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Siniary 

A general frarreork for analyzing rrtulticlirrensional continaency 
tables with non-response is discussed. 	rhasis is placed on rrxxlelling 
the data cells and the non-response nechanisrn. The implications of 
general log-linear rrxels are discussed. E±ensions to ccTnplex survey 
designs are given. 

Some key or3: Multi-dimensional contingency tables; Poisson models; 
Response mechanisms; Complex survey designs. 

1. INTRODUCTION 

In most surveys, in spite of all reasonable follow-up efforts and 

careful control of the survey process, non-response occurs. This non-

response may be at the unit level (complete non-response) or at the 

item level. An excellent discussion of various methods for non-response 

adjustment is given in Platek, Singh and Tremblav(1977). 

One of the most popular methods for non-response adjustment is post-

stratification or weighting class adjustment; see Oh and Scheuren (1983) 

However, there are some inherent problems with this method, especially 

for large scale surveys. Some cf these are: 

There may be so many potential weighting classes that the number 

of respondents in some classes is too small. This is especially 

true with surveys where the respondents are contacted on two or 

more occasions, and much information from the first occasion is 

available even for non-respondents to later occasions. 

In most surveys, non-response on different items would imply 
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Resumé 

La présente 6ttide rionne un cadre gnéral pour lanalyse des tableaux de 
contingence multidimerisionnels pour les nori-réponse-s. Elle met l'aecerit sur 
la modlisation des cellules de dorinées et sur le mécarLisme de rion-réponse. 
Elle passe par ailleurs en revue l t incidence des mod1es généraux Log-
linéaires, et fournit des exemples d'appl.ications des plans de sondage 
compLexes. 

Mots-clés: tableaux de contingence multidimensionnels; modles de Poisson; 
mécanismes de réponse; plans de soridage complexes. 
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different weighting classes for each item. This makes the 

analysis difficult. 

Because of these difficulties, a popular alternative is hot-deck 

imputation. This yields individually clean records which are convenient 

for tabulation. If the non-response rates are low, this is probably 

quite suitable. The problem with higher non-response rates is that 

(i) we are adding an imputation variance to the estimates (see Kalton 

and Kish; 1984), and (ii) the estimates of variance will usually be 

biased, possibly leading to misleading analytical conclusiors. 

In this paper, we concentrate on surveys with qualitative responses. 

We find that by modelling the data and the non-response mechanism we 

can develop a rich class of adjustment methods. 

2. POISSON SALING WITH ONE VARIABLE SUBJECT TO NON-RESPONSE 

2.1 Notation 

Suppose we have a cross-classification of categorical data, where 

there may be non-response in only one of the variables. We let 

subscript i index the variables which always have complete response 

and subscript j indexes the variable which may be subject to non-

response. Our data consists of In. .}(i=l, ..., I and jl, ..., 3) for 

the complete responses and in} (i1, ..., I) for the incomplete 

responses. Thus the data can be displayed in Tableau 1. 

Now, it is well-known (see, for example Bishop, Fienberg and 

Holland; 1975, p.  447) that maximum likelihood estimates for propor-

tions from a multjnomial distribution are identical to those obtained 
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TABLEAU 1 

Complete Responses 
Incomplete 

Totals 
Responses  

nil  n 1  

nIl 	... 	nIJ 
flU 	nI+ 

Totals n+tJ 

from independent Poisson samples for each cell. We therefore derive 

our results for the independent Poisson model. In particular, we 

assume that, had we observed all the complete responses, the distribu- 

tion of cell (i,j) would be Poisson with mean X... To model the non- 13 

response mechanism, we assume that given the complete response is in 

cell (i,j), the probability of response is 	These assumptions
ij  

imply that the observed data 	are independent Poisson with 

means according to Tableau 2. 

TABLEAU 2 

Complete Responses 
Incomplete 
Responses 

iT 	 X 
11 	11 	13 

ii  1J EX 	(1- 	ij) lj  

X 	ii 	X 13 	13 
ir 

Ii 	Ii 
A 	(l-r.) 
Ij 

The log-likelihood function for the observations Is thus: 

= - 	+ ZZ n.log 	+ log TT] + E n 	log{E X 
i  (

1-iT..)),
ij 	 ju 	i 	1] 

1J  
(2.1) 
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where 	= E A... We also define A. 
1J 	 1 

13 	
i13 

Now, in general we have 21J unknown parameters with only t(J+l) 

observations, so that the model is not identifiable unless there are 

at least I(J-l) restrictions. In the following, we assume that these 

restrictions can be parametrized so that A.. 
13 = 1 

A. 3 . 	1 
() and r.J 

	1 
11. .

3
(), 

where the unknown parameters 0 and 6 are distinct (that is, the 

parameter space for (o,} can be represented as a Cartesian product, 

x B). One simple consequence of this is that if 	= ... = Tr..()
il  

for all i=l, ..., I, then the maximum likelihood estimates for {x. .} 13 

will not depend on the estimated ir. . 	 IT 's, so that the model for the . 
13 	 1J 

is inconsequential for estimating A..}. This is equivalent to Rubin's 

(1976) notion of "missing at random". In particular, the maximum 

likelihood estimator for fX..1 is a solution to 
13 

A. r. . + 	n J = 

	

ij A.. 	e 	13 	IU 

	

13 	 1+ 

(2.2) 

We see that this may be solved via a straight-form application of the 
A. 

EN algorithm, where the complete data is estimated by {n.. + 	n.13  
13 	it. 

on each iteration, using the current estimates for tx}. A more 

efficient algorithm such as Newton-Raphson iteration may be preferable 

in practice; see Section 2.3. 

We call the model for the fX . 
13 
.} the data-model, whereas the model 

for 	will be referred to as the response-model.
ij 
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2.2 Saturated Data Model 

We now demonstrate that a saturated model for (X. 
13  
.} and a missing-

at-random model for fir..) leads to weighting class adjustment or post-

stratification adjustment methods. In the saturated data model, 

= e.. so that (2.2) yields: 

---- n.. +_lln. 
iU 

ij 	i+ 

> 	.. = fl,• 
1) 	13 	iJJ 

1+ 

->X. 	n. 1+ 	1+ 

so that 

A .=a. n. 
1 13 

where 	a, = 	- 

Thus each row I of {n.} is reweighted by the factor a.. 

An alternative response model to that of missing at random is one 

where ii..(B) = 3. This model is identifiable only when J!5I. If 

J=I, the observations will fit the estimated cell means exactly. In 

this case the data cannot be used to assess the relative merits of 

this model against the model where ir.() = 3. This decision must 

be based on subjective considerations. It is possible, though, to 

test whether 6 . is constant. Now, for ir..() = ., the maximum like-

lihood equations may be simplified to: 

(l-.) 
Xn..+n 
ij 	1) 	iU 

 iz 
2. 	

2. 



= n+j / +j  

where 
i 1J 

2.3 Log-Linear Data Models 

We now consider the implications of various log-linear model 

assumptions on the (A 1]  . .}, to accommodate a rich class of non-saturated 

models. We first consider the case where the response mechanism is 

assumed to be a missing-at-random model so that attention is focussed 

on the data model. 

Suppose log X..(e) = 4. 0, where x.,. and 0 are q-dimensional 

column vectors. Now, the estimating equations (2.2) may be written 

as: 

xTA - N - 1) = 0, 	 () 

where X is an IJx q matrix with (i,j)-th row being x., A is an 

IJx 1 vector of (A 1J  . .}, N is an IJx 1 vector of in 1J  . .} and M is an 

IJx 1 vector of (n. 	 i+ 1U 
 A ]. J  IA }. To solve this system of equations, we 

suggest an iterative Newton-Raphson approach, so that the (t+l)-th 

iteration, 0(t+ 
	

satisfies: 

rj(t)1 -1  xT(.t)_N_cI(t)), 	(2.4) 

where 	(t) = xTrt) - ñ(t) + â(t) D3(C(t))T1 x, 

for 	(t) = diag 
1J 

= diag 

D3  = diag in iU } 
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(t) = 	4t) .  

:t) 

- (t) 	ji  
i+ 

An initial starting point e 	must be identified. Normally the 

first component of 0 represents an intercept term; that is, x.. 1  = 1. 

If so, a convenient value for 6 	is log n 4_/IJ, o, 

We now turn to the situation where the response mechanism is not 

assumed to be missing at random. In this case, we propose models of 

the form 

log 

 {

1T..($)_1 	T 

	

l_( 	
= zij  

where z ii and S are r-dirnensiorial column vectors. To ensure 

identifiability, we require q+r :5 I(J+l). We also require the 

matrices X and Z to be full rank. Now, the log-likelihood function 

(2.1) may be written as: 

	

= - E E exp Cx.e} + 	T 	T 
x B + z 	- log 

13 	1.3 ij 	ij 
ii 	 ij 

+ Z n[iog E{exp(x.e)/(1+exp(z ' .8))}J . 	(2.5) 

Differentiating with respect to e and 5, we obtain the following 

likelihood equation: 

xT( - N - N) = 0 	 (2.6a) 

zTi - D)N - D N = 0 	 (2.6b) 



where 	X, A and N are defined in (2.3), H is modified to the 

IJx 1 vector of Cii. (1-yr..) A, ./E(1-; ik 
	ik ) A 	} and D ii  = diag Ur. .}. 13 	

13k  
These equations could be solved iteratively using either Newton-Raphson 

iterations or applying the EM algorithm to the augmented table with 21J 

cells where IJ of the cells have missing values. To apply Newton-

Raphson iterations, we need the following derivatives: 

= [diag {A..}] X 

n. (l-r. .) A. 
3M 	r 	iU 	13 	1]}'l x - = diag 	

A 	
c:diag{n} cT  x 

k 

where 

= ........... 
:;j 

1 	r(l_ 1 ) A 1 	... 	(l-. ) A J iJ 
1 

for 	C. = 
1 

	

1 	
1'k Aik 	

1 

k  

fl. 	1T..(1-TT. .)X. 
- 	I 	1U 1] 	13  	z + CrdiagCn.) CT dia 	 DZ - - 	g 	

Z (1-ir ) A 1k ik 
k 

3D N 
= [diag{. .(l-..) n }1  Z 

	

aB 	1] 	13 	13 

3D M ____ - 
LI  

	

36 	30 

	

3D H . 	
1

(1-i. )2
ir - D 	+ [diag _iL 

i. 	3 	z 
3 7r 	E(1-ir 	) A 1k ik 

k 
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3. SUBSET SELECTION - THE CASE OF ARBITARY RESPONSE PATTERNS 

3.1 Structure 

In the previous section, we considered only the case where one of 

the variables is subject to non-response. In order to extend this to 

more general situations, we need to introduce the concepts of response 

patterns and subset selection. 

A response pattern, P k' defines which variables are observed and 

which variables have non-response. If we are studying an N-way table, 

the number of possible response patterns is K :~ 
2N 	The set of all 

response patterns Is denoted by (P 1 , ..., P p,). For example in the 

case of only one variable subject to non-response, K = 2, P 1  refers to 

complete response and P 2  refers to non-response on one variable. 

Now, for response pattern P k' 
 there are associated subsets of cells 

which can be observed, denoted by fA}, where for fixed k, the kZ 

elements are mutually exclusive and exhaustive. For example, with 

complete response, this set contains all individual cells; whereas in 

the case of one variable having non-response, this set contains all 

subsets of cells where the variables with no non-response are specified. 

We see, therefore, that for a particular response pattern, P k' 
 the 

observations consist of counts corresponding to the number of times 

each of the subsets 1 A} is selected. Thus we have the concept of 

subset selection. To reflect the relationship between subsets and 

response patterns we require that 	A whenever k 0 i or Z 0 rn.
jM 

Now, the observations consist of fnkL}where n,1  is the number of 

times subset A. is selected. To model these observations, we srrt 



- 10 - 

with all indices i1, ..., I corresponding to complete response. We 

assume that before imposing the non-response mechanism, the cell counts 

are independent Poisson samples with mean X. for the i-th cell. To 

model the non-response mechanism, we denote by 71ik  the probability 

that we obtain response pattern P 
k 
 given that the complete response 

is in cell i. 

Note that 

ir ik =1. k  

Given this structure, we see that fn 
kZ 

I are independent Poisson 

with means 

11k2. 	
X. 1  ii ik 

ieAk  

Therefore the log-likelihood function for this data is 

- E A. + EZlog( E 	A. i 	) 	(3.1) 
kZ 	1 

	

1 	 ik 
1 U 	iAki 

subject to 	E ii ik = 1. 
k  

	

We see that if 7 	 is. constant for all irA,, then we have aik 

missing-at-random response mechanism. 

3.2 Log-Linear Model 

Analogously to Section 2, we impose a log-linear model Structure 

on the CX.}, so we have log A. = 	0. To model the response mechanism 

we use the log-linear analogue of the logit model used in 

Section 2; in particular 
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T 
log itik = z., 

subject to 	= 1, (i=l, .. 	I). 

The vectors x and e are r-dimensional; the vectors Zik  and 3 are 

s-dimensional. To ensure identifiability, we require x+s-I 5 E L, where 
k 

Lk is the number of subsets in 
'kZ  for given k. To estimate 0 and 3, 

we set to zero the derivatives with respect to 0, 8 and a of: 

- E exp(4e) + ZE n 2 lo 	exp{40 + Zk 
1 	 icA.LU 

- 	c. E[expfz 
T  
ik8} - 11 	 (3.2) 

i 

This results in the following likelihood equations: 

E 	X.ir 	x. 
1 1k ia 

Z X̂ i x 	 - 	] = 0; for a1, ..., r 	(3.3a)
ia  

I 	icA1 

iAkZ 

	

A. 	ik it 	z. 

	

1 	ikb 

	

1T 	
iEAkZ 

aihTkzkbJ = 0; for b=b, ..., S 

(3. 3b) 

IT 
ik = 1 
	i for 1=1, ..., I 	- 	(3.3c) 

We see that if the response mechanism is a missing-at-random 

model, equations (3.3a) reduces to 

A. 
1 ix a 

ic Ak 
X i  x . 	EZ 

	

ia - k2. 	
= 0; for i=1, ..., r. 	(3.4) 

IC 

This is simply the solution to the EM algorithm as described in 

Fuchs (1982). It is also the same result as found in Haberman (1974). 
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In general, expressions (3.3) define a system of I+r+s equations 

in I+r+s unknowns, which must be solved iteratively. However, 

expression (3.4) contains only r equations in r unknowns, so it is 

easier to solve. 

Example: Consider a saturated two-way cross-classification as a 

data model, with a missing-at-random data mechanism. 

The data consist of (n.i for complete response, 

for non-response in the column variable, (n.} for non-

response in the row variable and n 1  for complete unit 

non-response. The parameters of interest are denoted 

[x}. Equation (3.4) yields: 

A.. - n . - E n. 	- E n. . 	- 	= 0. 	(3.5) 
13 	ij 	. 	

ii. X. 	
. 	L3 A+. 	X 

We see that this leads to raking ratio estimators. Consider now 

another response mechanism where 

r 	1 	 r 	I 	 r 	- 
Em. 	. IT , En. 	= 	A.. TI . 	E a. . 	= E A. 	IT -, 
- ij - 	ij 	1 

	
ij 	2j 	. 	

ij 	31 

	

E[n.e 	= ZE A.. 13 741 	where 
ii 

it +11 	+71 	+71 	= 1 . 
1 	2j 	3i 	4ij  

The estimating equations for this model are: 

A.. IT 
A.. - 	- n. 	

- 	713i 

A.. 

+ tm  ZE A 13  Tr 41j = 0 

	(3.6a) 
.. 

ij 

A 
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ZZ n. - it EZ o.. 	= 0 	 (3.6b) 
ij 13 
	

1ij 13 

A.. ii 
13 23 	

Ect 	= 
iU Z A.. it 	2j 	

0 	(3.6c) 
13 2j 	i 

71 3i 
Zn 	-it 

Ui 2 X. 	 it 	
3 i E ct ij = 0 
	(3.6d) 

3 	i 
ij 31 

A.. 
13 
 TT41J 

ct. . = 0 	(3.6e) 
LrU 22 A.. it 	

- lt 41j  
ij ij 4ij 

Tr 
1 	23 
+ r . 	

31 
+ ii . + 

i 4ij 
t 	= 1 . 	(3.6f) 

4. OTHER SAMPLING SCHENES 

In Sections 2 and 3 we derived the maximum likelihood estimates 

for 0 and a under Poisson sanp1ing models. Ey standard treatments, 

the covariance matrix for these estimated parameters could be estimated, 

thus making available methods for constructing confidence intervals 

and performing tests of hypotheseses. However, suppose now that the 

defined in Section 3 are not actual cell counts, but instead are 

population estimates of cell totals denoted by Nkz},  based on a compi:, 

sample design. The estimation techniques described in Sections 2 and 3 

could still be applied, yielding "pseudo-maximum likelihood estimates" 

of the parameters 0 and a . Under the assumed response mechanism this 
would yield consistent estimates of these parameter values, provided 

are design-consistent estimates. If a consistent estimate of 

covariance matrix of IN k . } is available, the covariance for 	and 
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could be obtained by, for example, using Taylor linearization. The 

derivation of these would be analogous to that given in Binder (1983). 

For example, for 0 defined by (3.4), it can be shown that 

V = B V BT 

where 	B = C' D, for 

C 	Cab} 	(a1, ..., r; b=l, ..., r) 

where 

i 

it A 2  
c 	= Z A x 

ia  x  i 
- 

ab 	. 	b 
1 

it Ak 

A. x. 	x. 
1 ia ib 

A. 
1 

E 	A 	
i 

	

A x 	
x j 

i€Ak jtAkz i 
j 	a 	b 

kZ 
+ Z Nk 	( E 	A )2 

i 
it Ak2, 

and 	D = [d } 
ab 	

(a=1, ..., r; b1, ..., 	L) 

E 	A. 
1 ix a 

it  Ak2. where 	dab = 	A. 

icAk2, 
1 

5. SUMMARY 

The procedures outlined in this paper have developed a rich class 

of models which could be used to adjust for non-response in multi-way 

contingency tables. However, because of problems of identifiability, 

alternative models may fit the data equally well. Little (1985) and 

Fay (1985) discuss a number of special cases within the framework des-

cribed above. It is still very much a judgement decision as to which of 
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several competing models are appropriate. It is important here to 

try to model the causes of the non-response mechanism, and not just 

do the data analysis blindly. Once a data model is developed, if it 

is fairly parsimonious compared to the saturated model, more scope is 

available to model this mechanism and to test competing models. 
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