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Si.ThINARY 

Standard chi-squared () or likelihood ratio (G) test statistics 

for logistic regression analysis, involving a binary response variable, 

are adjusted to take account of the survey design. These adjustments are 

based on certain generalized desiqn effects (deffs) . Logistic regression 

diagnostics to detect any outlying cell proportions in the table and 

influential points in the factor space are also developed, taking account 

of the survey design. Finally, the results are utilized to analyse some 

data from the October 1980 Canadian Labour Force Survey (CFS) 

Some Key Words. Binary response data; chi-squared test statistic, 

Design effect; Satterthwaite's approximation; Diagnostics. 

1. INTRODUCTION 

The analysis of variation in the estimated proportions associated with 

a binary response variable is cf considerable interest to researchers in 

social, behavioural and health sciences. Logistic regression models are 

- 	extensively used for this purpse (see, for example, the books by Cox (1970) 

and ioCullagh and Nedsr (IQ) . However, the standard statistical methods 
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for bino!rd11 	onr are often inapproprito 	r analysing sarnj1e 

survey data due to clustering and stratification used in the survey design. 

• 	For instance, the standard chi-squared (X ) and 	likelihood ratio 

(G 2 ) test statistics greatly inflate the type I error rate when a strong, 

positive clustering is present. As a result, some adjustments to the 

• classical methods that take account of the survey design are necessary in 

order to make valid inferences from survey data. Section 2 provides ad-

justments, based on certain generalized design effects (deffs), to standard 

- statistics for testing goodness-of-fit of the model and for testing sub-

hypotheses given a model. A valid estimate of the asymptotic covariance 

matrix of fitted cell proportions is also obtained. 

In addition to formal statistical tests, it is essential to develop 

diagnostic procedures to detect any outlying cell proportions and influential 

points in the factor space. Regression diagnostics for the standard linear 

model have been extensively developed in the literature (see the book by 

Cook and Weisberg (1982)). Pregibon (1981) developed similar methods for 

logistic regression with binomial proportions. In Section 3, some of these 

methods have been modified, by making necessary adjustments to account for 

the survey design. Finally, the results are utilized in Section 4 to 

analyse some data from the October 1980 Canadian Labour Force Survey (LFS). 

Derivations of asymptotic variances and covariances and of adjustments 

to test statistics are sketched in the Appendix; details are given in 

G. Roberts' 1985 Ph.D. thesis at Carleton University. 

The metnods developed in this article require access to the estimated 

- 	covariance matrix of cell response proportions. The calculation of standard 

errors for estimates of regression parameters, fitted cell proportions and 
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residuals (Section 2.1) requires kno'li!dge of tne entire estimated cc-

variance matrix. On the other hand, sirnDle bounds for some adjustments 

have been developed to facilitate secondary analysis from published tables 

(Rao and Scott, 1985). These bounds require knowledge only of estimated 

cell deffs or certain generalized deffs not depending on any hypothesis; 

reporting of these should be feasible. 

Holt and Ewings (1985) have studied the effect of survey design on 

standard logistic regression analysis under a general cluster effects 

- 	superpopulation model. 

Although a logistic regression (logit) model for binary data can be 

viewed as an alternative specification of a suitable loglinear model, the 

objectives behind the two approaches are quite different; hence, the loqlt 

0 

	

	model should not be discarded rrrely as a special case (McCullogh, 1980) 

In particular, the loglinear models which correspond to logrt models are 

eliminated at an early stage in the usual approaches to loglinear modelling, 

so that the final loglinear model usually does not correspond to any logit 

model (Kalbfleisch, 1984). Moreover, the standard errors or parameter 

estimates and the adjustxnents to X in the loglinear set-up depend on 

the covariance matrix of the cells in the extended table appropriate for 

loglinear model analysis. This covariance matrix may not be available since 

the conuter program is usually set up to provide only the estimated cell 

response proportions and their estimated covariance matrix. 

2. TEST STATISTICS 

Suppose that the population of interest is partitioned into I cells 

(domains) according to the levels of one or more factors. Let N. denote 
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the survey estimate of the i-tb domair size, N. 	(i=l, 	. ,I; z. 	N) 
1 	 1 

The corresponding estimate of the i-th domain total, N. 1 , of a binary 

(0,1) response variable is denoted by N, 1 . The ratio estimate p. = 

N. 1/N. is often used to estimate the population proportion TI. 	N. 1 /N.. 

Standard sampling theory provides an estimate of the covariance matrix of 

the p's. 

A logistic regression (logit) model for the proportions it, is given 

by iT. 
1 

= f 1  ,(5) , where 

= th{f. (.). 1--f. (:) 	= x 	, i=1,...,I. 	(2.1) 1 

In (2.1), 	x. 	is 
•-1. 

levels and 2 is 

biromal sampling 

• 	and f = f(2) 

equations through 

an s-vector of known constants derived from the factor 

an s-vector of unknown parameters. Under independent 

in each domain, the maximum likelihood estimates (m.1.e.) 

( 1 ,...,f 1 )' are obtained from the folTowing likelihood 

iterative calculations: 

X'D(n/n)f = X'D(n/n)q 
	

(2.2) 

where XI = ( x1 ,...,x1 ), D(n/n) = diag(n 1/n,...,n 1/n), q is the vector 

of sample proportions q.= n. 1/n. , n1  is the sample size from the i-th domain 

(En. = n), and 
nil 

 is the i-th sample domain total. For general sample 

designs, we do not have m.l.e. due to difficulties in obtaining appropriate 

- 	likelihood functions. Hence, it is a coxiunon practice to use a "pseudo m.l.e." 

of 	obtained from (2.2) by replacing n
i 
 /n by the estimated domain relative 

size w. = fL/f, and q. by the ratio estimate p. 
1 	1 	 1 	 1 

X'D(w)f = X'D(w)p , 	 (2.3) 

f 
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.here D(w) = diagtw 1 , . . ,w 1 ) and p = (p 1 , ... ,p 1 ) 	The resulting 

B and f = f( 

	

	, are asytotica1ly consistent. Equation B)  

:--) 	 1s 

	

N 1 (m) = x'N1  , 	 (2.4) 

..:jrc N 	is Uie vectox of estimated counts N. 	and N (m) is the 

vo:r of 	 1.. 	(m) = N.f. 	of N. 

	

1 1 	ii 

.1. Estimated asvD:ic variances and covariances 

nV denote the survey estimate of the covariance matrix of p 

	

x(w)vv:) 	X) 
, 	n 	.. 	- 

here 	= diag(w 1 f1 (l-f1 ),...,w 1 f1 (l-f 1 )) 	(see Appendix I). In the 

.-- 	-1 
nomial case, (2.5) reduces to the standard formula (X'X) 	, where 

= diag(n 1 1 f1 (1-f 1 ),..,n 1 1 f1 (l-f 1 )). 

The estimated asytotic covariance matrix of the fitted cell proportions 

f is given by (Appendix I) 

	

Vf  = D()IXV8X'LD(w) 1 . 	 (2.6) 

The smoothed estimates f can be considerably more efficient than the 

survey estimates 	, especially for cells with a small sample, if the model 

(2.1) provides an adequate fit to p (see Section 3.3) . It may be remarked 

that the estimates f. are similar to the so-called synthetic estimates 

employed in small area estimation. 

The estimated a;\•'ptctic covariance matrix of the residual vector 
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r = p - f is given by (Appendix I) 

A 	-1 A 

Vri AVA 

where 

A = I-D(w)X(XX)'X'D(w) 

(2.7) 

(2.8) 

-6- 

and I is the identity matrix. The diagonal elements V.. 	, of (2.7) 

are needed to calculate the standardized residuals r./V. 	which are 
1 ii,r 

useful in detecting outlying cell proportions (Section 2.4) 

2.2. Goodness-of-fit of the model 

The standard X and G2  tests of goodness-of-fit of the model (2.1) 

are given by 

A 22 2 
= 	w./[f.(l-f1 )] = 	x. (say) 

j=l 	 i=l 
(2.9) 

1 

and 

I A  
G2  = 2ri 	w [p.2.ri(p,/f.) + (1-p.)Zn{(1-p.)/(1-f.)JJ 

i 1 	 1 	1 
i=1 

I 
= 	' G (say).  

i=1 

Note that G is defined at p. = 0 and 1, respectively,by the quantities 

-2nw.9.n(l-f.) and -2nw.Qn if. Under independent binomial sampling, it is 

well-known that both X 2  and G2  are asymptotically distributed as a 

variable with I-s degrees of freedom (d.f.) when the model (2.1) holds, 

but for general sample designs this result is no longer valid. In fact, 

(or G 
2 
 ) is asymptotically distributed as a weighted sum ZS.z. of 

independent • ç 	variables Z 1 , each with 1 d.f. (see Appendix III) . Here, 
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- 	 the weights 5. 	( 1=1. I-s) are estimated by 	. 	the eigenvs1'o of 

"-1 
V0 V , where 

	

V 	n H A 1 D(w)VD(w) 1H , 	 (2.11) 

nfl'H 
	

(2.12) 

-7- 

and H is any I x (I-s) matrix of rank I-s such that H'X = 0. The 

matrix VV and 5. are termed a "generalized deff matrix" and a 

"generalized deff" respectively since they reduce to I and 1 respectively 

under binomial saiip1ing. 

An adjustment to X or G 2  is obtained by treating X 2 	or 

G2  = G2/Ô 	as a 
2 
 variable with I-s d.f., where 5. = E5./(I-s) may 

be computed from the following expression: 

I 

	

(I-s) 	= 	.. 	w./[.(1-.)). 	(2.13) ii,ri. 	1. 	1 
i=1 

The adjusted statistics X or G 
2

should be satisfactory if the 

coefficient of variation (CV) of the 6.'s is small. A better adjustment, 

based on the well-known Satterthwaite approximation, treats X = X2/(1+ 2 ) 

or G = G2/(l+ 2) as a X
2

variable with (I-s)/(1+a 2 ) d.f., where S 	C 

	

= 	
(. _ )22] 	 (2.14) 

is the (CV) 2  of the 5's, and 	is obtained from 

I-s 	I 	I 
= 	V. 	(riw)(nw.

J
)/[f.

i
f.(l-f.) (1-f.;], 	(2.15) 

2. 	. 	. 	 j 	1 
i=l 	1=1 j=l - 

where V. . 
ij,r 

 is the (i,j)-th element of V r . The test statistics X 
S 
 and 
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G' -)  take account of the variation in the ó. 's unlike X 	and G 
- 	 S 	 1 	 C 	C 

A Wald statistic, which also takes the survey design into account, 

is given by 

2"-1 
= u H V H V (2.16) 

where V is the vector of logits V. = in{p±/(l_p)}. The statistic xW  

is asymptotically distributed as a X variable with I-s d.f. when the 

model (2.1) holds. This result follows from the fact that testing the fit 

of the model (2.1) is equivalent to testing the hypothesis H) = 0 

where 0 is a vector of zeros and V = (V1 ,...,\) 1 ). The statistic 

however, is not defined if p = 0 or 1 for some i , as in the case 

of LFS data (Section 4). Moreover, it becomes unstable when any p. is 

close to 1 (see Section 4) or when the number of degrees of freedom for V 

is -  elatve to I-s (Fay, 1985). 

2.3. Nested hypotheses 

Suppose that the matrix X is partitioned as (X 1 ,X 2 ) , where X 1  is 

I Xr and X 	 is I Xu (r+u = s). The logit model (2.1), say M1  , may 

then be written as 

V = xB = x18 1  + 	, 	 (2.17) 

where B 	 is r xl and B 2 is U Xl. We are often interested in testing 

the null hypothesis H 21  : 3 = 0 , given M ] . Denote the reduced model 

under H2 
1 
 as 	. The pseudo m.1.e. 5 of ' under M 	can be 

obtained from the equations 

:wf = X 1 D(w)p 	 (2.15) 
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aai by iterative ca1ci1atic'ns, wher.i f = f(s). The standard X 	and 

tests of H2 
1 
 are given by 

I A 	 A 	 A 

x2 211) = n 	(f. -f1)2w1/[f1(1 - f•) ] 	(2.19) 

and 

A 	
A 

G2 (21) = 2nw.[f.n{f./f.} + (1-f.)Zn{(l-f,)/(1-f.)}] (2.20) 

resnectively. Under H 2.1'X2(211)  or G2 (211) is asyitotical1y distri-

buted as a weighted sum, E5.(21)Z. , of independent X 	 variables z., 

each with 1 d.f. Here the weights 5.(21) 	(i=1,.. .,u) are estimated 

by 5.(21), the eigenvalues of the generalized deff matrix 

. 

	

(XX2 )'(XD(w)VD(w)X2 ) 
	

(2.21) 

where X = [I _x1 (XX1)'X]x2  (see Appendix II). In the case of 

binomial sampling, 6.(21) 	1 for all i so that we get the well-known 

result that x2 (21) or G2(2t1)  is asyntotica11y distributed as a 

variable with u d.f. under H 2  

An adjustment to G2(211)  or  X2(211) is obtained by treating G2 (211)/cS.(211) 

or X(21)/. (21) as 	with u d.f. under H2 
1'  where . (21) =u 1 .(2Jl) may be 

computed from 
I A 

u6 (21) = n 	V .. 
ii,r 

w 
 i 
./[f,(l-f.)] 
	

(2.22) 

- 	and V.. ii,r is the i-th diagonal element of the estimated covariance matrix 

of residu3ls, r.(21) 	f. - f. , given by 

= nhD(w)l.1X2Aj!D(w)_1 	 (2.23) 
W 	 (2.23) 

(see equations (A.11) and (A.13) in Appendix II) and 
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(
1
D( . )D() 2 ) (.X 2 ) 1 . 	(2.24) 

The standardized residuals r.(2I1)/V. 	can also be computed. As in 

the case of goodness-of-fit, a better adjustment based on the Satterth-

waite approximation can be obtained, utilizing the elements of 

A Wald statistic for testing H21  is given by 

X(2!l) = 
	2'22 	

(2.25) 

where V2 ., is the principal submatrix of (2.5) corresoonding to 	,. 

Under H21 , the statistic X( 2 Il) is asytotically distributed as a 

2 with u d.f. In particular, if 132  is a scalar, then we can treat 

:/ s . e . 	as N(0,l) or 13/var(132 ) as 	with 1 d.f., under 

H. Note that X(2Il) is well-defined even if p. —O or 1 for 

some i , unlike X . The Wald statistic (2.25) is computationally 

simpler than the adjusted X or G 	statistics. 

2.4. Diagnostics 

It would be desirable to make a critical assessment of the logit fit 

by identifying any outlying cell proportions and influential points in 

the factor space. For this purpose, the vector of residuals, r , and 

a projection matrix in the factor space provide useful tools. However, 

the residuals can be defined on different scales, unlike in the case of 

the standard linear model. A natural chcice that takes account of the 

survey design is the vector of standardized residuals e. = r/V. 
1 	1 	L1,r 
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the 	e 	re 	 N(Q,I) 	uci 	h 	:ie1, the 	x' 
1 	 - 

numbers of !e. 	exceeding 1.96, 2.33 and 2.55 are roughly equal to 

0.051, 0.021 and 0.011 respectively, where I is the number of residuals 

(cells) . These expected numbers provide a rough guide for identifying 

any outlying cells. lonoring the design and hence using standardized 

residuals under binomial sampling could lead to erroneous diagnostics. 

The standardized resdua1s e, , however, become unreliable for these 
1 

ceLls with p = 1 or c1e t 	1. To circum.'ent this difficulty, we 

2 

suggest the use c c:npccients of X 	or 	, viz. X. = 	or 

G. = G 	for residual analysis; Pregibcn (1981) used 

X. or G. in the binomial case. In either case, large individual compori-

ents should roughly indicate cells poorly accounted for by the model. 

Index plots X vs. i and G 1  vs. i are useful for displaying these 

- - 	components. A ncrmal probability plot of X. or G. (i.e., the ordered 

values plotted against standard normal quantiles is also useful for 

detecting deviations from the model, i.e., deviations from a straight line 

configuration. 

Following Pregibon (1981), we suggest the use of diagonal elements, 

in.. , of the projection matrix 

M = I - 	X(X'X) 1X' 	= I - T, say 	(2.26) 

to detect influential 

likelihood equatin 

uar 	Prec1L-..n, 

extrene DointE in the 

S 

points. The matrix M arises naturally in solving the 

. 	by the method of iteratively reweighted least 

anJ ma11 values Cl- M . 	call attention to ii 

factor space. Again an index plot in. vs. 	i 
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19-.~ 
ue:u I 	ii-p1oy. 	It. may bv notcu that the design ef fe;t 

does not come into the picture with rn, 1  since we are using pseudo rn.l.e. 

4 

• 	 bssti on binomial sampling. 

Trnother useful plot which effectively summsrises the information in 

the index plots x. vs. i and m  Ii  vs. i is given by the scatter 

- 	 -22 	22 
Diot of X./X = x./x 	vs. t. , where t. - is the i-th diagonal 

	

I C 	1 	 ii 	 11 

element of T given by (2.26). Again, the deff does not come into the 

picture. 

The diagnostc measures e.1  , X 1  . 	(or G 1  .) and m ii  . 	are useful 

for detecting extreme points, but not for assessing their impact on various 

asects of the fit, including parameter estimates, 	, fitted values, f 

and goodness-of-fit measures X 2/ and G2/5 or others. Following 

Pregibon (1981), we suggest three measures which quantify the effect of 

extreme cells (points) on the fit. These measures take account of the 

design effect. 

(1) Coefficient sensitivity. Let 3 3 -Q) denote the pseudo m.1.e. of 

. 

obtained after deleting the -th cell from the data. Then the quantity 

..()}/s.e.(e) provides a measure of the j-th coefficient 

sensitivity to the R-th cell (point). The index plots 6 (Z) vs. .. 

fcr each j provide useful displays, but the task of "looking" at the 

index plots could become unmanageable unless the number of coefficients 

-. 	 in the model is small. 

( - 	Sr.tivt 

 

of fitted values. Sianificant char.Qes in coefficint 

e::tchen the -th point is dieted fran the data set does n:a 
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necessarily imply that the fitted values f also vary significantly 	r( 

f(-..) = f(E(- 2 )), where 	(-) is the estimate of E obtained by deleting 

the -th cell; i.e. 	If-f (-2.)  II could be small. We therefore use 

2 - 2 	2-2 
tG -G (- .) }/. or 	x -x (-9.) )i . to assess the impact of the 2.-th 

Doint on the fitted values f , where G (-) and X (-P.) are given by 

(2.2) and (2.9) respectively when f = f(s) 	is replaced by 	(-). 

() Gccdriess-of-fit sensitivity. A measure of goodness-of-fit sensitivity 

is civen by 	G-G2 (-) }/. or {x 2 -x 2 (-) 	where X 2 (-) = 

pf.(-2)) 2w./{f.(-i) (l-f 1 (-2)) 	and G 2 (-i) 	similarly defined using 

(2.10). Note that x 2 (-2.) # X 2 (-i) and G2 (-) 

3. APPLICATION TO LFS DATA 

e have applied the methods in Section 2 to some data from the 

October 1980 Canadian Labour Force Survey (LFS) . The sample consisted 

of males aged 15-64 who were in the labour force and not full-time students. 

We have chosen two factors, age and education, to explain the variation 

- 

	

	in nonemployment rates via logit models. Age-group levels were formed 

by dividing the interval [15,64] into ten groups with the j-th age group 

being the interval [10+5j, 14+5j] , j=l,...,lO and then using the midpoint 

of each interval, A. = 12+5j as the value of age for all persons in that 

• 	ace group. Similarly, the levels of education, Ek , were formed by 

- 

	

	ssign1ng to each person a value based on the median years of schooling 

resulting in the following six levels: 7, 10, 12, 13, 14 and 16. The 

. 	 iesultant age by education cross-classificatin provided a two-way table 

0 	ci I = 60 cell proportions (employment rates), 
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The LFS desicr mpicyeJ Lstratified multi-stage cluster sampii:. 	it.n 

two stages in the self-representing (SR) urban areas and three or four 

stages in the non-self-representing (NSR) areas in each province. The 

survey estimates, D 
jk 	

of  'jk were adjusted for post-stratificat:on 

using the projected census age-sex distribution at the provincial level. 

The estimated covariance matrix, V/n 	of the estimates p 	 was basedjk  

on more than 450 first-stage units so that the degrees of freedom for 

V was large compared to I = bO. A detailed description of the sanPilr.g 

plan and associated estimat1n procedures for the LFS is given in 

Statistics Canada (1977). 

.1. Formal tests of hypotheses 

S:atter plots of the logits 	jk = 2.n{Pk/(l_Pk)) against age levels 

t each education level E n , indicate that 	icreases with age 
k 	k - - 

to a maximum and then decreases. Hence, the following model might be 

suitable to explain the variation in the iLk 

+ 	A + 	A.  + v 	= 9..n{n /(l-r 	= 	1 j 	2 2 
	

E3E + k jk 	jk 	jk 

j = 1,...,10; k = 1,...,6 . 	(3.1) 

Some previous work in the sociological literature also supports such a 

model (Block and Smith, 1977). Applying the results of Section 2, we 

obtain the following values for testing the goodness-of-fit of the node! 

0 	x 2 	- T1., 	= 53. 	anal 	. = 1.98. 



S 

. 



-15- 

-. 

 

thtj value CL X 	G 	i iara€r th 	. 0.05 

the upper 5% point of X 	 with I-s 	55 d.f., we would reject the model 

(3.1) if the sample design is ignored. On the other hand, the value of 

2' -. or G /6. indicates that the model is ade'uate, the significnc 

level (or P-value) being approximately equal to 0.52. The value of 

2 
5aterthwaite's statistic X 	when adjusted to refer to i 	(55) is 0.05 

eouai to 47.7 which is also not significant at the 5% level. Moreover, in 

the present context with s(=., relatively small compared to  

the simple correction d. = .6,/60 , the average cell deff, is very close 

to 	. : d. = 1.905 compared to 	•. 	1.88 , where d.k = 

var(p.k)/[(nw.k)1p.k(1_P.k)1 is the estimated cell deff and W.k is the 

timated relative size for the (j,k)-th cell. Rao and Scott (1985) have 

:.own that . d. when I/(I-s) 1. 

The Wald statistic X 	is not defined here since two of the cells 

have p jk = 1, i.e. all emplcyed. We made nur.or perturbations to the estima-

ted counts to ensure that< 1 for all cells and then computed 

The resulting values of X 	are all large compared to X2/. , at least 

30 times larger than x2/6. and vary considerably (1715 to 3061) . We 

thus concluded that the Wald statistic is very unstable for testing goodness-

of-fit in the present context. If the two cells having p jk = 1 are deleted, 

then X = 68.4 < X05(53) = 7 1.0 , indicating that the model (3.1) is 

adequate. However, it is not a good practice to delete cells just to 

ccommcdte a chosen statist:. The other rrctlem with 	, noted by 

Fay (1985), does not arise here since the d.f. for V is large as 

S 

0 	:'prrei to the number of ce1 	rho ibI'. 
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Thu 	eudo rn. I .c. of thu 	, thir standard trrrors and the 
i 

corrponding standard errors under binomial sampling, all obtained under 

:hc model (3.1), are given in Table 1. The Wald statistic X(2l) and 

the 	statistic G2(211)/.(2l) for the hypotheses H2 1 	= 0 and 

H... 	: 	= 0 conditional :'n cdei (3.1), are also given in Table 1. As 
2.1 

expected, the true standard errcrs are larger than the corresponding 

binomial standard errors. The h.'pothesis 	= 0 (i.e., no quadratic 

uducation effect) is not rejectd at the 5. level either by the Wald 

statistic or the G 
2 -statistic ('. 	 (1) = 3.84). On the other hand, 

0 .0 

the coefficient 	2 
 of A 	is highly significant, indicating a quadratic 

age effect. 

We have also tested two more 	nested hypotheses given the model 

H 21  : 	= 	
= 0 (i.e., no education effect); H 21  : 2 = 

= 0 (i.e., no quadratic effects). Both hypotheses are rejected at 

the 1% level: 

2 
G(2ll)/..(21) = 282.2/1.64 = 172.1, X(2I1) = 165.6 for H 2 1 :E3 = 4  0 

G2 (2l)/.(2'1) = 242.2/2.28 = 106.3, X(2Il) = 162.1 for H 21 : 24  = 0, 

as compared to xo 01(2) = 9.21. Note that the Wald statistic is stable 
for testing nested hypotheses, unlike in the case of goodness-of-fit, 

2 
and leads to values close to the corresponding values of G (2j)/c.(21). 

By the above tests of goodness-of-fit and nested hypotheses, we 

rr:ci t th" 	11owing si1 mcd1 nvo1vino •:nly four parameter: 

= -3.10 + 0.211A. - 0.00218A + 0.1509E 
k 	

(3.2) 

The standard errors of parameter estimates are given in brackets in (3.2) 

The diagnostics in Section 3.2 will be based on the fitted model (3.2). 
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fl 
3. . Diaqnostc 

We now apply to the LFS data the diagnosticE developed in Section 2.4. 

Residual anal -isis 

The sixty cells in the two-way table were numbered lexicographically 

and the standardized residuals e i were computed under the model (3.2) 

The cells numbered 6 and 54 with p = 1 lead to very large e 1 -

values: (66.2 and 6.2 respectively, which are unreliable as noted 

- 

	

	earlier). Among the remaining e. , the residuals numbered 7, 27 and 

59 have values 3.84. 2.73 and 2.52 respectively, whereas the expected 

number of Ie 	exceeding 2.33 is roughly 60 Y 0.02 = 1.2. Hence, 

there is some indication that cells 7 and 27 might correspond to 

outlying cell proportions. 

The normal probability plot of G. = G 1/: 	displayed in Figure 1 

indicates no significant deviations from a straight line configuration. 

The index plot of G. , Figure 2, is consistent with Figure 1. The plots 

of R are not given to save space but they are similar to those of C. 

We thus conclude that there is no evidence of outlying cell proportions 

when the components G. or X. are used for residual analysis. 

Influential cells 

The index plot of in.. displayed in Figure 3 clearly points  to cells 

-2 
2, 3 and 55. Figure 4 gives the plot of 	= 	vs. t. , where 

the line with siope -i is given by X'1X '  + t.. = 3ave(t* ) . Here 

t. = t. - + X.,'X , and the values of t. - near to unity correspond to 

. 

	

	 cells which are outlying or influential or both (Pregthon, 1981) and 

appear above the line in Figure 3. It is clear that cells 2, 3 and 55 



. 

. 

0 
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Coefficient sensitivity 

The index plots for measuring coefficiency sensitivity (i() vs. 

are displayed in Figures 5, 6, 7 and 6 for 	, l' 
'2 and 

respectively. It is clear from these plots that cells 2 and 3 cause 

instability in 	and 62 , whereas C 3  is affected by cell 7. 

Sensitivit\' of fitted values 

- 	Figure 9 displays the plot of (G 2  - G2 (-J. = C ;  VS. 	. for 

assessing the impact of individual cells on fitted values. Significant 

peaks in this figure Correspond to cells 2 and 3 and to a lesser extent 

to cell 7. FollcwLng Cook (1977) and Pregibon 121), it may be noted 

that the comparison of C, to the percentaQe point of X 
2 
 with s d.f. 

(s = 4 in the model (3.1)) gives a rough guide as to wh.ch contour of 

the confidence region the pseudo m.l.e. is displaced due to deletion of 

the Z-th cell. The value c 2. = 2.1 for cell 2 roughly corresponds to 

the 78% contour of the confidence region. 

• 	(v) Goodness-of-fit sensitivity 

Figure 10 displays the plot of (G 2 -G2 (-2.))/. vs. 2. ; the plot of 

•  [X 2 2 -x (-U]/ó. is sinular here but the former plot is preferred (Pregibon, 

1981). Significant peaks in this figure correspond to cells 2, 3, 7, 27 

39 and 54 (values 	3), the most significant being cell 7 with the value 

5.4. By deleting cell 7 and recomputing the adjusted statistic G(-7) = 

G2(_7)/. (-7) where 	. (-7) is the corresponding estimate of ó. , We 

. 	oet G(-7 = 43.43 with 55 d.f. comoared to G/'. = 55.3 with 56 d.f. 
- 	C 
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Our irvet igatri Lr tcutescn tne wncl& thai cells 7, 2 and 3 ar: 

possible candidates for deletion, but we feel that their impact is not 

significant enough to warrant this action. 

3.3. Smoothed estimates 

The coefficient of variation of survey estinates, 	ofjk 

unemployment rates is quite large for cells with small samples, ranging 

from 6.8% (for cell 3) to 93.5% (for cell 59). Because of this, we 

ccrnputed the coefficient of variation of smoothed est.mates, l_jk 

under the model (3.1), using formula (2.6). The smoothed estimates lead to a 

dramatic reduction in coefficient of variation: the coefficient of variation of 

_tjk ranges from 3.3% (cell 8) to 12.4% (cell 60); the coefficient of variation 

f:r cell 	r.:5uced from 98.5% to 11.0%. The average coefficient of variation of 

(ier 	8 cells with l_Pjk>  0) is 32.1 compared to 6.2%, the average 

coefficient of variation of 1-f jk (over all the 60 cells). Moreover, 

the bias of smoothed estimates should be relatively small since model 

(3.1) provides an adequate fit to the data. 

APPENDIX 

Outline of derivation of main results 

I. Asymptotic v.riarices and covariances 

- 	The pseudo m.1.e. are obtained from the binomial likelihood, L(E), 

say, by rep1acinr r.i
l

by nw. and n ii by 	nwp 	and then innimizing 
- 	 1 	 I 

- 	with respect to E . It is easily seen that 



. 

. 
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r 
-2 2r L() = nG ( a * ,  b*(.)) + term:; not Involving 

where a = 1w,p 1 ,...,w 1p 1 ; w 1 (1-p 1 ),...,w1 (1-p 1 ) 	and b = b*() = 

{w1 f 1 , ... ,w1 f 1 : w 1 (1-f 1 ) ,... ,w 1 (1-f 1 ))) 	and G(*,b*) = an(a/b) 

= b 	1. Hence, notino that maximizirc L( 	is cuiva1nt to 
1 	1 	 - 

minimizing G2(a*,b*(.)) , we can use the results of Birch (1964) to get 

- 	-1 	- 
vn(-) - 	n( (B'S) 	B'D(L) 	(--b(.)] 	(A.1) 

where 	denotes "aymptDtic equivalence". Here . an. b are deriveci 

from a* and b respectively by replacing w with W. = 

w - 	= o(l) , 	D(b) = diag(b 11 ...,b 1 ) , and B = D(b)(3b/2). 	In 

the case of logit model (2.1), Birch's (1964) regularity conditions are 

satisfied and (A.1) reduces to 

- 	(X ' X) 1 X'D(W) {_( - f)) , 	 (.2) 

where A = diagW1 f 1 (1-f 1 ) ,.. . ,W 1 f 1 (l-f 1 ) 	and D(W) = diag(W 1 , . . ,W 1 ) 

Now assuming that v'(p- f) converges in distribution to N 1 (0,V) , we 

get, from (A.2), the asymptotic covariance matrix of 

=1x'x1X'DwVD(w)Xx'AX. 	(A.3) 
n 	- 	- 

Replacing the parameters in (A.3) by their estimates, we get (2.5). 

Similarly, noting that 

Vn(f - 
	(-) 	'(t-' - 	)} 

= D(W) 	X{v'n(3 - 

and 



. 

[] 

0 



= 

we get (2.6) and (2.7). 

II. Asymtotic null distribution of X 2 (2l) 

	

The statistic X2(2l) 	(given by (2.19)) for testing the nested 

hypothesis H21  : e2  = 0 is asymptotically equivalent to 

n(f - f)'D(W)LD(W)(f - f) 	(A.6) 

under H 2 . Now, similar to (A.4) we have 

	

- f) 	D(W)X11 - 
	

(A.7) 

where 

- 	
(XjX 1 )XD(W){(p_f)}. 	(A.8) 

Hence, from (A.4) and (A.6), 

D(W) 	{X1 v'n( 1 - 1 )+X 2/ 2  - X 1/n( 1 - 1 )} 	(A.9) 

under H2 
l• 
 Now, following Rao and Scott (1984), we express X'LX 

as a partitioned matrix 

x'x 	x' x 
1 1 	1 2 
' A 	

A 	. 21 	2 z 

and then use the standard formula for the inverse of a partioned matrix 

to get, after simplification, 

- 	
)/:(6 - 	+ (X1tX 1 ) 	(X1X2)/ 	2 

-21- 
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i ii 	A.iO) 

rf - f) 	D(W)X 2 	n 	, 	(A.1) 

wh e r e 

x 	X., - x. (x,X1) -1 (xj:x 

a result, we get th f11:: asymptotic r reentation from 	and 

A.1.) 

-•;(X; 	
2 	

(A.12 

Also it follows from (A.3) and the formula for the inverse of a partitioned 

matrix that the asymptotic covariance matrix of E 2  may be written as 

. 

V 	= 	-(X 	1 (X.,D(W)VD(W)X 2 ) (X 	X2 ) 1  

sc that 	is approximately 	N(O,V 	) 	under 	H2 l• 	
Hence, 	X2(21) 	is 

asymptotically distributed as 	: , using a standard result on the 1(2l)Z 

distrution of a quadratic form in normal variables, where the 	,(211) 

are eigenvalues of 	(XX 2 ) 1 (XD(W)VD(W)X 2 ). 	Replacing 	.., 	W 	and 	V 

by their estimates 	, 	w 	and 	V 	respectively, we get 	(2.21). 	It can 

be shown that 	G2(211) 	is asymptotically equivalent to 	X2(211) 	under 

H21 	so that the above result also holds in the case of 	G2 ( 2 1 1 ). 

A Wald statistic under binomial sampling is sometimes used, instead 

of 	x2(21l) 	or 	G2 21, 	to test 	H21 . 	Noting that 	H21 	is equivalent 

H.p . 	: 	=H 	
' 	

and 	H 	is any 	I 	u 

mitrix of rank 	u 	with 	H'X1  = 0 	and 	H'X2 	nonsingular, the Wald 

sta:stic 	is ciiven 	:v 
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= 	' V0  

Here 	= H'\ , 	= 	 (l_f)1 and V
Oj' 
 is the estimate of V

O  • 	 1 	 1  

given below. As in the case of X2(211) the true asymptotic null 

distribution of X( 	is a weighted sum, 	: t (l)Z , of indepedet 

x1 	variables with weicthts 	 given by the eigenvaluesU.  

of V 1 V , where V = H'XVflX'H and V 	= n 1H'X(X'X) 1X'H is the 
O. p 	 Oy 

corresponding expression under binomial sampling. The formula for V 

- 	follows from the approximation 

H't 1 D(W)V(f-f) } 	H'X{'(2-)), 	(A.15) 

using (A.4). It follows from (A.14), (A.15-) and (A.12) that X(21) 	is 

asvrm)t3tica1y equivalent to X2(21l)  under H21  , noting that 

• 

	

	H'X(3-) = H'X22  and H'X(X'X) 1X'H = H'X 2 (XX,) 1XIt. This result 

implies that 

is identical to 	1( 2 I 1 ) , . ,6U ( 2 I 1 ) 	(A.16) 

III. Asymptotic null distribution of X 2  

The asymptotic null distribution of X 2  (or G 
2 
 ) can be obtained as a 

special case of the result for nested hypothesis H21 , by treating the model 

- 	M 1  as a saturated model. We have f = 	in the saturated case so that from 

(A.15) V = nH' 1D(W)VD(W) 1H and V0  = n 1 H 1
X. Hence, from 

- 	

(A.1 6), X 	is asymptotia11y distributed as 	.Z. , where 

are the eigenvalues of VV 

4. 
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Table 1. Pseudo maximum likelihood estimates . 	
and corresponding 

standard errors for the LFS data ur-..er model (3.1). 	Also, 

X(2tl) 	= /var(..) 	and G121)/.(211) for the 

nested hypotheses H21 :B2  = 0 	and H21 : 4  0. 

i B. s.e. 	(s.) X(2l) G2 ( 2 Il)/.( 2 l) 

- True Binomial 

0 -2.76 

1 0.209 0.013 0.012 

2 -0.00217 	0.000173 0.000136 157.3 102.1 o 3 0.0913 0.089 0.068 

- 	 4 0.0076 0.0041 0.0033 0.45 
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