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Converting Fiscal Year Data 
into Calendar Year Values 

- abstract - 

This document proposes a method to transform fiscal year data into 
"calendar" year estimates. The "fiscal year" data refer, for instance, to 
the months of April to March of the following year; and the calendar year 
estimates, refer to the month of January to December. The method, based on 
temporal disaggregation, may also be used to disaggregate yearly data 
(fiscal or not) into monthly or quarterly values. The approach accornodates 
situations where the reference periods of the original data vary from 
occasion to occasion. It could also be adapted to transform fiscal quarter 
data into calendar quarters and aggregates of weekly data into monthly 
values. 	The method is essentially an adaptation of the Denton (1971) 
benchinarking method and of the Cohen, 	Muller and Padberg (1971) 
interpolation methods. 	These methods are redeveloped in the framework of 
regression analysis. 

KEYWORDS: 	Temporal disaggregation, 	Interpolation, 	Benchmarking, 
Calendarization, Quadratic Minimization, Regression, Generalized Least 

. 

La transformation des chifires d'annees tinancieres 
en valeurs d'années civiles 

- résumé - 

Ce document propose une méthode pour transformer des donnees d'années 
financières en estimations d'années civiles. Les chiffres annuels 
financiers couvrent, par exemple, les inois d'avril a mars de l'annee 
suivante; et les estimations d'années civiles, les mois de janvier a 
décembre. La méthode peut aussi s'utiliser pour desagréger des chiffres 
annuels (financiers ou pas) en valeurs trimestrielles ou mensuelles. 
L'approche accornmode les situations oü les periodes de rdfdrence des 
chiffres originaux varient dune année a l'autre. Elle pourrait aussi 
s'adapter a la transformation de trimestres financiers en trimestres 
civils, a la transformation de chiffres pluri-hebdomadaires en chiffres 
mensuels. La méthode constitue essentiellement une adaptation des méthodes 
d'étalonnage de Denton (1971) et d'interpolation de Cohen, Muller et 
Padberg (1971). Ces méthodes sont présentées a neuf dans le cadre 
l'analyse de regression. 
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. 	1.INTRODUCTION 
Most of the annual data published by statistical agencies reflect - or 

are perceived to reflect - the "calendar" year begining on January 1st and 
ending on December 31st. However, many companies and institutions supply 
the basic data in terms of their "fiscal years", which may differ from the 
calendar year. For example, the Canadian federal and provincial governments 
operate in terms of a fiscal year running from April 1st to March 31st. 
The U.S. federal and most state goverments keep their accounts using a 
fiscal year running from July 1st to June 30th. In the early 1980's, 20% of 
Canadian retail trade sales were made by companies with fiscal years ending 
in January; 12%, by companies with fiscal years ending in March; and only 
30%, by companies with fiscal years coinciding with the calendar year, i.e. 
ending in December. The same situation prevails for quarterly data, which 
often reflect the fiscal quarters of the respondents; and for monthly 
data, which are often fowarded to statistical agencies in aggregates of 
four or five weeks. 

This situation creates the calendarization problem, which in the case 
considered in this paper consists of transforming fiscal year data into 
calendar year values. Two basic situations are distinguished. In the 
first and more favourable situation, there is sub-annual auxiliary 
information, i.e. an "indicator", for the variable of interest; but the 
fiscal sums of that indicator do not comply with the available fiscal year 
data. In this case, calendarization is viewed as a bencbmarking problem. 
Classically, benchmarking consists of adjusting sub-annual measurements of 
a variable so that their annual sums conform with annual, more precise and 

•  separately obtained measurements of the same variable. In this paper, the 
benchmarking technique is applied to the case where the sub-annual values 
are an indicator - instead of measurements - of the target variable. The 
calendarized values then obtained by taking the calendar year sums of the 
"benchmarked" series. The benchinarking method by Denton (1971) is adapted 
in Section 3 for calendarization purposes. The benchmarked series obtained 
in such a context will be referred to as the interpolated series. We use 
the word interpolation both for flow and stock series. 

In the second and less favourable situation, data are available only for 
the fiscal years, and there are no sub-annual data nor any auxiliary 
information on the variable of interest. The approach proposed is then to 
interpolate the sub-annual values between the fiscal year data and to 
aggregate the interpolations into calendar year values. That problem is 
closely related to that of interpolating monthly or quarterly series from 
annual series addressed by Boot, Feibes and Lisman (1967) and by Cohen, 
Muller and Padberg (1971). These approaches can be seen as special cases of 
the Denton method in which the sub-annual indicator is equal to zero. 

Section 2 first present a unified approach to the calendarization 
problem, based on generalized least square regression. 
Chow and Lin (1971) also proposed an interpolation method based on 
regression; and 	Fernandez (1981), Litterman (1983), Silver (1986) and De 
Alba (1988) proposed variants of the Chow and Lin method. 	The main 
differences between these similar uses of the regression model and that 
proposed herein are the following. 	(1) In this paper the regressors are 

. 	the deterministic columns of a design matrix; whereas in the methods of the 
Chow-Lin type, the regressors are related stochastic time series. 	(2 In 
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this paper, the annual data may explicitely reflect fiscal years. 
(3) Finally in this paper, no initial conditions for the autocorrelation 
behaviour of the disturbances are specified. Unimportant in some 
applications, these initial conditions are crucial for calendarization 
purposes. 

Section present a proportional variant of the calendarization method. 
Section 5 relates the proposed methods to existing empirical 
calendarization practices. Finally, Section 6 compares the performance of 
the former and the latter. 

This paper assumes that calendarization takes place at a level of 
aggregation where the respondents to the survey or census have a common 
fiscal year - and common sub-annual indicator if applicable. That level is 
generally be lower than that of publication by the statistical agency. 
However, in some socio-economic sectors where all the respondents have the 
same fiscal years (e.g. 	the Canadian banking sector), the level of 
calendarization may coincide with that of publication. 	Despite the 
importance of the issue, we will refrain from discussing it further in this 
paper. 
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. 	2 GENERAL MODEL FOR CALENDARIZAT ION 
The approach to calendarization proposed in this paper consists of 

disaggregating the fiscal year values into sub-annual, monthly or 
quarterly, values; and, of temporally re-aggregating the interpolated 

sub-annual values into calendar year values. The interpolation of the 
sub-annual values is achieved by means of the following system of 
equations: 

• 	(2.1) 	- 	+ 	, 	E()-Q, E( 	')- 

(2.2) 	- 	I k + 	, 	E(j)-Q 	E(j 

where E(&. i') - Q. 

The T-dimensional vector k denotes the "true" sub-annual values of the 
soclo-economic variable to be interpolated by the system. Vector s, denotes 
T sub-annual values of the indicator of the socio-economic variable to be 
calendarized. Vector f denotes the M fiscal year bencmark observations of 
the variable. Random vectors e.  and . are mutually independent. Their 
respective covariance matrices Le and 3 are known and depend on the 
particular variants of the method presented in Sections 3 and 4. The model 
defined by (2.1) and (2.2) basically states that k is to be estimated on 
the basis of the fiscal year values f and of some sub-annual information s. 

More details are now given about some of the vectors and matrices. 
Vector q of (2.1) ideally denotes sub-annual measurements of the variable 
to be calendarized. In most calendarization situations however, sub-annual 

. 	values of the target variable are not available. Vector s may then be an 
indicator of the variable. The indicator may consist of values of a 
variable observed sub-annually which is closely related to the target 
variable. The indicator may also be a seasonal and/or trading-day 
pattern (Young, 1965), borrowed from such a variable. Vector s may have an 
order of magnitude different from that of the fiscal benchmark data f. 
Friedman (1962) provides a correlation criterion for selecting 5. When 
there is no sub-annual indicator, s will be set equal to zero. 

Matrix I of (2.2) is the following generalized annual sum operator: 

columns: r1 	0C 1 	T2 	IC2 
[00 ... 011... 10... 00... 000 ...1 
jOO ... 000 ... 00 ... 1l...100...I 

(2.3) 	- 	. 	. 	. 	. 	 . 	• 	I, 

• 	MbyT 	.: 	 .:. 	] 
where rm  and Km  are the reference periods, i.e. the starting and ending 
periods, of the M fiscal year values f m (Tm  and Km  indicate the columns and 
m the rows to place the ones). For instance, fiscal year values of a 
monthly flow series have reference periods r1-4, 9-15, r2-16, ic2-27, etc., 
if each fiscal year ends in March and if the series k is a monthly flow 
series. For the corresponding stock series (e.g. inventories), the 
reference periods are 71K115, 72-?C227, etc. Operator a , which has never 

. 	been explicitly proposed before, allows for fiscal years ending in any 
month; 	and also for fiscal years of different length, i.e. occasionally 
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covering more or less than 12 months. Consequently, equation (2.2) states 
that the fiscal sums of the desired k are equal to the appropriate fiscal 
values f plus an error term S. For calendarization purposes, however, €-O 
and -Q, in which case the benchmarks fm  are binding, i.e. must be 

satisfied. For reason which will soon become apparent, j and V. are kept 
in the model. 

Throughout this paper and with no loss of generality, t-1 refers to a 
January or a first quarter; 	and t-K}1-T, to a December or fourth quarter. 	* 
Symbol H stands for the number of sub-annual periods per year, 12 or 4; 
and K, for the number of calendar years in the interpolated series. In 
other words, b and § ranges over K>M complete calendar years, and the M 
fiscal years are embedded within the latter. Some of the interpolations 
will therefore be extrapolations, in the sense that they are not embedded 
in the fiscal years. 

The system of equations defined by (2.1) and (2.2) can be written as 

(2.4) 	Z 	— 	k + 	, E() — Q, 

	

E(dd') 	— I e Q I —-1- F Qe 
  L Q Qi'J 

where g'- [i.' £'] 	'— [j' 	'J and '— [' j']. Equation (2.4) is a case of 
generalized least squares (GLS). The GLS estimator of k and its covariance 
matrix are then respectively 	— ( P).•l '1 g and var b* — 
('j). On noticing the content of X, £ and V 1-Q, the estimator and 
its covariance may respectively be written as 

(2.5) 	k* — Q [e 	S + J'V -1  £] — 	[ c s + 

(2.6) 	var 	— 	— (Le 	+ 1'L-1L]-1 — [ Qe + J'C J}' 

where b*  is the interpolated sub-annual series and where ee1 and 
are what we call the criteria matrices, corresponding to the 

covariance matrices 3L e  and V
. . As exemplified in Sections 3 and 4, the 

criteria matrices may be calculated directly, that is without inverting the 
covariance matrices. 

Using matrix algebra identities (e.g. Hilimer and Trabelsi, 1987, p. 
1067) and tedious substitutions, solution (2.5) may be written: 

 s + e' 	' [ 	' + 	I 	- 

(2.7) 	— 	+ e i' [ 1 He ' + V] 1  

	

— 	+ W r. 

This alternative solution is feasible only if Qe  is non-singular, or if its 
inverse Ve  is obtainable directly. 	In the latter case, solution (2.7) 
enormously reduces the calculations compared with (2.6). 	Contrary to 
(2.5), (2.7) also allows V-Q. 	When this is the case however, the 
covariance matrix (2.6) must be calculated as a limit as V tends to zero, 
hence the reason for keeping j and V .  in the model. 
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. 	Equation (2,7) establishes the interpolated values k' as equal to the 
available 	sub-annual 	values 	A 	plus 	a linear combination 
ji - 31'[1 3'+ 3LJ' of the fiscal year discrepancies, , - between 
the fiscal values , and the corresponding fiscal sums of the sub-annual 
information £. The desired calendar year values y? are then the proper 
annual sums of *: 
(2.8) 	x 	- 	 - IQ [+W  r] - 
where C is a K by T calendar year sum operator, which is a particular case 
of (2.3), e.g. with rkl, 13, 25,... and ,c-12, 24, 36. From (2.6) the 
covariance matrix of the calendarized values y is 

(2.9) 	var 	- Q var 

Note that the method could be used as an opportunity to obtain calendar 
quarter as well as calendar year values, by designing an appropriate sum 
operator. 

Depending on the contents of the vectors and matrices of this section, 
different variants of the proposed calendarization method obtain: namely 
the additive variant presented next and the proportional variant presented 
in Section 4. 

0 
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3. THE ADDITIVE VARIANT OF TILE CALENDARIZATION MODEL 
The additive variant of the proposed calendarization method is a 

particular case of the regression model presented in Section 2. Section 
3.1 presents the model; Section 3.2, discusses some of the issues arising 
from the model; and Section 3.3 illustrates the additive variant. 

3.1 The Model 
The first equation of system (2.1)-(2.2) states that the sub-annual 

indicator values §. are equal to the "true" sub-annual values k plus an 
error e. In the additive variant, the error I follows an autoregressive 
process of the form, 

(3.1) 	- 	, 	E() - Q, E( 	') - au2  1' 

where u is an independently distributed random variable with mean zero and 
known variance c 2 . As in Litterman (1983, eqs. (16) to (18)) 	given 
(3.1), Le is equal to c 2 	The criterion matrix Qe3Le1  may be 
calculated directly from D as Ou 2  'fl. Matrix D is the first difference 
matrix operator 

[-1 1 0 O...0 0 01 
0-11 0...0 001 

(3.2) 	- 	I 	. 	. 	. 	. 	. 	. 	. 

(T-l) by T  1 000 0 ... 0-1 1 
so that equation (3.1) may specifically be written as: 

	

et - etl 	Ut, 	- ,. . 
(3.F) 	 Iau2 forkO, 

E(ut) - 0, E(u utk) - 
[0 	fork,'O. 

where a 	is the standard deviation of the error in s, reflecting the 
accuracy of the sub-annual indicator s.  of the socio-economic variable. This 
random walk model for e specifies the principle of additive movement 
preservation or parallelism widely used in benchinarking: The errors et 
change as little as possible from one period to the next, resulting into 
interpolations b*t  as parallel as possible to St.  Section 3.2 further 
discusses the selection of the difference operator. 

The second equation of system (2.1)-(2.2) states that the annual sums of 
the desired b are equal to the appropriate fiscal benchmarks . plus an 
error term L. The covariance matrix v is Cc 2  I where Cc tends to zero. 
The criterion matrix is 	a(2 .. 	qu ation (2.2) may then be 
written as 

km  
(Z 	b) 	+ 	Em , 	rn-i,... ,M, (ni2: 1  cM:5T), 
t 

ICc 2 	fork - 0, 
where 	E(ft) - 0, E(ft etk) 	1 0 	for k o 0, 



-7- 

. 

and where e m  is randomly and independently distributed with variance C c 2. 

Substituting Qe , Yc  and 	into (2.7) yields the following 
interpolated values: 

+ [a2 p,p]-1 l' (1 [ 0u 2  P') l1' + ctç 2  1) 	, 
(3.3) 

Consequently the corresponding calendar year estimates are 

(3.4) 	f 	Q 	- C[+W] 	- 

Substituting Qe  and Q. into (2.5) and (2.9) yields the covariance of k* and 
* respectively: 

(3.5) var - 	 [cu-2  + J'c( 2 	J) -1 , 

(3.6) var -G var b* Q 

For calendarization purposes, 'V f -1 ç1—Q, in which case a2 cancels out in 
(3.3). The covariance matrices may then be calculated as the limit of 
(3.5) and (3.6) as tends to zero with -l. The resulting covariances 
are then interpreted as the covariance of the estimates per unit of 
variance assumed for the sub-annual indicator. Alternatively c may be 
estimated from the residuals —-f as ('QeJT)1"2  and multiplied into 
(3.5). 

3.2 Issues Related to the Additive Variant 
In equation (3.2), we propose first differences. 	Second or third 

differences would reflect a more realistic behaviour of the discrepancies, 
and translate into much smaller residuals # (better fit of the model) and 
into narrower confidence intervals. However, the interpolated values in the 
first and last calendar years become subject to heavy and even wild 
revisions. (Users may also try other operators in the general model of 
Section 2.) 

It should also be stressed that the purpose of the first differences is 
to specify the criterion of movement preservation, that is of parallelism 
of the interpolations to the the sub-annual indicator A. This principle is 
widely accepted and reasonable in the circumstances: 	s provides the 
sub-annual movement, e.g. 	the seasonal and trading-day components of the 
interpolated series; and the fiscal year data f , the super-annual movement 
and the level, i.e. the trend-cycle component. The purpose of the first 
difference is not to reflect the behaviour of the "survey" errors, like in 
the Hilimer and Trabelsi (1987) benchmarking method. 

Based on signal extraction, the Hillmer and Trabelsi (1987) benchmarking 
method specifies an ARIMA criterion to be maximized by the benchmarked 
series. The true sub-annual series, the signal b, is assumed to follow an 
ARIMA model. In terms of the regression framework, the method could 
accurately be described by adding the following third equation to system 
(2.1)-(2.2): y - 11 12 +...., where the ARIMA parameters 11 of the model are 

. 
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predetermined and p is equal to zero for non-stationary series. In their 

method matrix Q is an autoregressive operator to reflect the ARIMA model 
followed by the sampling errors e. 

Incorporating such ARIMA models in the calendarization method proposed 
in this paper would increase the number of degrees of freedom from T+M to a 
number closer to 2T+M. By making M  equal to P times an intervention 
variable (Box and Tiao, 1975), the model could take additive trading-day 
(Bell and Hillmer, 1983) and other exogeneous variations not captured by a 
pure ARIMA model. One problem would be the level of time series expertise 
required for massive application in a statistical agency; another problem 
is that ARIMA modelling requires high signal-to-noise ratios. The method 
proposed in this paper on the other hand, preserves both the signal and the 
noise of the sub-annual series without need to partition them. 

With D equal to 	the 	strict first 	difference operator 	(3.2) however, 

u 2 D I D ] 	is singular, 	so 	that the expectation cannot be calculated with 
(3.3). Redefining 	P 	as the quasi first difference operator (e.g. Harvey, 
1981, P. 	190) 

(1-p 2 ) 1/2  0 0 	0 	... 	0 	0 	0 1 
- p 	10 O 	... 	O 	001 

I 	0 	-p1 0...0 	001 
(3.7) D - 	I 	. 	 . . 	 . 	 . 	 . 	 . 

TbyT . 	 . . 	 . 

L 	0 	00 O 	... 	O-p 	1 

where p 	is lower than but very close 	to 	1.0, 	(e.g. 0.999999), 	entails 	an 
invertible matrix. 	Furthermore, the inverse is now known algebraically: 

11 	p p2 	... 	pTl 	1 i. p 	.. 	,,T-2 

(3.8) [o2  D'D 	]1 	
- 	 p 2 	p 1 	... 	T3 

J 
a 2  I (1-p 2 ). 

With p very close to 1.0, the quasi first difference operator (3.7) 
causes an infinitesimal sacrifice to the movement preservation principle. 
Indeed it is equivalent to adding the term (1-p 2 ) 1 /2  e1/s1 to (3.1'), which 
is negligible. Furthermore, Bournay and Laroque (1979) show that as p tends 
to 1.0, the solution reached tends to that obtained with strict first 
differences. The denominator of (3.8) does tend to zero, but that zero 
cancels out in solution (3.3). One insisting on the strict first 
difference operator (3.2) could calculate the expectation by means of (2.5) 
(provided € >Q). Alternatively, one could use numerical optimization 
techniques (instead of regression) adopted by Denton (1971), by Boot, 
Feibes and Lisman (1967) and by Cohen, Muller and Padberg (1971). 

Incidently, for binding benchmarks, i.e. 	-Q, and with Q as the 
calendar year sum operator, solution (3.3) coincides with Denton's additive 
variant, except for the first difference operator P. Denton's P is given 
by (3.7) with p-1, but with the first element equal to 1. Cholette (197 
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and 1984) observed that this operator entails important movement distortion 
.  if the absolute size of the first discrepancy rj in --.!& is large, which 

is likely to be the case for calendarization. Under the same two 
conditions on Y. and L, and in the absence of any sub-annual information, 
i.e. -Q, (3.3) coincides the method proposed by Boot, Feibes and Lisman 
(1967) and by Cohen, Mailer and Padberg (1971), to interpolate quarterly 
values from yearly data and interpolated any more frequent values from less 
frequent data. The algorithm of Boot et al. and Cohen et al. is more 
elaborate than that proposed here, but does not rely on the quasi first 
difference operator (3.7). Users reluctant to use (3.7) are referred to 
those authors. Baldwin (1980) developed the proportional variant 
corresponding to the Cohen et al. algorithm. 

3.3 Illustration of the Additive Variant 
As observed by Boot et al and Cohen et al., sub-annual information 

about the target variable may be totally unavailable, i.e. -Q. The 
method proposed may still be very useful. As illustrated in Figure 1, the 
movement preservation principle sets the interpolations b *t  as parallel to 
zero, i.e. as flat, as possible. These smooth interpolations are an 
approximation of the trend-cycle component of the series. That trend-cycle 
has annual sums equal to the fiscal data, that i.e. is consistent with the 
latter, and levels off in the first and last years. Consistency is 
illustrated by the fact that m/4 covers the same surfaces as b *t  over each 

fiscal year. 

Such interpolations are simplistic but sufficient, if 
each fiscal year comprises the same 12 consecutive months or 4 

. 	consecutive quarters and 
the seasonal and the trading-day components can be assumed to cancel 
on such consecutive periods 	(which is usually not a strong 
assumption). 

Under these two conditions, the seasonal and trading-day components have 
cancelled out in the fiscal values and will also cancel out in the calendar 
year values. It is therefore useless to estimate them. If some fiscal 
years cover more or less than 12 months, the fiscal values contain 
seasonality and possibly trading-day variations. One then needs a 
non-trivial A. 

Whether the sub-annual indicator . is equal to zero or not, the weights 
and r in the additive variant are independent of s and f . They depend 

only on the number K of calendar years considered and on the reference 
periods of the M fiscal year (i.e. on matrix fl. The weights W and P of 
(3.4) can therefore be calculated once and for all and applied to any 

•  series whose fiscal years have same reference periods. Cholette (1988) 
tabulated r weights for fiscal years referring to any consecutive 12 month 
or 4 quarters with 3-Q. The weights are to be applied in a 2- (K-2), 3-, 
4- and 5-year moving average manner. The calendarized estimates y are 
then simply 2 § + I (f-a). If  -Q, then - .f. Table 1 A and B give 
examples of weights..1 for fiscal years ranging from April to March and from 
July to June. For fiscal years ranging from October to September, the 
weights would be those in Table 1 A in the reverse order. The weights of 
Table lB were used for Figure 1. 
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Figure 1: 	Values b*t  interpolated between the fiscal data f m  and 
corresponding calendar year estimates y*k, obtained by the additive variant 
of the proposed calendarization method, in the total absence of sub-annual 
information (t0) 

'1 

?I 
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. 

Table 1: 5-year weights r obtained by the additive variant of the proposed 
calendarization method, when K-5, M-4, 3-2, Q is the quasi first 
difference operator (3.7) and each fiscal year covers 12 consecutive months 

S 

A: when the fiscal years cover from April to March 
weights applied to fiscal year 

1 2 3 4 
to estimate 
calendar year 1 1.154 -0.194 0.051 -0.010 

It 2 0.202 0.898 -0 124 0.025 
3 -0 050 0.267 0.873 -0 090 
4 0.015 -0.075 0.301 0.759 
5 -0.017 0.086 -0.330 1.261 

B: when the fiscal years cover from July to June 
weights applied to fiscal year 

1 2 3 4 
to estimate 
calendar year 1 1.232 -0.293 0.076 -0.015 

It  2 0.474 0.633 -0.133 0.026 
it 	 •t 3 -0.093 0.593 0.593 -0.093 

4 0.026 -0.133 0.633 0.474 
" 5 -0.015 0.076 -0.293 1.232 

no. of implicit 
sub - annual 

interpolations 

3 
0 
0 
0 
9 

no. of implicit 
sub - annual 

extrapolations 

6 
0 
0 
0 
6 

1' 

S 

0 
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4. THE PROPORTIONAL VARIANT OF THE CALENDARIZATION MODEL 
This section presents the proportional variant of the proposed 

calendarization method and discusses some issues related to that variant. 	* - 

4.1 The Model 
Equation (2.1) of the system (2.1)-(2.2) states that the sub-annual 

indicator values s are equal to the "true" sub-annual series k plus an 
error e. In the proportional variant, the error e follows an 
autoregressive and heteroscedastic process of the form, 

(4.1) 2 [diag() -1 1 a 	- 	, 	E() — Q, E( 	') — 	2 , 

where u is an independently distributed random variable with mean zero and 
known variance 	Given (4.1), the criterion matrix C e  is cT 2  

[diag() - ' diag(,) - -]. WithD 	as 	in (3.2), equation 	(4.1) may 
specifically be written as: 

(4.1') et/st — €t.1/st.l + u, t-2,... 	
fork — 0, 

E(ut) — O 	E(ut ut.k) — L 0 	for k ' 0, 

where au  is the proportional standard deviation of the error in •, 
reflecting the accuracy of the sub-annual indicator. Model (4.1') specifies 
the proportional movement preservation principle encountered in the widely 
used benchrnarking methods of the Denton type. The ratio of each error et 
to the corresponding sub-annual observation St  changes as little as 
possible from one period to the next, resulting in interpolated values b *t  
as proportional as possible to s. The proportional variant requires that 
all values of s be positive. 

The matrix V .  chosen is dc 2  diag(), 	— u ç 	diag() -1 ), so that 
equation (2.2) may be written as 

?Cm 
fm  — (E 	bt) + Em p rn—i,... ,M, (rl?1 s—<T), 

t 7m 	
F Uç 	m  for k — 0, 

where 	E(Et) — 0, E(€t Etk) — I 
[0 	fork'0, 

where 	is the proportional 	standard error of f. 	Again, 	for 
calendarization, 	-Q implying ap—O. 

Substituting 	e'  Y, 	and rm f-Js into (2.7) yields the following 
interpolated values: 

I 

— 	+ [c 2  diag() -1- D'D diag() 	-1 

{i [a 2  diag() -1- 'Q diag()- 1  )' + C c 2  diag() )1 	, 
(4.4) 

— s + W r. 

1 

1 
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• 	In the proportional variant, it can be shown that (4.4) reduces to 	— W 
. Consequently the calendar year estimates are 	— 	— Q K f — 

Note 	that [cr1f 2  diag() 	'Q diag() -1 ] 1  in (4.4) is 	equal 	to 
diag()(a 2  fl'y 1 diag(), so that (3.8) can be used, if 	is specified 
as the quasi-first difference operator (3.7). 

4.2 Issues P.elated to the Proportional Variant 
The discussion of Section 3.2 about the difference operator remains 

entirely applicable here. There is a more fundamental issue however. 
Numerically, solution (4.4) works. Indeed the wide-spread proportional 
variant of the Denton benchrnarking method coincides with (4.4), if 3—O and 
if j is equal to the calendar year sum matrix operator (and if P is the 
same). The problem is that strictly speaking the inverse of the 
criterion matrix Qe  cannot be interpreted as the covariance matrix of e, 
because the weights J, — [2 diag() -1 ] in (4.1) are not fixed. A similar 
situation prevails for 3. It is thus statistically illegitimate to view 
proportional benchmarking as a particular case of the regression model of 
Section. 

S 

r 

The case at hand is one known as dependent variable heteroscedasticity. 
The variance of the observations St  (ignoring 1m  and assuming for the 
moment) is assumed to be proportional to a2St2.  The GLS estimator (4.4) is 
then inefficient. Harvey (1981, Chapt. 3.4) describes an slightly 
different specification, where the variance of the dependent variable is 
proportional to the square of its expectation, a2E(bt)2,  and for which CLS 
is usable. The technique consists of two steps. First, apply ordinary 
least squares ignoring heteroscedasticity (i.e. apply the additive 
variant) and calculate the OLS estimates bAt  of b.  Second, apply CLS 
using c2b"t2  as the variance of the observations, i.e. weighting the 
observations by l/b",. Under a Gamma distribution the resulting estimator 
is asymtotically efficient. For calendarization, that distribution would 
in fact be more appropriate than the normal, because it excludes negative 
observations. In order to avoide negative values in the first step, the 
technique further requires that the scale of , is first changed to that of 
£ by means of a suitable factor, e.g. [min(f m/(cm-rm))]/[s/T]. 

That 2-step estimation yields interpolations k* which are neither 
proportional nor parallel to s.  but mixed. For that reason and for 
simplicity, we recommend solution (4.4). This estimator b*  is a numerical 
estimator of the Denton (1971) type, with undetermined covariance matrix. 
It is nevertheless pedagogically useful to view proportional 
calendarization through the familiar regression framework. 

4.3 Use of the Proportional Variant 
The usefuliness 	of the proportional variant of the proposed 

calendarization method are best described in opposition to that of the 
additive. The additive variant keeps the interpolated values as parallel 
as possible to the the original sub-annual values St.  That parallelism 
implicitly requires that St - if different from zero - has the same order 
of magnitude as the fiscal year values. Consider the following simple 
quarterly example, where s t  is distributed around 100 with an amplitude of 
20 and is a constant equal to 1 million. The resulting interpolations 
b* t  are parallel to St  and distributed around 1 million with an amplitude 
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of 20, i.e. basically display no movement. With the proportional variant 
on the other hand, b*t  are distributed around 1 million with an amplitude 
of 200,000. The proportional variant transform the scale of , whereas 
the additive does not. The proportional variant is especially be usefull 
when the fiscal years have different lengths. A non-trivial seasonal 
pattern is then required, and the scaling problems encountered with the 
additive variant are avoided. It is also a lot easier to think of 
seasonality in terms of percentages than in terms of units of the series. 

0 
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. S. EXISTING CALENDARIZATION METhODS 
This section relates the proposed calendarization method to existing 

procedures, which were all developped on an empirical basis. 

For stock series 	with binding benchmarks (—Q), both 
variants of the proposed calendarization method reduce to simple algebraic 
formulae. The corrections Ct  made to s t  to obtain b*t  are linear 
interpolations between the sub-annual discrepancies d m  and constant 
extrapolations of the first and last discrepancies: 

	

Ct - dm  + (trm) * [(d+i 	)/(rm+l -  Tm)), 1'm :5 t < Tm+i' 
rn-i,.. ,M-1 

c t  
(5.1) 

	

- d1, t < t1, 	c t - dM, t > tM 

	

where 	in the additive 	variant and 	in the proportional. 
The proportional variant of (5.1) generalizes for fiscal years one of the 
empirical formulae described by Friedman (1962, eq. (6)). 

A particular case of (5.1) occurs when only one year is considered (M-l) 

(5.2) Ct 	- 1m 	- 	fm/sm 	-> 	b*t 	- St (rn/m) 	- (st/sm) fm  

where Sm 	and 	s t  respectively refer to the March (say) and to the previous 
December sub-annual values and fm  is the fiscal year benchmark referring to 
March. Method (5.2) applies the (inverse) growth in the sub-annual values 

. to the 
fm/sm  

benchmark. 	This common 
changes 	from 	year 	to 

technique generates steps between years, if 
year. 	Unfortunately 	in 	some 	operational 

circumstances, it is the only one feasible. 

For flow series, many statisticians are acquainted with another 
empirical method: 

(5.3) 	y* 	- 	(N/H) f1 + ((H-N)/H) f2), 

where N is the number of periods (months or quarters) of calendar year 2 
which are in fiscal year 1 and where H is equal to 4 or 12. For fiscal 
years running from April 1st to March 31st, the parameters of (5.3) are N-3 
and H-12; the fractions are then 1/4 for f1 and 3/4 for f2. For fiscal 
years running from July to June (N-6), the fractions are 1/2 and 1/2. 

Any such convex weights reduce the amplitude of business cycles, because 
the estimates always lie between two neighbouring fiscal year values. This 
is illustrated in Figure 2, in the July to June case. Each calendar year 
estimates lies exactly in the middle of the fiscal year values on each 
side. The figure also shows the flattest possible trend-cycle consistent 
with such estimates and with the fiscal data (in calendar and fiscal year 
sums respectively). That trend-cycle displays a complete cycle, i.e. two 
turning-points, during the two last fiscal years. This event is very 
unlikely: the fiscal year data provide evidence of one downwards turning 
point but no evidence of a second - upwards - turning-point. An 
alternative trend-cycle with only one downward turning point would have to 

. 	bend backwards during the second fiscal year to satisfy consistency. The 
additive variant of Section 3, on the other hand, yields a much more likely 
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trend-cycle with one downwards turning-point, which is the one displayed in 

Figure 1. Also note that the fourth calendar year estimate lies outside 
the neighbouring fiscal data. It can be shown that method (5.3) thus 
implies an unlikely trend-cycle whenever the fiscal data change direction 
or level off. 

Method (5.3), is in fact a particular case of the general model of 
Section 2, under the following conditions: 

The interpolation is specified over two fiscal years, i.e. M-2 and 	
is 

K-3. 
The fiscal years all refer to 12 consecutive months. 
The sub-annual information is totally absent, i.e. —Q. 	 mr 
Matrix P in 	is the second difference operator. 
The variance V. is zero. 

This produces an additive variant like that of Section 3, with second 
instead of first differences. The resulting interpolations lie on a 
straight line running through the middle of the two fiscal values divided 
by 12 (or 4). Such a model works (a) if the underlying seasonality 

is rather stable and 
if the fiscal years comprise 12 months. 
and if the 	fiscal values 	- and therefore the underlying 

trend-cycle - behave linearly without levelling off. 
In Section 6, method (5.3) will be referred to as the traditional method 
and used to assess the performance of the proposed additive and 
proportional methods. 

One less known - but perhaps not less widespread - practice with respect 
to fiscal year data is the following. Depending on the month ending their 
fiscal year, the respondents to a survey can have 12 possible fiscal 
years; the data of respondents with any of the twelve fiscal years ending 
between April (say) of year 1 and March of year 2 are classified in the 
calendar year 1. For the variable considered, the annual estimate y* l  is 
simply the swn of all the fiscal data classified in calendar year 1. Note 
that this scheme produces an estimate y *l  supposedly referring to year 1, 
even if all respondents have a common fiscal year ending in March (say). 
More generally however, each calendar year value derived in that manner 
implicitly involves 23 months of the underlying unknown monthly data, i.e. 
May of year 0 to March of year 2. Cholette and Higginson (1987) conclude 
that for flow series such a scheme produces biased annual values and that 
the bias changes with the phase of the business cycle. Unfortunately, in 
some circumstances this practice is the only one feasible for the 
statistical agency. 

fl 
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Figure 2: Calendar year estimates y *k  obtained by the traditional 
method of equation (5.3) and flattest (simplest) trend-cycle bt 
compatible with both the fiscal data fm  and y*k 



- 18 - 

6. NUMERICAL EXAMPLE 
This section briefly presents examples of calendarization involving four 

retail trade series. Normally, calendarization would take place at a level 
of aggregation (over respondents), at which the respondents have common 
fiscal years and - in the case of the proportional method - at which they 
also share coon sub-annual indicator . That level would usually be 
lower than that of publication by the statistical agency. The examples 
herein use published series because the "true" monthly series k and 
therefore the "true" calendar year values G b are then known exactly and 
can be used to assess the interpolation and the calendarization procedures. 

Column (3) of Table 2 A 	displays 	the 	true calendar year values y—Q...; 
and column (4), the 	fiscal year values 	for years ending in the month 
N 	indicated. 	Column (5) displays the calendar year estimates, f - C b 
obtained with 	the 	proportional 	variant 	of 	Section 4. 	The 	sub-annual 
indicator 	p required by this 	variant consists of the seasonal-trading-day 
pattern 	calculated 	for each series by 	the X-ll-ARIMA seasonal adjustment 
method (Dagum, 1980). 	Using such an indicator simulates the unavailability 
of 	the 	monthly 	data. 	Column (6), displays the 	calendar 	year estimates 
obtained 	with 	the additive variant of Section 3, 	in the total absence of 
any 	sub-annual information, 	-Q. 	In 	both 	variants, 	the 	interpolation 
process was 	applied 	to 	the five 	calendar 	years 	(K-5) 	1980 	to 	1984. 
Column (7) 	displays 	the estimates obtained with the traditional method of 
equation 	(5.3) applied in a 2-year 	moving 	average manner: 	the method is 
first applied to the 80-81 	and 	the 81-82 fiscal values, 	to yield the 1981 
estimate; 	second to the 81-82 and to the 82-83 fiscal values to yield the 
1982 estimate; etc. 

Columns 	(3), 	(4) and (5) of 	Table 2 B 	display 	the percentage 	errors 
corresponding to the proportional, the additive and the traditional methods 
respectively; 	and columns (6), 	(7) 	and 	(8), 	the differences between the 
absolute values of 	those 	errors. 	Column 	(6) 	shows 	little 	difference 
between the proportional and 	the 	additive 	variants. 	This would indicate 
that the additive variant be preferred: 	There is then no need of auxiliary 
information s, and - as explained 	in Section 4 - the weights applied P are 
known in advance. 	Note 	however 	that 	if the fiscal 	years 	have 	unequal 
length 	(which 	is 	not the case here) 	a 	§ 	different 	from 	zero must be 
supplied. 

The predominance of negative entries in columns (7) and (8) of Table 2 B 
points to a superior performance of the proportional and of the additive 
variants, over the traditional method. The few positive entries are much 
smaller than the negative ones, except for years 1981 and 1983 for Used 
cars. Note however that for year 1982 of the same series, the traditional 
method is substantially out-performed. This result could be due to the 
pronounced year-to-year (cyclical) movement of that particular series, 
observable in Table 2 A. In other words that series is harder to 
calendarize, and all methods produce large errors, as shown in columns (3) 
and (4) of Table 2 B. However this case does suggest the following: The 
type of series for which the traditional method is superior or equivalent 
should be determined, so that the simplest method could be used; perhaps 
the traditional method should be used at the end of series and the 
proportional or additive variants in the center; research is needed (e.g. 
Monte Carlo simulation). 
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. 	The traditional method produces no estimates for the first and last 
calendar years 1980 and 1984. 	(This would require availability of the 
1979-80 and 1984-85 fiscal data). As obvious from columns (3) and (4) of 
Table 1 3, the 1980 and 1984 end estimates obtained with the proportional 
and additive variants of the proposed method are less accurate than the 
estimates for 1981 to 1983. As explained in Section 2, the end estimates 
involve sub-annual extrapolations outside the span covered by the fiscal 
years. The number of backwards extrapolations is equal to the ending month 
N of the fiscal year; 	and the number of forward extrapolations, to 
12-N+1. 	These end estimates should then be ignored or used with caution, 
e.g. 	when N is small and when the socio-economic variable is not subject 
to turning-points. 	For variables subject to turning-points, the end 
estimates would greatly benefit from some forecasted fiscal year value; 
again research is needed. 

As more (fiscal) years are added to the series the end estimates become 
more central; and therefore, more accurate. (This may explain why the 
1982 estimate of Used Cars is more accurate than the other estimates). 
Empirical work with benchmarking suggest a 5-year moving average 
implementation of the method (Cholette, 1984) provides acceptable 
estimates: A calendar year estimate then becomes central and final 
(ceteris paribus) on the third estimation, and the final estimate is based 
on two fiscal year values on each side (i.e. is symmetrically embedded in 
four fiscal years). 

• 	The sub-annual interpolations 	produced with the proportional variant 
had the following mean absolute errors: 2.14% for Department Stores, 7.78% 
for Used Cars, 2.54% for Family Clothing and 3.19% for Men Clothing. 

.1 

LI 
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Table 2: 	Estimating the Calendar Year Values for a Few Selected Retail 
Trade Series 

A: True Annual Values With Their 	Proportional, Additive and Traditional 
Estimates 

(1) (2) (3) (4) ending (5) (6) (7) 
series true fiscal month prop. add. trad. 
ident. year value value N 	estim. estim. estim. 

80 9367 9607 9578 
80-81 9675 4 

Department 81 10218 10081 10042 10015 
Stores 81-82 10184 

82 10208 10249 10249 10286 
82-83 10336 
83 10930 10928 10847 10846 

83-84 11100 
84 11385 11248 11293 

80 439 525 523 
80-81 508 6 

Used 81 495 475 475 480 
Cars 81-82 452 

82 462 461 464 473 
82-83 493 
83 

83-84 
501 

529 
514 516 511 

84 559 535 534 

80 1188 1198 1192 
80-81 1213 2 

Family 81 1367 1361 1358 1341 
Clothing 81-82 1366 

82 1275 1285 1285 1298 
82-83 1285 
83 1487 1479 1467 1468 

83-84 1505 
84 1575 1560 1571 

80 973 1005 1002 
80-81 1016 5 

Men 81 1073 1065 1060 1060 
Clothing 81-82 1091 

82 1114 1124 1119 1123 
82-83 1146 
83 1250 1229 1215 1213 

83-84 1261 
84 1323 1282 1287 

E 
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B: Corresponding Percentage Errors 

ki 

(1) (2) (3) (4) (5) (6) (7) (8) 
series prop. add. trad. abs(3) abs(3) abs(4) 
ident. year estim. estiin. estim. -abs(4) -abs(S) -abs(S) 

80 2.57% 2.25% . 0.32% 
Department 81 -1.34% -1.72% -1.99% -0.38% -0.65% -0.27% 

Stores 82 0.40% 0.40% 0.76% 0.00% -0.36% -0.36% 
83 -0.02% -0.77% -0.78% -0.74% -0.75% -0.01% 
84 -1.21% -0.80% . 0.40% 

80 19.54% 19.07% . 0.46% 
Used 81 -4.16% -4.04% -3.07% 0.13% 1.09% 0.97% 

Cars 82 -0.21% 0.53% 2.39% -0.31% -2.17% -1.86% 
83 2.52% 2.90% 1.94% -0.38% 0.58% 0.96% 
84 -4.37% -4.43% . -0.07% 

80 0.83% 0.34% . 0.49% 
Family 81 -0.43% -0.67% -1.92% -0.24% -1.50% -1.26% 

Clothing 82 0.74% 0.77% 1.83% -0.04% -1.09% -1.06% 
83 -0.52% -1.38% -1.26% -0.86% -0.74% 0.12% 
84 -0.97% -0.26% . 0.71% 

80 3.29% 2.98% . 0.31% 
Men 81 -0.74% -1.26% -1.25% -0.52% -0.50% 0.02% 

Clothing 82 0.89% 0.44% 0.84% 0.45% 0.04% -0.40% 
83 -1.63% -2.78% -2.94% -1.15% -1.31% -0.16% 
84 -3.14% -2.77% . 0.36% . 

3 

I' 

0 
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7. CONCLUSION 
This paper proposed methods to transform fiscal year data into calendar 

year values. The calendarization problem is viewed either as a 
benchmarking or as an interpolation problem. In the first case, the method 
is a straightforward adaptation of the proportional variant of the Denton 
(1971) bencbmarking method; in the second, an adaption of the interpolation 
methods of Boot, Feibes and Lisman (1967) and Cohen, Muller and Padberg 
(1971). The calendar year estimates are then the proper annual sums of the 
benchmarked or interpolated values. 

The same strategy could be applied to calendarize fiscal quarter data 
and to transform data covering four or five weeks into monthly values. The 
inherently seasonal nature of such data however implies that the end 	St 

estimates could be subject to very substantial revisions. 

Appropriate calendarization - or the lack thereof - obviously impacts on 
the quality of time series produced by statistical agencies. 
Calendarization conditions all the other statistical processes applied 
thereafter: seasonal adjustment, integration into accounting frameworks 
(e.g. the National Accounts), econometric modelling, forecasting, etc. 
Despite that, we failed to encounter any specific reference on the subject. 
The topic certainly deserves more attention. 

. 

0 
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