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ABSTRACT

This paper describes a state-space approach for the approximation of
the mean square errors (MSE) of the X-11-ARIMA seasonally adjusted
estimates and their changes over time. The trend-cycle, seasonality and
irregular unobserved-components are assumed to follow simple stochastic
models of the class found by Cleveland and Tiao (1976) and Burridge and
Wallis (1984) that approximates well the Census X-11 wvariant filters.
Similar models have been applied by Kitagawa and Gersch (1984). The
seasonal and trend-cycle values from X-11-ARIMA are used to obtain an
initial value of the mean of the state vector and initial estimates of the
variances of both the observation noise and the noise processes of the
unobserved-components models (UCM). These initial values of the variances
are used to obtain maximum likelihood estimates (MLE) by the method of
scoring. The only other estimate required by the fixed-interval smoothing
algorithm, the initial state covariance matrix, is set to be a large
multiple of the identity matrix. The Kalman filter and the fixed interval
smoother are applied to the original series to obtain the estimates of the
UCM as well as their corresponding MSE. Finally, the MSE of the X-11-ARIMA
estimates are approximated by the MSE of the UCM estimates if their

differences are not significant.

Key words: Maximum likelihood estimation, Kalman filter, fixed interval

test, smoother, seasonally adjusted, month-to-month change and ratio.



RESUME

Cet article présente une méthode pour l’approximation de la variance
des données corrigées de leurs variations saisonniéres par le progiciel
X-11-ARMMI.

La méthode utilise une formulation de vecteur d’'état et le filtrage de
Kalman. Des modéles stochastiques sont définis pour les composantes
cyclo-tendancielle, saisonniére et irréguliére de la série chronologique.
Ces modéles sont ajustés a la décomposition du X-11-ARMMI pour obtenir les
estimés des paramétres nécessaires au filtrage de Kalman. Le filtrage de
Kalman et le lissage sur un intervalle fixe sont appliqués sur la série
originale pour obtenir des estimés "stochastiques" des composantes de la
série ainsi que leurs variances. Finalement, 1la variance de l'estimé
"X-11-ARMMI" est approximée par celle de l’estimé stochastique si leur

différence n’est pas significative.




1. INTRODUCTION.

The need for the development of standard errors of seasonally adjusted
data as published by statistical bureaus has a long standing. The
President’s Committee to Appraise Employment and Unemployment Statistics
(1962) recommended: "that estimates of the standard errors of seasonally
adjusted data be prepared and published as soon as the technical problems
have been solved". Seventeen years later, the National Commission on
Employment and Unemployment Statistics (1979) reemphasized the importance
of standard errors for seasonally adjusted series and urged the Census
Bureau to undertake research to develop them. In response to this goal,
Wolter and Monsour (1981) developed a procedure based on the linear filters
of the Method II-X-ll-variant (Shiskin, Young and Musgrave, 1967) to
calculate the variance of seasonally adjusted data. These  authors
considered two situations, one, where the components were assumed as
deterministic and thus only the sample variability contributes.to the
variance of the seasonally adjusted value; and, two, where the components
are assumed to be stochastic processes and the nonstationary part of the
time series is removed by fitting a polynomial in time. This procedure
offered a simplified approximation to the variance of the X-11 estimates
given the two assumptions on the kind of variability that affected the data
and the fact that the linear filters themselves are an approximation of
what the method really does to actual series. With the same kind of
reasoning, Burridge and Wallis (1984) developed unobserved-components
models of the ARIMA type that approximate the seasonal adjustment filters
used by the X-1l1 variant and derived measures of variance using the Kalman
filter (Burridge and Wallis, 1985). Similarly, measures of the asymptotic
variance could be calculated from the ARIMA model developed by Cleveland
and Tiao (1976) as an approximation of the symmetric filters of the X-11
variant. Hillmer (1985) made a major contribution for computing variances
of the components estimates from model based procedures such as Hillmer and
Tiao (1982) and Burman (1980); and generalized Pierce (1980) results for
the revision of current seasonally adjusted data. Hillmer (1985)
calculated the total variance as the sum of the conditional asymptotic

variance (from the case in which a doubly infinite realization is



available) and the variance from the forecasts and backcasts values that
are needed to replace the missing observations from the future and the past
when dealing with actual series.

The studies concerned with measures of variance of seasonally adjusted
data by the X-ll-variant approached the problem from the viewpoint of its
linear filters. These linear filters, however, are approximations of what
the method really does under the assumptions of: @15 additive
decomposition, (2) no treatment of extreme values, (3) no trading-day
variations and (4) only the filters of the default option are applied to
estimate the seasonal and trend-cycle components.

The main purpose of this paper 1is to present a new procedure that
approximates the mean square errors (MSE) of the unobserved-components and
their changes as really estimated from actual data by the X-11-ARIMA method
(Dagum, 1980) which is applied by most statistical bureaus, with or without
the ARIMA extrapolations.

Section 2 introduces the models assumed for the unobserved-components,
trend-cycle, seasonality and irregular and discusses the relationship
between the models and the various filters of the X-11-ARIMA method.
Section 3 gives a brief description of the Kalman filter and fixed interval
smoother. Section 4 presents the procedure followed to obtain maximum
likelihood estimates of the signal to noise ratios and the observation
noise variance. Section 5 gives the variances of the X-11-ARIMA seasonally
adjusted values and of their month-to-month changes for the additive,
log-additive and multiplicative decompositions. Section 6 analyses the
results for two seasonally adjusted series, one additively and the other

multiplicatively. Section 7 gives the conclusions.




2. THE X-11-ARIMA METHOD AND THE MODELS FOR THE UNOBSERVED-COMPONENTS.

The X-11-ARIMA seasonal adjustment method assumes that a series Y, can
be decomposed into trend-cycle Cy, seasonality S and irregular variations

I., either in an additive manner:

Ye = C¢ + S¢ + I, (2t
a multiplicative manner:
Yo = CeSelg (2.2)
or, a logarithmic manner:
log Yo = log Cr + log S¢ + log I.. (2

This method is based on moving averages or 1linear smoothing filters
implying that the time series components are stochastic and thus, cannot be
closely approximated by simple functions of time over the entire range of
the series. The X-11-ARIMA method consists of extending the original
series at each end with extrapolated values from seasonal ARIMA models and
then seasonally adjusting the extended series with a combination of the
X-11 filters and the ARIMA model extrapolation filters.

The models proposed here to estimate the MSE of the X-11-ARIMA
seasonally adjusted values (for levels and changes) are variants of those
found by Cleveland and Tiao (1976) and Burridge and Wallis (1984) that
approximate closely the X-11 seasonal adjustment filters. Similar models
have been also used by Kitagawa and Gersch (1984) in their seasonal
adjustment method.

The basic unobserved-components model has the form:

e =0 + yelENET =l (T (2.4)
where e, < and ¢ are the trend-cycle ,seasonal and irregular components
respectively.

The trend is here assumed to follow a second order stochastically
perturbed difference equation:

(1-B)2pp = n¢, ne~N(0,0,2) §245)
or equivalently:
Bt = 2Be-1 - Be-2 Nt (2.6)
where n. is an independently identically distributed (i.i.d.) sequence and B
denotes the backsift operator (Bup = pe.1).



The model for the seasonal component is defined by:
s-1
Yo = -Z Ye.j + Wp, 0e~N(0,0,?) (R.7)

where w is an 1.i.d. sequengeland s is the number of "seasons" in the year.
The seasonal pattern is thus slowly changing but by a process that ensures
that the sum of the seasonal components over any s consecutive time periods
has an expected value of zero and a variance that remains constant over
time.

The disturbances n¢ and wy are independent of each other and of the
irregular component ¢, ~ i.i.d. N(O,az).

It is straightforward in the Kalman filter and related state-space
smoothing algorithm to add additional components models for trading-day,
both deterministic and stochastic (Dagum and Quenneville(1990)), outliers,
intervention analysis or explanatory (regression) variables (Harvey (1984))
and autocorrelated sampling error (Pfeffermann and Friedman (1988)). These
are not discussed here as we limit ourselves to the trend-cycle, seasonal
and irregular components that form the basic structural model.

Models (2.5) and (2.7) have the same autoregressive operators as the
models given by Cleveland and Tiao (1976) and Burridge and Wallis (1984) but
not the moving average operators. There are several reasons why we limited
our models to be purely autoregressive. First, the moving average operators
of Burridge and Wallis (1984) models change for each X-11 asymmetric filter
and the moving average for the symmetric filter is different from that given
by Cleveland and Tiao (1976). Second, Burridge and Wallis (1984) and
Cleveland and Tiao (1976) models were constructed for the default option of
the X-11 filters but non-standard options are often applied by Statistics
Canada and other statistical bureaus for the seasonal adjustment of their
series. Third, the asymmetric filters of X-11-ARIMA change not only
depending on its position in time but with the ARIMA model used for the
extrapolations. Fourth, it 1is shown by Burridge and Wallis (1984) that a

very simple model such as:

(1-B)pe = n¢, 2. 9}
s-1

Te = % veoj + o, (2.9)
j=1

with appropriately chosen innovation variances accounts for 97.1% of the




total variations in the weights of the symmetric seasonal adjustment filter.

3. KALMAN FILTER AND FIXED INTERVAL SMOOTHER.

In this context and for the case of monthly observations, the state

space model consists of a measurement equation:

Yo = 20 ¥ ey (B
and a transition equation:
gt = Car.] + Dr¢ (I 7)
where
ZU=S(150L 18 0 18 OMNGHAR0 150, 00 Q=) (3198}
is a fixed vector.
g’ = (Bg Be-1 Y& Ye-1 --- Te-10) 3M4)
is the state vector and
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QRO LOESOEAN #1040 401 10210 OGN @ 00
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(0) o) SHL(UZRR (01 MOS8 (o) S TS o SRR SN 0 )P 01 ) 20 00
G 0 FU"REMGMNe" o' L 407 0 w0 50F @ 00
0, NOPMOFSOREIE LI0Y (070 M k0 No el 0 00
00 MORNGN 107 104 <07 047 0/} 4] &1Qw O i0 00
O M H0F 0.4 J0k< (OF HAIFSIOIS 0 STk J01 0 00
0] LOMTOESO QN Ok X@™HEO SO gLNgSL, @ 0o (3.5)
are fixed matrices. The signal variance vector
Ie = (ng ¢ ) (3.6)

is normally distributed with mean zero and covariance matrix 02Q,
Q = diag(e2,/02 02,/02 )
and 02 is the variance of by, 1 4d N(O,aZ) independently of r..
Let g¢ be the minimum mean square estimate (MMSE) of ar and aQPt its
covariance matrix, i.e. o2P, = E[a. - a¢]lar - a¢]'. The MMSE of ay4; given
a¢ and P, is then given by:

ae+l|t = Cac (3.7)



with MSE matrix:
Pt+1|t = CP:C’ + DQD‘. (8.8

Once Y¢,] becomes available, the estimate of g.,] can be updated as follows:

2t+l = 2e+l)t * KerlVesl (3.9)

Pesl = (T-Kes12)Pryge (3.10)
Verl = Yool - 2’841t (3.11)
Ke+l = Pes1e2/fe+1 (3.12)
fe4l = 2'Pes1gez + 1. (nil 3D

Starting values ap and Py and knowledge of the covariance matrix Q are
needed to implement the Kalman filter given by (3.7) to (3.13).

The Kalman filter yields the MMSE of g. given the information available
up to time t. However, once all the observations are available, a better
estimator can be obtained. One of the techniques for computing such an
estimator is the fixed interval smoother. The fixed interval smoother is a
set of recursions which start with the Kalman filter estimates at and P,
and works backwards. 1If a¢|r and UZPtIT denote the smoothed estimates and

its covariance matrix, the smoothing equations are given by:

Ay ag + P*t(§t+l|T - Cag) (3,.14)
with

Pejr = Pr + P¥e(Pral|T - Peal o) P¥t (3.15)
where

P¥e = PO (Peyy o) 'L (3.16)

4. ESTIMATION OF ag, Pg AND Q.

4.1 Additive variant,

Maximum 1likelihood estimates (MLE) of the signal to noise ratios,
anz/a2 and awz/az, are obtained by the method of scoring on the
concentrated log-likelihood function. The MLE of 02 is obtained
analytically, conditional on the estimates of the signal to noise ratios.
Using the prediction error decomposition (Harvey (198la)), the likelihood
function L can be written in the form:

;: T
log(L)=-T/2 log(2n) -T/2 log(o2) -1/2 = log(fy) -1/2 072 & v 2/f¢ (4.1)
t=1 Gl




where T is the number of observatins and v, and f,. are defined by (3.11)
and (3.13). Differentiation of (4.1) with respect to o leads to the MLE of
02, given by:
2 1t
02 = T°1g v 2/f,. (4.2)
t=1
The scalar parameter,az, may be concentrated out of the log-likelihood

function leaving the concentrated log-likelihood function:

2 T

log(Le)=-T/2 log(2x) -T/2 log(o?) -1/2 £ log(fy) -T/2. (4.3)
t=1

Numerical optimization has to be carried out with respect to the signal

to noise ratios to maximize equation (4.3). While Kitagawa and Gersch
(1984) wuse a very simple grid search in their paper, we here apply a more
accurate procedure based on the method of scoring. A brief description of
this method follows.

Let X'=(x1,x2) = (aﬂz/az,awz/oz) be the vector of unknown parameters to
be estimated. The method of scoring (Harvey (1981b)) is the iterative
scheme:

3(1) = x(-1) 4 1-1(x(i-1)) p1rogL(x(i-1)) (4.4)
where x(i) is the estimate of x at the i-th iteration, I(x) is the Fisher
information matrix evaluated at x and DlogL(x) is the matrix of derivatives
ot the log-likelihood function evaluated at x.

¥rom (4.1) the elements of the matrix DlogL are:

T

] 3
=—Log(L) = £ _log(py) , 1=1,2 . (4.5)
ﬁ){i t_lan_
Ina dens:ity of the innovation process (3.11) is here symbolized by Pt to

simplify the notation. The derivative of the log-likelihood of the t-th

innovation is:

a -13 -2 -1 3 -2 -223
—log(pe) = -5y £y - 0 £ ve—ve + .50 £ ve_—f¢. (4.6)
axy Ixy x4 axy
Here, the derivatives of f, and v, are computed recursively from the Kalman
filter equations (3.7) to (3.13) starting with the derivatives of ap and Py

squal to zero.



The (i,j)-element of the information matrix is given by:

3 3
I(i,j) = E(—Log(L))(—1log(L)) (4.7)
x4 BXJ
T 3 a3
= Z g (L Imalp.)) L& alogipy)) . (4.8)
t=1 aXi an

Since the innovations v, are independent and normally distributed with mean

zero and variance azft it follows that

a a = F2 0% N
axy 9% axj 9x;j 9xj 9%

from which (4.8) is easily derived. These results agree with those of
Engle and Watson (1981) for the case of univariate observations.

The above discussion applies when the log-likelihood (4.1) is
maximized. In our context, it is the concentrated log-likelihood (4.3)

that has to be maximized. However it can be easily verify that:

] 3
—log(Le) = __log(L(e?2)) (4.10)
aXi axi

where the right hand side of (4.10) is the derivative of the log-likelihood

evaluated at 02=02,

For values not near the boundary of zero an assymptotic t-statistics
can be constructed for each parameters, namelv:

A A

ty = xi/MSE(xi)l/z. st 28l
Here an estimate of the MSE matrix of the MLE of x is provided by the

inverse of the last information matrix obtained in the iterative procedure
@4

Starting values 50 are needed to initiate the iterative scheme (4.4).

These are obtained via simple moment estimates from the X-11-ARIMA

decomposition. Hence, 30 - (;n2/32,;w2/;2)\ where:

4 s

op2 = (T-2)"1 = (eg-2ep.1+c.9)2, (4.12)
t=3

. B4

0,2 = (T-11)°1 = .2 (4.13)

t=12




where
A 12
wg =  sp_j (4.14)
j=1
and
X 1
02 = T°1 & (Ye-ce-sp)2. (4.15)
t=1

Here cy and sy denotes the estimates of C. and S, from X-11-ARIMA.

Finally the iterative process (4.4) is stopped when the relative change
in the value of the log-likelihood function between two succesive iterations
is smaller than a prespecified constant (ex:.001.).

The estimate of the initial state vector gg requires knowledge of
(AR 1,7097-1, . -+ 7-1G)- Since c.3 and s_19 to sp are not readily
available from X-11-ARIMA the first eleven month of data are used to
estimate g7 by a31-(c11.€10.511:510+---,581)’ and the Kalman filter is
started at time t=12. This ensure that both the UCM and the X-11-ARIMA
estimates start at the same point. The initial covariance matrix P ils
taken to be kIjj where k is a large constant and Ij3 is the identity matrix
of order 13.

4 (o} ithmic

For the logarithmic decompositon all the calculations are done in the
log metric. That 1is, the estimates (4.12) and (4.14) are obtained with
log(cy) and 1log(sy) respectively, the estimate for the irregular are
obtained with log(Y¢/cese). The initial state vector is

ai] - (log(cll),log(clo),log(sll),...,1og(sl))‘ and the Kalman filter wuses
log(Yy) instead of Y.

4 v o tilo

For the multiplicative decomposition, the preliminary estimates of the
signal to noise ratio for the trend and the first two elements of 411 are
obtained as in the logarihmic decomposition.

The preliminary estimation of the signal to noise ratio for the
seasonality is obtained as follows. First, in the estimate (4.14) we use

se-1 instead of log(s¢e). This is due to the fact that in the



o=

multiplicative <version of X-11-ARIMA, the seasonal factors are constrained
to have an arithmetic mean instead of a geometric mean equal to 1. The
estimate of the noise wvariance (4.15) 1is obtained with (Y¢/sece) -1,
Finally the ratio of the two estimates gives the preliminary estimate of
the signal to noise ratio for the seasonal. Since log(x) is approximately
equals to x-1 for x close to 1, the two estimates of the observation noise
variance are very close. The last eleven elements of aj] are estimated by

(s11-1,...,s1-1) and the Kalman filter uses log(Y.) instead of ¥s.

5.VARIANCES OF X-11-ARTMA SEASONALLY ADJUSTED VALUES AND OF THEIR MONTH TO
MONTH CHANGES.

5 dd e composition

The Kalman filter and fixed interval smoother as described by equations
(3.7) to (3.16) are applied using the initial state vector, covariance
matrix of the initial state vector, the MLE of the signal to noise
variances (aﬂz/az,awz/az) and the MLE of o2, The X-11-ARIMA seasonally
adjusted data is given by Yi-s. and the seasonally adjusted estimate form

A

the UCM 1is Yy-v,, where vy, denotes the estimate of vy.. The MSE is defined
by:

MSE(ve) = E[(Ye-ve)- (Ye-ve) 12 = Elve-ve)? 1)
and is given by o2Py|1(3,3), where Py p(3,3) is the third row, third column
element of PeptT-

In the analysis of seasonally adjusted data, comparisons of
month-to-month changes are often done to assess the direction and magnitude
of the short-term trend.

The method discussed here allows the estimation of the MSE of changes
between any two months included in the state vector. The change in the UCM

seasonally adjusted data betwen month t and t-a, for a=1l,.,10 is given by:

(Yt"Yt)'(Yt-a"Yt-.a) (5, 72)




g

with MSE:
E[{(Ye-7e) - (Ye-a-Te-a) )} - ((Ye-7e) - Yeoa-Te-a) )12 =
E[(‘rc-a-vt-a)-('rt-vt)lz-
E(ve-a-Tt-a)2 + E(re-10)2 -2B[(Yeoa-Te-a) (Ye-7e) ] (5.3)
which is:
az(PtlT(3+a,3+a)+Pt|T(3,3)-2Pt|T(3,3+a)) (5.4)

for the smoothed UCM estimate.

In the logarithmic and multiplicative decompositions the estimates from
the models are obtained in the log metric, so for practical purposes, it is
necessary to make a transformation back to the original metric. Denoting by
Y¢/T¢r the seasonally adjusted estimate in the original metric, Granger and
Newbold(1976) show that the estimates that minimizes the MSE is:

-~

Ye/Te = exp( (log¥e-ve) + .502P¢1(3,3) ) 25,0
with MSE: A
MSE(Yy/Ty) = exp(2(log¥e-7¢) + 02P¢ 7(3,3) )
[ exp( 02P¢|7(3,3) )-1 ]. (5.6)

Similar transformations are applied for month to month comparisons.
6. APPLICATIONS.

The seasonal adjustment of actual data presents problems that require
special attention, particularly, the identification and replacement of
extreme values; the use of ARIMA extrapolations to reduce revisions of the
current seasonally adjusted estimate; and the use of concurrent or
year-ahead seasonal factors to obtain a current seasonally adjusted value.
These problems have been taken into consideration for the estimation of the
UCM following the same procedure of X-11-ARIMA when applicable.

The method discussed here has been tested with a large sample of series
from Canada and the United States with very good results. For illustration
purposes two cases are shown here. Canada Total, Unemployed Male Aged 25
and Over (CA-UM), for the period January 1975 to December 1985, is used to

illustrate the additive decomposition and U.S. Total, Nonagricultural
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Employed Male Aged 20 and Over (US-EM), for the same time period, is used to

illustrate the multiplicative decomposition.

The official X-11-ARIMA decomposition for this series is of the additive
type with one year of forecasts from an ARIMA (0,1,2)(0,1,1)19 model. Table
1 gives the results of the MLE iterative procedure for the signal to noise
ratios. The starting value of the vector (0”2/02,0w2/02) 15 | ( 56563 2. 5900
with the matrix of the derivatives of the concentrated log-likelihood (4.5)
and (4.6) giveﬁ in the second columm and the information matrix (4.8) given
in the third and fourth columns. The initial value of log(Lc) (constant
terms are mnot included) is -390.5. Finally, the initial estimate of the
noise variance o2 is 16.855. At the 6-th iteration the relative increase in
the values of log(Lec) is less than .001 and the procedure is stopped. The
final estimates of the vector of the signal to noise ratios (anz/az,awz/az)
is (2.5605,.1151) and the final estimate of 02 is 10.7422. The values of
the derivatives Dlog(Lc) indicate that log(Le) is relatively flat at the
final estimates as compare to its value at the initial estimates.

Given the estimates of the signal to noise ratios, the UCM estimates are
calculated and compared with the X-11-ARIMA estimates. Figure 1A.1 shows
the original series and the X-11-ARIMA seasonally adjusted series. Figure
1A.2 indicates how close the X-11-ARIMA seasonally adjusted values are to
the smoothed seasonally adjusted UCM estimates. Figure 1A.3 gives the 95%
predictive interval of the seasonally adjusted X-11-ARIMA series. Figure
1A.4 shows how small are the relative differences (in percentage) between
the smoothed seasonally adjusted UCM and the seasonally adjusted X-11-ARIMA
values (the relative difference is calculated as:
100 (UCM - X-11-ARIMA)/X-11-ARIMA). The correlation coefficient between the
seasonal factors produced by the X-11-ARIMA and the UCM methods is .99848.
This clearly indicates that their linear relationship is very strong and in
the same direction. To asses. whether or not the difference in the seasonal
factors of the two methods is significant, we perform a basic statistical
analysis on their relative differences. The results of Table 4 indicate
that the relative differences are in fact very small. Figure 1A.5 shows the
MSE's of the smoothed seasonally adjusted UCM estimates. The graph of the
smoothed MSE's versus time has a concave shape with jumps every year. The

MSE's are the smallest in the middle of the series which agrees with the
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results obtained by Wolter and Monsour (1981).

All figures 1B refer to the month-to-month changes instead of levels as
discussed above. Figure 1B.2 gives the 95% predictive interval. Values
falling above (below) the zero line indicate positive (negative) changes in
the seasonally adjusted series. Particularly, the period from September
1981 till December 1982 stands out with the only exceptions of October and
November 1981 and January 1982. (May 1981 till December 1982 corresponds to
the deep Canadian recession). Figure 1B.3 shows the MSE’s of the
month-to-month changes of the seasonally adjusted values.

Figures 1C.1 to 1C.3 are the same as 1B.1 to 1B.3 but for the changes
between period t and t-2 instead t and t-1. The May 1981 to December 1982
recession period is clearer in this case than in figure 1B.2.

One of the main reasons for seasonally adjusting series is to get a
clearer signal of the short-term trend. Consequently, it is important to
assess if a change of direction in a current seasonally adjusted value
indicates the presence of a true turning point.

The month-to-month changes of the seasonally adjusted data for the whole
period 1975-1985 were different from zero and positive in May 1981 and from
September 1981 <till December 1982 with the exceptions of October, November
1981 and January 1982. Using the series from January 1975 till May 1981 and
adding one month at a time, we wanted to identify how long it would take to
the method discussed here to detect these changes of direction using gurrent
seasonally adjusted figures.

Table 3A provides the 95% predictive interval constructed around the
month-to-month changes. It can be seen that the change from April to May
1981 is significantly different from zero and remains so when more data are
added to the series. For five out of eight month-to-month changes, the
current seasonally adjusted values are good estimators of the corresponding
"historical” values obtained when the series ends in December 1985. For
the months of June, July and October the historical 95% predictive intervals
give a different signal than the current and the first five revisions.
Given the amount of irregularity in the UM series, we applied the Month for
Cyclical Dominance (MCD) measure of X-11-ARIMA as an indicator of the length
of the month-span where the contribution of the cyclical wvariations
surpasses that of the irregulars. For the UM series the MCD is equal to 2

indicating that to assess the short term trend, comparisons must be made



< e

between the current seasonally adjusted values and 2 months before.

Table 3B shows the predictive intervals for the 2-months span changes of
the UM series. The results clearly indicate that these changes are
significantly different from zero and positive since June 1981 with only two
exceptions, August-June and November-September 1981. Furthermore, seven out
of the eight months analysed give the same trend direction as the
"historical" estimates.

Tables 3A and 3B also indicate that there is no need to revise the
current seasonally adjusted data during the current year to obtain better
estimates of the short term trend. These results conform with those given
by Dagum (1982.a and 1982.b) concerning the revisions of the seasonal
adjustment filters of X-11-ARIMA.

e : ERICAIN NON CuL TOTAL EMPIO MALE AGED 20 AND

OVER (US-EM).
The official X-11-ARIMA decomposition for this series is of the
multiplicative type with one year of forecasts from an
ARIMA (0,1,2)(0,1,1);0 model on the 1log-transformed data. Table 2 and

figures 2 are the equivalent of Tables 1 and figures 1 of the CA-UM series.
Here, the calculations of the estimates of the signal to noise ratios are
done with the data in the log metric. In this case, the correlation
coefficient between the seasonal factors is .99799. As in the CA-UM case,

the results of Table 4 show that the relative differences are very small.

7. CONCLUSIONS.

This study has introduced a method that calculates MSE's of seasonally
adjusted values given by the X-11-ARIMA computer package. The method
basically consists of fitting simple stochastic models to the X-11-ARIMA
estimates to obtain the initial state vector and signal to noise ratios.
Maximum likelihood estimates are then obtained using the method of scoring.
The models assumed for the unobserved-components belong to the class found
by Cleveland and Tiao (1976) and Burridge and Wallis (1984) that
approximates well the default option of the Census X-11 filters. These
models have also been used by Kitagawa and Gersch (1984) for developing a
seasonal adjustment method.

The Kalman filter and smoother are applied to the original series to
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obtain estimates and corresponding MSE's of the unobserved-components models
(UCM) .

This method has been tested with a large sample of series from Canada
and United State and produced very good results. For illustrative purposes
two series are discussed, namely the Canada Total of Unemployed Male, aged
25 and Over (1975 to 1985) additively seasonally adjusted and the U.S.
Employed Male, aged 20 and Over (1975-1985) multiplicatively seasonally
adjusted,
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TABLE 1

Canada Total Unemployed Male - Aged 25 and Over.
Results of the MLE iterative procedure

A

iter. x  Dlog(le) Infol Info2 loglc) o2

1 0.6563 23.0126 45.6511 -8.3246 -390.5 16.8555
0.3907 -16.4130 -8.3246 73.4508

2 1.1294  7.983% 15.7843 -3.6832 -38l.4 14.2136 '
0.2209 -12.6483 -3.6832 149.3000

3 1.6183  3.2588  7.9475 -0.9249 -378.1 12.76%
0.1483 -7.1623 -0.9249 239.9000

4 2.0250 _1.5975 5.2440 . 0,380 -377.0 11.8726
0.1200 -2.0816  0.3890 306.2000

5 2.3302 0.9382  4.0627 0.9565 -376.6 11.2365
0.1128 0.989  0.9565 325.7000

6 2.5605 0.6379 3.4278 1.1995 -376.4 10.7422

0.1151 2.3210 1.1995 313.4000
TABLE 2

Americain Total Employed Male - Aged 20 and Over.
Results of the MLE iterative procedure

iter. X  Dlog(le) Imfol  Info2 log(lec) o2

3 0.6713 19.0286 41.1345 -2.8237 730.7 8.4E-7
0.3145 -19.63% -2.8237 84.8538

2 1.1191  5.6092 15.1192 2.9928 739.3 7.8E-7
0.0979 -7.0544  2.9928 356.5000

3 1.4926  2.6819  8.9297 4.1770  740.8 7.1E-7
0.0750  7.0391  4.1770 506.5000

4 1.7876  1.8205 6.4329 4.2188  742.5 6.4E-7
0.0865  6.5982  4.2188 417.2000

5 2.0621  1.3397 4.9646 4.0366  742.0 5.9E-7
0.0995  5.5047  4.0366 342.8000

6 2.3204" 1.0348 < 4/0058 U 34BE5. | 742.4 . 5.SEA7

0.1125 4.6146  3.7925 287:7000
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TABLE 3A

Canada Total Unemployed Male - Aged 25 and Over.

95% Confidence Intervals for (Yp-sy)-(Ye.]1-S¢.1)
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TABLE 3B

Canada Total Unemployed Male - Aged 25 and Over.

95% Confidence Intervals for (Yi-sy)-(Ye.2-S¢-2)
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TABLE 4

- ONE

~ Summary Statistics on the Relative Differences.

Statistics ca-uM(1)  ys-gM(2)
N 132 ]
Mean -.00017  -.0000143
Std. Dev.(2) .00802 .00053
T-ratio -.26446  -.31068
Prob>|T| .80726 .75625
D:Normal(3) .07380 04567
Prob>D .078 >.15

Min Q757 Seal2
Max .01921 .00127
ssQ(®) .00843 .0000367

(1): Canada Total of Unemployed Male Aged 25 and Over

(2): Americain Nonagricultural Total Employed Male Aged 20 and Over
(3): Kolmogorov-Smirnov test for normality assumption.

(4): Sum of Square of the Relative Differences.
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FIGORES 1A
CANADA TOTAL OF UNEMPLOYED MALE - AGED 25 AND OVER
SEASONALLY ADJUSTED VALUES
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FIGIRES 1B
CANADA TOTAL OF UNEMPLOYED MALE - AGED 25 AND OVER
MONTH TO MONTH CHANGES OF SEASCMALLY ADJUSTED VALUES (T AND T-1)
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FIGURE 1B.3
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FIGORES 1C
CANADA TOTAL OF UNEMPLOYED MALE - AGED 25 AND OVER
MONTH TO MONTH CHANGES OF SEASCNALLY ADJUSTED VALIES (T AND T-2)
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FIGURES 2A
AMERTICATN TOTAL OF EMPIOYED MALE - AGED 20 AND OVER
SEASCNAILY ADJUSTED VALIES
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FIGURES 2C
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