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Is 	 ABSTRACT 

This paper describes a state-space approach for the approximation of 

the mean square errors (MSE) of the X-11-ARIMA seasonally adjusted 

estimates and their changes over time. The trend-cycle, seasonality and 

irregular unobserved-components are assumed to follow simple stochastic 

models of the class found by Cleveland and Tiao (1976) and Burridge and 

Wallis (1984) that approximates well the Census X-11 variant filters. 

Similar models have been applied by Kitagawa and Gersch (1984). The 

seasonal and trend-cycle values from X-11-ARIMA are used to obtain an 

initial value of the mean of the state vector and initial estimates of the 

variances of both the observation noise and the noise processes of the 

unobserved-components models (11CM). These initial values of the variances 

are used to obtain maximum likelihood estimates (MLE) by the method of 

scoring. The only other estimate required by the fixed-interval smoothing 

algorithm, the initial state covariance matrix, is set to be a large 

multiple of the identity matrix. The Kalman filter and the fixed interval 

smoother are applied to the original series to obtain the estimates of the 

UCH as well as their corresponding MSE. Finally, the MSE of the X-ll-ARIMA 

estimates are approximated by the MSE of the UCM estimates if their 

differences are not significant. 

Key words: Maximum likelihood estimation, Kalman filter, fixed interval 

test, smoother, seasonally adjusted, month-to-month change and ratio. 
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RESUME 	 . 

Cet article présente une méthode pour lapproximation de la variance 

des données corrigées de leurs variations saisonnières par le progiciel 

X-11-ARMMI. 

La méthode utilise une formulation de vecteur d'etat et le filtrage de 

Kalman. Des modèles stochastiques sont définis pour les composantes 

cyclo-tendancielle, saisonnière et irréguliere de la série chronologique. 

Ces modéles sont ajustes a la decomposition du X-11-ARMMI pour obtenir les 
estimés des paramètres nécessaires au filtrage de Kalman. Le filtrage de 

Kalman et le lissage sur un intervalle fixe sont appliqués sur la série 

originale pour obtenir des estimés "stochastiques" des composantes de la 

sdrie ainsi que leurs variances. 	Finalement, la variance de l'estimd 

"X-11-ARNMI" 	est approximée par celle de l'estimé stochastique si leur 

difference n'est pas significative. 
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. 
1. INTRODUCTION. 

The need for the development of standard errors of seasonally 	adjusted 

• data 	as 	published 	by 	statistical 	bureaus 	has 	a 	long 	standing. The 

President's 	Committee 	to 	Appraise Employment and Unemployment Statistics 

(1962) 	recommended: 	"that estimates of the standard errors of seasonally 

adjusted data be prepared and published as soon as the 	technical 	problems 

have been solved". 	Seventeen 	years 	later, 	the 	National 	Commission 	on 

Employment and Unemployment Statistics (1979) reemphasized 	the 	importance 

of 	standard 	errors 	for 	seasonally 	adjusted series and urged the Census 

Bureau 	to 	undertake 	research to develop them. 	In response to this goal, 

Wolter and Monsour (1981) developed a procedure based on the linear filters 

of the Method 	II-X-ll-variant 	(Shiskin, 	Young 	and 	Musgrave, 	1967) 	to 

calculate 	the 	variance 	of 	seasonally 	adjusted 	data. 	These 	authors 

considered 	two 	situations, 	one, 	where 	the 	components 	were assumed as 

deterministic 	and 	thus 	only 	the 	sample 	variability contributes to the 

variance 	of 	the seasonally adjusted value; and, two, where the components 

are assumed to be stochastic processes and the nonstationary 	part 	of 	the 

time series is removed by fitting a 	polynomial 	in 	time. 	This procedure 

offered 	a 	simplified 	approximation to the variance of the X-ll estimates 

given the two assumptions on the kind of variability that affected the data 

and 	the 	fact 	that 	the linear filters themselves are an approximation of 

what the method really does to 	actual 	series. 	With 	the 	same 	kind 	of 

reasoning, 	Burridge 	and 	Wallis 	(1984) 	developed 	unobserved-components 

models of the ARIMA type that approximate 	the 	seasonal adjustment filters 

used 	by the X-ll variant and derived measures of variance using the Kalman 

filter 	(Burridge and Wallis, 1985). 	Similarly, measures of the asymptotic 

variance 	could 	be calculated from the ARIMA model developed by 	Cleveland 

and Tiao (1976) as an approximation of the symmetric filters 	of 	the 	X-ll 

variant. 	1-lillmer (1985) made a major contribution for 	computing variances 

of the components estimates from model based procedures such as Hillmer and 

Tiao 	(1982) 	and Burman (1980); 	and generalized Pierce (1980) results for 

the 	revision 	of 	current 	seasonally 	adjusted 	data. 	Hillmer 	(1985) 

calculated the total variance as the 	sum 	of 	the 	conditional 	asymptotic 

variance 	(from 	the 	case 	in 	which 	a 	doubly 	infinite 	realization is 
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available) 	and 	the 	variance from the forecasts and backcasts values that 

are needed to replace the missing observations from the future and the past 

when dealing with actual series. 

The studies concerned with measures of variance of seasonally 	adjusted 

data 	by 	the X-ll-varlant approached the problem from the viewpoint of its 

linear 	filters. 	These linear filters, however, are approximations of what 

the 	method 	really 	does 	under 	the 	assumptions 	of: 	(1) 	additive 

decomposition, 	(2) no treatment 	of 	extreme 	values, 	(3) 	no 	trading-day 

variations and (4) only the filters of the default option 	are 	applied 	to 

estimate the seasonal and trend-cycle components. 

The 	main 	purpose 	of 	this 	paper 	is to present a new procedure that 

approximates 	the mean square errors (MSE) of the unobserved-components and 

their changes as really estimated from actual data by the X-ll-ARIMA method 

(Dagum, 1980) which is applied by most statistical bureaus, with or without 

the ARINA extrapolations. 

Section 2 introduces the models assumed for 	the unobserved-components, 

trend-cycle, seasonality 	and 	irregular 	and 	discusses 	the 	relationship 

between the models and 	the 	various 	filters 	of 	the 	X-ll-ARIMA 	method. 

Section 3 gives a brief description of the Kalman filter and fixed interval 

smoother. 	Section 	4 	presents 	the 	procedure followed to obtain maximum 

likelihood 	estimates 	of 	the 	signal 	to noise ratios and the observation 

noise variance. 	Section 5 gives the variances of the X-11-ARIMA seasonally 

adjusted values and of 	their 	month-to-month 	changes 	for 	the 	additive, 

log-additive and multiplicative 	decompositions. 	Section 	6 	analyses the 

results 	for 	two 	seasonally adjusted series, one additively and the other 

multiplicatively. 	Section 7 gives the conclusions. 



-3- 

2. 	THE X-ll•-ARIMA METHOD AND THE MODELS FOR THE UNOBSERVED-COMPONENTS, 

The 	X-11-ARIMA seasonal adjustment method assumes that a series ''t  can 

be 	decomposed into trend-cycle C, seasonality St  and irregular variations 

1t 	either in an additive manner: 

Yt-Ct+St+It, 	 (2.1) 

• a multiplicative manner: 

Yt - CSI 	 (2.2) 

or, a logarithmic manner: 

log Yt - log C 	+ log St + log It. 	(2.3) 

This method is based on moving averages 	or 	linear 	smoothing 	filters 

implying that the time series components are stochastic and thus, cannot be 

closely approximated by simple functions of time over the entire 	range 	of 

the series. 	The X-11-ARIMA 	method 	consists 	of 	extending 	the 	original 

series at each end with extrapolated values from seasonal ARIMA models 	and 

then seasonally adjusting the extended series 	with 	a 	combination 	of the 

X-ll filters and the ARIMA model extrapolation filters. 

The 	models 	proposed 	here 	to estImate 	the 	MSE 	of 	the 	X-ll-ARIMA 

seasonally adjusted values (for levels and changes) are variants 	of 	those 

found by Cleveland and Tiao (1976) and 	Burridge 	and 	Wallis 	(1984) 	that 

approximate 	closely 	the X-ll seasonal adjustment filters. 	Similar models 

have 	been 	also 	used 	by 	Kitagava 	and 	Cersch 	(1984) in their seasonal 

adjustment method. 

The basic unobserved-components model has the form: 

(2.4) 

where 	'•4t 	t and e t  are the trend-cycle ,seasonal and irregular components 

respectively. 

The trend is 	here 	assumed 	to 	follow 	a 	second 	order stochastically 

perturbed difference equation: 

• (1-B)2pt - qt, (2.5) t-N(0, 2 ) 

or equivalently: 

pt - 2p.1 	- 	t-2 + nt, 	 (2.6) 

where n t  is an independently identically distributed (i.i.d.) sequence and B 

denotes the backsift operator ( 3 t - 
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The model for the season:l component is defined by: 

It  - -E it-j + wt,t-N(0,a 2 ) 	(2.7) 
j -]. 

where wt  is an i.i.d. sequence and s is the number of "seasonst' in the year. 

The 	seasonal 	pattern is thus slowly changing but by a process that ensures 

that the sum of the seasonal components over any s consecutive 	time periods 

has an exnected value of zero and 	a 	variance 	that 	remains 	constant over 

time. 

The disturbances q t  and wt are independent of 	each 	other 	and 	of 	the 

irregular component Et 	- i.i.d. N(O,ci 2 ). 

It is straightforward in 	the 	Kalman 	filter 	and 	related 	state-space 

smoothing algorithm to add additional 	components 	models 	for 	trading-day, 

both deterministic and stochastic (Dagum and 	Quenneville(1990)), 	outliers, 

intervention 	analysis or explanatory (regression) variables (Harvey (1984)) 

and 	autocorrelated sampling error (Pfeffermann and Friedman (1988)). 	These 

are 	not 	discussed 	here as we limit ourselves to the trend-cycle, seasonal 

and irregular components that form the basic structural model. 

Models 	(2.5) 	and 	(2.7) 	have the same autoregressive operators as the 

models given by Cleveland and Tiao (1976) and Burridge and Wallis (1984) but 

not 	the moving average operators. 	There are several reasons why we limited 

our models to be purely autoregressive. 	First, the moving average operators 

of Burridge and Wallis (1984) models change for each X-11 asymmetric 	filter 

and the moving average for the symmetric filter is different from that given 

by 	Cleveland 	and 	Tiao 	(1976). 	Second, 	Burridge 	and Wallis (1984) and 

Cleveland 	and Tiao (1976) models were constructed for the default option of 

the X-ll filters but non-standard options are often 	applied 	by 	Statistics 

Canada and other statistical bureaus for the seasonal 	adjustment 	of 	their 

series. 	Third, 	the 	asymmetric 	filters 	of 	X-ll-ARIMA 	change 	not 	only 

depending 	on 	its 	position 	in 	time but with the ARIMA model used for the 

extrapolations. 	Fourth, 	it 	is shown by Burridge and Wallis (1984) that a 

very simple model such as: 

- 	 (2.8) 

s-i 

it 	-E 1t-j 	+ Wt, 	 (2.9) 

j-1 

with appropriately chosen innovation variances accounts 	for 	97.1% 	of 	the 
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0 	total variations in the weights of the symmetric seasonal adjustment filter. 

3. KALMAN FILTER AND FIXZD INTERVAL SMOOTHER. 

In this context and for the case of monthly observations, the state 

space model consists of a measurement equation: 

• 	- Yt - & ' t + 11  t (3.1) 

and a transition equation: 

at  - 	+ 't (3.2) 

where 

'- (1 0 1 0 0 0 0 0 0 0 0 0 0 ) (3.3) 

is a fixed vector. 

at , -  ("t 	t-1 It 	t-1 7t-10) (3.4) 

is the state vector and 

2 	-1 0 0 	0 0 	0 	0 	0 	0 	0 	0 0 10 

1000000000000 00 

o 	o -1 -1 	-1 -1 	-1 	-1 	-1 	-1 	-1 	-1 -1 0 1 

0010000000000 00 

. 0 0 0 100000 000 0 00 

0000100000000 00 

C-0 	0 0 0 	0 1 	0 	0 	0 	0 	0 	0 0 	D-00 

0000001000000 00 

0000000100000 00 

0000000010000 00 

0000000001000 00 

0000000000100 00 

0 	0 0 0 	0 0 	0 	0 	0 	0 	0 	1 0 00 (3.5) 

are 	fixed matrices. The signal variance vector 

Lt - (t "t ) (3.6) 

• is normally distributed with mean zero and covariance matrix ci2Q, 

Q - diag(o-2 /a2 	c 2 1c 2  ) 
and a 2  is the variance of e t , i.i.d. N(0,a 2 ) 	independently of r t . 

Let 	At 	be 	the minimum mean square estimate (MMSE) of at  and a2Pt  its 

covariance matrix, 	i.e. c2P - 	- 	- 	at]'. The MMSE of t+l  given 

t and P 	is then given by: 

. t+1It - ca t  (3.7) 
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with MSE matrix: 

Pt+11t - CPC' 	+ DQD'. (3.8) 

Once Yt+i  becomes available, the estimate of 	t+1 can be updated as follows: 

t+l - 	t+lIt + 	t+1vt+l (3.9) 

t+i - (I - t+l&')Pt+lIt (3.10) 

vt+l - Yj 	- (3.11) 

- Pt+iitzlft+i (3.12) 

- 	.'t+it 	+ 1. (3.13) 

Starting values 	sio 	and 	P0 	and 	knowledge of the covariance matrix Q are 

needed to implement the Kalman filter given by (3.7) to (3.13). 

The Kalman filter yields the tIMSE of 	given the information available 

up 	to 	time t. 	However, once all the observations are available, a better 

estimator can be obtained. 	One of the 	techniques 	for 	computing such 	an 

estimator is the fixed interval smoother. 	The fixed interval smoother is 	a 

set of recursions which 	start 	with the Kalman filter estimates AT and 

and 	works backwards. 	If RtIT  and U2Pt1T  denote the smoothed estimates and 

its covariance matrix, the smoothing equations are given by: 

tT - it + p*(a 	- Cat) (3.14) 

with 

tIT 
* - 	t + " 	t(t+iir 	- 	I't+i1t)P t,  (3.15) 

where 

- PtC'(Pt+iit) l . (3.16) 

4. ESTIMATION OF ao, P0 AND Q. 

4.1 Additive variant. 

Maximum likelihood estimates (MLE) of 

and ci, 2/a 2 , are obtained by the 

concentrated log- likelihood function. The 

analytically, conditional on the estimates of 

Using the prediction error decomposition (H 

function L can be written in the form: 

the signal to noise ratios, 

method of scoring on the 

MLE of a2  is obtained 

the signal to noise ratios. 

rvey (1981a)), the likelihood 

	

T 	T 
log(L)--T/2 log(2ir) -T/2 log(a 2 ) -1/2 E log(f) -1/2 a2 Z vt 2/ft (4.1) 

	

t-1 	t1 	
. 
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is where T is the number of observarins and Vt and f t  are defined by (3.11) 

and (3.13). Differentiation of (4.1) with respect to a leads to the MLE of 

a2 , given by: 

T 
a2  — T 1E vt2/ft. 	 (4.2) 

t—1 
The scalar parameter,o 2 , may be concentrated out of the log-likelihood 

function leaving the concentrated log-likelihood function: 

A 	 T 
log(Lc)--T/2 log(2r) -T/2 log(a 2) -1/2 E log(f) -T/2. 	(4.3) 

t-1 
Numerical optimization has to be carried out with respect to the signal 

to noise ratios to maximize equation (4.3). 	While Kitagawa and Gersch 

(1984) use a very simple grid search in their paper, we here apply a more 

accurate procedure based on the method of scoring. A brief description of 

this method follows. 

Let '—(x1x2) — ( c7, 2/a2 ,c7,2/c2 ) be the vector of unknown parameters to 

be estimated. The method of scoring (Harvey (1981b)) is the iterative 

scheme: 

(i) — (il) + I((1l)) D1ogL((i1)) 	(4.4) 

where is the estimate of X at the i-th iteration, 1(2L) is the Fisher 

information matrix evaluated at X and D1ogL() is the matrix of derivatives 
(f: he log-likelihood function evaluated at x. 

From (4.1) the elements of the matrix DlogL are: 

a 	T3 
._Log(L) — E _log(p) , 1-1,2 . 	(4.5) 
lxi 	t_laxi 

:he innovation process (3.11) is here symbolized by Pt to 

implify the notation. The derivative of the log-likelihood of the t-th 

novation is: 

8 	-18 	-2-1 	8 	-2-223 
_log(p) — 	- a ft  vt_vt + .5a 	vt_f 	(4.6) 
8Xi 	8xj 	3xj 	3xj 

Here, the derivatives of ft  and vt  are computed recursively from the Kalman 

filter equations (3.7) to (3.13) starting with the derivatives of a o  and P0 
ua1 to zero. 

0 
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The (i,j)-element of the information matrix is given by: 	0 
8 	8 

	

I(i,j) - E(_Log(L))(_log(L)) 	(4.7) axi 3XJ 

T 
- 	E (_log(p)) (_....log(p)). 	(4.8) 	- 
t-.1 	öxj 	8xj 

Since the innovations Vt  are independent and normally distributed with mean 

zero and variance o-2 ft it follows that 

8 	8 	-28 	8 	-2-18 	8 
E (__log(p)) (—log(p)) - 	_1t_f + .Sa 	_Vt_Vt (4.9) 

8xi 	3x3 	8x .  8xj 	8x1 3xj 

from which (4.8) is easily derived. These results agree with those of 

Engle and Watson (1981) for the case of univariate observations. 

The above discussion applies when the log-likelihood (4.1) is 

maximized. In our context, it is the concentrated log-likelihood (4.3) 

that has to be maximized. However it can be easily verify that: 

	

8 	a 	A 

	

_log(Lc) - _log(L(a 2 )) 	 (4.10) 

	

ôxj 	8xj 

where the right hand side of (4.10) is the derivative of the log-likelihood 

A 

evaluated at 

For values not near the boundary of zero an assymptotic t-statistics 

can be constructed for each parameters, namely: 

	

t - XjSE(Xi) 1/ 2 . 	(4.11) 

Here an estimate of the MSE matrix of the MLE of x is provided by the 

inverse of the last information matrix obtained in the iterative procedure 

(4.4). 

Starting values i9  are needed to initiate the iterative scheme (4.4). 

These are obtained via simple moment estimates from the X-ll-ARIMA 

decomposition. Hence, jjO - ( 2/a2 ,,2/a2 )' where: 

- 	T 
a,7 2  - (T-2) 1  E (ct - 2ct1+ct2) 2 , 	(4.12) 

t-3 
- 	 TA 

	

- (T-1l) 1  E wt  2 	 (4.13) 
t-1 2 
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. 	where 

and 

A 	 12 
- E sj 
i—i 

(4.14) 

T 
ci2 - T 1  E (Yt - ct-st) 2 . 	 (4.15) 

t-1 
Here Ct  and St  denotes the estimates of C and St  from X-11-ARIMA. 

Finally the iterative process (4.4) is stopped when the relative change 

in the value of the log-likelihood function between two succesive iterations 

is smaller than a prespecified constant (ex:.00l.). 

The estimate of the initial state vector g.0 requires knowledge of 

(/ho,I4l,io, -r.I,. •-lo)• Since c..1 and 5-io to so are not readily 

available from X-ll-ARIMA the first eleven month of data are used to 

estimate all by j1—(c11,c10,s11,s10 1 ...,s1)' and the Kalinan filter is 
started at time t-12. This ensure that both the UCM and the X-ll-ARIMA 

estimates start at the same point. The initial covariance matrix P11 is 

taken to be k113 where k is a large constant and 113  is the identity matrix 

of order 13. 

For the logarithmic decompositon all the calculations are done in the 

log metric. That is, the estimates (4.12) and (4.14) are obtained with 

log(c) and log(s) respectively, the estimate for the irregular are 

obtained with log(Y/cs). The initial state vector is 

All - (109(cj),109(c10),109(s11),... ,log(s1))' and the Kalman filter uses 

log(Y) instead of Y. 

4.3 Multitlicative decomposition. 

For the multiplicative decomposition, the preliminary estimates of the 

signal to noise ratio for the trend and the first two elements of all are 

obtained as in the logarihmic decomposition. 

The preliminary estimation of the signal to noise ratio for the 

seasonality is obtained as follows. First, in the estimate (4.14) we use 

t-1 instead of log(s). This is due to the fact that in the 
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multiplicative version of X-ll-ARIMA, the seasonal factors are constrained 

to have an arithmetic mean instead of a geometric mean equal to 1. The 

estimate of the noise variance (4.15) is obtained with (Y/stct) -1. 

Finally the ratio of the two estimates gives the preliminary estimate of 

the signal to noise ratio for the seasonal. Since log(x) is approximately 

equals to x-1 for x close to 1, the two estimates of the observation noise 

variance are very close. The last eleven elements of All are estimated by 

(s11-1,...,s1-l) and the Kalman filter uses log(Y) instead of Y. 

5.VARIANCES OF X-11-ARIMA SEASONALLY ADJUSTED VALUES AND OF THEIR MONTH TO 

MONTH CHANGES. 

5.1 Additive Decomiositjon, 

The Kalinan filter and fixed interval smoother as described by equations 

(3.7) to (3.16) are applied using the initial state vector, covariance 

matrix of the initial state vector, the MLE of the signal to noise 

variances (a,7 2/c7 2 ,c1,2/u2 ) and the MLE of u 2 . The X-11-ARIMA seasonally 

adjusted data is given by t-t  and the seasonally adjusted estimate form 	) 

the UCM is 't-t  where 	denotes the estimate of 7 t . The MSE is defined 

by: 

MSE(;t) - E[(Yt - ;t) - (Yt-it)] 2  - [;t-t]2 	(5.1) 

and is given by Or2PtIT(33), where tlT(3'3)  is the third row, third column 

element of tIT 

In the analysis of seasonally adjusted data, comparisons of 

month-to-month changes are often done to assess the direction and magnitude 

of the short-term trend. 

The method discussed here allows the estimation of the MSE of changes 

between any two months included in the state vector. The change in the 11CM 

seasonally adjusted data betwen month t and t-a, for a-1,.,10 is given by: 

A 	 A 

('tt)(i't a yt a ) 	 (5.2) 

0 
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. 	with MSE: 

E[{(Yt7t)(Yta;t a)}((Ytt)(Yt a 7t a )}1 2  - 

E( 	at a) (;tt) 

E(7talta)2 + E(ityt)
2  2E[(Vt a 7t a)(ltit)] 

which is: 
a2 (PtIT( 3+a,3+a)+PtIT(3,3)-2PtIT(3,3+a)) 

for the smoothed UCM estimate. 

(5.3) 

(5.4) 

In the logarithmic and multiplicative decompositions the estimates from 

the models are obtained in the log metric, so for practical purposes, it is 

necessary to make a transformation back to the original metric. Denoting by 

Yt/rt  the seasonally adjusted estimate in the original metric, Cranger and 
Newbold(1976) show that the estimates that minimizes the MSE is: 

- exp( (logY-y) + . 5a2PtIT(3,3) ) 	(5.5) 

with MSE: 	 A 

MSE(Y/r) - exp(2(logY.7) + o 2Pt1T(3,3) 

exp( a2PtIT(3,3) )-1 1. 	 (5.6) 

Similar transformations are applied for month to month comparisons. 

6. APPLICATIONS. 

The seasonal adjustment of actual data presents problems that require 

special attention, particularly, the identification and replacement of 

extreme values; the use of ARIMA extrapolations to reduce revisions of the 

current seasonally adjusted estimate; and the use of concurrent or 

year-ahead seasonal factors to obtain a current seasonally adjusted value. 

These problems have been taken into consideration for the estimation of the 

UCM following the same procedure of X-ll-ARIMA when applicable. 

The method discussed here has been tested with a large sample of series 

from Canada and the United States with very good results. For illustration 

purposes two cases are shown here. Canada Total, Unemployed Male Aged 25 

and Over (CA-UM), for the period January 1975 to December 1985, is used to 

illustrate the additive decomposition and U.S. Total, Nonagricultural 
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Employed Male Aged 20 and Over (US-EN), 	for the same time period, 	is used to 

illustrate the multiplicative decomposition. 

Example 1: 	CANADA TOTAL OF UNEMPLOYED MALE AGED 25 AND OVER (CA-UM). 

The official X-11-ARIMA decomposition for this series is of the additive 

type with one year of forecasts from an ARIMA (0,1,2)(0,1,1)12 model. 	Table 

1 	gives 	the results of the MLE iterative procedure for the signal to noise 

ratios. 	The starting value of the vector (a, 7 2/a2 ,a,2/cr2 ) is 	(.6563,.3907) 

with the matrix of the derivatives of the concentrated log-likelihood 	(4.5) 

and (4.6) given in the second column and the information matrix (4.8) 	given 

in 	the 	third 	and 	fourth columns. 	The initial value of log(Lc) (constant 

terms 	are 	not 	included) 	is 	-390.5. Finally, the initial estimate of the 

noise variance a 2  is 16.855. At the 6-th iteration the relative increase 	in 

the values of log(Lc) is less than .001 and the procedure is 	stopped. 	The 

final estimates of the vector of the signal 	to noise ratios 

is 	(2.5605,.1151) 	and 	the final estimate of a 2  is 10.7422. 	The values of 

the 	derivatives 	Dlog(Lc) 	indicate 	that log(Lc) is relatively flat at the 

final estimates as compare to its value at the initial estimates. 

Given the estimates of the signal to noise ratios, the UCM estimates are 

calculated and compared with the X-ll-ARIMA estimates. 	Figure 	lA.l 	shows 

the original series and the 	X-ll-ARIMA 	seasonally adjusted series. 	Figure 

1A.2 	indicates 	how 	close the X-11-ARIMA seasonally adjusted values are to 

the 	smoothed 	seasonally adjusted UCM estimates. 	Figure 1A.3 gives the 95% 

predictive interval of the seasonally adjusted 	X-11-ARIMA 	series. 	Figure 

1A.4 shows how small are the relative differences 	(in 	percentage) 	between 

the smoothed seasonally adjusted UCM and the seasonally adjusted 	X-ll-ARIMA 

values 	(the 	relative 	difference 	is 	calculated 	as: 

100 (UCM - X-ll-ARIMA)/X-ll-ARIMA). 	The correlation coefficient between the 

seasonal 	factors 	produced by the X-ll-ARIMA and the UCM methods is .99848. 

This clearly indicates that their linear relationship is very strong and 	in 

the same direction. 	To asses-whether or not the difference in the 	seasonal 

factors 	of 	the 	two methods is significant, we perform a basic statistical 

analysis 	on 	their 	relative 	differences. 	The results of Table 4 indicate 

that the relative differences are in fact very small. 	Figure 1A.5 shows the 

MSE's of the smoothed seasonally adjusted UCM estimates. 	The graph 	of 	the 

smoothed 	MSE's 	versus time has a concave shape with jumps every year. 	The 

MSE's 	are 	the 	smallest 	in the middle of the series which agrees with the 
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results obLained by Wo].ter and Monsour (1981). 

All figures lB refer to the month-to-month changes instead of levels as 

discussed above. 	Figure 1B.2 gives the 	95% 	predictive 	interval. 	Values 

falling above (below) the zero line indicate positive (negative) changes 	in 

the 	seasonally 	adjusted 	series. 	Particularly, the period from September 

1981 	till 	December 1982 stands out with the only exceptions of October and 

November 	1981 and January 1982. (May 1981 till December 1982 corresponds to 

the 	deep 	Canadian 	recession). 	Figure 	1B.3 	shows 	the 	MSE's 	of 	the 

month-to-month changes of the seasonally adjusted values. 

Figures lC.l to 1C.3 are the same as lB.l to 1B.3 but for 	the 	changes 

between period t and t-2 instead t and t-1. 	The May 	1981 	to December 1982 

recession period is clearer in this case than in figure 1B,2. 

One 	of 	the 	main 	reasons 	for seasonally adjusting series is to get a 

clearer 	signal 	of 	the 	short-term trend. Consequently, it is important to 

assess 	if 	a 	change 	of 	direction 	in a current seasonally adjusted value 

indicates the presence of a true turning point. 

The month-to-month changes of the seasonally adjusted data for the whole 

period 1975-1985 	were different from zero and positive in May 1981 and from 

September 	1981 	till December 1982 with the exceptions of October, November 

1981 and January 1982. 	Using the series from January 1975 till May 1981 and 

adding one month at a time, we wanted to identify how long it would 	take to 

the method discussed here to detect these changes of direction using current 

seasonally adjusted figures. 

Table 	3A 	provides 	the 	95% predictive interval constructed around the 

month-to-month 	changes. 	It 	can be seen that the change from April to May 

1981 	is significantly different from zero and remains so when more data are 

added to the series. 	For five out 	of 	eight 	month-to-month 	changes, 	the 

current 	seasonally adjusted values are good estimators of the corresponding 

"historical" 	values 	obtained 	when the series ends in December 1985. 	For 

the months of June, July and October the historical 95% predictive intervals 

give a different signal than 	the 	current 	and 	the 	first 	five revisions. 

Given the amount of irregularity in the UM series, we applied the Month 	for 

Cyclical Dominance (MCD) measure of X-ll-ARIMA as an indicator of the length 

of 	the 	month-span 	where 	the 	contribution 	of 	the 	cyclical 	variations 

surpasses 	that 	of the irregulars. For the UN series the MCD is equal to 	2 

indicating that to assess the short term trend, 	comparisons 	must 	be 	made 



- 14 - 

between the current seasonally adjusted values and 2 months before. 

Table 3B shows the predictive intervals for the 2-months span changes of 

the 	UM 	series. 	The 	results 	clearly 	indicate 	that 	these 	changes are 

significantly different from zero and positive since June 1981 with only two 

exceptions, August-June and November-September 1981. 	Furthermore, seven out 4 

of 	the 	eight 	months 	analysed 	give 	the 	same 	trend 	direction 	as 	the 

"historical" estimates. • 

Tables 	3A 	and 	3B 	also 	indicate 	that there is no need to revise the 

current 	seasonally 	adjusted 	data during the current year to obtain better 

estimates 	of 	the short term trend. 	These results conform with those given 

by Dagum (1982.a and 	1982.b) 	concerning 	the 	revisions 	of 	the 	seasonal 

adjustment filters of X-11-ARIMA. 

Examrle 	2: 	AMERICAIN 	NONAGRICULTURAL TOTAL EMPLOYED MALE AGED 20 AND 

OVER (US-EM. 

The 	official 	X-ll-ARIMA 	decomposition 	for 	this 	series 	is 	of 	the 

multiplicative 	type 	with 	one 	year 	of 	forecasts 	from 	an 

ARIMA ( 0 , 1 , 2 )( 0 ,1,1)12 	model 	on 	the 	log-transformed data. 	Table 2 and 

figures 2 	are the equivalent of Tables 1 and figures 1 of the CA-UM series. 

Here, the calculations of the estimates of the signal to 	noise 	ratios 	are 

done with the data in 	the 	log 	metric. 	In 	this 	case, 	the 	correlation 

coefficient 	between 	the seasonal factors is .99799. 	As in the CA-UM case, 

the results of Table 4 show that the relative differences are very small. 

7. CONCLUSIONS. 

This study has introduced a method that calculates MSE's of seasonally 

adjusted values given by the X-ll-ARIMA computer package. The method 

basically consists of fitting simple stochastic models to the X-ll-ARIMA 

estimates to obtain the initial state vector and signal to noise ratios. 

Maximum likelihood estimates are then obtained using the method of scoring. 

The models assumed for the unobserved-components belong to the class found 

by Cleveland and Tiao (1976) and Burridge and Wallis (1984) that 

approximates well the default option of the Census X-ll filters. These 

models have also been used by Kitagawa and Gersch (1984) for developing a 

seasonal adjustment method. 

The Kalman filter and smoother are applied to the original series to 
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obtain estimates and corresponding MSE's of the unobserved-components models 

(UCM). 

This method has been tested with a large sample of series from Canada 

and United State and produced very good results. For illustrative purposes 

• two series are discussed, namely the Canada Total of Unemployed Male, aged 

25 and Over (1975 to 1985) additively seasonally adjusted and the U.S. 

Employed Male, aged 20 and Over (1975-1985) multiplicatively seasonally 

adjusted. 

. 
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TABLE1 

Canada Total. Urp1oyed Male - Aged 25 and Over. 
Results of the MLE iterative procethre 

A 

iter. ç Dlog(Lc) Infol Info2 log(I.c) c2  

1 0.6563 23.0126 45.6511 -8.3246 -390.5 16.8555 
0.3907 -16.4130 -8.3246 73.4508 

2 1.1294 7.9834 15.7843 -3.6832 -381.4 14.2136 
0.2209 -12.6483 -3.6832 149.3000 

3 1.6183 3.2588 7.9475 -0.9249 -378.1 12.7694 
0.1423 -7.1623 -0,9249 239.9000 

4 2.0250 1.5975 5.2440 0.3890 -377.0 11.8726 
0.1200 -2.0816 0.3890 306.2000 

5 2.3302 0.9382 4.0627 0.9565 -376.6 11.2365 
0.1128 0.9849 0.9565 325.7000 

6 2.5605 0.6379 3.4278 1.1995 -376.4 10.7422 
0.1151 2.3210 1.1995 313.4000 

TABLE 2 

MEriCaln Total E7p1oyed Male - Aged 20 and Over. 
Results of the MLE iterative procethre 

iter. 2S Dlog(Lc) Infol Info2 log(lc) 72 

1 0.6713 19.0286 41.1345 -2.8237 730.7 8.4E-7 
0.3145 -19.6394 -2.8237 84.8538 

2 1.1191 5.6092 15.1192 2.9928 739.3 7.8E-7 
0.0979 -7.0544 2.9928 356.5000 

3 1.4926 2.6819 8.9297 4.1770 740.8 7.1E-7 
0.0750 7.0391 4.1770 506.5000 

4 1.7876 1.8205 6.4329 4.2188 742.5 6.4E-7 
0.0865 6.5982 4.2188 417.2000 

5 2.0621 1.3397 4.9646 4.0366 742.0 5.9E-7 
0.0995 5.5047 4.0366 342.8000 

6 2.3214 1.0348 4.0058 3.7925 742.4 5.5E-7 
0.1125 4.6146 3.7925 287.7000 

E 
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TAB1E1 

Canada Total Uriip1oy&I Male - Aged 25 ard Over. 

95% Confix.e Intervals for (Y-st) - (Yt..i -s..i) 

data 	May 81 	Jun. 81 	Jul. 81 Aug. 81 Sep. 81 	Oct. 81 	Nov. 81 	Dec. 81 

S 	May 81 ( 9.28,19.66) 
J*x.81 (10.84,21.14) ( 1.06,11.40) 

Jul.81 (13.35,23.00) ( 1.19,10.91) (-0.63, 9.15) 

Aug.81 (12.00,22.29) ( 0.18,10.41) (-0.24,10.04) (-14.65,-4.31) 

Sep.81 (10.39,21.54) ( 2.79,13.95) (-0.99,10.18) (-17.45,-6.22) (25.78,37.07) 

Oct.81 (10.58,22.18) ( 2.89,14.48) (-1.16,10.43) (-18.62,-7.01) (23.80,35.46) ( 0.48,12.22) 

Nov.81 (10.02,22.48) ( 3.56,16.02) (-3.16, 9.30) (-18.61,-6.15) (22.50,34.98) ( 3.00,15.52) 	(-18.43,-5.83) 

Dec.81 ( 9.50,22.14)  ( 4.12,16.75) (-2.54,10.09) (-18.58,-5.95) (24.04,36.67) ( 1.24,13.89) 	(-17.74,-5.05) (40.19,52.9 

May 82 ( 9.21,20.38)  ( 6.16,17.50) (-1.23,10.14) (-16.35,-4.98) (25.85,37.22) 	( 3.82,15.19) 	(-15.38,-4.02) 	(42.72,54.06) 

Dec 85 (11.00,22.85) (-2.87, 	8.97) ( 1.83,13.67) (-16.25,-4.40) (30.01,41.87) 	(-3.77, 8.11) (-20.26,-8.36) 	(42.20,54.08) 

TABLE 35 

Canada Total Umçiayed Male - Aged 25 &xt Over. 
95% Ctxifidarxe Intervals for (Yt -st) - (Yt..2-st..2) 

date 	Mar. to Apr. to May. to J*x. to Jul. to Aug. to Sep. to 	Oct. to 
May 81 Jun. 81 Jul. 81 Aug. 81 Sep. 81 Oct. 81 Nov. 81 	Dec. 81 

MPFMay 81 (-2.01, 9.38) 

Jun.81 (-0.76,10.56) (16.51,27.93) 

Jul.81 ( 1.42,12.57) (18.65,29.80) ( 4.68,15.94) 

Aug.81 ( 0.23,11.59) (16.82,28.15) ( 4.52,15.86) (-10.32, 1.15) 

Sep.81 (-0.42,11.39) (18.44,30.23) ( 7.08,18.85) (-13.14,-1.34) (13.62,25.55) 

Oct.81 ( 0.47,12.76) (18.94,31.20) ( 7.21.19.44) (-14.29,-2.07) (10.68,22.94) (29.79,42.17) 

Nov.81 (-0.33,12.38) (19.70,32.37) ( 6.53,19.18) (-15,63,-2.99) (10.03,22.68) (31.66,44.34) (- 9.25, 	3.52) 
Dec.81 ( 1.20,14.05) (19.84,32.66) ( 7.81,20.61) (-14.88,-2.09) (11.70,24.49) (31.52,44.33) (-10.25, 2.59) (28.71,41.641 
May 82 (-6.47, 5.85) (20.45,32.77) (10.04,22.49) (-12.51, 0.09) (14.57,27.17) (34.74,47.36) (- 6.49, 6.11) (32.40,44.98 
Dec 85 ( 3.12,17.55) (12.78,27.17) ( 3.62,17.98)  (- 9.76, 4.60) (18.43,32.79) (30.91,45.30) (-19.35,-4.92) (26.59,41.08) 

11 

0 



WOM 

TABLE 4 	
. 

Sunnary Statistics on the Relatiw Differerxes. 

Statistics 	CA-UM( 1 ) 	us-( 2 ) 

N 132 132 
Mean - .00017 - .0000143 
sti. 	(2) 00802 .00053 
T- ratio - .24446 - .31068 
Prob>ITI .80726 .75625 

D:Norinal(3 ) .07380 .04567 
Prob)4) .078 >.15 
Mm - .01757 - .00122 
Max .01921 .00127 
s(4) .00843 .0000367 

Canada Total of Urip1oyed Male Aged 25 and Over 
AnEricain Nonagricultural Total Ehployed Male Aged 20 and Over 
Ko]aogorov-nirrw test for rrma1 i ty assuiption. 
Sun of Square of the Relative Differees. 
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RATIO IN X-1-1-ARIM SEASCNALLY ADJC1) 

RATIO IN SMOG= UQ( 
	

95% PREDICrlW flflVAL 

7.7t41 

5.05.07 

I. 7? 

5. l7o7 

7. 7-07 

7.0547 

7.47 1% 
1.77.57 

£5515 	45577 	45577 	45571 	am 	4558' 	45582 	4083 	4151' 	.11545 	44545 
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