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ABSTRACT 

This paper provides an extension to the method of estimating the variances of the X11ARIMA 
seasonally adjusted estimators under the assumption of linearity described in Pfeffermann (1993). 
These extensions include the case where the variance and the autocovariances of the survey 
errors are time dependent, the case of multiplicative decomposition and the case of variance 
estimation in the presence of the additional non-linear operations of the Xli ARIMA method such 
as the identification and replacement of extreme values and the identification and estimation of 
the X11ARIMA models used for extrapolation. 

RESUME 

Cet article porte sur Ia variance des donnécs dësaisonnalisées par Ia méthode X-l1-ARIMA. 
Nous généralisons la méthode de Pfeffermann (1993). Cette m&hode fait l'hypothèse que le 
X-11-ARJMA fait une decomposition additive et qu'il n y a pas d'opération non-linéaire lors de 
la désaisonnaljsatjon. 

La méthode gëneralisée contient les cas pour lesquels la méthode X-1 1-ARIMA utilise soit une 
decomposition multiplicative, soit des operations non-Iinéaires, ou bien soit des données 
provenant d'un sondage avec échantillonnage aléatoire. Les opératiens non-linéaires du X-1 1-
ARIMA sont l'identification et l'estimation du modèle d'extrapolation ARIMA, et l'identification 
et l'ajustement des valeurs extremes. La variance des erreurs d'échantillonnage et leurs 
autocorrélations peuvent dépendre du temps dans les cas oü les données non-désaisonnalisées 
proviennent d'un sondage. 
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1. INTRODUCTION 

In a recent article, Danny Pfeffermann (1993), abbreviated hereafter as DP, proposes a 

new method for estimating the variances of X-11 ARIMA seasonally adjusted estimators (SAE). 

The method consists of the following stages 

Decompose the observed time series {Yt, tal N } as 

y=(T+S+I) +c=T+S+e 	 (1.1) 

where Tt  and S are correspondingly the trend level and the seasonal effect, I is the 

irregular component and e is the survey error when the population mean value 

Yt  = (T+S+I) is estimated from a survey. Most business and economic time series 

analyzed routinely consist of survey estimates. 

Express the variances of the SAE as functions of the variance and autocovariances of the 

compound error terms, e t  = 

Express the variance and autocovariances of the series { e} as linear combinations of 

the variance and autocovariances of the X-11 residual series, {R, =(yt-  i' - &) I. 

Estimate the variance and autocovariances of the series {e} by replacing in 3 the 

theoretical variance and autocovariances of the series {Rj by standard sample estimates. 

Substitute the estimates obtained in 4 in the expressions derived in 2 to obtain the 

estimates of the variances of the SAE. 
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The actual application of the method involves the specification of a cutoff value C such 

that fork> C, V = COV(e, e k ) 0. Such a specification is needed in order to limit the 

number of equations in 3 and hence secure the stability of the estimates. Plausible values of C 

can often be determined from knowledge of the sampling design used to collect the data. 

Alternatively, a stepwise algorithm described in DP can be used. For a given cutoff C, the 

equations in stages 2 and 3 are fixed for any given linear filters of X- 11 ARIMA so that the 

application of the method is straightforward. 

The objectives of the present article are as follows: 

Extend the method to the case of a multiplicative decomposition - Many of the time 

series deseasonalized in practice are decomposed as products rather than as sums of the 

trend, seasonal and error components so that 

y=TxSxIx=Tt xSt'Xe 	 (1.2) 

where s, i and e are percentage measurements. The multiplicative decomposition 

implies that the seasonal effect S = (Y - T' x e) is proportional to the trend level 

which is often more realistic. 

Extend the method to the case where the variance and autocovariances of the survey 

errors are time dependeiit - A common feature to many of the time series collected from 

surveys is that the variance and autocovariances of the survey errors, C., (often the 

dominant component of the compound error terms, e) change over time. Such changes 

may occur as a result of changes in the sampling design, and in particular from 

increasing or decreasing the sample size, or because the variances change with the level 

of the series. The latter case is implicit in the multiplicative decomposition since 
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- Y T x 	x I' (ct -  1). Estimators for the variances of the survey errors 

are routinely produced by statistical agencies but they are seldom used in the analysis of 

time series. 

C- 	Study the effect of the nonlinear options of X- ll AR.IMA on the variances and variance 

estimators of the SAE - The method described in DP assumes that the SAE are derived 

using the linear filters of X-11 ARIMA. As well known, the X-11 ARIMA program 

contains also some nonlinear options, beyond the use of the multiplicative mode. These 

options include the identification and gradual replacement of extreme values and the 

identification and estimation of ARIMA models used for the extrapolation of data at the 

beginning and the end of the series. With this option the extrapolated data are added to 

the observed series so that the X-11 procedure is applied to the augmented series. 

The two extensions to the method and the effects of the nonlinear options of X-ll 

ARIMA are studied separately in the next four sections. 

2. ESTIMATION OF THE VARIANCES OF THE SAE 
FOR A MULTIPLICATIVE DECOMPOSITION 

The multiplicative decomposition is defined by equation (1.2). The use of the 

multiplicative mode of X-ll ARIMA is known to yield very similar results to the use of a "log- 

additive decomposition" (LAD) by which the additive mode is applied to the logarithms 

= log (yb)  of the series. The SAE for the original series are computed under this mode as 

fit*= (Y / ) = (Y / exp ()) where s = log (S). (We applied the two decomposition 

methods to the series "Employed Women in Nova Scotia, 1980-1989" which is deseasonalysed 

routinely using a multiplicative decomposition. The estimates obtained for the seasonal 
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component and the residual terms by the two methods are almost identical. We use this series 

for illustrating the estimation of the variances of the SAE.) 

Let ht  = 	- 	= 	 Wkt.9t,,k define the log additive SAE obtained by 

application of the LAD. DP considers two alternative variance estimators depending on whether 

the SAE are used to estimate the seasonally adjusted values in the population or the trend levels. 

It what follows we consider for convenience the second case and denote d2t = ( n - t) where 

= log (T). It follows from DP that under broad conditions 

d2t 	 W at.,where at  = log (e) is the compound error term in the additive 

decomposition model of j'.  See also Breidt (1992). 

The method we propose for estimating the variances of the SAE for a multiplicative 

decomposition rests on the assumption that d2t  has a normal distribution with zero mean. This 

is a rather mild assumption considering that the time series analysed in practice are usually 

composed of means or aggregates computed from large surveys and that extreme values are 

ordinarily modified outside or by the X-11 procedure. (Each error term at  is a linear 

combination of the observations j'j. The method consists of the following stages: 

Apply the LAD mode of X-1 1 ARIMA 

Apply the method of DP to estimate the variance and autocovariances of the compound 

errors {ë} and hence the variances Var 2  (I1 ) = Vax-a (d2) where Var, ( . ) is the 

variance with respect to the joint distribution of the compound error terms 

Estimate Var (2) (&:) = Var (2) ( (yt  / ) / TIfl as 

V4r2(&) = 	 -exp(Vâr 2 (fl))} 	(2.1) 
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utilizing the relationship between the variance of the normal and lognormal distributions. 

In order to illustrate the performance of the proposed method we carried out the 

following experiment. We applied the LAD to the series "Employed Women in Nova Scotia" 

estimated the variance and autocorrelations of the corresponding error terms { e } using the 

method of DP. The estimates obtained are 	= 1.9x10; 

• 642 , = . 421, A 3 = . 116, 	0 for k 4. Next we generated independently 300 

random series {ê; t=]. ... 1201, j = 1 ... 300 from an MA(3) process defmed by the 

estimated variance and autocorrelations. These random series had been added to the signals 

= ( + &) } estimated for the empirical series {j}. Let 

yt'j = e xp (iP + e ), t -1 ... 120, j 1... 300. We applied the multiplicative mode of X- 11 

to each of the series {y}  yielding the SAE 	= (y,, /&) and hence the empirical 
300 

standard deviations (SD), sb (& ) = ( E (1 	- N) 2 / 3 0 0 ] k  where 
- 	300 	 i_i 

Nt* =  [E (! / 300]. In the final stage we applied the method of variance estimation 
i-i 

proposed in this section to each of the series 

Figure 1 shows for each month t 1••• 120 the empirical standard deviation SD (& ) 
300 

and the mean SD(l) = ( 	sb j  /3 0 0 ] of the SD estimators 
i ; 

Sbtli  = exp(1) (Vàr 2>  (t) )' where Vir 2  (R 3 ) is defined in (2.1). The picture 

revealed from the graph is that the estimators derived by application of the method are 

essentially unbiased. In fact, 
120 	 120 - 

[>Si)(1r) /120) = 1.80 and (E SD(ir)/120) = 1.78. Notice that both the 

empirical SD and the SD estimators increase over time as a result of the upgrowing trend levels 

{1}. 
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3. ACCOUNTING FOR CHANGES IN THE DESIGN 
VARIANCES AND AUTOCO VARIANCES 

As mentioned in the introduction, changes in the variances and autocovariances of the 

survey errors over time may be caused by changes in the sampling design or because the 

variance and autocovariances change with the level of the series. In what follows we assume 

the additive decomposition defined in (1.1) and the availability of monthly estimates for the 

design variances of the survey errors. Such estimates are routinely produced by statistical 

offices. Let ... denote the estimated variance and autocovariances of the compound 

error terms as obtained by application of the method proposed in DP. Let § 2  denote the design Dt 

variance estimates and define 	= 	D2  / N) where N is the length of the series. 

For the case where the changes in the design variances and autocovariances are caused 

by changes in the sampling design, we propose the following modifications to the estimates 

, k = 0, 1, ... and hence to the estimates of the variances of the SAE. (As described in the 

introduction, the variances of the SAE can be approximated by functions of the variance and 

autocovariances of the compound error terms). 

+ ;Vk =cOv(e,e k ) = (1Vt7t,k)¼ ('k/o) 	(3.1) 
Dt 

The rationale for V. is that one can view V 1, as an average variance in the sense that 

Var (' + 6 	{ Vär (Ij + [ 	Vâr ( 3 / N) } (Vâr ('b) + ) so that the 

proposed modification follows naturally. Notice also that E (T70t  / N) = The 

modification to the covariances is somewhat more arbitrary since estimates for the design 

covariances are seldom available. It satisfies, 

corr (es , ek) = 	/ 	= col-r (e, ek) , implying that the changes in the design do 

not affect the autocorrelations between the compound error terms which is a sensible assumption. 
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For the case where the design variance and autocovariances change with the level of the 

series, (evidently the more common case), we propose the following modifications 

Vt = 	/ 	; 	= ( 	( 	/ 	t. 
= 	,2 	

I 	(3.2) D 	D(t-k) ) 

The rationale for the modifications in this case is that if the variances of the survey errors 

change with the level of the series, then it is reasonable to postulate the same property for the 

variances of the error terms { I } in the decomposition model holding for the population values. 

Thus, both variances are modified by the ratio 	/ .. Notice that again E ( / N) = 

The rationale for the modification of the covariances is as in the previous case, namely, that the 

autocorrelations between the compound error terms are constant over time despite the changes 

in the variances. 

We applied the modifications (3.2) to the series "Unemployment Percentage Rates in 

Canada, 1982-1989" for which estimates of the design variances are routinely computed. (The 

original design variance estimates have been smoothed in order to diminish the effect of 

sampling variations. The differences between the original and the smoothed variances never 

exceed 6 percent and they are in most cases much smaller.) Figure 2 shows the monthly design 

variances (multiplied by 1000), along with the seasonal effects of the original series as estimated 

by application of the additive mode of X-1 1 ARIMA. As can be seen, the design variances 

exhibit a seasonal pattern which is close to the seasonal pattern of the original series, implying 

that the magnitude of the variances indeed depends on the level of the series. (The seasonal 

effects explain 84 percent of the month to month variation of the original series.) 

In order to illustrate the performance of the modifications (3.2), we carried out a similar 

experiment to the experiment described in Section 2. Thus, we first estimated the variance and 

autocorrelations of the compound error terms of the original series using the method of DP. The 
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estimates obtained are: %=.0258, 	=.33, P2=.07, p 3 =.28, Ak 	0 for k2:4. 

Next we generated independently 300 random series {e; t=1 ... 96 }, j=1•300 from an 

MA(3) process defined by this variance and autocorrelations. These random series had been 

modified as et,  , =/ 	so that the variance and autocovariances of the modified 

series are as in (3.2). The modified series were added to the signals if, = 	+ ) estimated 

for the original series. In the final stage we applied the additive mode of X-11 to each of the 

series {Ytj = + e, t=1 ... 96 } , j =1300 and estimated the variances of the SAE by 

first estimating the variance and autocovariances using the method proposed in DP and then 

applying the modifications (3.2). 

Figure 3 shows for each month t = 1••• 96 the empirical SD of the SAE over the 300 

series and the means of the SAE SD estimators as obtained when ignoring the changes in the 

design variances, (i.e. using the estimators , k = 0, 1, ... for the variance and autocovariances 

of the compound error terms), and when applying the modifications in 3.2. The picture revealed 

from the three graphs is that both sets of estimators are essentially unbiased in the sense that the 

averages of the SD estimators over the 96 months are practically the same as the corresponding 

average of the empirical SD. (The value obtained for the three averages is 0. 14). However, 

the SD estimators obtained by application of the modifications in (3.2) follow much closer the 

empirical SD. Notice from Figure 2 that the design SD are around .04 implying that for this 

series the SD of the survey errors are much smaller than the SD of the SAE, indicating large 

variances of the irregular terms { I }. 

4. THE EFFECTS OF IDENTIFICATION AND REPLACEMENT 
OF EXTREME VALUES 

The procedure used by the additive mode of X- 11 for the identification and replacement 

of extreme values is to compute the standard deviation a of the estimated error terms in moving 
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sections of 5 years and then compare the estimated errors in the central year of each section with 

the corresponding value of a. For the first (last) 2 years, the a value obtained for the first 

(last) 5 years are used for the comparisons. Error terms with absolute values larger than 

2. 5 x a, referred to hereafter as outhers, are assigned a zero weight. Absolute errors smaller 

than 1. 5 x a are assigned full weight whereas absolute errors between 1. 5 x a and 

2 . 5 x a, referred to hereafter as extreme errors, are assigned a linearly graduating weight 

between zero and one. The weights are used to modify the estimatesS. = (&. + e.) 

corresponding to months t for which the error terms receive less than full weight. The 

modification consists of replacing by a weighted average of Se t . and the estimates 

Se obtained for the same calendar month in adjacent years. A similar procedure is applied 

under the multiplicative mode of X-ll. See Dagum (1988) for details. 

Outlier values are usually the outcome of unusual events like strikes, severe weather 

conditions, special government policies etc. As such, there is not much point in estimating the 

variances of the SAE corresponding to these values. The interesting question, however, is 

whether the existence of values with weights less than 1 and the replacement of these values, not 

accounted for by the linear filters of X- 11, has a major effect on the variances of the SAE and 

the variance estimators in months not identified as having outlier errors. 

In order to assess the impact of the outlier and extreme values on the variances of the 

SAE, we generated again 300 series of random error terms { e. ; t = 1 120 ), j = 1•• 300 

with variance and covariances as estimated for the series "Total Unemployment in Canada, 

1980-1989". We chose this series because it contains a relatively large number of outlier and 

extreme values. Months with outlier values (9 months altogether, see Figure 5) have been 

excluded from the computation of the empirical variance and autocovariances of the estimated 

X-11 error terms which are used for the implementation of the method of DP. (See Stage 4 of 

the description of the method in the introduction). The variance and autocorrelations of the 
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compound error terms were estimated as: 

Q0 988.10, 	3=.6 1 , p 3 =.34, 4 =.13, Pk 	0 for k;?:5. The series 

{e j ] were added to the signals k. = (P,. + 	estimated for the original series to form 300 

new series {y, t=1••1201, j=1  . . . 300 

values. 

These series are essentially free from outlier 

In the next stage we modified the series { e, } by replacing errors generated for the 

months t with outlier values in the original series, by error terms generated from a normal 

distribution with mean zero and variance a. = (R. / U) where R. is the outlier X-1 1 

estimated error term and 0 0  is the empirical variance of the estimated error terms. The 300 

modified series of random errors obtained this way were again added to the signals At  to form 

300 additional seriest =1 120), j =1 300. 

We applied the additive mode of X-11 but without the option of identification and 

replacement of extreme and outlier values to each of the 300 series{y }. We then applied 

the additive mode with that option to each of the 300 series} and estimated the variance 

and autocovariances of the error terms and hence the variances of the SAE using the method of 

DP. The average estimates of the variance and autocorrelations of the error terms over the 300 

serieswerefoundtobe,V o 946.5,p l .81,P z .59,P3=. 3 O,P4 9 fPK° 

for k 2~ 5 which shows a very close fit to the variance and autocorrelations used to generate the 

series {e }, despite the existence of outlier values and the use of the option of identification 

and gradual replacement of extreme and outlier values. (Outlier values were again excluded 

from the computation of the empirical variance and autocovariances of the X-1 1 estimated error 

terms). 

Figure 4 shows for each month t=1 .. . 120 the empirical SD (STb°  (&)) of the SAE as 

obtained for the series, { y, }, the empirical SD (SD °  (s)) of the SAE as obtained for the 
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series {Yt°, j } and the mean of the SD estimators (sD°  (Z)) as obtained for the latter group 

of series. The peaks marked with an asterisk correspond to the 9 months with outlier values. 

The two notable results revealed from the graphs are: 

The existence of outlier and extreme error terms has only a small effect on the variances 

of the SAE, except in the months with outlier values. Notice that the differences in the 

empirical variances of the SAE between the two groups of series observed for the months 

t 106 - 113 are not the result of the outlier errors but rather the result of a random 

accumulation of extreme values in and around these months. The outcome that the 

variances of the SAE obtained for the series { y } (with no identification and 

replacement of extreme values) are smaller in these months than the variances obtained 

for the series {y). is explained by the fact that the way X-ll replaces the extreme 

values së., it generally increases the absolute differences I 	- I and hence the 

variances of the SA.E. 

The SAE variance estimators are naturally closer to the empirical variances obtained for 

the series { y, }. In view of the first result, however, the performance of the 

estimators is nonetheless satisfactory. The average value of the means of the variance 

estimators over the 111 months with no outlier values is 29.83, as compared to 29.78 for 

the series {y } and 30.04 for the series {Yt°, j }. 

5. THE EFFECTS OF ARIMA EXTRAPOLATIONS 
ON THE VARIANCES OF THE SAE 

With the ARIMA option of X- 11 ARIMA, an ARIMA model is identified to the observed 

series and used for the extrapolation of one or two years of data at either end of the series. The 
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X- 11 procedure is then applied to the augmented series. The use of this option is known to 

improve over the original census X-1 1 estimators in terms of point estimation, and the magnitude 

of the revisions to existing estimates as new data become available. See e.g. Pierce (1980), 

Dagum (1983) and Dagum and Laniel (1987) for discussions. DP concludes that the SAE 

produced by the use of this option are approximately c-unbiased where the c-expectation is taken 

over the distribution of the compound error terms. 

The filter used by X- 11 ARIMA for estimating the SAE for a given month t in the 

beginning or the end section of the series is a convolution of the original census X- 11 filter and 

the ARIMA extrapolation filter. Since both ifiters are linear and asymmetric, the same holds 

for the convoluted filter. Thus, the "nonlinearily" of the ARIMA option results from the model 

identification and estimation stage and not from the use of the extrapolated data per Se. The 

method proposed in DP for estimating the variances of the SAE applies to any linear c-unbiased 

estimator and hence it can be adapted to the use of the convoluted ifiters straightforwardly. The 

method ignores however the identification and estimation aspects of the use of the ARIMA 

option. 

In order to assess the effects of the use of ARIMA extrapolations on the variances of the 

SAE, we applied the ARIMA option to each of the series {y}, generated for assessing the 

effects of extreme and outlier observations (see Section 4). We used the "automatic option" 

which selects the model that fits best the data out of five optional models. See Dagum (1988) 

for the criteria used for selecting the model. The results of this exercise are summarized in 

table 1 which shows the number of times each model has been selected and the average values 

of the parameter estimates. All the models listed in the table have the general form 

(1 -B - 2 B 2 ) ( 1B)'(1 -B 12 ) Yt = (1 -6 1B-0 2 B 2 ) ( 1 -0 12 B 12 ) e, where B is the 

backshift operator, By = Yt-i 
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Table 1: Frequency of Selected ARIMA Models and Average Parameter Estimates 

Average_Parameter Estimates 

Models Frequency 0 0 7  01, 

(0,1,1)(0,1,1) 12  146 - - .028 - .733 

(0,1,2)(0,1,1) 12  101 - - -.028 -.350 .659 

(2,1,0)(0,1,1) 12  32 .203 .330 - - .605 

(0,2,2)(0,1,1) 1 2 7 - - .910 -.180 .670 

(2,1,2)(0,1,1)2  2 .303 -.176 .227 -.583 .682 rNo model selected T 	12 -- - - - - 

The models listed in Table 1 are different and yield different extrapolated values which 

is somewhat disturbing considering that the 300 simulated series obey the same stochastic 

structure. The convoluted filters resulting from the use of these models are, however, quite 

similar implying that the SAE and the variances of the SAE are less sensitive to the choice of 

the model and the parameters' estimators. 

Figure 5 displays the empirical SD of the SAE with [SD, (&) ] and without 

[S (&) ) the use of the ARIMA option and the mean [SD (Th ) of the SD estimators as 

obtained when accounting for the ARIMA extrapolations. When applying the ARIMA option, 

we added 12 months of extrapolated data at only the end of the series which is the common 

practice. It allows us also to compare the behaviour of the SAE variance estimators with and 

without the use of the ARIMA option (see below). Notice that the graph of the empirical SD 

without the use of the ARIMA option is the same as the graph of the empirical 

SD, [SD° ( IQ) ] in Figure 4, displaying the SD of the SAE obtained for the series {y} with 

outlier observations. 
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The most striking result revealed from the graph is the decrease in the variances of the 

SAE towards the end of the series when applying the ARIMA option. The effect of the use of 

AR[MA extrapolations on the variances of the SAE has not been studied directly before although 

it could be inferred from other related studies. As can be seen, the SD estimators account for 

the use of the convoluted filters and they are lower therefore at the end of the series than at the 

beginning of the series where no ARIMA extrapolations have been used. We noted in Section 

4 that the empirical SD obtained for the months t = 106-113 are affected by a random 

accumulation of extreme values. This fact is illuminated in Figure 5 showing for example that 

the empirical SD obtained for the month t = 108 when using the ARIMA option is higher than 

in the months t = 114 and t = 118 which is not the case with respect to the empirical SD 

obtained without the use of the ARIMA option. The averages of the empirical SD over the 111 

months without outlier observations are 30.04 for the case of no the ARJMA extrapolations and 

29.84 with the ARIMA extrapolations. The corresponding average of the SD estimators is 

29.65. 
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Under a Multiplicative Decomposition 
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Figure 2: Estimates of the Seasonal Component and the Design Variances (x 1000). 

Canada Unemployment Rates, 1982-1989 
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Figure 3: Empirical Standard Deviation (Sb  (!)) and Means of Standard Deviation 

Estimators With (SD' (l)) and Without [SD1  (R) j  Accounting for Changes in the Design Variances 

Month 
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Figure 4: Empirical Standard Deviations With (Sb°  (R)) and Without (S1)' (ft)) 

the Identification and Replacement of Extreme and Outlier Values 

and Means of Standard Deviation Estimators 
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Figure 5: Empirical Standard Deviations With (SD (&)) and Without sb°  (&)] the use of ARIMA 

Extrapolations and Means [SD (a)) of Standard Deviation Estimators When 

Accounting for ARIMA Extrapolations 
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