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abstraa 

The Denton method is widely used by statistical 
agencies to benchmark time series (i.e. to adjust 
them to annual benchmarks). This method does 
not take into account the presence of 
autocorrelated sampling errors in the original 
data. This paper investigates to which extent this 
omission affects the efficiency of the method 
relative to optimal regression models that 
incorporates various types of ARMA processes 
for autocorrelated sampling errors. 

KEYWORDS: Denton model, Sampling error, 
ARMA process, Relative efficiency 

résumé 

La mthode de Denton (1971) eat très utilisée par lea 
instituts de statistiques pour l'talonnage des series 
chronologiques (c-à-d l'ajustement aux jalons annuels). 
Cette méthode ne tient pas compte de Ia presence d'erreurs 
d'échantillonnageautocorrélées dans les données originales. 
Ce travail examine dans queue mesure cette omission 
affecte l'efficience de Ia méthode par rapport a des 
modèles optimaux de r6gressions qui reflètent divers 
comportements ARMA des erreurs d'échantillonnage. 

MOTS CLES: Modèle de Denton, Erreur d'échantillon-
nage, Processus ARMA, Efficience relative 
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1. INTRODUCTION 

p 	Benchmarking is a procedure very widely used in statistical agencies. 

Benchmarking situations arise whenever two (or more) sources of data are 

available for the same target variable with different frequencies, e.g. monthly 

versus annually, monthly versus quarterly. Generally, the two sources of data do 

not agree; for example, the annual sums of monthly measurements of a variable are 

not equal to the corresponding annual measurements. Furthermore, one source of 

data, typically the less frequent, is more reliable than the other, because it 

originates from a census, exhaustive administrative records or a larger sample. 

The more reliable measurements are considered as benchmarks. Traditionally, 

benchmarking has consisted of adjusting the less reliable series to make it 

consistent with the benchmarks. Benchmarking, however, can be defined more 

broadly as the process of optimally combining two sources of measurements, in 

order to achieve improved estimates of the series under investigation. Under 

such a definition, benchmarks are treated as auxiliary observations (Cholette and 

Dagum, 1989). 

A typical example of benchmarking is the following. In Statistics Canada, the 

monthly estimates of Wages and Salaries originate from the Survey of Employment, 

Payrolls and Hours, whereas the annual benchmark measurements of the same 

variable originate from exhaustive administrative records, namely the Income Tax 

forms filed by Canadians and compiled by Revenue Canada. Benchmarking adjusts the 

a 

	

	monthly data so that they conform to the benchmarks and preserve the original 

month-to-month movement as much as possible. 
I 

Statistical agencies also use benchmarking to interpolate (and extrapolate) more 

frequent values from less frequent data. It is common, for instance, to benchmark 

a quarterly indicator, deemed to behave like a target variable, to annual data. 



2 

The resulting benchmarked values are interpolations (and extrapolations), in the 

sense that no original monthly measurements existed for the target variable. 

Similarly, monthly interpolations are obtained by benchmarking a monthly 

indicator to quarterly or annual data; and annual interpolations, by benchmarking 

an annual indicator to quinquennial data. In some cases, the indicator is in fact 

a mere pattern in percentages, possibly a seasonal-trading-day pattern. 

It is also common to benchmark a daily pattern (of relative activity of days 

within the week) to data which cover four or five weeks; the resulting daily 

interpolations are then combined into monthly values by taking the monthly sums 

(Cholette and Chhab, 1991). Similarly, calendar year values may be obtained, by 

benchxnarking a subannual series to the fiscal year data and by taking the 

calendar year sums (Cholette and Baldwin, 1989; Cholette, 1990); calendar quarter 

values, by benchmarking a monthly indicator to fiscal quarter data (Cholette, 

1989). In many of these cases, the interpolations are of no interest per Be, and 

the process is referred to as calendarization. 

Without loss of generality, it is henceforth assumed that the original values are 

monthly and the benchmarks annual. The benchmarking models most widely used by 

statistical agencies are of the Denton (1971) type. Under these models, the 

benchmarked series fully conforms to the benchmarks, which are considered as 

binding, and the month-to-month movement of the original series is preserved as 

much as possible. 

One current preoccupation among statisticians is that for repeated surveys, 

0 

S 

estimation procedures - and benchmarking procedures in particular - should 

reflect the sample design. This was discussed by Hillmer and Trabelsi (1987) and 

by Trabelsi and Hilimer (1990) in relation to their ARIMA model-based 

benchmarking method. 
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The main purpose of this paper is to estimate the relative efficiency of the 

Denton model, when the original series are contaminated with bias and 

• 

	

	autocorrelated sampling errors. According to the results presented in Section 

6, taking into account bias and the behaviour of the sampling error reduces the 
a 

variances of the estimates. The improvement varies with the benchmarking 

situation and the type of ARMA model followed by the sampling error. 

Section 2 presents a benchmarking regression model which allows for bias in the 

original series and for a very general covariance structure of the sampling 

error. Section 3 discusses the relationship between this regression model and 

both the Denton model and the ARIMA model-based approach. Section 4 shows how 

the covariance structure of the sampling error in the regression model can 

reflect the ARMA behaviour of the error. Section 5 describes how the relative 

efficiencies are calculated. Section 6 discusses the results, and finally, 

Section 7 gives the conclusions. 

2. A REGRESSION MODEL FOR BENCHMARXING 

This section presents a regression benchmarking model, which consists of the 

following equations: 

sf 	a + of  + e1 , 	E(e)=O, E(e,e,k)*O, 	=l,.. .,T, 	 (2.la) 

	

= E rEm  O + wm 	E(Wm )=Oi E(WmWm k)*O 	m=l,...,M. 	 (2.1b) 

In equation (2.1a), the s 1 's denotes the T monthly measurements of a socio- 

economic variable; the Os the "true" un-observed values of the variable; and 

•  a, a bias parameter. This parameter reflects the fact that most subannual 

measurements are subject to bias. Parameters O and a must be estimated. The 

estimates of O will be the benchmarked series. The e,'s denote the errors 

affecting the observations, e.g. sampling errors; they may have a general 
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covariance structure. Equation (2.1a) therefore states that the observations of 

the "true" values of the variable are contaminated with sampling error and bias. 

a 

In equation (2.1b), the ym ls denote the M annual benchmark measurements of the 

variable. If a benchmark Ym is not subject to error, i.e. Wm  = 0 0w2 0i it is 

fully reliable and binding; in the alternative case, it is non-binding. The 

latter are not benchmark measurement in a strict sense, but simply less frequent 

measurements of the target variable. Equation (2.1b) states that the 

observations of the annual sums of the target variable are also contaminated with 

errors, which may have a general covariance structure. It is assumed that e, and 

wm  are mutually independent. 

The system of equation (2.1) can be written in matrix algebra in one equation 

$ 	1 	I 	a 	e 	a 	e 
= 	 + 	= X 	+ 	, 	(2.2) 

y 	0 J 	0 	w 	0 	w 

E(e)=0, E(w)=0, E(e e)=Ve,  E(w  w)=V,  E(e w')=O, 

where 1 is a T by 1 vector of ones, and where J is a 11 by T design matrix with 

ones and zeroes such that, for any variable, say, z, Jz yields the annual sums 

of z. The covariance matrices V. and V, are assumed known and will be specified 

later. 

In summary, equation (2.2) specifies that the desired benchmarked series 0 fits 

both the subannual and the annual observations and is such that the residuals 
$ 

display some behaviour specified by V. and V, as explained in Section 4. 

S 

Model (2.2) can be written as 

Y 	= 	Z A + u, 	E(u)=0, 	E(u u')=V, 	(2.3) 
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where Y' = ( s y 3, 	= (a 0'), u 	[ e' w'], V is a block diagonal matrix 

with blocks V. and V and where X is a design matrix implicitly defined in (2.2). 

The General Least Squares solution to (2.3) yields 

	

= (XVX) 1 X''T 1 Y. 	 (2.4) 

If V is the true (known) covariance matrix of the disturbances u, the covariance 

matrix of the estimates I is given by 

	

coy A = ( X'V 1 X). 	 (2.5) 

When another covariance matrix V is used instead of V to obtain an estimate of 

, say 6 0 ,then 

	

coy j 	( ( X'V1) 1 X'V 1 ) V ( (XV 1 X 1 X'V 1  ' . 	 ( 2.6) 

Assuming V is used, substituting the partitions of X, V and j in (2.4) and matrix 

transformations yield 

I, 	(2.7) 
F 	1 	1 iv; 1 i 	l'v;' 	I -1  [ 1 1 Ve 1 	1 [ 

[ 	j 	[ V
1 1 (v'+J'vJ) 	ye_ I  j'v  

[ 	] 	[ 	I 	[ l'Ve' 	 1 1 	1 
. 	V8 	V 1 	•' ] 

	

, 	(2.8) 

Lj 

where V. and V80  are the estimated variance of a and covariance matrix of 0 

respectively. As shown in Appendix A, V55 , V.0  and VOO  may be written as 

V,5  = 	1 / (1'J'(JVJ'+ 	)' 	ii 	1) 	= 	h (2.9a) 

V, V85 	- h 1' 	+ h i'J'(JVJ'+ V) 1  J  Ve  (2.9b) 

VOO = 	(V 	- V 	J'(JVJ"+ 	)' J , Ve ) 
(2.9c) 

+ 	(I - VCJ'(JVCJ'+ V,,) 1 	J] 	1 h 	1' 	(I 	- VJ'(JVJ'+ V)1  J)' 

which implies 

a 	= - h 1 J(JVJ+ V)' 	(y - J s) (2.10a) 

0 	= s 	+ V) 1 (y 	- 	1 	I'), 	s'= 	(s 1 -a 	s2-a 	.... 	s.1.-a). (2.10b) 
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When the model includes a bias parameter, the estimated benchrnarked series is 

given by (2.10b); and its covariance matrix, by equation (2.9c). In the absence 

of bias, the benchmarked series is given by (2.10b), where s' is replaced by a 

(a=O); and its covariarice matrix reduces to the first term, in brackets, of 

S 
(2.9c). In this case, the first term of (2.9c) shows that benchmarking always 

reduces the variance V. of the original series s by the positive semi-definite 

matrix (VeJ(J eJ1Vw ) _'J'Ve ) This result conforms to that given by Hilimer and 

Trabelsi (1987) for an ARIMA model-based benchmarking method. 

3. RELATION TO OTHER BENCHMARKING METHODS 

We will here show that the benchmarking methods of the Denton type are particular 

cases of the regression benchmarking model (2.1); and how the latter relates to 

the ARIMA model-based methods of Trabelsi and Hilimer. 

3.1 The Benchmarking Methods of the Denton Type 

The regression model (2.1) is equivalent to the additive variant of the 

benchnarking methods of the Denton type, under the following assumptions: 

the benchmarks are binding, which implies that V, is the null matrix, 

there is no bias parameter, 

the covariance matrix V. of eg  is equal to V'=(DD)' o 2 , where D is 

usually a first difference operator. 

In the Denton approach, the e1 s are interpreted as corrections to be made to 

original observations, in order to obtain a benchmarked series consistent with 

the annual benchmarks. First differences specify that these corrections follow 

a random walk process, et  = ej + V, (in which the variance o,2  of v,is minimized). 

As a result, the corrections are as constant as possible, and the benchmarked 	a 

series preserves the month-to-month changes of the original as much as possible. 

Under assumptions (1) to (3), the model (2.1) states that the benchmarked series 
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fit8 both the subannual and the annual observations and maximizes a criterion of 

parallelism to the original series. 

The first difference operator of the original Denton (1971) method is a T by T 

I 
matrix with l's in the diagonal and -l's in the first subdiagonal. The elements 

v of the covariance matrix V=(D'D)-' ,2  are then known to be equal to 

min(i,j) a,2 . The benchmarked series and its covariance matrix are respectively 

given by 

= 	(X'V 	X1 ) 1  X2'V  1 	 (3.1) 

COV 0 = (X,V *e  X,) 1  (3.2) 

where X2 consists of the T last columns of X in Section 2. In situations of 

sizable discrepancies between the benchmarks and the corresponding annual sums 

of the original series, this difference operator produces a large divergence 

between the movements of the original and the benchxnarked series, because it 

minimizes the size of the first correction. This problem has been solved by 

Heif and, Monsour and Trager (1977) and by Cholette (1979). 

one way to aw )d 	 Isto use the cuasi-firgt diffesetice 

ou2rat 

( 1-r) 	0 	0 

	

-ø 	1 	0 
D - 	0 	- 	1 
TbyT (3.3) 

where the autoregressive parameter 0 is lower but very close to 1.0 (e.g. 

0.99999). Then V=(D'D)' a112 is known algebraically: 

• 	1 	0 	02... 	0T-1 

1 	 T-2 

v - 	2 	 1 	 T-3 
a,2  / (1_02 ). 	 (3.4) 

b 	
1 	0T-2 	071-3 

With D defined by (3.3), the size of the first correction is still minimized but 

the term is given negligible weight, and the resulting benchmarked series is 
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virtually the same as that obtained with the strict first difference operator (in 

the quadratic minimization framework). With covariance matrix (3.4), the Denton 

	

method will be referred in this paper as the modified Dentori method. Solution 	a 

(3.1)-(3.2) is applicable. 

If the original or the modified Denton is applied to a series which follows 

(2.1), where there bias parameter is not zero and the covariance of the sampling 

error is Ve  the covariance of the resulting benchmarked series becomes 

coy 0 = 	(X2 'VX, 1X,'V 1 ] V ( (X2'V 1 X2 1 X2'V 1 ) 	(3.5) 

instead of (3.2). 

3.2 The Trabelsi and Hillmer (1990) Method 

Trabelsi and Hillmer (1990) discuss a benchmarking method (TH), which allows for 

autocorrelated sampling errors. The regression model (2.1) is equivalent to the 

TH method, under the following assumptions: 

the benchmarks are binding which implies that V is the null matrix, 

there is no bias parameter, 

the sampling error e  follows an ARMA model. 

Although the authors cast their model in the signal extraction approach, the same 

estimates can be obtained in the regression approach, where the benchmarked 

series is given by (3.1) and its covariance matrix by (3.2). The authors point 

out that the additive Denton method is a particular case of their model if the 

ARMA model followed by eg  is a random walk. This TH model is a particular case 

of their previous model (Hilimer and Trabelsi, 1987), where the true benchmarked 

series is also assumed to follow an ARIMA model and where V,,, is not necessarily 

I 

zero. 
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4. BENCUMARKING ORIGINAL SERIES WITH AUTOCORRELATED SAMPLING ERRORS 

Sampling errors e, which may be autocorrelated can be specified in the 

regression benchmarking model (2.1). This may be achieved in two different 

manners: one, by making the elements of V. (and eventually V)  equal to values 

I 
estimated as a by-product of the surveys; or two, by modelling the behaviour of 

e, by means of ARMA models. The latter approach is now discussed. 

I 
we assume that klm=O  and V=0  and that e g  follows a stationary ARMA model of order 

(p,q): 

- 	1 e, 1  - 	2e1•2 	- 	... - 	= v, - 	- 	... 	- (4.1) 

where the 	,'s and çs are the known p autoregressive and q moving average 

parameters respectively. 	Model (4.1) 	may be written in the random shock form 

(Box and Jenkins, 	1970) 

e1 = 	V, - 	- '3'z-3 	- 

= -4 + 	' k=1 	kè'jk p'=min(p,j), 4=0 if j>g, 	=1. (4.2) 

Equation (4.2) 	implies that the elements vij  of V. are given by 

- 	 - 	2 	a. - E(efej+k) 	- 	E j=O 	jYj+k' 

Vj+kJ w  VjJ+k , k=0,1,2,...,T-1, (4.3a) 

V: J : )+k 	I 	V2g 	= 	, k=0,1,2,...,T-t; t=2,...,T, (4.3b) 

where the summation converge by virtue of the stationarily of the model. 

I. 	Table 1 shows nine ARMA models for the sampling errors that we will use in the 

regression model (2.1), to assess the relative efficiency of the Denton model 

discussed in Section 3.1. The notation uses the backshift operator B, such that 

, p 
Bkegse;k . As explained in Section 3.1, model (la) is the one implicitly assumed 

by the modified Denton benchmarking model. Model (ib) was used by Hilimer and 

Trabelsi (1987) to illustrate their ARIMA model-based benchmarking method. 

Models (2a) and (2b) were used by Trabelsi and Hillmer (1990), they are supposed 

to account for the effect of compJsite estimation and the sample rotation scheme 
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of the U.S. Retail Trade survey. Model (4) was discussed by Bell and Wilcox 

(1990) for the same purpose. Model (3), proposed by Binder and Dick (1989), is 

supposed to account for sample rotation in the Canadian Labour Force Survey. 	4 

Finally, the remaining models (5) and (6) have been included to investigate the 

effects due to autocorrelated errors which follow a purely moving average model 

or a simple ARMA (1,1) model. 

The covariance matrices of the sampling error models (2a) to (6) are generated 

by means of (4.2) and (4.3). For the first order autoregressive models (la) to 

(ic), Ve  is obtained from (3.4), which provides the values directly, with no need 

of 4r weights. 

Table 1: ARMA models used for modelling the sampling error 

(la) (1,0)(0,0) (1 	- 0.99999B) e 	= 	V 1  

(lb) (1..0)(0,0) (1 	- 0.80000B) e1 	= 	V 1  

(ic) (1 1 0)(0 1 0) (1 - 0.200008) e1 	= 

 (3,1)(1,0) (1 - 0.75B)(1 - 0.60B3)(1 - 0.608 12 ) e1  = 	(1 - 0.508) 	v 

 (3,1)(1,0) (1 - 0.75B)(]. - 0.30B)(1 - 0.30B 12 ) e1  = 	(1 - 0.508) 	v, 

 (3,6)(0,0) (1 	- 0.2575B + 0.3580B2  + 0.6041B3 ) e1  = 

(1 + 0.1847B + 0.5873B2  - 0.3496B3  - 0.0647B4-  0.0982B5  - 0.0347B6 ) 	V 1  

 (3,1)(1,0) (1 	- 0.75B)(1 - 0.70B3 )(1 - 	0.75B 12 ) e1 	= 	(1 + 0.108) 	V t  

 (0,1)(0,0) e1  = 	(1 - 0.8B) 	V 

 (1 1 1)(0 1 0) (1 	- 0.95B) 	e 1  = 	(1 + 0.808) v 
01  

I 

The sampling errors e, may be both autocorrelated and heteroscedastic; following 

Bell and Hillmer (1989), we may express the new structure of e1  by 
= k, e*, 	 (4.4) 
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where the k,'s are weights representing changing variance over time and the et a 's 

follow ARMA model (4.2) with covariance matrix V. given by (4.3). The covariance 

matrix of eg  is then 

ye  = KVetK , 	 (4.5) 

where K is a diagonal matrix containing the weights k,. In this paper, all 

models considered are homoscedastic; it is well established that if the ks's  are 

available, their use will produce a more efficient estimator. 

Given V,  the bias is estimated by (2.10a) (with V=0);  the benchmarked series, 

by (2.10b); and its covariance matrix is given by (2.9c). 

5. CALCULATING THE RELATIVE EFFICIENCIES 

To calculate the relative efficiency of the various estimators, covariance 

matrices V. were generated for stationary models (ib) to (6) of Table 1; and, 

matrix V for stationary model (la). V is the covariance matrix of the 

modified Denton model which implicitly assumes a random walk behaviour for the 

sampling error. Matrices V. and V were standardized so that their diagonal 

elements be equal to 1.0 (instead of some other constant). The reason for this 

standardization is that in empirical applications the variance of the sampling 

error itself would be known instead of that of the noise generating the process. 

When the correct regression model is used for benchmarking (i.e. V  is used in 

(2.2)), the variances of the benchmarked series are given by the diagonal values 

of (2.5). When the Denton model is applied (i.e. Vse  is used), the variance of 

the benchntarked series is given by the diagonal values of covariance matrix 

(3.5). The relative efficiency is the ratio of the traces of the two covariance 

matrices. 

I 
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We assume that the series s1  to be benchmarked contains 7 years and 7 months of 

observations; that annual benchmarks are available for years 1 to 5; that the 

	

benchmark of year 6 (t=61,...,72) is not available; and that year 7 (t=73,...,79) 	14 

is incomplete. Missing benchmarks and incomplete years at the end of series are 

4 

typical of real benchmarking situations. The regression model "preliminarily' 

benchmarks years 6 and 7, by projecting the estimated sampling error according 

to the error model selected. The benchmarking situation just described implies 

the following design matrix in (2.2) 

3 = [ 15 53 	0 ), 	 (5.1) 

where j is a 1 by 12 vector of l's and 0 is a 5 by 19 null matrix. 

Some ARMA models considered for e, imply complex subannual movements of the 

sampling error, and consequently, besides annual benchmarks, subannual benchmarks 

must be available. 	The role of these subannual benchmarks is to peg the 

subannual movement of the sampling error (in the same way as annual benchmarks 

can be described as pegging the annual sums of the sampling errors). We assume 

that 11 subannual benchmarks are available for the first 11 months of year 4. 

The design matrix in (2.2) is then 

r i a 1 

	

= [ 01 1 11 02 1' 	 (5.2) 
is  

where J. is given by (5.1), and 01  and  02  are 11 by 36 and 11 by 32 null matrices 

respectively. 

6. ANALYSIS OF THE RESULTS 

Table 2 and 3 display the relative efficiencies for "historical" benchmarking 

(years 1 to 5) and for "preliminary benchmarking" respectively, when: (a) only 

annual benchmarks are available and (b) annual and subannual benchmarks are 

available. Subannual benchmarks are required when the sampling models is of a 

seasonal type. For a given model, the relative efficiency is defined by the 
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ratio of the trace of (3.5) over the trace of (2.5) and reflects the increase in 

variance due to the application of the Denton model instead of the optimal 

regression model. 

Analysis for Historical Benchmarkiug - According to Table 2, when only annual 

benchmarks are available, the optimal model is only slightly more efficient than 

the Deriton method, except for sampling error model (3). When both annual and 

subannual benchmarks are available, the gain in efficiency is higher (than with 

annual benchmarks only). It is highest for models which imply stronger subannual 

movements, namely, seasonal models (2a) and (4), and non-seasonal model (3), 

because the subannual benchmarks now specify the subannual movements. (Seasonal 

model (2b) is dominated by the regular autoregressive part.) For the remaining 

models, the gain in efficiency is only marginally higher (than with annual 

benchmarks only), because there is not much subannual movement to specify.. 

Table 2: Relative efficiencies of the Denton model versus "optimal" regression 

models for "historical" benchmarking 

AR4A model (p,q)(P,Q) 	When only annual 	When annual and sub- 

for the sampling 	benchmarks are 	annual benchmarks are 

errors 	available 	available 

(ib) (1,0)(0,0) 1.021 1.075 

(lc) (1 1 0)(0 1 0) 1.012 1.014 

 (3,1)(1,0) 1.003 1.403 

 (3,1)(1,0) 1.006 1.064 

 (3,6)(0,0) 1.129 2.011 

 (3,1)(1,O) 1.010 1.770 

 (0,1)(0,0) 1.050 1.057 

 (1 1 1)(0 1 0) 1.005 1.006 

I 

Analysis for Preliminary Benchmarking - Table 3 displays the relative 

efficiencies for preliminary benchmarking, e.g. for years 6 and 7. For those 
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years, the estimates of the sampling error do not have to satisfy any annual or 

subannual benchmarks. They are in effect ARNA forecasts, with initials values 

provided by the estimates of years 5 and 4, which eventually converge to the 

value given by the estimated bias parameter (except for the Denton model (la)). 

When only annual benchmarks are available, Table 3 shows a gain in efficiency of 

the optimal model over the Denton model. The gain is higher for error models 

which imply less subannual movement, namely (ib), (ic) and (2b). The gain is 

lower for the models which imply strong subannual movement, namely models (2a), 

(3) and (4), because no subannual benchmark is there to specify a particular 

subannual movement. The gain is also lower for model (5), because MA models have 

short memory and are inherently harder to predict. When both annual and 

subannual benchmarks are available, the gain in efficiency remains high for the 

models which imply less subannual movement, because it does not hurt to have 

subannual benchmarks; it becomes high for models which imply stronger subannual 

movement, because the subannual benchmarks now specify such movement; it remains 

low for MA model (5). 

Table 3: Relative efficiencies of the Denton model versus "optimal" regression 

models for "preliminary" benchmarkirig 

ARMA model (p,q)(P,Q) 	When only annual 	When annual and sub- 

for the sampling 	benchmark are 	annual benchmarks are 

errors 	available 	available 

(ib) (1,0)(0,0) 1.369 1.373 

(lc) (1,0)(0,0) 1.147 1.149 

 (3,1)(1,0) 1.044 1.134 

 (3,1)(1,0) 1.141 1.146 

 (3,6)(0,0) 1.050 1.439 

 (3,1)(1,0) 1.065 1.174 

 (0 1 1)(0 1 0) 1.028 1.031 

 (1 1 1)(0 1 0) 1.090 1.090 

4 

4 

4 
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7. SUMMARY AND CONCLUSION 

The Denton method is widely applied by statistical agencies to perform 

"historical" and "preliminary" benchinarking of original values, without any 

explicit consideration of the sampling errors affecting the data. 

In this paper, we have calculated the relative efficiency of the Denton method 

versus "optimal" regression models that incorporate various ARMA models for the 

sampling error. These ARMA models have been proposed by Hilimer and Trabelsi 

(1987), Trabelsi and Hillmer (1990), Binder and Dick 91989) and Bell and Wilcox 

(1990) in the context of model-based benchmarking and sampling. 

The results discussed in Section 6 show that for "historical" benchmarking, the 

increase in efficiency of the optimal model versus the Denton model is very large 

if the sampling error follows seasonal ARMA or a complex MA process, as long as 

annual and subannual benchmarks are available. However, under the assumption 

that only annual benchmarks are available (which usually is the case), the 

improvement in the relative efficiencies is negligible except for the complex MA 

models. 

The greater improvements brought about by the optimal method are observed for 

preliminary benchmarking, whether subannual benchmarks are available or not. 

However, the improvement is larger when sub-annual (and annual) benchmarks are 

available for those models which imply seasonal or complex sub-annual movements. 
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APPENDIX A: Derivation of result (2.9) and (2.10) 

Performing the inversion in (2.7) by blocks yields 

Vaa = 	1 	/ 	[ 1 'Ve ' 	1 1Ve  (V 	+ J'V'J) -' Ve ' 	1) 	h, (A.la) 	4 

Vag = VOa 	= - h 1'Ve  (Vs ' 	+ J • V 1J) 1 , (A.lb) 

V00 = 	[(Vp 	+ JVJ)') (A.1c) 

+ 	((V 1  + J'VW 'J)' V1 h 1V 1 	(V 1  + J ' VW 'J)J. 

Substitution of 	(A.1) 	in 	(2.8) and some lengthy algebra yields 

a 	= h 1Ve' & 	- 	h 1 'Ve '  (Ve '  + J ' VW ' J) -' 	(V 	s + JV 1  y), (A.2a) 

0 	= (V;' + JVW ' J) -'  (Ve ' 	s + 	y), 	s'= 	181-a 82-a 	... 	ST-a). (A.2b) 

The benchrnarking methods of the Denton type were originally based on minimization 

of the quadratic form (OS)'Ve'(OS)  This process starts by specifying Ve'  (and 

not Vs).  In such cases, solution (A.1)-(A.2) is appropriate and requires one 

matrix inversion, that of (V + JVW 'J). Note that (Vs ' + JVW 'J) has to have 

full rank, but not necessarily V,. 

If the covariances matrices V. and V, are given, solution (A.1)-(A.2) can be 

written in terms of V  and V, as (2.9)-(2.10) respectively, using matrix 

identities and lengthy algebra as in Hilimer and Trabelsi (1987). The matrix 

inversion of (JVJ'+ V) required by (2.9)-(2.10) is of smaller dimension (M by 

M) than that required in (A.1)-(A.2) (T by T). Furthermore, solution (2.9)-

(2.10) admits the particular case where V is exactly equal to 0, contrary to 

(A.1)-(A.2) where V may only tend to zero. 

I 
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