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Analysis of Categorical Data from Surveys with
Complex Designs: Some Canadian Experiences’

D.A. Binder, M. Grattou, M.A. Hidiroglou,
S. Kumar and J.N.K. Rao?

ABSTRACT

Goodness of fit tests, tests for independence in a two-way ¢ontingency table, log-linear models and logistic
regression models are investigated in the context of samples hich are obtained from complex survey designs.
Suggested approximations to the null distributions are reviev-ed and some examples from the Canada Health
Survey and Canadian Labour Force Survey are given. Sofiware implementation for using these methods
is briefly discussed.

KEYWORDS: x* statisiic; Wald Statistics; Goodness of fit; Independence in two-way tables; Log-linear
and logistic regression model.

1. INTRODUCTION

A sketch of the historical development of modern categorical data analysis has been given
in the excellent review paper by Imrey, Koch and Stokes (1981). These techniques, applied in
the context of random samples derived as independent selections from a common distribution
function, are not directly applicable to survey samples collected using complex survey designs.

Koch er al (1975), Shuster and Downing (1976), developed asymptotically valid methods,
based on the Wald statistic that take the survey des:zn into account, but requiring access to
the micro-data file or at least the full estimated covariance matrix of cell estimates. Cohen (1976)
and Altham (1976) proposed a simple model for clustering and showed that the generalized
Wald statistic for goodness of fit is a multiple of »°, when the model holds. Brier (1978) con-
sidcred a similar model, but siudied general hypotheses on cell probabilities, and proved that
a multiple of the corresponding Pearson statistic is asymptotically distributed as a x- random
variable, when the mode! holds. Fellegi (1980) deflated the »° using a correction factor based
on the mean of the estimated design effects. Fay (1985) developed jackknife x° and G-
statistics, also taking the design into account, but requiring the cell estimated at the primary
sampling unit level. Rao and Scott (1981) developed a correction to x° (or G?) based on the
Satterthwaite to approximation to the asymptotic distribution of x°, requiring the full estimated
covariance matrix.

In this paper, we discuss the problems of fitting models and testing hypotheses with categorical
data resulting from complex designs. For data collected using complex designs, some adjustments
to the classical methods described by Imreyv, Koch and Stokes (1981) are necessary in order to make
valid inferences. If the published tables are provided along with the cell and marginal design
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Analysis of Large Scale Data Scis sponsored by Statistical Office of Furopean Communities, November 16-18, 1983,
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effects, some of the approximations to the null distributions of our test statistics can be obtained,
without having access to the complete micro-data file. On the other hand, for applications where
the complcie micro-data file is available, alternative approaches will be described.

For illustrative purposcs, Section 2 begins with the standard goodness of fit problem. This
discussion is then extended in Scction 3 10 tests of independence in a two-way contingency lable.
This leads to a general discussion of log-linear models in Section 4. Logistic regression models
are described in Section S. In Section 6 we summarize the existing situation with respect to soft-
ware development for these methods at Statistics Canada. In Section 7, we discuss the ap-
propriateness of these methods. Numerical examples are taken primarily from the Canada Health
Survey. An application from the Canadian Labour Survey is given in Section 5.

2. GOODNESS OF FIT

2.1 Multinomial Sampling

Suppose we select n independent and identically distributed observations ¥, ..., ¥, from
a discrete distribution with & categories, where Pr(Y = ) = = 1 £, m = 1. We observe the
random vector # = (n,, ..., n,_,)’, which has a multinomial distribution. Our estimate of
= 60 Tk ) is given by p = n/n. This estimate is unbiased and has covariance matrix
given by V{p} = (D. - 7a’)/n = P/n, where D, = diag {m, ..., =, ,}. Note that B =
D:" + (117/=,). Asymptotically, n"“(p — 7) = N(@, P). For a given 7 , the goodness of fi
problem is to test the hypothesis.

against the alternative
Hiw # 7, (2.1)

Letting P, represent P evaluated at 7,, the Wald statistic for this test is

=0

W,=np-5)'E' @-1)

A

= "-YZ] -7, 2/‘rrw} .

which is the familiar Pearson chisquare test. Under H this is asymptotically ¥} . The
likelihood ratio test for this problem is given by

k
LR, =2n T p, log(p /=,).

H
Since 2p, log(p/7,) is asymptotically equivalent to 2(p,— 7)) + (p,— =)'/ under H , we sec
that the likelihood ratio test is asymptotically equivalent to the Pearson chisquare statistic

under H .
Another possible test for this hypothesis is derived by defining the vector of logs, i, = log

n -

,and i = log p. Now under the null hypotheses @ —p , is asymptotically equivalent to
“'(p— 7). Therefore, n*(a —p,) = N@, D' — 117) under H, and the Wald siatistic is

*o Y2

~

W, =(@-u) [D, + (xs/7,) ]G -n)

&
AT - 2
l":l T (“l - #m) )

where u,, = log 7,, and i, = log p,.
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This approximation is obtained by noting that under H

WAL-(ﬁA —"Ao) =P T,

=

= - (@-7)1 - -e)'s
Note that #'. is also asymptotically equivalent to the Pearson chisquare test under / .

2.2 Other Sampling Schemes

These results for W', W, and LR, are well-known. The question of interest 1o us here is the
implication of the more general assumption that n°(p — ) = N0, V), where 1'is not necessari-
lv equal 10 £. Here p is a survey estimate of = and may depend on sampling weights and other
adjustment factors. This situation often arises in sampling under a complex sample design. We
assume that Vis a consistent estimate of V. There are two approaches which we shall consider
here. The first is to construct the appropriate Wald statistic for 1he given sample design. This
would be

W, = n(p- 7!()7!7‘ "@-7)
where the rank of Vis k-1 so that W, is asymptotically x? | under H .

An alternative approach would be to use W, W, or LR, directly as a test statistic. Now
from multivariate normal theory, we know that the distribution of n(p — 7))’ P '(p — 7,) is tha
of £ 6 Z°% where {Z;} are independent x| random variable and § = (5, ..., §, 1" ard e
eigenvalues of P, 'V; see Johnson and Kotz (1970, pg. 150). This result was shown by Rao and
Scott (1981), who call the 6,_’5 generalized design effects. We note that for & = 2, we have
G = nof,/{wu(l - #,)4. where o,{ = V{p}. This is the usual design effect for p under H .

2.3 Approximations

Now, in general, the distribution function for linear combinations of xf random variables
is cumbersome, although their moments are easily obtained. Rao and Scott (1981) have sug-
gested two approximations to obtain the significance levels. The first is to approximate the
distribution as being proportional 10 a x; , random variable, the proportionality constant
being determined by equating the mean of the approximating distribution to that of the theoretical
distribution. This results in the approximation

£6z0= { T 8/tk-Dhxi (2.2)
Now,
Lé =P, 'V)
k
= S’v’l/Trlﬂ

k
= E!d,(l s

which depends only on the cell design effects {d,}, where v, is the i -4 diagonal element of
Vand d = v,/[r (1-m,]. This approximation is particularly convenient when the full
covariance matrix is not known, but the cell design effects are given. This is often the case for
official published data.

w
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Table 1

Age Distribution Among Those Consuming 1-6 Drinke Per Week.
Census Age Distribution for Canada (1978-9)

Age

Census 15-19 20-24 25-34 35-44 43.54 55-64 65 + i oval
Distribution 133 127 218 152 .140 JIES Jits &, T00

Distribution of
those consuming 151 ng .150 264 175 148 .093 .53 i
1-6 drinks/week

Design Effect 1.4 B2 242 1.1 0.6 i i.0

Example 1

For the Canada Health Survey (1978-9), a stratified multi-stage household survey, daz was
derived for the age distribution among those consuming one to six drinks par week, bas:z3d on
a sample of 5,204 persons, aged |5 years and over. A description of the survey may be “ound
in *“The Health of Canadians’’ (Statistics Canada Catalogue No. 82-538).

The data, taken from Hidiroglou and Rao (1981), are presented in Table 1. The raw ~alue
for W, is 298. This is reduced to 248 by taking the approximation given by (2.2). For :hese
data, the post-stratification adjustments for age and sex lead to small design effects.

A second approximation to the distribution of £ 6, Z7, suggested by Rao and Scott (1981},
is the Satterthwaite (1946) approximation: L §, Zf = gx_. To obtain ¢ and », it is necessary
to compute

(5
Ly
i

tr{(P; ' P)*}

3 k
L S Ay ).
(. w0 jo

i=] j=

However, this depends on all the terms of the matrix V. The important point, though, is that
some adjustment to the multinomial test statistic is necessary to obtain the appropriate
significance level.

An alternative approximation, suggested by Fellegi (1980), is to divide the statistic
n(p-w,) P;'(p-m,) by the average design effect. d , instead of the weighted average given
in (2.2). The effect of this on the data in Table 1 is that the adjusted chisquare value 15 243,
which is comparable to Rao and Scott’s (1981) approximation.

3. TESTS OF INDEPENDENCE IN A TWO-WAY TABLE

3.1 Multinomial Sampling

We now suppose that the categories of the multinomial distribution can be cross-classified
into an rx ¢ table, where for the bivariate observation (VY,, ¥)) we have Pr(Y, = i, Y, = j) = =3

.o 5., m, =1 Wedenote 7 = Ly Tyand 75 = S Ty Welehote 7 = (T ..+,

T 2 T = o r = e, 3%
Tier oo T oo n Ty T = (7 s oo Ty, ) T = (T oo @) Py = D — 5,5
P =D, - m.x]. We observe the random vector n from the multinomial distribution, where

E{n} = nx. Welet p = n/n, p,, = ‘7'pu, andp_, =X p,
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We wish 1o test the hypothesis of independence
NS Ald g = OMisr | < o <5 14 s B )
against the alternative
H:.x - = =  # 0forsome ()

If we construct by = p — p p ,forl < i<r- land 1 < j< c¢—I, then under muitizomial
sampling under H , lhe asvmpxom covariance matrixfor h = (h,, ..., A, .. ...1h, "
is P, & Wi vxherc ® denotes the direct matrix product operation. Hence, the Wald s:z:stic
under /7 ‘becomes
W, = h'(P:' @ POk

=

= L L@ -p.P )PP

8=00 F= |

the familiar chisquare test with (#— 1) (c— 1) degrees of freedom.
Another test, which is asymptotically equivalent to W/, under H , is the likelihood ra:.c test
given by

r

LR, = 2n | ‘."‘ fl by log p, — El s e Py, T3 }L"l p.logp ]
tal = t= =

An alternative approach for this problem, which is a special case of the methods described
in Grizzle, Starmer and Koch (1969) is to consider a Wald statistic based on

{_/f,:logpu—logp“—logp-/;forlg i =1L andl < j < scqL¥F.

The asymptotic covariance matrix for_[ - Ik ,>7 is (D 1 L%

r-i.¢-
e (D' - 117). Therefore the Wald statistic becomes
T T
W, = [7|(., + =22£) & (D, + fext )l

Now under H, we note that f is asymptotically equivalent to

p, P Py

- = -4,
T, T T T

i+ "4y t+ -

so that ‘.Irl L E . f; =0 Using this approximation W, becomes

W= S8 p Bl I
1 t=] =1 s
It should be noted that under H , the statistics W,, LR, and W, are all asymptotically
equivalent to

3 . - N 2
23 i: (pu_ W!-W‘j): = é(‘p"—'ﬁ“)' :l.: (p_"-w'j)-

i=] p=) % T . i=} T J=1 T
i+ &

(3.1

This result will prove useful in Section 3.3.
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3.2 Other Sampling Schemes

Now, relaxing the assumption that # is multinomial, we assume instead that #''(p — 7) —
N, V) where p is a survey estimate which may depend on sampling weights and other ad-
justment factors. For this case, Shuster and Downing (1976) and Fellegi (1980) suggest that
we construct the Wald statistic based on {h_ = p, — p,_p_}. If weletJ bethe(a-1) X a
matrix given by

andlet H=(J, - mlN e, - 7. 17) - (z 1" ® 7. 1)

then the Wald statistics is
W, =h(HVHA") 'h,

which under H_ is asymptotically x; ., -

Altemamd\ we could construct a Wald statistic based on {f, = log p; -logp,_ -
log p_ }. This is a special case of the log-linear model approach to be discussed in Section 4.
We defme (r - 1) x rand (c —1) x ¢ matrices as follows:

Welet F= (£, - E;l1T) @ (B, - Ecl1T) - (El1Te E

The appropriate Wald statistics is
=~1"(FIRP IS

Now, analogously to the goodness of fit problem in Section 2, Rao and Scott (1981) have
considered null distributions of the test statistics based on W', LR, and W, which are all
asymptotically equivalent to the null distribution of (3.1). We see, lherefore. that the null distribu-
tion is the same as £ """ &, Z% where {Z} are independent x; and the és are the cigen-
values of

(Pp® PLWHVHT).

Cowan and Binder (1978) investigated the properties of the cigenvalue from a simple
two-stage self-weighting design for a 2x 2 table. They found that the eigenvalue increases
as the degree of independence of the cell proportions within the primary sampling units
decreased.
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3.3 Approximations

An approximation for the distribution of £ & Z7 is

" S
.‘:5’2;3 ' x;:r 1y tem [y ?
(r=1 (-1

as in (2.2). Since the statistic is asymptotically equivalent to(3.1) under H_, by computing the
mean of (3.1) we obtain

¢

) — ;ld(/') il ~ ) — Ei diil—= P8

=

r [y
S5, B Ellayde= Ty T

where d, is the cell design effect; d {'and d 'are the row and column margin design effects,
respectively. This particularly simple expression was obtained by Rao and Scott (1983). Fellegi
(1980) suggested an alternative approximation as:

r Iy
B 2
(Z = dr;//r“) X - tiie- 1y

I=ij=1

Example 2

In Table 2, we give a 4 x 2 table from the Canada Health Survey, which cross-classifies drug
use (four categories; 0, 1, 2, 3+ drug classes in a 2-day period) and sex (male, female). Here
n = 31,668.

The raw value for W, is 774. Rao and Scott's (1981) adjustment reduces this to 437. Fellegi's
(1980) adjustment reduces this to 327. The Wald statistics, W, is 538. Hidiroglou and Rao
(1981) found that the Rao and Scott (1981) approximation performs quite well relative to the
Satterthwaite (1946) approximation which is based on the complete covariance matrix.

LOG-LINEAR MODELS

4.1 Multinomial Sampling

We now extend the results of the previous section to more general cross-classifications of
the multinomial distribution. The standard results for these models are given in Bishop, Fienberg

Table 2
Variety of Drugs Taken by Sex for Canada (1978-79)

Number of Drug Varieties

Sex 0 1 2 3+ Tota!

Male Proportion 0.293 0.134 0.048 0.021 0.496
Design Effect 1.56 398¥ 1.15 1.38 0.00*

Female Proportion 0.228 0.159 0.072 0.045 0.504
Design Effect 3.59 3418 2.85 1.96 0.00*

Total Proportion 0.52] 0.293 0.120 0.066 1.000
Design Effect 6.03 6.46 1.65 2.57

* Because of age-sex post-stratification, these design effects are zero.
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and Holland (1975) and Fienberg (1980). We have 7 = (m....,w,)" is a vector of cell p: ~por-

tions; £ 7, = 1. Weobserve n = (n,,...,n,)’, the counts in cach cell from a randor «ain-
ple, so that n has a multinomial distribution (¥ n, = n). We let p = n/n and define

# = log 7

The log-lincar model assumes that for a parameter vector 8 = (8, .... 8)", we Huve

[

1(@) = u(@)l + X4,

where X is a known & x7 matrix of full rank'and X71 = 0. Note that 1 € k-1, If
t = k-1, we have the saturated model.
The maximum likelihood estimate for 6 is given by solving

X'(p - §yRq, (4.1)
where # = 7 (§). Now, asymptotically we have
F = xe= B %G).,

where P = D, — n7'. From (4.1), we then obtain

g = 0= (XPN X' @g-n

and
- 7= PXWX'PX)'XT(p-1).

\

Since n"2 (p - 7) = N(O, P) we obtain

n @-8)—~ N[0,(XTPX) ']
n”2 (z—7)—= N0, PX(XTPX)'X"P).

Suppose now that the linear expression X6 can be decomposed as X8, + X,6, where X,
and X, are full rank, X isk X r, X,isk x 5,0,isr x land 8,is 5 x I, wherer + s = 1.
We consider the problem of testing

against the alternative

We use 8 |, ., 7, etc. 1o denote the estimates under the full model H,. Alternatively, we
let § , #, to denote estimates under H, .
Now,

1/

n” (0_: . -g)_’N[Q‘ (X:T_X;)—l]
where

Xn'="1T - XX Fxplxg)X, (4.2)
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so that the Wald statistic is
W, = nfIRIPX0 ..
Under H, this is asympiotically equivalent 1o the Pearson chisquare statistic
n( - #$)’D\z - #),
or the likelihood ratio test
LR, = 2n S‘:l plog(d / ).
Under H , these statistics are asymptotically X,

4.2 Other Sampling Schemes

We still assume that the cell proportions, w, satisfy 4 = log 7-u(@,, 8,)] + X 8,6 +
X,6 , but we now have n*(p — m) = N(Q, V), where p is a survey estimate.

Rao and Scott (1983) suggest the following Wald statistic for testing 6 , = 0. We let C be
any k x s matrix with C’X, =0, €'l = 0 and C’X, nonsingular. For example if
X] X, = 0 then C = X, is convenient. Now the hypothesis is equivalent to Cu =0. We
have

Cllia —n) = C0'G - 1)
= ETXXPXY X % )
where 7 is obtained from (4.1), based on the survey estimate, p.
We therefore have the Wald statistics

W

9

= np'CIC’X XTBX) (X"VXNXTPX) 'X'C)'Ch.

Similar results were also given in Binder (1983). If under H|, the model is saturated
(r+s = k—1), then p = 7 and we obtain
W,

s = i GICTDY VDIRG9 EF i

Rao and Scott (1984) show that if we use P instead of Vin W, then these are asymptotical-
lv equivalen: to the likelihood ratio or Pearson x° test statistics. They also show that the
likelihood ratio test statistics is distributed as I}, , 8Z° under H,, where {Z:} are indepen-
dent ¥ and {5} are the cigenvalues of

(X1PX,) (XIVX,), 4.3)
Toi \7 defined in (4.2).

4.3 Approximations

As hefore, we approximate the null distribution

Te . F ‘_':ﬁ) 2
/':»6‘2' - ( o PN

This involves computing the trace of (4.3). Rao and Scott (1984) show that if the model ad-
mits explicit solutions for both # and #, then the approximation depends on the matrix Von-
ly through cell design effects and marginal design effects. This observation is particularly con-
venient when ony the estimated design effects for the cell proporiions and margins arc available,
as is often the case for published tables.
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Example 3

Hidiroglou and Rao (1983) considered all direct estimates from the three-way able: Drug
use (5 categories: 0, 1, 2, 3, 4+ drug classes in a 2 day period) x Age (4 categories; 0-14, 15-44,
45-64, 65+ ) x Sex (male, female), taken from the Canada health Survey. We give the results
for testing whether Age and Sex are independent in each drug category (n = 31,668). This is
equivalent to the hypothesis

lfy,: W = T T_*I.i
Using Bishop, Fienbere and Holland's (1973) nciation, where log m, = u + u, + Uy
ol F My F Uy F U+ U the null hypothesis is equivalent to

He gy, = Uy, = 0 for all (, j, k).

The raw chisguare valuc is 23 based on 15 degrees of freedom. The average eigenvalue is
1.39, so that the approximation reduces the chisquare value to 16. Whereas the unadjusted chis-
quare value would lead the analyst to reject the hypothesis at the 10% level, the approximation
mnchcates that 4 cannot be rejected even at the 30% level.

5. LOGISTIC REGRESSION MODELS

5.1 Multinomial Sampling

We now consider a logistic regression model for the conditional distribution of a binary
response variable v given the vector x of independent variables. In particular, this conditional
distribution is

¥l | =y
Pr(y, | x) = #(x)" [1 - =(x)) ",
whard gn e 10, 1)
For the logistic regression model, we have

[ 'R'(X‘) } - .70

|G
-

o = A0

where § i an ankndwn vesior of paramneters.

We note that if x, is a categorical vector of 0’s and 1’s, this is a special case of a log-linear
inodel as described in Section 4. Here we allow X, to be arbitrary. The extension to the case
of #-categories for the v-variable is straight-forward, it is also possible to generalize the model to

loe [—7&} =1 faie).
b = m(x) b wlai

far a known funetion f{4), but we do not discuss this here.
Now, the maximum likelihood estimate for § is given by

Ay - H =0

where s (v, o, )T F o [R) ..., 2@ ) and X = [x, ... x,)".
Under suitable regularity conditions, we have

MG - 8) > N0, n (XTAX)"Y, where A = D - D).
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If we have X8 = X @, + X 0, and consider testing the hypothesis
Hy 0, =0
H: 8, =0,
we obtain the Wald statistic
W, =n8l(XIAX)4,
where

X = [ = XXAX)TLX TRX

43 i 4

The likelihood ratio test here is

-

it (1 - %)
| ' -y I e TR
oy (—_fr ) + (1 y) log {“ - *')}]

H

which is asymptotically cquivalent to W under H,,
5.2 Other Sampling Schemes

Suppose now that n” “*X7(y — #) — N(O, V) and that I7is a consistent estimator of V. Here
v is not necessarily a vector of 0’s and I’s, but may in fact depend on the sampling weights
and other adjustment factors. Estimating Vis usually possible since X'(y — ) is the sum of
random observations and most sample designs admit a consistent estimator of the sum of (not
necessarily independent) observations. To estimate ¥ we use # instead of 7 in the estimate.
Since asymptotically

@ -0 =XAX)'X'¢ - %)

we have that
n*(@ - §) = MO, n(XTAX) 'V(XTAX));

see Binder (1983) for a detailed justification of this result. Now, a Wald statistic may be con-
structed from the estimated covariance matrix for 6,.

Table 3
Logistic Regression Model for Explaining Use of Physician Services

Variable Type el il Sz\:l?lgc
A ey =110 e kP P g Categorical 4 19.232
ST ol 0 ot L - L, e SIS S Categorical 1 12.494
Age-Sex Interactions . . ............... Categorical 4 36.001
BEamily) Incomedss s b 5 35, . . (0088 Categorical = 14.642
WEspauen: W A L e . T Caiegorical 3 8.614
Occupalion-Sex Interaciions .......... Categorical 3 11.501
Nanitalgstains S e SNaee. - LR . Categorical B 85,752
Medical IFlistbry 44, Son-s o et o a0 - Categorical 2 36.700
Number of Health Problems.......... Quantitative 1 B1.554
IR U S . S F G S Categorical 2 22.178
Number of Accidents ................ Quantitative 2 106.372
Number of Disability Days ........... Quantitative 2 29.052
Community Size .................... Categorical 2 §1.751
Provingial Physician -
Population Ratios ................. Quantitative 1 0.540
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Example 4

A logistic regression model was fit on 20,726 respondents from the Canada health survey
to cxplain usc or non-usc of physician services over a 12-imonth period. In total it was estimated
that 77% of the population visited a physician at least once. The results are summarized in
Table 3. For more complete details, see Binder (1983). The logistic model scemed to fit the
data very well.

5.3 Qualitative Explanatory Variables

The theory of this section was obtained by G. Roberts in an unpublished manuscript (Carleton
University). Here the explanatory variables are all qualitative. We label the domains, {1, ..., /}.
We let p, be the survey estimate of the i-th domain proportion and N, is the estimate of the
size of the i-th domain, N, Under the model, the expected proportion in the /-th domain i¢
S wiiere

log {f/(~f) } = a8,
for ¢, known and ¢ an unknown paramcter. We define 4 = [a,, ..., q,]’ and let D, =

diag { .»"\_l'l. L 1R N', }
Under the model, the survey estimator of £ = (f, ..., f )" is given by [, the solution to

A'D; p-f) =0 (5.1)
Since asymptotically
§ -6 = AA4)"ADle-L)
where & = diag{N, f,(1 =f), ..., N, f,(1=f)}, we have
n“@ - 8) = N[0, (4784) 'A'D.V,D.A(ATAA)]
whenever n (p — f) — MO, V,).
Under independent binomial sampling, the covariance matrix reduces to (N/n)(4"A4) ',

where # is the sample size.
The likelihood ratio test for testing goodness of fit is

LR, = 2n/N) £ N, [ plog(p/f )+ (1-p) log{(1-p)/(1=F)}],
where n is the sample size and N = £ /\7,. Under M this is asymptotically equivalent to
W, = a/N)E N @ - F¥5A = £
In general, the distribution of LR, will be that of T §, Z:, where {Z} are independent x 5

and {6} arc the eigenvalues of N"'D (8™ — AA'AA4) 'A1D. VD[4 - AAAA) 'AT)
AD_'. By taking the expectation of W, , and approximating

L

- U,

W, =

Xl
3] 1_3 ]

where s = rank (A4), we obtain

£5 = (/N) L N LS 0 =)
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where v = Vip - f1. The {v‘"} may be computed using the relationship p - /
(1 - diag { /00~ 447§V 24D, e = L)

Example 35

The data from the October 1980 Canadian Labour Force Survey was used to fit logistic (logit)
models for the probability of being employed. The sample consisted of males aged 15-64 who
were in the labour force and not full time students. A logit model, quadratic in age and in educa-
tion, was fitted. Age-group levels were formed by dividing the interval {15, 64] into ten groups
with the jth age-group being the interval [10 + S5/, 14 + 55),j = 1,2, ..., 10. The midpoint
of cach age-group was used as the value of the age for all persons in that age-group. Six levels
of education were formed by assigning to each person a value based on the nedian years of
schooling. Age by education classification led to the formation of 60 cells.

Let =, = Pr{an individual in the ith cell is employed}, i=1, 2, ..., 60. We assume that
0 < 7 < |. Hence 1 - =, represents the probability that the individual in the ith cell is
unemployed. The model, considered for fit, was

T, 3 >
Int—— = 8, + Ba, + B.a} + Bd, + B.d°, (b
=7

i=1,2,...,60

where @, and d are the age and educa:ion variable values for the individuals in the ith cell.

Usmg the survey estimates p, of , the values of Pearson’s statistic W, and the likelihood
ratio statistic LR, were computed as W, = 98.94 and R, = 101.20. The upper 5% point of
the chi-square distribution, with §5 degrees of freedom, is 73 31. Using these values of 1
or LR, we wouid reject the model 1. These values of W’ .1 or LR, however, are appropriate onl)
if the sample was a random sample.

The estimate average eigenvalue, I §/55, for testing goodness of fit for this data is 1.88.
This would reduce W, to 52.63 and LR, to 53.83. Hence, with this adjustment, we find that
the data are consistent with the model (1).

The use of the Wald statistic, fa - [) v B~ [) for testing the goodness of fit was
also considered. Here we use the g-inverse of ¥ since the matrix is singular. Some perturbation
to the estimates of p, when p, = 1, was necessary for computing the Wald statistic. It was
found that the Wald statistic was unstable for our problem. Minor perturbations in the estimates
cf p led to considerable change in the value of the Wald statistic. Also the value of the Wald
statistic is very large kere due to instability in the estimated covariance matrix involved in its
calculation. The Wald statistic is at least 30 times larger than our adjusted Chi-squared values.

6. SOFTWARE CONSIDERATIONS

Advancement of computer technology has made data coliection, storage and retrieval opera-
tions easy and efficient. Powerful generalized software systems, such as TPL, STATPAK and
ESTIMATION SYSTEM, have been used to produce cell estimates and some of their variances

fairly easily to users and analysts. As well a number of commercially available packages such

as BMDP, SPSS and SAS are powerful analytic tools in certain contexts. However, the ability
te perform analysis such as those described in this paper are limited. For example, in situations
involving hypothesis testing or statistical inference, these packages assume that the data to be
analyzed come from surveys with simple random samples.

At present, an integrated software package, similar to the ones mentioned above, but designed
for analyses of the type of data discussed in this paper, is not available. As a result, the researcher
requiring a quick solution to his problem is usually forced 10 use existing statistical packages
which may not be appropriate.
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The alternatives are

e use existing packages with modifications
e usc existing stand-alonc software

e write customized programs

e use combinations of the above.

For the analyses given in this paper, modifications to the MINI CARP program (Hidiroglou,
Fuller and Hickman; 1980) were incorporated 10 obtain the results in Examples. 1, 2 znd .
For Example 4, a combination of PL/1 and SAS programs were developed. The analysis of
the Labour Force Survey daia (Example 5) used a combination of customized programs ana SAS.

For the above alternatives, somc practical drawbacks have been experienced. they include:

(a) If an existing package is to be modificd, intimate knowledge of the package i often

required;

(b) Identical information may have to be duplicated on separate data files, as these alter-

natives are not integrable like generalized systems;

(c) Compared to an integrated ‘‘user-friendly”” package, these alternatives lack elegance and

operational efficiency as software;

(d) Comprehensive documentation is not generally available for specially written programs

limiting the availability of software.

Work is now ongoing to develop SAS based procedures for performing many of these analyses.
Our ultimate goal is similar to that proposed by Shah (1981); namely, the developmen: of an
integrated software package for survey data analysis. This is a goal worth striving for. if we
are 1o avoid the frustrations now being experienced by researchers who are faced with either
developing their own software or using existing software which could lead to erroneous resulis
and conslusions.

7. DISCUSSION

We have examined a number of problems which arise when fitting models to categorical data
which have been collected under complex sampling designs. The basic approach has been 1o
derive the appropriate Wald statistic for the fitted model or to use the test statistic which is
motivated from multinomial-type sampling designs and find a suitable approximation to its
null distribution.

We have not addressed the issue as to whether one should really be taking a model-based
or design-based approach to begin with. Instead, we have concentrated on design-based
inferences.

To put this issue into focus, let us reconsider the test of independence in a two-way con-
tingency table. The question of independence arises if we are interested in whether knowing
the value of variable Y, affects our knowledge about variable Y. If it does not, for all the in-
dividuals in the population, then we say the variables are independent. However, if we also
know the value of Y,, it may turn out that ¥, and Y, are no longer independent. This is par-
ticularly important when Y, is a design variable (such as gcographic stratum). Since design
variables are usually known for all sampled individuals, we have one of two options: (a) we
can say that the question of independence is no longer relevant, or (b) we can marginalize out
Y,, and say that we are only interested in Y, and Y,, unconditionally. Assuming that we take
approach (b), the resulis of this paper seem appropriate. In some cases it may be possible to
test if Y, and Y, are conditionally independent given ¥,.

There is a further difficulty, however. Suppose we are interested in the cell proportions =,
from a finite population of size N. If we were 1o take a census from this population, it is highly
unlikely that we would obtain =, = =, 7, exactly. The best that we could hope for is that
some measure of association such as NSX (r, — 7 _7_, ):/"n'“ﬂ'_} is small. Note that even
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under a super-population model of exact independence, we would not expect this measure of
association to be zero. Perhaps, we should instead be testing hypotheses such as

H,: Measure of Assotiaton € (.
H,: Measure of Agsocianon > .

Further rescarch is needed in this area. However, for practical circumstances where the sampl-
ing fraction is not large, the methods given in this paper are suitable.
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