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SUMMARY

) 2
Standard chi-squared (%) or likelihood ratio (G ) test statistics

for logistic regression analysis, invelving a binary response variable,
are adjusted to take account of the survey design. These adjustments are
based on certain generalized design effects (deffs). Logistic regression
diagnostics to detect any outlving cell proportions in the table and

influential ints in the factor space are also developed, taking account
po

of the survey design. Finally, the results are utilized to analyse some

data from the October 1980 Canadian Labour Force Survey (CFS).

Some Key Words. Binary response data; chi-sguared test statistic,

Design effect; Satterthwaite's approximation; Diagnostics.

1. INTRODUCTION

The analysis of variation in the estimated proportions associated with
a binary response variable is cf considerable interest to researchers in
social, behavioural and health sciences. Logistic regression models are
extensively used for this purrcse (see, for example, the books by Cox (1970},

and McCullagh and Nelder (1923)). However, the standard statistical methods






for binomial proportions are often inappropriate for analysing sample
survey data due to clustering and stratification used in the survey design.
For instance, the standard chi-squared (Xz) and likelihood ratio

(G2) test statistics greatly inflate the type I error rate when a strong,
positive clustering is present. As a result, some adjustments to the
classical methods that take account of the survey design are necessary in
order to make valid inferences from survey data. Section 2 provides ad-
justments, based on certain generalized design effects (deffs), to standard
statistics for testing goodness-of-fit of the model and for testing sub-
hypotheses civen a model. A valid estimate of the asymptotic covariance
matrix of fitted cell proportions is also obtained.

In addition to formal statistical tests, it is essential to develop
diagnostic procedures to detect any outlying cell proportions and influential
points in the factor space. Regression diagnostics for the standard linear
model have been extensively developed in the literature (see the book by
Cook and Weisberg (1982)). Pregibon (1981) developed similar methods for
logistic regression with binomial proportions. In Section 3, some of these
methods have been modified, by making necessary adjustments to account for
the survey design. Finally, the results are utilized in Section 4 to
analyse some data from the October 1980 Canadian Labour Force Survey (LFS).

Derivations of asymptotic variances and covariances and of adjustments
to test statistics are sketched in the Appendix: details are given in
G. Roberts' 1985 Ph.D. thesis at Carleton University.

The methods developed in this article require access to the estimated
covariance matrix of cell response proportions. The calculation of standard

errcrs for estimates of regression parameters, fitted cell proportions and






residuals (Section 2.1) requires knowladge of the entire estimated co-
variance matrix. On the other hand, simple bounds for some adjustments
have been developed to facilitate secondary analysis from published tables
(Rao and Scott, 1985). These bounds require knowledge only of estimated
cell deffs or certain generalized deffs not depending on any hypothesis;
reporting of these should be feasible.

Holt and Ewings (1985) have studied the effect of survey design on
standard logistic regression analysis under a general cluster effects
superpopulation model.

Although a logistic regression (logit) model for binary data can be
viewed as an alternative specification of a suitable loglinear model, the
objectives behind the two approaches are gquite different; hence, the logit
model should not be discarded merely as a special case (McCullogh, 19890).
In particular, the loglinear models which correspond to logit models are
eliminated at an early stage in the usual approaches to loglinear modelling,
so that the final loglinear model usually does not correspond to any logit
model (Kalbfleisch, 1984). Moreover, the standard errors or parameter
estimates and the adjustments to X2 in the loglinear set-up depend on
the covariance matrix of the cells in the extended table appropriate for
loglinear model analysis. This covariance matrix may not be available since
the computer program is usually set up to provide only the estimated cell

response proportions and their estimated covariance matrix.

254 FIEESIT. STATESTAES

Suppose that the population of interest is partitioned into I cells

(domains) according to the levels of one or more factors. Let Ni denote






the survey estimate of the 1-th domain size, Ni (=i, 5. 7 T% ZNi =N) .

The corresponding estimate of the i-th domain total, N, of a binary

eI

(0,1) response variable is denoted by ﬁi The ratio estimate p; =

1°

/ﬁi is often used to estimate the population proportion ﬂi = Nil/Ni'

N,
13,

Standard sampling theory provides an estimate of the covariance matrix of

A logistic regression (logit) model for the proportions ni is given

by ©. = fi(§) , Wwhere

Vg 2n{fi(5) zl-fi(;): = X5 = (L) (2.1)

T (2 Rle)s, 51 is an s-vector of known constants derived from the factor
levels and 2 1is an s-vector of unknown parameters. Under independent

binomial sampling in each domain, the maximum likelihood estimates (m.l.e.)

~

) = (%1,...,f1)' are obtained from the folTowing likelihood

¢ HhD

TO>

g and = f(

equations through iterative calculations:

X'D(n/n) £ = X'Din/n)q , (2.2)
where X' = (51,...,51), D(n/n) = diag(nl/n,...,nl/n), q 1is the vector
of sample proportions Q- nil/ni ol is the sample size from the i-th domain
(Zni = n), and nil is the i-th sample domain total. For general sample

designs, we do not have m.l.e. due to difficulties in obtaining appropriate
likelihood functions. Hence, it is a common practice to use a “pseudo m.l.e."
of £ obtained from (2.2) by replacing ni/n by the estimated domain relative

size wi = ﬁi/N, and qi by the ratio estimate pi J

X'DIw)E = X'D(w)p , (2.3)






where D(w) = diagiw,,...,w ) and p = (pl,...,pIJ'. The resulting
% : . B and f = f(R) , are asymptotically consistent. ‘Equation

‘N (m) = x'ﬁl . (2.4)
wiiere él is the vector of estimated counts Ny and gl(m) is the
vargsr of "pPSeuSe wmol.®. " ' . (m) = ﬁ% sl Ny .

& &L 21 S11,

¢.1. Estimated asympwotlc variances and covariances

il : y :
L&t n 'V denote the survey estimate of the covariance matrix of p

il ey
L3 glvan b

X Qi tX Diw) ¥ Cw) X0 oU s i) ’ W

Tr
3 (=

~ A

where A = diag(wlf (=1Eel ), ks W %I(l-fl)) (see Appendix I). In the

1 i
minomial case, (2.5) reduces to the standard formula (X"[‘.\b)‘:)-1 ., where
Rl = @dacis o Be (1=2.) nB 8. aEL T
N il ¥ aatas R’ i

The estimated asymptotic covariance matrix of the fitted cell proportions

A

f is given by (Appendix I)

v, = D(w) AXV X'AD(w) . (2.6)

The smoothed estimates £ can be considerably more efficient than the

survey estimates ﬁ , especially for cells with a small sample, if the model

(2.1) provides an adeguate fit to p (see Section 3.3). It may be remarked

that the estimates I. are similar to the so-called synthetic estimates

employed in small area estimation.

The estimated asvmptctic covariance matrix of the residual vecter






r = p —f is given by (Appendix I)

A

-1 A '
V. _=n "AVA |, (207)
r
where

A=1-ptw xx"Ex k' Dow) (2.8)

~

and I 1is the identity matrix. The diagonal elements Vii s 0 of (62, 7)

I

are needed to calculate the standardized residuals ri/V?i o which are

useful in detecting outlying cell proportions (Section 2.4).

2.2. Goodress-of-fit of the model

The standard x2 and G2 tests of goodness-of-fit of the model (2.1)

are given by

o) I A 2 A ~ E 2
X" =n) (pi-fi) wi/Ifi(l-fi)] = _l xi (say) (2.9)
=il i=1 -3
and
2 1 - A
G = - ine - =
G 2n izlwi[piﬁn(pi/fi) + (1-p) ini{(1-p,) /(1-£,) }]
I 2
5 <
= ' G, (say). 2.10)
g3 3l
i=1
Note that Gf is defined at p, = 0 and 1, respectively,by the guantities

-2nwikn(l-%i) and -2nwiln %i' Under independent binomial sampling, it is
well-known that both X2 and G2 are asymptotically distributed as a x2
variable with I-s degrees of freedom (d.f.) when the model (2.1) holds,
but for general sample designs this result is no longer valid. 1In fact,

2

X= (o G2) is asymptotically distributed as a weighted sum Zﬁizi of

2 . ,
independent variables zi, each with 1 d.f. (see Appendix III). Here,






the weilghts 6i (i=l,...,I-s) are estimated by 4. , the eigenvalues of

Amln

VO®V¢ ., where

(82,4 1:15)

)
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¥ = e {2l

and H is any I x (I-s) matrix of rank 1I-s such that H'X = 0. The

;;G¢ and gi are termed a “"generalized deff matrix" and a

"generalized deff" respectively since they reduce to I and 1 respectively

matrix V

under binomial sampling.

2 2 . i 2 2 -
An adjustment to ¥ sex Y6 is obtained by treating Xc =X /&, or

Gz = Gz/g, as a yz variable with 1I-s d.f., where 5, = Zgi/(I-s) may

be computed from the following expression:

(I-s)4 =n } V w. /£, (-£1]. i (2.13)

AT Ta

0o~

i=1

~

The adjusted statistics x; or Gz should be satisfactory if the

coefficient of variation (CV) of the Bi's is small. A better adjustment,

based on the well-known Satterthwaite approximation, treats x; = xi/(1+£2)
2 2 ~2 2 . " o2
or Gs = Gc/(l+a ) as a ¥ variable with (I-s)/(l+a”) d.f., where
I-s
2= 1 @ -80%u-08% (2.14)
i=1

A

ilfiB (EBF ot Bhe §,'s, and z@f {s ohkalinad ‘Ehon

= 2 g 9 A A ~

BB = 7 LW Gy Vs ) ZTE BLOLETY qibes L, (2.15)
it Skl 1119, B ) 109 o i

=] i=1 j=1

where Vij 3 is the (i,j)-th element of Vr. The test statistics x; and
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A Wald statistic, which also takes

is given by

x‘i = \E'H \",—lHo

where V 1is the vector of logits Gi =
2
is asymptotically distributed as a ¥

model (2.1) holds. This result follows

take account of the variation in the

-~

; >
§.'s unlike "X ‘and|IG_
i c c

the survey design into account,

(P2 1.0

B b e 2
Qn{pi/(l—pi)}. The statistic X

variable with 1I-s d.f. when the

from the fact that testing the fit

of the model (2.1) is equivalent to testing the hypothesis HvV =0 ,
where 0 is a vector of zeros and V = (vl,...,vI)'. The statistic xé.
however, is not defined if b, = 0O or 1 for some i , as in the case
of LFS data (Section 4). Moreover, it becomes unstable when any pi is
close to 1 (see Section 4) or when the number of degrees of freedom for Y
i3 mct lmrga relative to I-s  (Fay, 1985). -
2.3. Nested hypotheses

Suppose that the matrix X is partitioned as (xl,xz) . where xl is
I Xr and x2 is I xu (r+u = s). The logit model (2.1), say Ml , may
then be written as

V=X8=X8 +X8, ., 42.u

where §1 is rx1 and §2 is uxl. We are often interested in testing
the null hypothesis Hz.1 §2 =0, given 31. Denote the reduced model
under H2.1 as H: The pseudo m.l.e. é oL § under M2 can be

obtained from the equations

\('
i

x;aiy)i = X,D(w)p

()

i
S






acain by lterative calculations, whers é = f(é). The standard x2 and
G2 tests of H2 1 are given by
5 S - 2 2
X210 = ni J (£g =8 ] “AEIERLL a8l )] (2.19)
i=1
and
2 1 3 .k " 3 &
6 (2)1) = 2n } w [E. n{f /£, } % (2=£.)%n{(1-£.)/C-£.) }] 12,200
5 5 1 1 Al 5 sl 1

i=1

respectively. Under H x“(2|1) on 02(2'1) is asymptotically distri-

28y
buted as a weighted sum, Zéi(2!l)2i , of independent x2 variables Zi.

each with 1 d.f. Here the weights éi(2!1) (i=1,...,u) are estimated

by gi(2[1), the eigenvalues of the generalized deff matrix

KU | e - ~
(XZAXZ) (XZD(y)VD(y)Xz) d (52 208)
e L ) -1 |/ [ e . N
where X2 = 5 -Xl(Xlel) xlu]xz (see Appendix II). 1In the case of

binomial sampling, di(2|l) =1 for all i so that we get the well-known
result that x2(2|1) or G2(2|l) is asymptotically distributed as a x2
variable with u d.f. under Hz.l o

An adjustment to 62(2|1) or x2(2|1) is obtained by treating G2(2|1)/8.(2]1)

2 A ~ 5
or X°(2]1)/8.(2]1) as x° with u d.f. under H. ., where &.(2|1) =u lséi(zll) may be

2Pl
computed from
I ~ 2~
ué_(2]|1) = n _Z A S D (2%22)
i=1
and Vi. is the i-th diagonal element of the estimated covariance matrix

of residuals, ri(2|l) = fi - ki ., given by

=51 e e 1

AX_AX D (w) " (2.23)

(#21..218)

-1
YV =n D(\:I)

(see equations (A.ll) and (A.l3) in Appendix II) and
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A= (X)8K )'1(§;D('§)\}D(y)§2) (X

AT
i )

} )
%5 i (2.24)
| b :
The standardized residuals ri(.?[l)/vii r can also be computed. As in
,
the case of goodness-of-fit, a better adjustment based on the Satterth-

waite approximation can ke obtained, utilizing the elements of Vr

A Wald statistic for testing H2 1 is given by

81 , (2.25)

where Vzﬁ is the principal submatriz of (2.5) corresponding to
V]

{TO

b
Under H, ,, the statistic xé(2|1) is asymptotically distributed as a
2

wilERy (fut d B | 1In pantdeulitan: | 4& 8 is a scalar, then we can treat

2
2

?;/s.e.(g JEIS) MNK(OTS)S Noirs é;/var(gz) as  x 1wAth | I gd.f weander

Y2 3

. IS 1 Note that Xi(Eil] is well-defined even if P, =@ ver W1l fox
some 1 , unlike xi . The Wald statistic (2.25) is computationally

o .
simpler than the adjusted X~ or G2 statistics.

24 . Diagnostics

It would be desirable to make a critical assessment of the logit fit
by identifying any outlying cell proportions and influential points in
the factor space. For this purpose, the vector of residuals, r , and
a projection matrix in the factor space provide useful tools. However,
the residuals can be defined cn different scales, unlike in the case of
the standard linear mezZel. A natursal chcice that takes account of the

~4

survey design is the vectcr of standardized residuals s ri/V‘A
1%
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Since the e, are apsronirazely N{0,1) umdez the ad3al, the axpssiac

numbers of [ei; exceeding 1.9¢, 2.33 and 2.5% are roughly equal to

0.051, 0.021 and 0.011 respectively, where 1 1is the number of residuals
(cells). These expected numbers provide a rough guide for identifying
any outlying cells. Ignoring the design ancé rence using standardized
residuals under binomial sampling could lead to erroneous diagnostics.

The standardized residuals e § however, become unrecliable for these

celis with 2= 14 or ehose te 1. "Tolcircimuenw this disficulliis we
e ’

) ] s ,\l
suggest the use ci ccmponents of XC or G; o/ BRI, S Xi/:: or
44! ; } d . :
G. =GHuW 5t = Y, .. .00 for residualffandlsichb PHEgiten, (PO8L) alsed
3 il . g

b4 i Te)c Gi in the binomial case. In either case, large individual compon-

ents should roughly indicate cells poorly accounted for by the model.

-~

Index plots xi vs. 4@ and éi vs. 1 are useful for displaying these

-~

components. A ncrmal propability plot of X, or 51 (i.e., the ordered

values plotted against standard normal quantiles, is also useful for
detecting deviations from the model, i.e., deviations from a straight line
configuration.

Following Pregibon (1981), we suggest the use of diagonal elements,
m. v of the projection matrix

1 )

kgl FAEEN R A
Ma= SL = XK SEX CATES TR I say (2269

to detect influential points. The matrix M arises naturally in solving the

likelihoed equations (2.4) by the method of iteratively reweighted least

vy
1

wom=9E (Preglmen;, IS ;) am small vadlues e zall attentisl. to

+

D

viaLleneloednta 1a Ehe Hzatar space. Agaimian index plet m,. wvsi i
C t;

L






gracifdes 0 oagsaful Sluplay. 1t may be noted that the design eéffact
does not come into the picture with m since we are using pseudo m.l.e.
based on binomial sampling.

Another useful plot which effectively summaricses the informaticen in

the Index plots Xi vs. 1 and mli vs. 1 1is given by the scatter
A 2 2 1. ' )

Dlkat Ol PRTIONGT S T /R vs. t. ., where t.. 1is the i-th diagonal

= Sl i i 3l

element of T given by (2.26). Again, the deff does not come intc the
picture.

The Ziagnostic measures e.l 7 | (or di) and m s are useful
fcr detecting extreme points, but not for assessing their impact on various

aspects of the fit, including parameter estimates, . fitted values,

T
trh

' i 2R 28 2 .
and goodness-of-fit measures X /% and G"/¢ £ or others. Following
Pregibon (1981), we suggest three measures which quantify the effect of
extreme cells (points) on the fit. These measures take account of the

design effect.

(1) Coefficient sensitivity. Let Bj(-i) denote the pseudo m.l.e. of
EJ obtained after deleting the i-th cell from the data. Then the quantity

ij(;) = {B, - Sj(-i)}/s.e.(éj) provides a measure of the j-th coefficient

|
sensitivity to the RX-th cell (point). The index plots Aj(i) vsl, &
fer each 3 provide useful displays, but the task of "looking" at the

index plots could become unmanageable unless the number of coefficients

ir the model 1s small.

() Sens=itav:ite of fitted values. 3Significant charges in coefficient

estimdtes whem the #-th point 1s daleted from the data set does npt
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necessarily imply that the fitted values £ also vary sigmificantly from

£(-) = £1E(-2)), where B(-f) is the estimate of £ obtained by deleting
the -th cell; i.e. H?-f(-l)” could be small. We therefore use

22 4 2 2\2 K . n

iGE-GT (- }/4. or X°-X“(-2)}/%. to assess the impact of the i-th

~

~7 -~
point on the fitted values £ , where G (-x) and x2(-£) are given by

(2.12) and (2.9) respectively when f = £(€) . is replaced by . f(rf).

~

{3) Gocdness-of-fit sensitivity. A measure of goodness-of-fit sensitivity

B | N < 3 T2 i , T
is given by {G"-G“(-0)}/é. or {x"-x“(-0)1}/I. , wnere X°(-7) =

2= (pé-fi(-I))zwi/{?i(-i)(l—fi(-’))} and Gz(—i) similarly defined using

bip A
(20100 | MREcdthial o0 o2 (- and JEME ¥ cA=£).

3. APPLICATION TO LFS DATA

We have applied the methods in Secticn £ to some data from the

Octcber 1980 Canadian Labour Force Survey (LFS). The sample consisted

of males aged 15-64 who were in the labour force and not full-time students.
We have chosen two factors, age and education, to explain the variation

in nonemployment rates vié logit models. Age-group levels were formed

by dividing the interval [15,64] into ten groups with the j-th age group
being the interval [10+5j, 14+5j] , j=1,...,10 and then using the midpoint
of each interval, Aj = 12+5j as the value of age for all persons in that
age group. Similarly, the levels of education, Ek , were formed by
sssigning tc each person a value based con the median years of schooling
resulting in the following six levels: 7, 10, 12, 13, 14 and 16. The

resultant age by education cross-classificatin provided a two-way table

cf I = 60 cell proportions (employment rates), njk
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The LFS5 desicn émployed stratified multi-stage cluster sampling with
two stages in the self-representing (SR) urban areas and three or fcu
stages in the non-self-representing (NSR) areas in each province. The
survey estimates, pjk JaCH ”jk were adjusted for post-stratificaticn
using the projected census age-sex distribution at the provincial level.
The estimated covariance matrix, V/n , of the estimates pjk was baseq
on more than 450 first-stage units so that the degrees of freedom for
V was large compared to I = 60. A detailed descriztion cf the sarpling
plan and associated estimation procedures for the LFS 1s given in

Statistics Canada (1977).

i.1. Formal tests of hypotheses

Scatter plots of the logits ij = Zn{pjk/(l-pjk)} against age levels

Ay, iESeachieducation level Ek , indicate that ?‘k increases with age
2 J -

to a maximum and then decreases. Hence, the following model might be

suitable to explain the variation in the wm. :

jk
Y, = Mndm o /Al SO R= A 2A. B A2 + E.E + B E2
ik jk jk NS 265 SRl Ak
gl B 500 T DUSTRISEIES he (3.1)

Some previous work in the sociological literature also supports such a
model (Block and Smith, 1277). Applying the results of Section 2, we

obtain the following values for testing the goodness-of-fit of the model

~—
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¥ )

Since the value cr | X ok 6 18§ Larger thawn ‘-.;6.05(‘.55) | -
the upper 5% point of xz with I-s = §5 d.f., we would reject the model
(2.1) if the sample design 1s ignored. On the other hand, the value of
Kz/‘. or Gz/a. indicates that the model is adeguate, the significarnce
level {or P-value) being approximately egual to 0.52. The value of

2 ; 2 !
Sstterthwaite's statistic X_ when adjusted to refer to ‘0 05(55) is
P -

eJual to 47.7 which is also rot significant at the 5% level. Moreover, in

the present context with s(=Z, relatively small compared to I1(=20,,

the simpie correction d. = ﬂ;dﬁk/GO , the average cell deff, is very close
4

to . : d. = 1.905 compared to . = 1.88 , where djk =

=1 = A ! )
var(pjk)/[(nwjk) pjk(l-pjk)l is the estimated cell deff and W ois the

@stimated relative size for the (j,k)-th cell. Rao and Scott (1985) have
sicwn that . = d. when I/{I-s) = 1.

The Wald statistic X; it not cefined here since two of the cells
have pjk = 1, i.e. all emploved. We made minor perturbations to the estima-
ted counts to ensure that pjk <1 for all cells and then computed xi 3
The resulting values of x; are all large compared to x2/§. , at least
30 times larger than X-/&. and vary considerably (1715 to 3061). We

thus concluded that the Wald statistic is very unstable for testing goodness-

of-fit in the present context. If the two cells having pjk = 1 are deleted,

2

0 05(53) = 71.0 , indicating that the model (3.1) is

2
then B = 68.4 < X
adequate. However, it is not a good practice to delete cells just to
o)
accommcdate a3 chosen statist:ic. The other problem with x; ., nategd by

Fay (1985), does not arise here since the d.f. for Q is large as

compared to the number of celis in the %able.
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The pseudo m.l.e. of the ':1 , th®lr standard srrors and thie

corresponding standard errors under binomial sampling, all obtained under

2.1
the model (3.1), are given in Table 1. The Wald statistic Xw(Z;l) and

; L 1
the G° statistic G°(2|1)/7.(2'L) for the hypotheses H, , : & =0 and

=M 1 :4 = 0 conditional -n model (3.1), are alsc given in Table 1. As

expected, the true standard crrcrs are larger than the corresponding

binomial standard errors. The hypothesis E4 = 0] (di.e., no rquaratic

cducation effect) is not rejected at tne 5% level =ither by the Walad

i
statistic or the G2—statistic (10 95(1) = 3.84). Ona the other hand,

5
the coefficient 3, of AS is nighly significant, indicating a guadratic
-

age effect.

We have also tested two mCre nested hypotheses given the model

! T .= = = S0 . i bd . . =
&2 Hz.l : £y 84 0 (i.e., no education effect); H, | 82

A =0 (i.e., no guadratic effects). Both hypotheses are rejected at

the 1% level:

6 (2|1)/5 (20 = 282.2/L.68 = 172.1, x2(2]1) = 165.6 for H, ,:B.=8 = O
: W 2. 1E 3=y
2 .} 2 ,
211 /3.2 - B egs = = Bl 'S ] sB =2 =
6“(21n/3. (21 = 242.2/2.28 = 106.3, X (2|1) = 162.1 for H, ;:8,=2, = 0,

as compared to xg Ol(2) = 0,21. Note that the Wald statistic is stable
for testing nested hypotheses, unlike in the case of goodness-of-fit,
and leads to values close to the corresponding values of G2(2:l)/€.(2ll).

By the ztove tests of gocdness—of-fit and nested hypotheses, we

D

arrived et the Sgllowing simsils medel invelwving oaly four parameters:
i f‘:', ‘ 2
P | 1= Al = O.2llAj = 0.00218Aj + 0.15092k (S84
(G247} (B 0% 5N (. OD0L2) (0L

The standard errors of parameter estimates are given in brackets in (3.2).

The diagnostics in Section 3.2 will be based on the fitted model (3.2).
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We now apply to the LFS data the diagnostics developed in Secticn 2.4.

(i) Residual analysis

The sixty cells in the two-way table were numbered lexicographically
and the standardized rcsiduals e, were computed under the model (3.2).
The cells numbered © and 54 with e 1l lead to very large e -
values: (66.2 and 6.. respectively, which zre unreliable as noted
earlier). Among the remaining € the residualc nurcered 7, 27 and
59 have values 3.84, 2.73 and 2.52 respectively, whereas the expected
number of |ei§ exceeding 2.33 is roughly 60 » 0.02 = 1.2. Hence,
there is some indication that cells 7 and 27 might correspond to
cutlying cell proportions.

The normal probapility plot of éi = Gi/;% displayed in Figure 1
indicates no significant deviations from a straight line configuration.
The index plot of Ci , Figure 2, is consistent with Figure 1. The plots
of ii are not given to save space but they are similar to those of &i'
We thus conclude that there is no evidence of outlying cell proportions

-~ -~

when the components Gi or Xi are used for residual analysis.

(ii) Influential cells

The index plot of m . displayed in Figure 3 clearly Points to cells
N, 2 2
2, 3 and 55. Figure 4 gives the plot of xi/xC = xi/x vs. tii , where

) a
o : . b g il e
the line with slope =i 1is given by xi/x + t*i = Bave(t:l) .. Here

« i

>
-~ " x * .
t., =t.., + X./X" , anag the values of t.. near to unity correspond to
g il 5 1818 g

cells which are outlying or influential or both (Pregibon, 1981) and

appear above the line in Figure 3. It is clear that cells 2, 3 and 55
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(iii) Coefficient sensitivity

The index plots for measuring coefficiency sensitivity (Aj(?) vs.
£) are displayed in Figures 5, 6, 7 and 8§ for tor &1 By and By
respectively. It is clear from these plots that cells 2 and 3 cause

instability in EO’ El and éz , whereas E3 is affected by cell 7.

(iv) Sensitivity of fitted values

Figure 9 displays the plot of [G2 = Cz(-;)}/c. =c. vs. Fafor
assessing the impact of individual cells on fitted values. Significant
peaks in this figure correspond to cells 2 and 3 and to a lesser extent
tc cell 7. Following Cook. (1977) and Pregibon (1381}, it may be noted
that | thepcampariseond of €, to the percentage point of xz wigh s d.f.
(s = 4 in the model (3.1)) gives a rough guide as to which contour of
the confidence region the pseudo m.l.e. is displaced due to deletion of
the L-th cell. The value cg = 2,1 for cell 2 roughly corresponds to

the 78% contour of the confidence region.

(v) Goodness-of-fit sensitivity

Figure 10 displays the plot of [GZ-GZ(-Q)]/é. vs. £ ; the plot of
{xz-xzt—i)]/ﬁ. is similar here but the former plot is preferred (Pregibon,
198l1). Significant peaks in this figure correspond to cells 2, 3, 7, 27
39 and 54 (values - 3), the most significant being cell 7 with the value

(=7) =

(o NS

5.4. By deleting cell 7 and recomputing the adiusted statistic G

D | -
G (=7)/¢.(-7) where ¢.(-7) is the corresponding estimate of &. , we

=] =
get G; -7y = 48.43 with 55 d.f: compared to G /&. = 55.3 with 56 4.£.






£

Ouls dnvesslgatipn dndleates onlthe | vhcls wimE adliliss 7, 2 2gd 3" Qe
possible candidates for deletion, but we feel that their impact is not

significant enough to warrant this action.

3.3. Smoothed estimates

The coefficient of variation of survey estimates, l-pjk ot

unemployment rates is quite large for cells with small samples, ranging

from 6.8% (for -~ell 3} to 28.5% (for cell 59). Because of this, we

A

cumputed the coefficient of variation of smoothed estimates, l—fjk p

under the model (3.1}, using formula (2.6). The smoothed estimates lead to a
dramatic reducticn in coefficient of variation: the coefficient of variation of

l-fjk ranges from 3.3% (cell 8) to 12.4% (cell 60); the coefficient of variation

=3

for cell 59 i reduced from 98.5% to 11.0%. The average coefficient of variation of

i-n.. (mver the 58 cells with -pjk> 0) is 32.1% compared to 6.2%, the average

15

-

coefficient of variation of 1-fjk (over all the 60 cells). Moreover,

the bias of smoothed estimates should be relatively small since model

(3.1) provides an adequate fit to the data.

APPENDIX

Outline of derivation of main results

I. Asymptotic variances and covariances

The pseudo m.l.e. are obtained from the binomial likelihood, L(E),

say, by replacing n. Dby nw, and Ry by (nw. ip. and then minimizing
- - -

with 'respect te £ . It is easily seenithat






=2 &n L{g)

* 1
where a = 1w,
h ~ Lpl

{wlfl,...,waI;
¢=Eb'

Za’ ;
i :

'

= 1. Hence,

wl(l-fl),...

=

,wl(l—fl))}

cowp i Wy (1=py) ..

noting that maximizing L(f‘

ana

= 2nG~{(a*, b*(@)) + terms not involving & ,

* ‘ g
,wI(l—pI) and b = @& (t) =

2

2l s S =3 ,; * }a
G (&% ™) alrﬂai/tl),

-~

is equivalent to

minimizing Gz(q',b*(ﬁ)) , Wwe can use the results of Birch (1964) to get

=
vn(ﬁ-ﬁ

where =~ denotes
from a* and g*
w. - W = op(l) "

the case of logit

JRN T [ (U=l

=1L

Bl

B'D(b)

-4 -
“(a-p (D) (A.1)

“asymptotic eguivalence”.

respectively by replacing

D(b) = diag(bl,...,b )

model (2.1),

satisfied and (A.l) reduces to

/H(é-g) ~ xan”

1

Birch's

i

Here a ansd b are derives
w. with W, = : N
il i Nll/hl g

= -
and B = D(b) '(39/43). In

(1964) regularity conditions are

X'pw) {\nip-£)} ,

(A.2)

where A = diagtwlfl(l—fl),...,waI(l—fI); and D(@) = diag(wl,...,w 0l

i

Now assuming that /F(p-f) converges in distribution to NI(O,V) , we

~

get, from (A.2), the asymptotic covariance matrix of @2 :

Vg

~

~

il

%(X'AX)-I(X'D(E)VD(E)XJ(X'AX)_ { (A.3)

Replacing the parameters in

Similarly, noting that

and

(A.3) by their estimates, we get (2.5).

(A.4)






o=

. = ; -1, e ol T \
dalp - = o x o= IT-D(W TAX (X A3 TX' Dl gidaip=-£) )
we get (2.6) and (2.7).

s . 2 N
II. Asymptotic null distribution of X (2,1)

2
The statistic X’(Ell) (given by (2:.19));for testing the ested

hypothesis H2 1 ¢ ?2 = 0 1is asymptotically eguivalent to

~ -

ntg - £)'owbs o (£ - )

under) Wik I Now, similar to (A.4) we have

.

; ke A i
Ynig - £) ~ow e LR - epl
where
i~ :\: - - ' -1 ;-
Yn(E, - B)) ~ (X 8%) "X, 0W{vnp-£)}.

Hence, from (A.4) and (A.6),
/\:N -l, ._A_ l\- /—ﬁ-
/a(g-£) ~ D(W) a{x,/n (R -8,)+x,/nB, - X /n(B;-B,)}

under Now, following Rao and Scott (1984), we express

i B

as a partitioned matrix

N
—
L%

X' AX

(a.€)

(A.7)

(A.8)

(A.9)

and then use the standard formula for the inverse of a partioned matrix

to get, after simplification,

T

v

- A= r s ' =1 . I b
L - By TYn(E) - B v (XAX)) TR AX )R 2,

~N

(A.10)






su=atdtuting (A.10) ince (A8 w8 get
2 g & =i - - o
yuiE - 23 . D(W) ux,‘ v IR e 1Y (W, 4l 1)
-~ .~ & -
where
=1
b (W BT TR G (& K (XXt ik
- 1, i g Sl |
Az a result, we get the following asymptotic rezresantation from (A.3) and
g8 . LR
=izt (X BX.iw (A2
Ol K n M G e | /58 JERY]
oy be VR Pl

Alsc it fcllows from (A.3) and the formula for the inverse of a partitioned

matrix that the asymptotic ccovariance matrix of &, may be written as

1

r

=il

Ve = (%) 2% THED VDX, (X)) £X,) (A.13)

= . = 7 .

sc that E2 is approximatelsy NU(O,V: i under | BB 1° Hence, X (2|l) is

asymptotically distributed as C Ci(Q}I)Zi , using a standard result con the
i

distribution of a guadratic form in normal variables, where the éi(2|l)
are eigenvalues of (iéluz)-l(ﬁéD(W)VD(W)iz). Replacing %, W and V

by their estimates A . ¥ 9 and v respectively, we get (2.21). It can
be shown that G2(2il) is asymptotically equivalent to X2(2|l) under

H2.l sc that the above result alsc holds in the case of 62(2ll).

A Wald statistic under binomial sampling is sometimes used, instead

e 7 o L
o | M (2]1) g "G RIS to test' H

21" Noting that HZ.I is equivalent
ge HY g % = H'Y = D, whers = ihi by ol T l'eed T "dewmall B¢ u
matrix of rank u with H'Xl = 0 and H'X2 ncnsingular, the Wald

StaRwstie M5 given b






S

X R <1
—f 4 g =N = J

=3

e =@ V-, W 9 )

= 5 F g O = 47
Here ¢ = H'V , .. = n{f./(1-£.)) and v is the estimate of V

- ~ I & i 04 03
2 )
given below. As in the case of X (2[1) the true asymptotic null
distribution of X {2!i} is a weighted sum, ~y.(2f1)2. -, of independent
g uh i

xz(l) variables with weignts y1(2l1),...,yu(2il) given by the eigenvalues

of V(-)lbv(p , where V, k6 = H':\'V;X'H and VO“ = n-IH'X(X'ﬁ,X)-lX'H is the
% z 4

corresponding expression under binomial sampling. The formula for V,
follows from the appreximation

=1

/ig-0) ~ H'ATID WnE-D) ) - Bk E-2) ], (A.15)

-~

using (A.4). It follows from (A.l4), (A.15) and (A.12) that i;(Z!l) is

asymptotically equivalent to x2(2l1) under H2 1’

and E'X(x'Ax)"x'm = H'xz(iéixz)'l

noting that

2 Tis>

[ @_E - [ 1 i 9 ¢
H'X (B5=-E) H X2 5 X2HE’ This result

implies that
{Yl<2|1),...,Yu(251>} is identical to {61(2]1),...,6u(2ll)}. (A.16)

III. Asymptotic null distribution of x2

The asymptotic null distribution of X2 (or G2) can be obtained as a

special case of the result for nested hypothesis by treating the model

i e

M, as a saturated model. We have f

i
1

P in the saturated case so that from
= - S o

D(W)VD(W)A "H and VO@ = n MM
L

(A.16), X is asymptotically distributed as zy o where ¢

are the eigenvalues of Vaiv®

(A.15) Vy = n ‘H'A A *X. Hence, from

1’ -8
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Table 1. Pseudo maximum likelihood estimates Qi and corresponding

standard errors for the LFS data unier model (3.1). &Also,

2 ~2, 2 86z L
xw(Z}l) = B[/var(i;) and G N /20241y “EGn th
.2 = 3 HE) =

nested hypotheses H2.1'”2 0 and H2.l'“4 0.

i 8 s.e. (B.) x22|n  6%2|n/3. 2l
5t “has at W — L
True Binomial

0] -2.76
it 0.209 0.013 05500 2
2 ~0.00217 0.000173 0.000136 S7. 8 Q2% 2
3 (/10218 @089 0.068

4 C.00276 C.0041 0.0030 0.45 .45
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