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ABSTR A CT 

Goodness of fit tests, tests for independence in a iwo-ssay contingency table, log-linear models and logistic 
regression models are investigated in the context of samples hich are obtained from complex survey designs. 
Suggested approximations to the null distributions are revieved and some examples from the Canada Health 
Survey and Canadian Labour Force Survey are given. Software implementation for using these methods 
is briefly discussed. 

KEYWORDS: 	statistic; Wald Statistics; Goodness of itt; Independence in two-way tables; Log-linear 
and logistic regression model. 

1. INTRODUCTION 

A sketch of the historical development of modern categorical data analysis has been given 
:n the excellent review paper by lmrey, Koch and Stokes (1981). These techniques, applied in 
the context of random samples derived as independent selections from a common distribution 
lunction, are not directly applicable to survey samples collected using complex survey designs. 

Koch ci a! (1975), Shuster and Downing (1976), developed asymptotically valid methods, 
based on the Wald statistic that take the survey dcstgn into account, but requiring access to 
the micro-data file or at least the full estimated covariance matrix of cell estimates. Cohen (1976) 
and Altham (1976) proposed a simple model for clustering and showed that the generalized 
\Vald statistic for goodness of fit is a multiple of , when the model holds. Brier (1978) con-
sidered a similar model, but studied general hypotheses on cell probabilities, and proved that 
a multiple of the corresponding Pearson statistic is asymptotically distributed as a > random 
ariable, when the model holds. Fellegi (1980) deflated the using a correction factor based 

on the meari of the estimated design effects. Fay 1985) developed jackknife , and G 
statistics, also taking the design into account, but requiring the cell estimated at the primary 
sampling unit level. Rao and Scott (1981) developed a correction to (or G) based on the 
Satterthwaite to approximation to the asymptotic distribution of , requiring the full estimated 
cosariance matrix. 

In this paper, we discuss the problems of fitting models and testing hypotheses with categorical 
data resulting from complex designs. For data collected using complex designs, some adjustments 
to the classical methods described by lmrcv, Koch and Stokes (1981) are necessary in order to make 
'alid inferences, If the published tables are provided along with the cell and marginal design 
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effects, some of the approximations to the null dktributions of our test statistics can be obtained, 
without having access to the complete micro-data file. On the other hand, for applications where 
the complete micro-data file is available, alternative approaches will be described. 

For illustrative purposes, Section 2 begins with the standard goodness of fit problem. This 
discussion is then extended in Section 3 to tests of independence in a two-way contingency table. 
This leads to a general discussion of log-linear models in Section 4. Logistic regression models 

are described in Section 5. In Section 6 we summarize the existing situation with respect to soft-
ware development for these methods at Statistics Canada. In Section 7, we discuss the ap-
propriateness of these methods. Numerical examples are taken primarily from the Canada Health 
Surey. An application from the Canadian Labour Survey is given in Section 5. 

2. GOO1)NLSS OF FIT 

2.1 Multinomial Sampling 

Suppose we select n independent and identically distributed observations Y, . . ., Y, from 
a discrete distribution with k categories, where Pr( Y = 1) = rn ,r ; ir, = 1. We observe the 

random vector n = (n1,..,n, )T which has a multinomial distribution. Our estimate of 
= (r1 , ... , 7r1)7 is given byp = n/n. This estimate is unbiased and has covariance matrix 

given by '{p} 	T)/ = P/n , where D.. = diag {ir 1 , . . ., 	}. Note that 	= 

D' + (11T/) Asymptotically, n(j, — ,r) 	N(Q, P). For a given ir, the goodness of fit 

problem is to test the hypothesis. 

H: 7T = 
0 - 	- o 

against the alternative 

H 1 : ir 	r. 	 (2.1) 

Letting P, represent P evaluated at -,,, the Wald statistic for this test is 

W1 = 	jr.) 	(e -c) 
= n 

which is the familiar Pearson chisquare test. Under H, this is asymptotically x 	The 
likelihood ratio test for this problem is given by 

LR 1  = 2n _ p, Iog(p/r-,). 

Since 2p, log(p/lr, (,) is asymptotically equivalent to 2(p, — ir) + (p - ir ) 2 /ir,0  under Ho , we see 
that the likelihood ratio test is asymptotically equivalent to the Pearson chisquare statistic 
under H0 . 

Another possible test for this hypothesis is derived by defining the vector of logs, tt,, = log 
ir and 	= log p. Now under the null hypotheses p -,,, is asymptotically equivalent to 

E) - (p — !). Therefore, n'(f& —tt 	N(O, 	- 11T) under H0  and the Wald statistic is 

= (P - M)T  [D + ( 0 t- / r1 0,)  

7r 0 (ft, — 

where z = log ir and A , = log PA• 



________________ 
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This approximation is obtained by noting that under H 

Pi - 

= - (p - ir )TI  

Note that U', is also asymptotically equivalent to the Pearson chisquare test under H 

2.2 Other Sampling Schemes 

These results for W,, 14/. and LR, are veIl-known. The question of interest to us here the 
implication of the more general assumption that n(p - ) N(O, V), where lb not necessari-

ly equal to I. Here p is a survey estimate of r and may depend on sampling '. eights and thei 
adjustment factors. This situation often arises in sampling under a complex sample design. We 
assume that C, is a consistent estimate of V. There are two approaches which we shall consider 
here. The first is to construct the appropriate Wald statistic for the given sample design, This 
would be 

14/ = 

where the rank of Vis k—I so that W is asymptotically x, under H0 . 
An alternative approach would be to use W,, W. or LR, directly as a rest statistic. Not' 

from multivariate normal theory, we know that the distribution of n(p - 	'(p - ) is that 

of 1 ô, V. where {Z } are independent 	random variable and 	= (6,, . •, ô ,' are the 
eigenvalues of 	see Johnson and Kotz (1970, pg. 150). This result was shown by Rao and 

- 	 Scott (1981), who call the 6's generalized design effects. We note that for k = 2, we have 

6 = ni/{ir0(l - 7r0 )}, where 02 = V{p}. This is the usual design effect for p under H,. 

2.3 Approximations 

Now, in general, the distribution function for linear combinations of x random variables 
is cumbersome, although their moments are easily obtained. Rao and Scott (1981) have sug-
gested two approximations to obtain the significance levels. The first is to approximate the 
distribution as being proportional to a , random variable, the proportionality constant 
being determined by equating the mean of the approximating distribution to that of the theoretical 
distribution. This results in the approximation 

{ 	61(k— I)}x 	 (2.2)
1-1 

Now, 

6 = tr(P,,'V) 

= 	v/7r 
It 	to 

= 	d,( 1 - 

- 	 which depends only on the cell design effects {d,}, where v,, is the i - f/i diagonal element of 
!? and d, = v,/[ir,0(1 - ?r,,)1. This approximation is particularly convenient when the full 

- 	 covariance matrix is not known, but the cell design effects are given. This is often the case for 
official published data. 
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Table I 

Age Distribution Among Those Consuming 1.6 Drinks Per Veek. 
Census Age Distribution for Canada (1978-9) 

Age 

	

Census 	15-19 	20-24 	25-34 	35-44 	45.54 	55-64 	65 + 

	

Diiribution 	.133 	.127 	.218 	.152 	.140 	.115 	.115 

Distribution of 

	

those consuming 	ii? 	.150 	.264 	.175 	.148 	.093 	.053 	: 
1-6 drinks' week 

	

Design Effect 	1.4 	1.2 	2.2 	1.1 	0.6 	1.1 	1,0 

Example 1 

For the Canada Health Survey (1978-9), a stratified multi-stage household survey, da: v,as 
derived for the age distribution among those consuming one to six drinks per week, bas on 
a sample of 5,204 persons, aged 15 years and over. A description of the survey may be :und 
in "The Health of Canadians" (Statistics Canada Catalogue No. 82-538). 

The data, taken from Hidiroglou and Rao (1981), are presented in Table 1, The rass alue 
for W 1  is 298. This is reduced to 248 by taking the approximation given by (2.2). For :hese 
data, the post-stratification adjustments for age and sex lead to small design effects. 

A second approximation to the distribution of E ö Z, suggested by Rao and Scott (19S1), 
is the Satterthwaite (1946) approximation: 6, Z a. To obtain a and r', it is necesary 
to compute 

= tr{(PtI')} 

= 	v2 /(',r IT 
U 	10 10 

However, this depends on all the terms of the matrix fl The important point, though, is that 
some adjustment to the multinomial test statistic is necessary to obtain the appropriate 
significance level. 

An alternative approximation, suggested by Fellegi (1980), is to divide the statistic 
n(p - IT)T P, (p - ,,) by the average design effect, d, instead of the weighted average given 
in (2.2). The effect of this on the data in Table 1 is that the adjusted chisquare value is 243, 
which is comparable to Rao and Scott's (1981) approximation. 

3. TESTS OF INDEPENDENCE IN A TWO-WAI' TABLE 

3.1 Multinomial Sampling 

We now suppose that the categories of the multinomial distribution can be cross-classified 
into an rxc table, where for the bivariate observation ()', Y,) we have Pr(Y = i, Y, = j) = 

= 1. We denote r = 	IT and ir k , = 	ir,1 . We denote r = 
- I 	I 	 - 	 - r 	- 

- 	 lTkl 	IT,..... 	' 	- 	- . . , 7r,_ IJ, ' * 'C - 	I' 	' 	- Ic- I)' ' 	- 	- Q R 

= D, - iyri. We observe the random vector n from the multinomial distribution, where 
En } = nir. We let p = n/n, p,, = Ep, and  m, = 



If 
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We NNisli to test the hypothesis of independence 

	

H: it,, - it, it 	= 0 for I < i < r - I I < j < c - 1. 

against the alternative 

H 1 : it - 	it 	0 for some (i, J). 

If we construct h = p - pp, for 1 < i< r-J and 1 < j< c-I. then under mui':.mial 
sampling under H,,, the asymptotic covariance matrix for It = ......................h, ,) 
is P, e P , where 0 denotes the direct matrix product operation. Hence, the \Vald :.a:isti 
under H, becomes 

= 	lJ 	
- p,p,,)/(p,p,,), 

the familiar chisquare test with (r- 1) (c- I) degrees of freedom. 
Another test, which is asymptotically equivalent to ft under H,,, is the likelihood r::c' test 

given by 

LR, = 2n [ E 	p, log p, - 	p, log p,. - 	p. log p_  

	

iIjI 	 iI 

An alternative approach for this problem, which is a special case of the methods des:ribed 
in Grizzle, Starmer and Koch (1969) is to consider a \Vald statistic based on 

log p,1 - log p, - log p,; for I < i < r- 1, and I < I < c- I 

- 	 The asymptotic covariance matrix for 	= (J'..... ,  .11 . . . ., 
f, ç _7 is (LH - 

11T) Therefore the Wald statistic becomes 

JT[(J5 + 	o (a,, + 	I 

Now under H we note that j,,  is asymptotically equivalent to 

Pu 	P, + 	P. 

	

ir,,ir. J 	it,, 

so that 	ir, f 	 = 0. Using this approximation H' becomes
j. 

w , = 

It should be noted that under H, the statistics U'4 , LR. and W, are all asymptotically 
equivalent to 

	

(p,1 -  it_ir_) - 	(p - 	- ,., (p_ 1 -ir_) 

This result will prove useful in Section 3.3. 
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3.2 Oilier Sampling Schemes 

Now, relaxing the assumption that n is niultinomial, we assume instead that it p - 
N(Q, V) herc p is a survey estimate which may depend on sampling weights and other ad-
justment factors. For this case, Shuster and Downing (1976) and Fellegi (1980) suggest that 
we construct the Wald statistic based on {h = p - pp. 1 }. If we let J be the (a— I) x a 
matrix given by 

/=[' QI 
(3.2) 

and let A 	(J - ..1T) ® (J - 	1T) - (i 1T 	T) 

then the \Valcl statistics is 

= 

which under H is asymptotically x, }i( 
A1ternatiely, we could construct a Wald statistic based on {f, = log p - log p - 

log p 1 }. This is a special case of the log-linear model approach to be discussed in Section 4. 
We define (r - 1) x r and (c —1) x c matrices as follows: 

Q]. 	= [;(l 	Q]. 

We let t = (E - ERII) ® 	- c 1I T ) - (EIJT ® ci IT). 

The appropriate Wald statistics is 

= JT(FVET) 1f 

Now, analogously to the goodness of fit problem in Section 2, Rao and Scott (1981) have 
considered null distributions of the test statistics based on PF, LR, and W, which are all 
asymptotically equivalent to the null distribution of (3.1). We see, therefore, that the null distribu-
tion is the same as , Z, where {Z} are independent wand the 6's are the eigen-
values of 

® p - ')(J-f VI-!T) 

Cowan and Binder (1978) investigated the properties of the cigenvalue from a simple 
two-stage self-weighting design for a 2 x 2 table. They found that the eigenvalue increases 
as the degree of independence of the cell proportions within the primary sampling units 

- 	 decreased. 
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3.3 Approximation 

	

An approximation for the distribution of 	b Z2 is 

a z - 
(1. - - i) (c-I) 

as in (2.2). Since the statistic is asymptotically equivalent to(3.1) under H, by computing the 

mean of (3.1) we obtain 

	

=S d
.1 

(I - 7r7r ) - 	d' (1 - r) - 	d'(1-ir ), 
1 	= j 	 I 	I  

where d,, is the cell design effect; d rand d rare the row and column margin design effects, 
respectively. This particularly simple expression was obtained by Rao and Scott (1983). Fellegi 
(1980) suggested an alternative approximation as: 

d/rc) 

Example 2 
In Table 2, we give a 4 x 2 table from the Canada Health Survey, which cross-classifies drug 

use (four categories: 0, 1, 2, 3 + drug classes in a 2-day period) and sex (male, female). Here 
n = 31,668. 

The raw value for W4  is 774. Rao and Scott's (1981) adjustment reduces this to 437. Fellegi's 
(1980) adjustment reduces this to 327. The Wald statistics, I+, is 538. Hidiroglou and Rao 
(1981) found that the Rao and Scott (1981) approximation performs quite well relative to the 
Satterthwaite (1946) approximation which is based on the complete covariance matrix. 

LOG-LINEAR MODELS 

4.1 Multinomial Sampling 
We now extend the results of the previous section to more general cross-classifications of 

the multinomial distribution. The standard results for these mode]s are given in Bishop, Fienberg 

Table 2 
Variety of Drugs Taken by Sex for Canada (1978.79) 

Number of Drug Varieties 

Sex 0 1 	2 3± Total 

Male Proportion 0.293 0.134 	0.048 0.021 0.496 
Design Effect 1.56 3.37 	1.15 1.38 0.00* 

Female Proportion 0.228 0.159 	0.072 0.045 0.504 
Design Effect 3.59 3.13 	2,85 1.96 0.00 

Total Proportion 0.521 0.293 	0.120 0.066 1.000 
Design Effect 6.03 6.46 	1.65 2.57 

* Because of age-sex post-stratification, these design effects are zero. 
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and Holland (1975) and Fienberg (1980). We have ir = (r ,..., Ir A )' is a vector of cell rnpor-
tions; = I. We observe n = (n,,., n A ) T , the counts in each ccli from a randor. ant-
plc, so that n has a niultinomial distribution ( n = , i). We let p = n/n and definc 

= log r. 

The log-linear model assumes that for a parameter vector 6= (O .....O) T , v 

(0) = u(0)1 + XfI, 

where X is a known kxi matrix of full rank and Xnl = 0. Note that i 	k— 1. I f  
t = k—i, we have the saturated model. 

The maximum likelihood estimate for 0 is given by solving 

X T (p 	*) = 0, 	 4.1) 

where * = ir (0). Now, asymptotically we have 

	

 Ir fr  - 	± PX(6 —0), 

where P = R - 7nrT. From (4.1), we then obtain 

- 0 	(X T PX) 'X'(pir) 

and 
* - r -' PX(X'PX) -1 X T (p—ir). 

Since n ½ (p — ir) - - N(Q, P) we obtain 

n½(O_o)_..1v[o,(x rpx) - 1 

fl ½ (.Mo,px(x rpx) i x T pJ. 

Suppose now that the linear expression X8 can be decomposed as X 1 0 1  + X,0, where X, 
and X. are full rank. X 1  is k x r, X, is k x s, 01  is r x / and 0, is s x 1, where r + s = (. 

We consider the problem of testing 

H0 : 0 2 = 

against the alternative 

H 1 : 0 2 * 0. 

We use 0 , 0 , ir, etc. to denote the estimates under the full model H. Alternatively, we 
let 	, *, to denote estimates under I-! 

Now, 

flV2(0 - 

where 

4. 

= F' - X(X XY'XT] X, 	 (4.2) 



r' 	 Tflt1 
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so that the Waki statistic is 

= 

Under H, this is asymptotically equivalent to the Pearson chisquare statistic 

- 	- 

or the likelihood ratio test 

LR, = 2n 	p,log(ñ./ It). 

Under H,,, these statistics are asymptotically 

4.2 Other Sampling Schemes 

We still assume that the cell proportions, ir, satisfy A = log ir u(O , 0 2)1 + X 0 + 
X,0 but we now have n"(p - 	N(Q, V), where p is a survey estimate. 

Rao and Scott (1983) suggest the following Wald statistic for testing Q, = Q. We let c be 
any k x s matrix with CTXI = Q çr Q and CTX,  nonsingular. For example if 
XX, = Q then C = X, is convenient. Now the hypothesis is equivalent to Cg = Q. We 
have 

i) 

cTx(x7ex)'xTp - ir 

here 	i obtamed rm (4.1), based on t!e survey estimate, p. 

• 	 We therefore have the Wald statistics 

W9  = 

Similar results were also given in Binder (1983). If under H1 , the model is saturated 
(r+s = k — I), then p = ir and we obtain 

W9  = nTc[cTii5'C]1cT,. 

Rao and Scott (1984) show that if we use P instead of in W9  then these are asymptotical-
lv equivalent to the likelihood ratio or Pearson 2  test statistics. They also show that the 
likelihood ratio test statistics is distributed as under H, where {Z} are indepen- 
d'nt ,P and 	} are the ci:envalucs of 

PY'(X'X.), 	 (4.3) 

:.. defined in (4.2). 

4.3 Approx2mations 

As hetore, we approximate the null distribution 

( ES 6)  X2  
This involves computing the trace of (4.3). Rao and Scott (1984) show that if the model ad-

mits explicit solutions for both * and, then the approximation depends on the matrix Von-
ly through cell design effects and marginal design effects. This observation is particularly con-
venient when ony the estimated design effects for the cell proportions and margins are available, 
as is often the case for published tables. 
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1ampIe 3 

llidiroglou and Rao (1983) considered all direct estimates from the three-way [able: Dru 
uc (5 categories: 0, 1, 2, 3, 4 + drug classes in a 2 day period) x Age (4 categorics; 0-14, 15-44, 
45-64, 65 +) x Sex (male, female), taken from the Canada health Survey. We give the results 
for testing v.'hether Age and Sex are indcpendent in each drug category (n = 31 ,668). This is 
equivalent to the hypothesis 

ijjfl lisliap. Fienber and Holland 	I 	i:ation, where log r jj  = U + U 1  + U, 
ii. 	 ii. 	u,.± 	the null hypothesis is equivalent to 

JI(.: 
"31, = 11 123(0) = 0 for all (i, .i k). 

The raw chisquare vauc is 23 based on 15 degrees of freedom. The average eigenvalue is 
1 .39, so that the approximation reduces the chisquare value to 16. Whereas the unadjusted chis-
mare value would lead the analyst to reject the hypothesis at the 10% level, the approximation 
iidieatcs that h cannot be rejected even at the 30o level. 

5. LOGISTIC REGRESSION MODELS 

• 	 5.1 Multinomial Sampling 

We now consider a logistic regression model for the conditional distribution of a binar y  
response variable v given the vector x of independent variables. In particular, this conditional 
itrihulic'n is 

Pr(y, I x) = ?r(X) [I - 7r(x,)] I  

v}tere F e 1 0, I 
Far the Iointic regression model, we have 

:or at pu:aineters. 
We note that if x, is a categorical vector of 0's and l's, this is a special case of a log-linear 

::.de1 as described in Section 4. Here we allow x, to be arbitrary. The extension to the case 
caoric.s for the e-variah!e is straight-forward, it is also possible to generalize the model to 

f ir(x) 

a k!a\\r I :L1 loi t( -j, but \ 	do not discuss this here. 
Nav the neiiuni hkelihiooch estimate for 0 is given by 

VT(y - ,i) = Q 

(F 	 •.,, *(.Q1 7  and X = [x1 .. xJ. 
Under suitable regularity conditions, we have 

n0 	)-lO,n(X'AX) 1, sshere.\ 	f)(/ - D). 
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If we have XO = . 0 + X 0, and consider testing the h)pothcsis 

H0: 0, = Q 
H1 : 0, * 0, 

we obtain the Wald statistic 

W10 = 

where 

The likelihood ratio test here is 
fl 	 (1—fl LR4  = 2 v log _L-  + (I - y) log 
1.1 ~ ' 	

( fr '  (1 - 

which is asymptotically equivalent to W under H,, 

5.2 Other Sampling Schemes 

	

Suppose now that n XT(.Y 
- 	 - N(Q, V) and that Iis a consistent estimator of V. Here 

v is not necessaril y  a vector of 0's and l's, but may in fact depend on the sampling weights 
and other adjustment factors. Estimating Vis usually possible since X'(y - i) is the sum of 
random observations and most sample designs admit a consistent estimator of the sum of (not 
necessarily independent) observations. To estimate Vsvc use * instead of ir in the estimate. 
Since asymptotically 

(9_ - 0) ± (XTAX) X7U - trb 

we have that 

- O_) -, NIQ, n2(XTAX)  V(XT .X) 7 1; 

see Binder (1983) for a detailed justification of this result. Now, a Wald statistic may be con-
structed from the estimated covariance matrix for 0,. 

Table 3 
Logistic Regression Model for Explaining Use of Physician Services 

	

Variable 	 Type 	d.f. 	Wald
Statistic 

Age 	............................... Categorical 4 19.232 
Sex 	................................ Categorical 1 12.494 
Age-Sex 	Interactions ................. Categorical 4 36.001 
Family 	Income ...................... Categorical 5 14.642 
Occupation 	......................... Categorical 3 8.614 
Occupation-Sex Interactions .......... Categorical 3 11.501 
Marital 	Status 	...................... Categorical 3 45.752 
Medical 	History ..................... Categorical 2 36.700 
Number of Health Problems.......... Quantitative I 81.554 
Drug 	Use........................... Categorical 2 272.175 
Number of Accidents ................ Quantitative 2 106.372 
Number of Disability Days ........... Quantitative 2 29.052 
Community 	Size 	.................... Categorical 2 11.751 
Provincial Physician - 

Population 	Ratios 	.............. ... Quantitative 1 0.540 



tII:tIi 	 ' 	 1 
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Example 4 

A logistic regression model was fIt on 20,726 respondents from the Canada health sur' C\ 

to explain USC or non-use of physician sericcs over a 12-month pci iod. In total it 'as estimated 
that 7700 of the population visited a physician at least once. The results are summarized in 
Table 3. For more complete details, see Binder (1983). The logistic model seemed to fit the 
data Cr\ ell. 

5.3 Qualitalhe Explanatory Variables 

The theory of this section was obtained by G. Roberts in an unpublished manucr.pt (Carleton 
University). Here the explanatory variables are all qualitative. We label the domains, J I ..... I}. 
We let p be the survey estimate of the i-th domain proportion and N is the estimate of the 
size of the i-th domain, N. Under the model, the expected proportion in the i-th domain is 

f, where 

log {f;/(/-f) } = 

for a known and 0 an unknown parameter. We define A = [a 1  ..... j T  and let Q = 
diag {. . ., N, }. 	 - 

Under the model, the survey estimator off = (1..... 	)' is gien by f, the solution to 

1TD(p—j) = Q. 	 (5.1) 

Since asymptotically 

- 	(A'sA) 'A T D(p—f) 

where A = diag{Nf(l —.i) 	., N,f,(1 -f,)}, we have 

- 0) - N[Q, (A T A) 14 TD vpA (4 T A)' I 

whenever n '  (p - .1) - N(Q, V,,). 
Under independent binomial sampling, the covariance matrix reduces to (N/n)(AA) 

where n is the sample size. 
The likelihood ratio test for testing goodness of fit is 

LR, = 2(n.) ,1 t [p,log(p 1/ )+ ( 1 —p) log{(l —p,)/(l 

where n is the sample size and 	= E 11. Under H, this is asymptotically equialent to 

= (n4) ,1  j 	- 	
)
21  [j (1 - f; )]. 

In general, the distribution of LR, will be that of E ô Z, where {Z,} are independent 
and ó} are the eigenvalues of .' P 14 - A (A T A 'AT] D 1iP. 14' - A(A T ,1) 'A T ] 

By raking the expectation of W11 , and approximating 

14', - 
	- 

where s = rank (A), we obtain 

= (n/N) , 	v"/ f (I - f)} 

p 
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where vt = V I p - f} . The {v} may be computed using the relationship p 	J = 
[I - diag{f(l--/)l(.l'l) A'D](  

Example 5 

The data from the October 1980 Canadian Labour Force Surey was used to lt logistic (logit) 
models for the probability of being employed. The sample consisted of males aged 15-64 who 
were in the labour force and not full time students. A logit model, quadratic in age and in educa-
tion, was fitted. Age-group levels were formed by dividing the interval [15, 64] into ten groups 
with the jth age-group being the interval [10 + Sf, 14 + 5j ],j = 1, 2, ., 10. The midpoint 
of each age-group was used as the value of the age for all persons in that age-group. Six levels 
of education were formed by assigning to each person a value based on the median years of 
schooling. Age by ec1tication classification led to the formation of 60 cells. 

Let r, = Pr{an individual in the ith cell is employedl, i= I, 2, 	, 60. We assume that 
o < ir, < 1. Hence I - r, represents the probability that the individual in the ith cell is 
unemployed. The model, considered for fit, was 

In I  =00 + 3 1 a + 13,a + 30 + 	 (1) 

= 1,2, . . .,60 

where a and d are the age and education variable values for the individuals in the ith cell. 
Using the survey estimates p, of yr,, the values of Pearson's statistic W 1  and the likelihood 

ratio statistic LR, were computed as Wa = 98.94 and LR l01.20. The upper 5 'o point of 
the chi-square distribution, with 55 degrees of freedom, is 73.31. Using these values of W 
or LR we wouid reject the model I. These values of W 1  or LR, however, are appropriate only 
if the sample was a random sample. 

The estimate average cigenvalue, E 6,/55, for testing goodness of fit for this data is 1.88. 
This would reduce W to 52,63 and LR to 53.83. Hence, with this adjustment, we find that 
the data are consistent with the model (1). 

The use of the Wald statistic, (p 
- 	

T  [V'1 ] (p - .f), for testing the goodness of fit was 
also considered. Here we use the g-inverse of 	since the matrix is singular. Some perturbation 
to the estimates of p1,  when p, = 1, was necessary for computing the Wald statistic. It was 
found that the Wald statistic was unstable for our problem. Minor perturbations in the estimates 
ofp led to considerable change in the value of the Wald statistic. Also the value of the Wald 
statistic is very large here due to instability in the estimated covariance matrix involved in its 
calculation. The Wald statistic is at least 30 times larger than our adjusted Chi-squared values. 

6. SOFTWARE CONSIDERAT1OS 

Advancement of computer technology has made data collection, storage and retrieval opera-
tons easy and efficient. Powerful generalized software systems, such as TPL, STATPAK and 
I STIMATION SYSTEM, have been used to produce cell estimates and some of their variances 
fairly easily to users and analysts. As well a number of commercially available packages such 
a. RMDP, SPSS and SAS are powerful analytic tools in certain contexts. However, the ability 
to perform analysis such as those described in this paper are limited. For example, in situations 
ln\olving hypothesis testing or statistical inference, these packages assume that the data to be 
analyzed come from surveys with simple random samples. 

At present, an integrated software package, similar to the ones mentioned above, but designed 
for analyses of the type of data discussed in this paper, is not available. As a result, the researcher 
requiring a quick solution to his problem is usually forced to use existing statistical packages 
which may not be appropriate. 
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The alternatives are 

• use existing packages with modifications 
• use existing stand-alone software 
• write customized programs 
• use combinations of the above. 

For the analyses given in this paper, modifications to the MINI CARP program (Hidroglou, 
Fuller and Hickman; 1980) were incorporated to obtain the results in Examples. 1, and 
For Example 4, a combination of PL/l and SAS programs were dc eloped. The anal.sis of 

the Labour Force Survey data (Example 5) used a combination of customized programs ai.± SAS. 
For the above alternatives, some practical drawbacks have been experienced, they ir.ludc: 

If an existing package is to be modified, intimate knoss ledge of the package is often 
required; 
Identical information may have to be duplicated on separate data files, as these alter-
natives are not integrable like generalized systems; 
Compared to an integrated "user-friendly" package, these alternatives lack elegance and 
operational efficiency as soft ware; 
Comprehensi'e documentation is not generally available for specially wntten programs 
limiting the availability of software. 

Work is now ongoing to develop SAS based procedures for performing many of these analyses. 
Our ultimate goal is similar to that proposed by Shah (1981); namely, the devclopmen: of an 
integrated software package for survey data analysis. This is a goal worth striving for. if se 
are to avoid the frustrations now being experienced by researchers who are faced with either 
developing their own software or using existing software which could lead to erroneous results 
and conslusions. 

7. DISCUSSION 

We have examined a number of problems which arise when fitting models to categorical data 
which have been collected under complex sampling designs. The basic approach has been to 
derive the appropriate Wald statistic for the fitted model or to use the test statistic which is 
motivated from multinomial-type sampling designs and find a suitable approximation to its 
null distribution. 

We have not addressed the issue as to whether one should really be taking a model-based 
or design-based approach to begin with. Instead, we have concentrated on design-based 
inferences. 

To put this issue into focus, let us reconsider the test of independence in a two-way con-
tingency table. The question of independence arises if we are interested in whether knowing 
the value of variable Y1  affects our knowledge about variable Y. If it does not, for all the in-
dividuals in the population, then we say the variables are independent. However, if we also 
know the value of Y, it may turn out that Y 1  and Y, are no longer independent. This is par. 
ticularly important when Y is a design variable (such as geographic stratum). Since design 
variables are usually known for all sampled individuals, we have one of two options: (a) we 
can say that the question of independence is no longer relevant, or (b) we can marginalize out 
Y, and say that we are only interested in Y 1  and Y,, unconditionally. Assuming that we take 
approach (b), the results of this paper seem appropriate. In some cases it may be possible to 
test if Y 1  and Y, are conditionally independent given Y3 . 

There is a further difficulty, however. Suppose we are interested in the cell proportions 7r ,1  
from a finite population of size N. If we were to take a census from this population, it is highly 
unlikely that we would obtain ir, = ir, ir •  exactly. The best that we could hope for is that 
some measure of association such as N it (ir - r,ir, )/ir ir ,, is small. Note that even 
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under a super-population model of exact independence, we would not expect this measure ot 
association to he icro. Perhaps, we should instead be testing hypotheses such as 

II: Nlcasuic o: .\ ojat oil < (. 

1-i : Nicastire 	:\soua1 on > ( 

Further research is needed in this area. However, for practical circumstances shere the sampi-
jag fraction is not large, the methods gi\en in this paper are suitable. 
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