

non-binding reliable benchmarks and fiscal year benchmarks. 

The ARIMA model-based benchmarking method imposes an ARIMA 

structure on the benchmarked series, which then has both reduced 

trading-day and irregular variations. The problem with 

trading-day variations can be corrected with an expanded ARIMA 

model that includes an intervention variable Yj containing an 

additive trading-day component. No such solution exists for 

irregular fluctuations, 	which may contain 	socio-economic 

information. 

ARIMA modelling is feasible only when the series have a high 

signal-to-noise ratio. This generally means that modelling is 

appropriate only at higher levels of aggregation, with series 

which are not volatile. However, some series are essentially 

volatile (even at high levels of aggregation) or contain 
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fluctuations which are not well fitted by ARIMA models. 	This 

further reduces the applicability of the ARIMA model-based 

method. 

The general method (and the ARIMA model-based method) makes it 

possible to correct for sampling error, by means of an ARIMA 

model. This raises the issue of whether such correction should 

be done with benchmarking or separately with specific methods. 

The specific methods surveyed by Jones (1980) and by Binder and 

Hidiroglou (1988), for instance, allow a more sophisticated 

modelling of the sampling error. Another related consideration 

is the complexity of the modelling process in the context of 

berichmarking a large number of series. In that context, it is 

preferable to apply the Denton-type variants, where a very simple 

random walk model is pre-selected to maximize the parallelism 

between the benchmarked and the original series. The main 

objective of the random walk model is to preserve the seasonal 

signal in the sub-annual series. 

The Denton type variants also cope with systematic annual 

discrepancies observed between the benchmarks 	and the 

corresponding annual sums of the original series. 	If a series 

has already been corrected for sampling errors, benchmarking then 

corrects for the remaining survey error, that is for non-sampling 

error due to frame deterioration through time, undercoverage, 

imputation, reporting errors, etc. 
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This., paper also discussed the accuracy of annual benchmarks 

and noted that treating them as non-binding is useful. Indeed 

specifying volatile benchmarks as binding distorts the movement 

of the sub-annual series. More reliable annual values can then 

be obtained as through non-binding benchmarking by taking the 

annual sums of the benchmarked series. 

Benchmarks which refer to fiscal instead of calendar years 

were also considered. The general model and the extended Dentori 

method make it easy to specify the actual reference periods of 

the benchmarks, provided that all the individuals covered by the 

surveys have common fiscal years. Fiscal year or fiscal quarter 

benchmark data become legitimately usable as such. If needed, 

calendarized annual and quarterly values can then be obtained by 

taking the appropriate sums of the benchmarked series. 
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APPENDIX A: 	Relationship Between the Covariance and the 

Autoregressive Behaviour of a Stochastic Variable 

Let a T-dimensional random vector e follow an autoregressive 

process of the form: 

(A.l) 	A e - 	u, 	E(u) - 0, E(u u') - 	- 	
2 

where A is any known autoregressive operator of dimension V by T 

(T'-<r) and where the covariance of u is known and equal to a,, 2 i. 

The problem is now to derive the covariance V e  of e in terms of 

that of u. This requires solving e as a function of u. Thus 

(A.2) 	A e - u, -> A'A e - A'u, -> 	e - (A'A'A'u, 

which is the required linear combination. Then: 

(A.4) 	Ve  - E(e e') - 	a 2  (AA) - 

T by T 

If A'A is singular, as it must be if T'<T, then Ve  in (A.4) 

cannot be obtained. However, it is always possible to calculate 

the inverse Ce  of  Ve  directly: Ce  - ( 2 (A'A) 1 ) - 

The inverse of covariance matrices a: e those actually needed in 

the solution of Generalized Least Squares regressions. We shall 

call the known matrix C e  the criterion matrix, because it entails 

a criterion or behaviour (e.g. autoregressive) maximized by e. 
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