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ABSTRACT 

• 	In designing questionnaires for measuring ordered categorical variables, we 

propose to use the idea of an accuracy check within a single measurement in 

terms of internal consistency of responses to repeated comparisons (RCs) of 

the true level with the reference levels. This idea is important in view of 

cost effectiveness and cutting respondent burden incurred in call backs. A 

technique termed RCQ (Repeated Comparison Questionnaire) is proposed which 

consists of a systematic set of brief and simple questions and is optimal in 

the sense of ensuring high response accuracy. A simple graphical method for 

recording, consistency check, and scoring of responses is employed. This is 

useful for on-spot editing of aberrant responses (if any) by consulting with 

the respondent about doubtful answers. RCQ can also be apDlied to interval 

variables whenever their categorization is considered suitable for certain 

practical reasons. Although the RCQ theory fits naturally with telephone 

surveys because RCs arise there almost spontaneously and that CAll can be 

conveniently used for administering the procedure, it is also applicable to 

• 

	

	non-telephone surveys and is recommended on account of its optimality. Some 

illustrative examples are presented. 
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RSUM 

Pour I'éLude de questionnaii:'es desLinés a mesurer des variables 1aL6qLr1ques 

- 

	

	ordonriées, nous proposons une verification de Ia precision au sein d'une 

mesure unique en termes de coherence interne des réponses a des comparaisons 

-  répétées (CR) du niveau vrai au niveaux de référence. Cette idée est irnpor-

tante en raison des economies et de Ia réduct ion du fardeau de réponse repré-

senté par les rappels qu'elle perrnet. Nous proposons une rnéthode appelée 

méthode du questionnaire a comoaraisons répétées (OCR); elle faiL intervenir 

un ensemble systématique de questions simples et courtes et elle est optimale 

en ce sens qu'elle garantit une precision de réponse élevée. Elle utilise une 

méthode qraphique simple d'enreqistrement, me verification de Ia precision et 

un classement des réponses. Ceci est utile pour la verification sur le champ 

- 

	

	des éventuelles réDonses aberrantes, car on peut verifier avec le répondant 

toute réponse douteuse. Le OCR peut également être utilisé pour les variables 

- 

	

	intervalle lorsque cette catéqorie est envisaqée pourcertaines applications 

pratiques. Bien que Ia théorie OCR fasse naturellement oartie des enquêtes 

S 4l6phoniciues car des CR s'y produiserit presque spontanément, et que les hAD 

p euvent très bien convenir a Ia mise en oeuvre de cette méthode, elle est 

qalement applicable aux enquêtes non téléphoniques et elle est recommendée en 

raison de son optimalité. Nous présentons par ailleurs des exemples concrets. 
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. 	ON A IPEATED COMPARISON QUESTIONNAIRE TECHNIQIJE 

FOR t4:ASLJRINC ORDERED CATEGORICAL VARIABLES 

IN TELEPHONE SURVEYS 

Avinash C. Sinqh 

1. INTRODUCTION 

In telephone surveys with a variable being measured on an ordered categorical 

scale (consisting of say, s categories), questions involving repeated compari-

Sons of the true level of a respondent with each of the s categories arise 

naturally due to lack of visual aids for the display of categories. These 

• questions would seek to determine where the individual's true level stands in 

relation to the given categories. Thus for a single measurement, the number 

of component questions (or repeated comparisons - RCs for abbreviation) with 

dichotomous responses is atmost s - I i.e. one less the number of categories. 

(i) 	they The 	use 	of RCs as defined above 	is desirable on 	two accounts; 	give 

rise to questions which are brief and simple. 	This 	is 	of obvious 	importance 

in telephone surveys. 	(ii) 	If all the RCs were administered and responses (in 

the 	form 	of 	an 	(s - 	1)-vector 	of data) 	exolicitly 	recorded, 	then 	these 	data 

for a sinqie measurement can be screened 	for accuracy via an internal consis- 

tency check of the 	response vector. 	This 	is possible because of the overlap- 

ping information about the true level provided by various comparisons with the 

ordered catecories. 	It may be noted that 	although 	it 	is possible to adminis- 

ter 	only 	a 	subset 	of 	(s 	-1) 	comparisons 	for 	a 	partial 	internal 	consistency 

check, 	it would be preferable, 	in practice, 	to present 	all 	(s 	- 	1) 	categories 

for 	comparison 	to 	eliminate 	any 	possible 	bias 	that 	might 	enter 	otherwise. 

Clearly, the 	feature of a built-in accuracy check within a single measurement 

process 	would 	be 	of 	oreat 	value 	in 	reducing 	respondent 	burden 	and 	cost 

incurred 	in 	call 	hacks 	(or 	reinterviewino). 	Moreover, 	on 	spot 	editing 	of 

aberrant responses (if any) can he performed during the course of interview hy 

rpe 	nri 	those 	guest ions 	rusing 	inconsis'encv. 
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. 	The problem considered in this paper can he stated as follows. If the scale 

orecision (i.e. s- the number of categories) were too low, then the extent of 

built-in accuracy check would not he adequate although the task of performing 

•  RCs (i.e. the respondent burden) would be very light in view of a small nun-

ber of RCs. For instance, even if the individual were responding carelessly 

or in a haphazard manner, the chance for him to come out consistent would be 

high. On the other hand, if the scale precision were too high, then apart 

from the problem of heavy respondent burden (or difficult task of performing 

many RCs), the practical relevance of the built-in accuracy check becomes 

questionable. This is so because even if the individual were respondino in a 

reasonable rational manner, the chance for him to come out inconsistent would 

be high due to mere large number of questions and perhaps confusion resulting 

from it. We therefore, consider the problem of finding an optimal choice of 

scale precision (s) (or equivalently, an optimal choice of number of repeated 

comparisons) in order to achieve a hiqh response accuracy (or low measurement 

error) which we shall define in terms of the internal consistency of response 

vector. 	First a framework of optimality in the sense of reducing response 

• 	error is presented and then a solution is provided which is essentially an 

optima], compromise between too coarse and too fine ordered categorical 

scales. The optimal solution in general consists of a family of scales and 

the choice of a particular member would depend on the associated respondent 

burden and practical considerations. The optimality framework also provides 

as a by product a meaningful probabilistic measure for a given choice of scale 

precision. This, in turn, resolves the usual problem of an arbitrary choice 

in deciding the number of categories for commonly used ordinal scales. 

The key idea used in this paper is the use of repeated comparisons for an 

internal consistency check for a sinale measurement whenever the variable is 

on an ordered categorical scale. This idea has been used before in the liter-

ature but in a different context concerning psychological dysfunctional states 

by Shapiro (1961, 1966) and Phillips (1963, 1977) on Personal Questionnaire 

Techniques, Blanz and Chiselli (1972) on Mixed Standard Scales, and Sinqh and 

Bilsbury (1982) on Sequential Pair Comparisons. The problem of optlmalLty 

however has not been addressed before. It may be pointed out that the well 

known method of paired comparisons (somewhat similar to repeated comoarisons 
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. 	::nsjdered here) used in the statistical problem of ranking and selection is 

i)L' a purpose completely different from the problem dealt with in this paper. 

V 	In the method of paired comparisons, a pair of stimuli (or objects) is presen- 

- 	ted to a subject (or a judge) for ranking with respect to an attribute (see 

e.g. Thurstone 1959; a review by Bock and Jones 1968; David 1963; Bradley 

- 1976; and a recent review by Bradley 1984). The only similarity between the 

two types of problems is the use of questions involving comparisons. As a 

matter of fact, the problem considered here complements the ranking problem 

because an ordinal grading of each stimulus or assiqninq a comparative ordinal 

score to a pair of stimuli with respect to a certain attribute are, of course, 

reguired while using the method of paired comparisons. The problem concerning 

the effect of number of ordered categories in rating scales on precision of 

estimation of scale values studied by Ramsay (1973) is somewhat similar to our 

- 	problem but considered in the special framework obtained under Thurstone's 

successive intervals model. 	 V 

In ordinal scales, the categories can he for a subjectively measured continu- 

S nug variable which is necessarily described categorically although its all 

::jssihle values form a continuum. For example, 'lower', 'middle', and 'upper' 

fur socio-economic status; 'strongly disaqree', 'somewhat disagree', 'undecid-

ed', 'somewhat agree', and 'strongly agree' on some issue in opinion surveys. 

Such variables commonly arise in social surveys, for measuring attitudes and 

opinions on various issues and status of various types, business surveys and 

health surveys. Ordinal categories are also invariably used in describing 

objectively measured continuous variables such as income, age, and blood pres-

sure by partitioning the underlying continuum in a few class-intervals (or 

groups) which then form the ordered categories. These cateoories usually con-

tain sufficient information and are easily interoretahie in oractice. 

Besides, categorization of a continuous response variable may be desirable in 

dealinq with sensitive or personal matters because it provides the individual 

with the confidence of nonidentifiability of the true value and thus controls 

for possible response set bias or even nonresoonse. Moreover, response error 

due to poor memory is unlikely when measuring a continuous variable over 

V c-lass-intervals or catenories. It may also be added that in view of the opti-

nalitv theory presented in this paper For ordered catenorical sca1e, one nnn 
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. 	cnsure, through categorization a low response error within a single measure- 

ment as given by the extent of the internal consistency check. 

The theory is presented in sections 2 to 4. In section 2, a parametric family 

of partitions of the underlyino continuum is proposed which provides a very 

wide class of ordinal scales for optirnality framework. In section 3 we intro-

duce the method of repeated comparisons for an internal consistency check and 

determination of a category for ordinal scales defined in the previous sec-

tion. The issue of controlling for bias and chance error by utilizing a suit-

able number of RCa is discussed. Next in section 4, analogous to statistical 

testing, accuracy (or performance) measures via the concepts of Type I and 11 

error probabilities are introduced and then a criterion of optimality is 

defined. The usual measures of accuracy, namely, bias and standard error, are 

• not applicable in the present context because they require the assumption of 

at least an interval scale of measurement. Sections 5 and 6 contain aoplica-

tions of the proposed theory to questionnaire designs for telephone surveys 

and some possible applications to non-telephone surveys also (personal inter- 

S . iew or self administered) respectively with some illustrative examples. It w ill he seen that the scoring task (or respondent burden) for optimal ordered 

cateqorical scales is simple, internal consistency checks can be quickly per-

formed by means of a graphical device, and inconsistent responses (if any) can 

be resolved by repeating certain questions which become apparent during the 

course of performing RCa. With the introduction of CAlL (computer assisted 

telephone interviewing) the proposed techniaue can be extremely simole with 

the aid of automation of all the steps involved. In the final section 7, 

summary is given. 

2. A FAMILY 11 CI PARTITIONS FOR ORDERED CATEGORICAL &ALES 

We assume that 	for an ordered categorical variable, there exists an underlying 

continuous variable 	(i.e., the possible values of the variable heina measured 

form a continuum) 	and that the ordered cateqories (Uke class-intervals) 	con- 

stitute 	a partition 	of 	the continuum. In 	the 	case 	of 	subjectively 	measured 

arahles, there 	is 	often a 	practical irnitat ion on 	the 	nunhor 	ni 
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.

understandable categories which is generally 3 to 5 in number. This does not 

- provide an adequate internal consistency check because of an insufficient 

number of RCs (repeated comparisons). Therefore, there is a need for con- 

- 	structing refinements of a given partition consisting of subsets of initial 

• 	categories. 	A suitable class of partitions is given by a family of ordinal 

- 

	

	scales, to be denoted by ii, and parametrized by two parameters (d, r) as 

follows. 

Let r denote the qiven number of reference levels L1, •• 	on the contin- 

uum. 	These levels are simply the initial points in partition (but not 

including the two extremities at ± co) corresponding to the given set of (r+l) 

ordered categories. The parameter d is assigned the value of 0 for the ini-

tial partition. The intervals between adjacent pairs of reference levels (r-1 

in number) are subdivided in powers of 2 in order to obtain successive stages 

of partitioninq corresponding to d = 1, 2, ..., respectively. Thus, d denotes 

- 	the dearee (or exponent) of the number 2 of subdivisions of initial cateao- 

ries. We do not subdivide the two end class intervals on either side of the 

. nontinuum for reasons concerning difficulty in practical interpretation. The 

partitioninq precision (viz, the number s of categories) of a partition in It 

is, therefore, given by 2d(r_1) + 2. Thus, s is (r+1) for d = 0, 2r for d = 1 

4r - 2 for d = 2, and so on. 

The commonly used rating scales namely Likert and Analog Scales (see Cuilford 

1954) also belong to the family II. The Analoa (which provides an interval 

level of measurement) can be obtained as a limit when r = 2 and d tends to . 

The Likert (or the usual ordered categorical scale with s cateqories) is 

obtained, on the other hand, by setting r equal to s-i and d at its ninimum 

value of 0. Here the descriptions of first (s-i) ordered cateoories define 

the reference levels L1, L2, ..., L 51  representing certain ooints on the con-

tinuum and the class intervals corresoonding to s categories will he defined 

as (- , L11, CL1, L21, ..., (L 92 , L51], (Li, co). For example, with 3 

cateqories 'lower', 'middle', and 'upper', the three class intervals are 

co, lower], (lower, middle], and (middle, co). 
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of reference levels for the initial partitioninq points L2, ..., L r i 

all except the end points L1 and Lr)•  We shall denote the alternate pair me-

dians by L1/L3, L244, .... The RC for the partitioning point L 1 /L 1  may 

be construed as an easier task for the individual than the RC for the point 

L 1 . The former RC seeks to determine whether the true level is closer to L 11  

to L11  while the latter RC finds if the true level is more than L 1  or not 
(see section 3 for details). With the modified initial points of Dartition 

as mentioned above, the resulting ordinal scale will be different if L 1 's are 

not equally spaced. 	In this paper we will restrict our discussion to the 

above modified scales. The appropriate changes for the other case would he 

obvious whenever required. 

Figure 1 (a,b,c) illustrates partitions in the family IT when (d,r) is (0,9), 

- 

	

	(1,5) and (2,3) with s = 10 for each case. The lengths of the cateqories (or 

class intervals) are unknown in general but are shown equally spaced for 

- 

	

	convenience. The points of partition can be grouped according to successive 

otanes of subdivision. More spec'ificallv, we have 

S Lnq 	0' 	II: cr::s1;_ :1 	ni :oL:nc 	L 	jn' 	on 	n 

pair medians L 1 /L 2  , i = 1, ..., r-2. 

For d = 0, only staqe '0' partitioning points are required. 	For d = 1, we 

also need stage '1' partitioning points. 

	

Stage '1' 	It consists of adjacent pair nedians L/L 1 	i1,... 

For d = 2, we need stage '2' points in addition to those for stages '0' and 

'1'. 

	

Stage '2' 	It consists of adjacent pair first and third quartLies to he 

denoted by L 1/(L/L 11 ) and (L/L 11 )/L 1 	respectively for 

I = 1, 2, ..•, r-1. 

0 
	and so on for hinher values of d. 
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It should he noted that for d = 0, 1 and any r, the partitioninci points are 

• well ordered and so the categories are well defined. However for d 2. some 

reqularity conditions concerning relative distances of L 1 's are reguired4en-

ever r 2. For example, for d = 2, the condition is that the distance 

between any adjacent pair exceeds half of the distance for the pair prece'Iinq 

or Following it. This condition would seem to be reasonably met in practice 

although it may not be possible to verify it. 	In practice, we will not be 

interested in partitions corresponding to d 	2 when r > 2 because they lead 

to nonoptimality (see section 4). It may be pointed out that there will be no 

need of the above reqularity condition if the initial partitioning points L2, 

... 9  L 1  were not replaced by alternate pair medians. 

- 	 3. REPEATED COMPARISONS AND ACCURACEY CHECK 

WITHIN A SINGLE tf:A5UREMENT 

We 	will 	describe 	RCs (repeated 	comparisons) for 	measurinq 	on ordered • 
categorical scales 11 by considering the three cases correspondino to d = 	0, 	1, 

2 respectively. 	These RCs are somewhat different from those mentioned in 	the 

beginning 	of 	section 	1 because 	here comparisons involve 	partitioning points 

(i.e. cateaory boundaries) 	rather than categories directly. 

- 	Case I (d = 0). 	It can be seen from Fig. 1(a) that for measuring on parti- 

tions II with d = 0, the reguired RCs can be classified in two steps. 

Step Ci) 	RC with Alternate Pairs: The individual is asked which of the 

two levels in the alternate pair (L 11 , L 11 ), i 	2,..., i--i, 

is closer to the true level. 

Step (ii) RC with End Levels: The individual is asked whether his true 

level is more or less than L 1  (1 = 1, r). If the individual 
is at L1 , then we use the followinq convention. Assign first 

category C1 if at L1 and last category Cs if at L. 

0 
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. 	Case II (d = 1). 	It follows from Fin. 1(b) that for measurinq on IT with 

ci = 1, one more step of RCs than those for case I is required. 	The three 

steps are: 

4 	 Step (i) RC with Alternate Pairs 

Step (ii) RC with Adjacent Pairs: The individual is asked which of the 

two levels in the adjacent pair (L 1 , L+i),  i = 1, ..., r-1, 

is closer to the true level. 

Step (iii) RC with End Levels 

Case III (d = 2). From Fig. 1(c) it can be seen that measurement on IT with 

d = 2 can be accomplished in four steps, namely, 

- 	Step (i) 	RC with Alternate Pairs 

. 	Step (ii) RC with Adjacent Pairs Usinq Middle Option: The individual is 

asked whether his true level is closest to L. 
1 	i+l or L 	or 'the 

middle in between' for the adjacent pair (Li,  L 1 ). 

Step (iii) RC with Adjacent Pairs (without middle option). 

Step (iv) RC with End Levels. 

Note that for d = 2, four equal subdivisions between successive reference 

levels are achieved by administerinq the adjacent pair RC with and without the 

'middle' option. The questions in step (ii) are now trichotomous whereas all 

the other questions remain dichotomous. When d >, 3, the question for RCs are 

not quite simple as before. For example, with d = 3 and r = 2, the required 

RCs can be obtained from the case d = 2 and r = 3 by reqardino the centre (or 

median L1/L2) as a new reference level. As will he seen in section 4, values 

of d other than 1 and 2 would be rarely needed in practice. 

r 
L 
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0 	For each fixed (d, r) in 11, let N denote the total nuinbei of RCs and s 

before denotes the number of cateqories. We have 

 d:O, s=r+1, and Nr 

 d 	= 	1 	, $ = 2r, and N = 2r - 1 

 d = 2 	, s = 4r - 2 and N = 3r - 2 

 d 	= 	3 	, s = 8r - and N = 6r 	- 	5. 

For arbitrary (d,r), one can calculate N in a similar manner. 	If we .ish s of 

10, then the value of N for 

(d, r) = (0, 9) is 9 (all dichotomous), for (d, r) = (2, 3) it is 7 (5 

dichotomous and 2 trichotomous) and for (d, r) = (3, 2) it is also 7. 

- If one has confidence in resrondent's accuracy, then there is no need for per-

forming accuracy check via internal consistency and consequently, the required 

- 

	

	number of RCs will be very small. For example, by employinq hinary search, it 

LS easily seen that for d = 0, r = 9, a category (or a score) can he selected 

S  by using only 3 - 4 RCs; for d = 1, r = 5, a score can also be obtained in 3 - 

4 RCs while for d = 2, r = 3, only 2 - 3 RCs will he required. Therefore, if 

the rernaininq RCs were indeed administered, they would serve as 'replications' 

in the sense that they would provide overlappinq information which can be used 

for measuring accuracy via a consistency check. Inconsistency can be caused 

by either bias or chance error in response. For instance, if irrelevant 

response set and intentional biases were present, then it would be difficult 

for someone to deliberately falsify the response and yet come out consistent 

provided there were enough RCs to be performed (to be discussed further in 

section 4). 	Similarly, chance error due to task difficulty (if there were 

quite a few RCs) would give rise to inconsistency. 	It is also possible to 

check bias due to order effects and unintentional factors by the internal 

inconsistency if randomization in the order of presentation is introduced 

while administerino RCs within each step. 



. 
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. 	
4. A CRITERION OF OPTDIALITY FOR THE MJMBER OF CATEGORIES 

(TYPE I AND II ERROR PRORABILITLES) 

As mentioned in section 1, there are two types of error that should be con- 

trolled for with the RC method. 	The problem is analogous to testing 
statistical hypotheses. 	Let H0 denote the hypothesis of 'random' response 

modelin the sense that the respondent assigns equal chance to all oossihle 

answers to each question and that the questions are answered independently. 

We now define for partitions IT, 

a = Type I Error Probability 

Pr [ consistent response in N repeated comparisons / Hol  

Clearly a depends on 	(d, 	r) 	because N does. 	It will be seen that a is a non- 
• increasing 	function 	of N 	(or 	s). 	Now, 	let 	H1 denote 	a 	'rational' response 

model defined by assumptions Al - A3. 

Assumption Al: 	There exists a number 	S 	(critical 	number 	for discrimina- 

tion) such that whenever s-i 	(the number of partitioning points) is 
there 	is 	no 	error 	in 	selecting 	a 	category containing 	the 	true 	level 

(denoted by 	X). 

It 	follows 	from Miller 	(1956) 	that 	6 is 	7(± 2) in view of the human capacity 
for discrimination. 	Whenever 	(s-i) 	5 but 	r , we deFine a critical decree 

(do) as that value of d for which 

s(d 	- 	1, 	r) 	- 	1 	5 but 	s 	( do , 	r) 	- 	1 	> 6 (4.2) c 

where s(d, 	r) 	= 2d (r-i) +2. 	Note that 	1 	because r is assumed to be 

Now 	for r 	4 	5 and d = d 	- 	1, 	it 	follows 	From the assumption Al 	that the 	in- c 
dividual can select a class-interval 	(I 	, 	say) containing 	the 	true level 	X 
without any 	error. 	We next 	introduce 

0 
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Assumption A2: 	(For the case r < ES). Within 'A'  the indii1ual furthe: 

locates A according to a continuous probability distribution F with sup- 

port I. 

The assumption A2 becomes superfluous if 'A  is one of the end intervals. 
Thu 

third assumption required to complete the definition of H 1  is 

Assumption A3: (For the case r > 6). The individual can choose a subset 

of 6 reference levels (say, L .c ... < L) such that L1 L, Lr  L and 

that he can locate A in one of the (6+1) intervals formed by the points 

L's without any error. Furthermore, the individual chooses a ooint 

within the selected error-free interval accordinq to some distribution F 

as given in (A2). It is also assumed that the number (r-6) of L 1 s not 

chosen in the subset are as much as possible evenly interspersed with * 
L. 1  's. • The assumptions Al - 43 complete the definition of H 1 . Now we define for par-

titions II, 

Type II Error probability 

Pr [an inconsistent response in N repeated comparisons 	H 1 1 	(4.3 

The probability 	depends on (d, r) , 5, L \  ond F. 	It will he seert that 

a nondecreasinQ function of N(or s). Let us also define 

Pr [an incorrect response in N repeated comoarisons 	H1 

It is easily seen that 	because correct response implies ccnsistencv hut 

not vice versa. We have 

0 implies that 3 

Therefore, 	= 0 whenever (s-i) 	under Al. It will be seen that it wou].1 

he unreasonable to restrict choice of (d, r) such that (s-i) 	S, hermise in 
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. 	these situations a would qenerally be unacceotably high. It may be remarked 

that althouqh both B and B depend on the unknown A, we prefer B for our theo- 

• 	i'etical treatment because of the practical feasibility in checking consistency 

- - 	of a response (versus checking correctness). 

4.1 Computation of a 

By definition of H0, it is easily seen that for a qiven (d, r), 

ci = s/I 
	

(4.6) 

where s = 2d( r_1) +2 and I is the total number of possible responses to N RCs 

corresponding to the qiven (d,r). Table 1 lists a values for various choices 

ofrwhend0, 1,2,3. 

T1e 1: c*values as d and r vary 

d 
r enrJ 

Formula 
Forci=s/T 

- 

2 3 4 5 6 7 8 9 

0 .75 .50 .3125 .1875 .1094 .0625 .0352 .0195 (r+1)/2" 

1 .50 .1875 .0625 .0195 .00586 . . . 2r/221  

2 .25 .0347 .00405 .0004 . . . 
. (4r_2)/22r_1 	3r-1 

3 .0347 .0004 . . . . . . (8r-6)'243 	32 

Proposition 4.1 For a given r, there exist ao and d0 such that 

cx 4 ao ill d 	d0 
	

(4.7) 

0 
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. To prove, it is enough to show that a is a decreasing function of d. 

rom Table 1, note that given r, both s and I are increasing functions 

of d but I increases much faster than s does and so s/I is decreasing 

in d. Hence the result. 

Remark 4.1: Given r, the condition d . d0 is equivalent to s 	o where 
2d0 (r+1) +2. Therefore the proposition 4.1 gives a condition of minimum 

scale precision in order to control a down to a o . This provides a probabilis-
tic measure (or interpretation) of s which will be helpful in practice when 

specifying s. For example, in the class IT pf partitions, if we wish a0 .< 3%, 

then we must choose s .,> 10 for all values of r. If we wish ao ' 2%, then 

s 	10 is still satisfactory provided r 	4. 

Remark 4.2: It may be possible that the desired level ao can be achieved by 

only a subset of N RCs (in other words, by only a 'partial' in9tead of a 

'full' replication). This would have an important practical implication in 

reducing respondent burden. One can also check the effect of omission of some 

• 	replication on a by computino the new a. For example, for d = 1, if replica- 

'ions of step (iii) are omitted, than a is chanqed to 2(r-1)/2 2 ' 3 . 

Thus for r = 5, a would increase from .0195 to .0625. For d = 2, by omitting 
2r-3 r-1 step (lv) replications, a is changed to (4r-1)/2 	3 	. 	So for r = 3, a 

- 	would increase from .035 to .111 and for r = 4, it would increase from .004 to 

.014. 

4.2 Ctnputation of B 

Althouqh B in general is not known, it is possible to specify necessary and 

sufficient conditions under which 8 = 0 for arbitrary A. 

- 	Proposition 4.2 Let r and 6 be given. Let A denote the unknown true level. 

We have 

a) for r 

max 8 = 0 iff d s d 

0 
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. 	b) c < r < 26 

riax 8 = 0 iff d = 0 
A 

- 	c) r-2 6, 

max 8 ? 0 	for all d. 
A 

Proof: (a) Suppose max 8 = 0 but d > d . Then there exists I for some A such 
A 	c 	A 

that it contains at least 3 partitioninci points (say yi ' Y2 < Y3 

Y2 = (y + y3)/2). 	Now denotinq 1-F by F, we have 

rnx 8 	1 - [F(y2) F(y3) + F(y1) 1(y 2 )] 

which leads to a contradiction. Hence the result '. To show '4-', note that 

the error free interval I x  obtained at d = d - 1 contains at most one parti- 
• tioninq point at d = d, thus requirinq only the minimum number of one RC for 

C Jr ther location of S. The correspondinq p would be zero in view of no repli-

cation. Hence 8 = () for every d d because it is obviously a nondecreasina 

function of d. 

(b) Suppose mx 8 = 0 but d ?' 0. At d = 1, s = 2r .> 26. Therefore by 

(A3) there exists 1A  for some A such that it contains at least 2 partitioniria 

points, Yl < Y2 (say) then 

max 8 .. 1 - [F(y1) F(y2) + (yi)] -> 0 

leadinq to a contradiction. Hence the result 's. To see '", we assume 

d = 0. Now r < 26 implies that s = r+1 s 26. Therefore, by A3, the I for 

any A contains atmost one partitioning point and so 8 = 0 as in W. 

c) It easily follows from the proof of (b). 
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0 	Corollary 4.1: Given 'S, r and d, 

mx 	0 iff s s 26 	 (4.11' 

This is a direct consequence of proposition 4.2 and the fact that for r 

d 	d ifT s 	26 	 (4.12) 
C 

To see (4.12), note that 

d -1 
s(d - 1, r)- 1 = 2 

C 	(r-i) + 1 	6 

d-1 
1ff 2 c 
	(r-1) 	6-1 

d 
UT 2 c  (r-i) + 2 	2(6-1) + 2 	25. 

Remark 4.3: 	The condition s 	26 can be intrpretJ as the ccndil ion jF 

maximum scale precision in order to hold B down to zero. 

4.3 A Criterion of ttima1ity 

Analogous to statistical testing, the two error probabilities a and B are 

inversely related because while a is a decreasinq function of d, B is a non-

decreasing function of d when r is fixed. It is possible to minimize $ 

holding a fixed for a class of partitions in TI. Thus we define a partition in 

It to be optimal if for given iS, a, r; the value of d is such that 5 = 0 while 

a 4 a0. 

Proposition 4.3 Given iS and a0, the optimal class of partitions in It satisfy-

inc a * a. o is given by pairs (d, r) such that 

so 	S 	s 25 	 (4.13) 

U 
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. 	Moreover, if r is also given, then the optimal class satisfying a 	a0 is a 

subset of the previous class and is given by values of d such that 

-. 	d 0 	d ' d 
C 	

(4.14) 

Proof follows easily from propositions 4.1, 4.2 and corollary 4.1. 

Remark 4.4: For the optimal class of partitions, the conditions of minimum 

(s . so) and maximui (s 26) scale precision must be satisfied. Therefore, 

if values of 'S and a0 are such that s o  > U, there will not exist an optimal 
partition. For instance, with a0 = .0195 (or about 2%), there is no optimal 

choice of (d,r) when 6 is 5 (the most conservative value of 'S. in view of 
Miller's result, namely, 5 6 'S 4 9). For the proposed technique (see section 

5), we will take a0 = .0352 (or about 3%) and 'S = 7 (the median of the range 

5 to 9) as working values because apart from these values beina reasonably 

small, the corresponding optimal class does contain various partitions (d, r) 

• 	of practical interest. The optimal class for 6 = 7, a 	.035? is aiven by: 

{(d, r) = (3,2), (2,3), (2,4), (1,5), (1,6), (1,7), (0,8), (0,9), 

(0,10), (0,11), (0,12), (0,13)1 	 (4.15) 

Thus, values of d other than 1 and 2 would be rarely needed because r is 

generally between 3 to 7 in practice. 

Remark 4.5: 	Under the optimality condition (4.13), 	may he posit i've al- 

though 8 = 0. 	It should be noted that with a rather stringent condition of 

s 'S + 1, we will have 8 0 but a would be generally quite hiph. It then 

follows that form the optimal class, one should in practice choose (d, r) such 

that s is as small as possible in order to keep respondent burden minimum pos-

sible which in turn would render 13* small. Note that for the optimal class 

(4.15), s varies from 10 to 14 whenever r is between 3 to 7. From Miller 

(1956) it is seen that the most liberal choice of 'S is 9 and so whenever 

possible one should restrict s not to exceed 10 while maintaining a a0. 

Thus for the optimal class '4.15), the best choice of s is 10. 
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. 	 5. THE PROPOSED REQ (REPEATED COMPARISONS JESTIONNAIRE) TECHNIQUE 

FOR TELEPHONE SURVEYS 

- - 	'1e will describe the proposed RCQ technique by means of two examples when 

(d, r) is (1,5) and (2,3), both yieldinq a partitioning precision of 10. The 

corresponding values of a For the full replication case are respectively .0195 

and .0347. These examples typically arise in applications because 3 to 5 

reference levels are generally available in practice. 

Example 5.1: (d = 1, r = 5) 

Consider a hypothetical 	situation 	involvina 	'job 	satisfaction' 	as 	a 	variable 

being measured with respect to five reference levels, 	L1 to L5, namely 

very dissatisfied so-so 	 very satisfied 

(L2) (L3) 	(L) 	(1.5) 

moderately dissatisfied moderately satisfied 

f)t!c'W3 From 	setjcjn 	3 	thoL 	on1 3 	- 	RLs 	ustt 	rci 

tions will be required for selectinq a cateqory out of 10 when no replications 

are 	performed. 	This 	nonreplicated (or 	short) 	version 	of 	RCQ 	for 	the 	case 

• ((11, 	r:5) consists of the following steps. 

STEP I 

Question 1: Closer to L2 or L4? 

Answer: (L2) moderately dissatisfied ... to to Question 2 

(L) moderately satisfied 	... Go to Question 3. 

• 	Question 2: Closer to L1 or L3? 	- 

- 	Answer: CL1) very dissatisfied 	... Go to Question 4. 

!.,fl 
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Question 3: Closer to L3 or L 5 ? 

• 	Answer: (L3) so-so 	... Go to Question 6. 

(L5) very satisfied 	... Go to Question 7. 

STEP II 

Question 4: Closer to L1 or L2? 

Answer: (Li) very dissatisfied 	... Go to Question 8. 

moderately dissatisfied ... Select category 'C3' 

Question 5: Closer to L2 or L 3 ? 

Answer: (L2) moderately dissatisfied ... Select 'C' 

so-so 	... Select 'C5' 

Question 6: Closer to L3 or Lt? 

Anor: 	L 3 ) so-so 

(Li) moderately satisfied 

Question 7: Closer to L 4  or L 5 ? 

Answer: (L,) moderately satisfied 

(L5) very satisfied 

... Select 'C6' 

Select 'C7' 

Select 'C9' 

10 to Qestion 9. 

STEP iii: 

Question 8: Worse than L1 (very dissatisfied)? 

Answer: worse than (or at) L1 	... select 'C1' 

better than L1 	... select 'C2' 

0 
	Question 9: Better than L 5  every satisFied)' 
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Answer: worse than L5 	... select 'C9' 

• 	better than (or at) L5 	... select 'C10' 

With objectively measured continuous variables such as income, the above RCO 

procedure can be used to select from 10 income categories in 3-4 brief and 

simple questions in terms of five reference levels of income. If all the nine 

questions are administered, then we will have a fully replicated (or long) 

version of RCO. As mentioned in section 3, the RCs in the replicated version 

should be presented in a random order. This randomization should he both with 

respect to question number and level position within a question. This can he 

easily performed with CATI (computer assisted telefhone interviewing). It 

would be preferable to restrict randomization of questions within each step in 

order to avoid redundancy of certain questions in practice. 

With many ordinal categorical variables in a survey, it t.uld probably not be 

feasible in practice to administer a replicated verstion of RCQ for each vari- 

able. A reasonable compromise would be to give the lana RCQ to only a small 

S subset of variables interspersed arnonq others. This will provide an accuracy 

check at certain points of time during the course of interview. A qraphical 

device shown in Figure 2 can be used for recording, quick consistency check 

and score determination (see Fig. 3(a)) in case consistency was affirmed. In 

the case of an inconsistent response (see Fig 3(b)), the aberrant responses 

can be easily detected and the corresponding questions could be repeated for 

resolution during the same interview. 

Figure 2(a) explains the symbols for recording responses. The circled symhols 

are joined tqqether from left to right. If the horizontal axis of categories 

is crossed at only one point, then the response will he consistent and the 

score is given by the cateqory of intersection (see Fig. 3(a) for the score of 

C4 for example). An inconsistent response pattern is shown in Fig 3(h) which 

shows that the possible categories for score are C4  and C 7 . The questions 
(1), (5), and (6) must be repeated for the sake of resolution of inconsis-

tency. 

Example 5.2 (d = 2, r = 3) 
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Consider an ordinal preference scale with 3 reference levels L1, L2 and L3 1  

• 	namely 

(Li) not at all 	(L2) moderate 	(L3) strong 

Some other examples of 3 reference levels are: 'Left', 'Centre', and 'riaht' 

for political party preference; 'not present', 'possibly present', and 'pro-

bably present' in disease disqnosis etc. It follows from section 3 that 2 - 3 

RCs (one trichotomous and others dichotomous) will be required for selection 

amonq 10 categories when the short (or nonreplicated) version of RCQ is used. 

It may he noted that although the required number of RCs is less than that for 

the previous exanpie, not all RCs for the present example require a simole 

dichotomy in answers. The short RCQ for the case (d = 2, r = 3) consist of 

the followinq steps. 

STEPI 

uestion 1: 	Closer to L i or L3 9  

Answer: 	(L i) not at all 	. . . 1u to Queo L Ion 2 

(L 3 ) strong 	... Co to Question 3. 

STEP II 

Question 2: Closest to L1 or L2 or the middle in between? 

Answer: (Li) not at all 	... Co to Question 6. 

(L2) rroderate 	... select 'C5' 

(L1/L2) middle 	... Go to Question 4. 

Question 3: Closest to L2 or L3 or the middle in between? 

Answer: 	(L2) moderate ... 	select 'Cr,' 

- 'L3) 	strong ... 	Go 	to Question 7. 

(L2/L3) 	middle ... 	Co 	to Question 5. 



. 

. 

0 



- 21 - 

• STEP 111 

Question 4: Closer to L1 or L2? 

Answer: (Li) not at all 	... Select 'C3' 

moderate 	... Select 'Ct,,' 

Question 5: Closer to L2 or L3? 

Answer: (L2) moderate 	... Select 'C7' 

strong 	... Select 'C8' 

STEP IV 

Question 6: At L1 (not at all)? 

Answer: 	More than L1 ... 	Select 'C2' 

At 	L 1  . 	 Select T 1 ' 

Question 7: 	Less than 	H 	(trsnq.? 

Answer: 	More than (or 	at) 	L3 ... 	Select 'C10' 

Less than L3 ... 	Select 'C9. 

For the long (or fully replicated) version of RCO, all the seven questions are 

administered in a (restricted) randomized order as in the previous example. 

In practice, it would be preferable to perform Step III before Step II for the 

long RCQ for the case (d = 2) in order to avoid obvious redundancy of certain 

questions. With this change (Questions 2 and 3 replaced by Questions 4 and S 

respectively and vice versa), Figure 2(h) shows a graphical device for record-

ing, consistency check and scorino of responses. Inconsistent responses, if 

any, can be resolved as before. 

S 
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6. APPLICATION OF RCQ TO NON-TELEPHONE SURVEYS 

The RCQ techniQue provides accuracy check within a single measurement at a 

cost of a little extra effort in the case of telephone surveys because RCs are 

naturally performed as it is not practical to display (or read out) all the 

categories simultaneously. However, with non-telephone surveys such as per-

sonal interview or self-administered, there is no problem of displaying or 

presenting all categories at the same time. Even so, it may be considered 

desirable to use RCQ with non-telephone surveys in view of benefits of having 

brief and simple questions and an internal consistency check within a single 

measurement. It may be remarked that the single task of an overall comparison 

(or ratinq) of the true level with all the categories (10 or so for example) 

simultaneously might be quite difficult, perhaps leadina to inaccuracy (al- 

•  thouqh it is not possible to check it with a single rating). Thus, RCQ (con-

sisting of several simple tasks) miqht be preferable over the task of rating 

eventhough the latter consists of a single task. Moreover, there is a general 

problem of arbitrariness in the choice of number of categories in rating with 

S  :iinal scales, a solution for which can be obtained from optimality consider -

otions of RCU. Notice that although RCQ is not used explicitly in rating, the 

ue of RCs may be thought to be implicit in any form of rating and so the 

theory of RCQ may be deemed to be applicable for rating methods. 

There may be several versions of RCQ suitable for different types of variables 

and correponding reference levels in dealinci with non-telephone surveys. 

Figures 5(a,h) and 6(a,b) correspoding to (d = 1, r = 5) and (d = 2, r = 3) 

respectively show possible versions of short and long RCO which seem appro-

priate for many situations. 

The selection of a category is self explanatory from Figures 4(a) and 5(a). 

In Fig. 4(b) and 5(b), the response form is similar to the graphical device 

(figures 2a and b) except that the alternate symbols on either side of the 

category axis for recording responses are switched. This will give a zig-zag 

pattern for a consistent response with only one breakspot. The score (or 

(2iteqory) can be easily determined from the location of the breakspot. This 

alternation was made to quard aqalnst possible irrelevant resoonse in ,elF- 



r 

0 



- 23 - 

a'1nitered surveys because of the danger of consistent pattern being too 

obvious. One can, of course, use any other mixina sequence for symbols in 

order that the consistent response pattern is not too apparent. It will also 

• be preferable to randomize the order of questions for long RCt as mentioned in 

section 5. This can be easily incorporated in Figure 4(b) and 5(b) by renum-

berinq the questions according to the given random sequence. If reference 

levels are long and descriptive which may occur with subjectively measured 

variables, then levels in Figures 4 and 5 can be presented vertically with one 

above the other rather than horizontally. 

7. SUJfIARY 

For measurinq over ordered categorical 	scales, 	a simple technique termed 	RCQ 

(Repeated Comparisons Questionnaire) was proposed. RCQ consists of a systema- 

tic set of repeated comparisons (RCs) of the true level with one or two refer- 

ence levels 	in order to select 	a category 	(or score). A theory of optimality 

was developed under a suitable framework. 	In the following, 	the main observa- 

ions and results are summarized. 

RCQ suits telephone surveys very well because RCs are brief and sim-

ple and that they arise naturally due to lack of visual aids for 

displaying categories. 

RCQ can provide a built-in accuracy check within a sinale measure-

ment via internal consistency of responses (generally dichotomous) 

to component questions or RCs. 	A simple graphical method is used 

for recording, consistency check (on spot editing if necessary) and 

score determination. This as well as randomization in the order of 

presentation of RCs can be automated with CATI. With the accuracy 

check, the respondent burden in cailbacks or reinterviewinci may be 

reduced. Furthermore various biases and chance error in response 

can be controlled by the internal consistency check. 
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be high due to many RCs; while if the categories are too few, the 

• t'esultinq accuracy check will not be adequate. A solution to the 

problem of finding an optimal choice of number of categories in 

order to ensure high accuracy while keeping respondent burden mini-

mum possible was provided by RCQ theory. It turns out that general-

ly speaking, number ten is the best choice. Some other choices may 

also be optimal under certain specific conditions. It may be noted 

that the number of cateqories in commonly used ordinal scales is 

generally arbitrarily fixed from certain practical considerations. 

(4) Usually 3 to 5 categories are easily available and meaningful in 

practice especially with subjectively measured variables. A method 

based on RCs for making refinements of a given partition was employ-

ed in order to enhance the number of class-intervals partitioning 

the underlying continuum. 

With 10 ordinal categories, the number of RCs required in RCQ for 

AD ionsistency check and scoring is 8 or so. Note that in telephone 

surveys the number of category comparisons (or RCs with categories 

instead of partitioning points) required simply for scoring over 10 

categories varies from 1 to 9. Here the category comparisons are as 

in usual rating method and therefore they are somewhat different 

• from RCs as defined in section 2. Thus with one reinterview, the 

number of category comparisons required on the average would he com-

parable to the number of RCs in employing RCO for telephone surveys. 

If in a survey there are many variables measured on ordinal scales, 

it may not be considered necessary to perform accuracy check for 

each but rather for a few and far in hetween may be sufficient. 

Thus the number of RCs for selecting a category by RCQ will he 

reduced with 10 categories, for instance, to 3 or so from 8 or so. 

It may be advantageous to apply RCQ to non-telephone surveys also 

because accuracy check within a single measurement would be avail- 

able and that the single task of an overall comparison of the trije 
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. 	level with all the cateqories (10 For example) might he perceived to 

be more difficult than several (8 or so) simple tasks of RCs. More-

over, formulation of more than a few (4 ± 1) ordered categories for 

• 	the purpose of rating is generally not easy in practice. 

(8) In view of the optirnality, RCQ can also be beneficially used with 

interval variables (objectively measured continuous variables such 

as income) because they are commonly discretized into a finite num-

ber of class-intervals due to certain practical considerations and 

that the associated loss of information is not generally deemed 

important. 
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(a) 	d=l, r5 
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Figure 	2 A Graphical 	Response Form for RCQ (d=l, 	r=5) 

A Graphical 	Response Form for RCQ (d=2, 	r3) 

(The 	symbol i 	or T or Ti are circled according as response to the jth  question 

corresponds to the lower or the higher or the middle level. 	The two precircied 

symbols indicate that the true level 	is always between the two extremities.) 
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Figure 3 (a) An Illustration of a Consistent Response Pattern and a 

Score of C 4  for RCQ (d=l , r=5) 

(b) An Illustration of an Inconsistent Response Pattern for 

RCQ (dl, r5) 
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(a) Short RCQ (d=l, r=5) 
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... .. 
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(b)Long RCQ (d1, r=5) 	
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l• 	............... - 	
.1 

Figure 4 	(a) A Flow Chart Version of Short RCQ (d=1, r5) 

(b) A Flow Chart Version of Long RCQ (d=l, r5) 

(Questions: 	(1) L 2  vs. L 41 	
(2) 	L 1  vs. L 3 , 	(3) L 3  vs. L 51 	(4) L 1  vs. L21  

* 	 (5) L 2  vs. L 3 , 	(6) L 3  vs. L41 	(7) L 4  vs. L 5 , 	(8) < 
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Short RCQ (d=2, r=3) 

I,  

C. 

J OTO (CTC1jo7c 	

- 

Response Form 

Long RCQ (d=2, r=3) 	
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Figure 5 [a] A Flow Chart Version of Short RCQ (d2, r=3) 

[b] A Flow Chart Version of Long RCQ (d=2, r=3) 

(Questions: [a] 

(3) 

(6) 

(1) L 1  vs. L 3 , 	(2) L 1  vs. L 1 /L 2  vs. L 2 , 

L 2  vs. L 2 /L 3  vs. L 3 , (4) L 1  vs. L 2 , (5) L 2  vs. L 3 , 

<L 1 , 	(7) 	>L 3 . 

as in La] except that (2) and (3) are interchanged with 

and (5) respectively.) 
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