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ABSTRACT. We prove a Glivenko-Cantelli property in a "joint" design-model probability space that 
changes as the sample size increases. We also prove weak convergence of the sample empirical process 
under selected complex sample designs. 

RÉSUMÉ. On établisse le théorème de Givenko-Cantelli pour un espace qui inclut a la fois l'espace 
plan d'échantillonnage et l'espace modèle. On établisse aussi la convergence faible du procès 
empirique d'échanti lion sous plans d'échantilionnage complexes. 



1. INTRODUCTION 

Statistical tools like the empirical distribution function and the corresponding empirical process 
yield many important tests and related results widely used in the practice. The Glivenko-Cantelli 
theorem, which concerns a statistic of the empirical distribution function is sometimes referred to as the 
fundamental theorem in statistics. However, until recently, few of these results have been extended to 
their sample counterparts in an analytic form. In this paper we prove a Glivenko-Canttlli type theorem 
for the sample space and we also show weak convergence of the sample empirical process, which in turn 
implies convergence in law of many important processes used, for example, in survival analysis (see, for 
example, Rubin-Bleuer (2001) and Lin (2000). 

The Glivenko-Cantelli theorem states that given a sequence of independent, identically 
distributed random variables (i.i.d.r.v.) from a distribution function F, all defined in the same 
probability space, their empirical distribution function converges uniformly (in sup norm) to the 
distribution function F, with probability one, as N -4 oo . 

Now we consider a sample estimator of the empirical distribution function. Given a sample 
design on a finite population of size N , we can construct a sequence of sample probability spaces 

which change as N changes. Thus, any asymptotic property we might want to consider has to he 

proved either in probability or in law, rather than with probability one, since there is no concept of 
almost surely when the spaces change as N - 	. 

In this paper we show convergence in sup norm of the sample empirical distribution function and 
weak convergence of the sample empirical process for some complex designs, under sufficient design 
con di t ions. 

The treatment that we give here to the problem consists in acknowledging that there is a super-
population which spans the finite population, and using the distribution F of the super-population model 
in the proof, not unlike the usual proof of the theorem. We define a "joint" design-model space and look 
at uniform convergence in this space. We take into account all the processes that generate it, and we do 
so here using the super-population theory approach introduced by Hartley and Sielken (1975). The 
approach regards the finite population of interest as the outcome of a sample of N independent random 
variables from an infinite population (the set of these N random variables are often called the super-
population). And it regards the stochastic procedure generating the observed sample of size n from the 
finite population as the second phase sample of a two-phase sampling process. Thus, in terms of the 
super-population model, the design-probability may be viewed as being based on the conditional 
distribution given a particular outcome of the first phase process. 

Ruhin-Bleuer (2000) and Ruhin-Bleuer and Schiopu-Kratina (2002) formally defined a general 
space, which contains both the sampling design and the super-population that generates the finite 
popi.ilation. This space, called the product probability space, is the product of the design probability 
space and the super-population (or model) space, with a sigma field defined by the product of the 
corresponding sigma fields, and a well-defined probability measure 	The "product space" changes 
with the size of the finite populations and samples, so as the sample size n goes to infinity (we 
assume liminf ii / N > 0 as N - °°, n -> °° ) we have to deal with a sequence of probability spaces. 

In Section 2 we establish notation for different sample designs and for the design-model space 
mentioned above, and set conditions to be used later on in the article. 



In Section 3 we prove that the sup norm of the sample empirical distribution function minus the 

model distribution function converges in probability to zero as N —> co, 7 —9 Co 

In Section 4 we study the sample empirical process and show weak convergence of the sample 
uniform empirical process. 

2. DESIGN-MODEL SPACE 
w 

According to the super-population approach mentioned in the introduction, a sample statistic is a 
sample estimator of a finite population statistic, and hence subject to a randomization twice. Here we 
define a new probability space that will enable us to work with both randomizations at the same time. 
We follow the methodology of Rubin- Bleuer and Schiopu-Kratina (2002). 

Let (X N,  Z ' ), x N = (X7), j= I.....N, Z" = (Z7), j = 1,..., N, be random vectors (also called 

super-population) defined on a infinite probability space (, 3 , P) and for w E Q let 
(XN(w) ,  ZIV(0))be the data associated to the labels of a finite population of size N (we say that the 

finite population is generated by the super-population and U) E fl. We are interested in the sample 
estimatorof the empirical distribution function of the random sample XN  =(X7), j=1,...,N. andhow 
it behaves as N 

The random vectors Z" will play a role in defining the design, since for a fixed outcome 

to E 9, ZN (w) could be considered as "prior information", or information available at the time of the 

design. 
In order to define the product space (joint model-design space), we adopt the comprehensive 

delinition of a sample in H6jek (1981, p.42): it views the sample as "a finite sequence of units or labels 
of the finite population, which are drawn one by one until the sampling is finished according to some 
stopping rule. This sequence distinguishes the order of units, may be of variable length and may include 
one unit of the finite population several times". This definition includes both samples selected "without 
replacement" (WOR), and "with replacement" (WR). Let SN  denote the collection of all possible 
samples under a sample scheme. Let C(SN)  denote the collection of subsets of the sample space SN 

A sampling design PdN  is a function on C(SN )xRN  such that for a fixed outcome WE Q. ah.i "prior 

information" Z''(w), it is a sampling probability distribution pdN(s,W) = pdN (s,Z N (w)) and for a 

fixed s E S , it is Borel-measurable in R'' 
1)efinition 2.1 Product space. We will assume here, without loss of generality, a generic product space 
derived from one design, and for its properties we refer to Definitions 4.1 to 4.3 in Rubin-Bleuer & 
Schiopu-Kratina (2002). 

Let (XSN, xC(SN ), 	 with 1,(sxF) = JI!N(s , ) dP(w) he the product space 
F 

determined by the super-population (XN, ZN) and a sampling design PdN  defined on C(SN ). 
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Note that this space changes as the respective population sizes change. In what follows, we 

denote by Ed, Em , Ed fl  the expectation with respect to the design probability space, the model space 
and the product space respectively. 

Next we assume that we have a sample scheme with expected sample size equal to n and define 
a few of the more common some sample designs and conditions sufficient for the asymptotic properties 

-4 

to hold. For a "without replacemeit design" (WOR), let Ij (s)  j = 1,..., N denote the sample 

s selection indicators. Let ir i  denote the probability that unit j is selected to sample s , then I follows 
a binomial distribution i 	B(1,,r 1 ) 1=1,..., N. 

For a Probability Proportional to Size with Replacement (pps ) scheme with units "sizes" 
N 

Z(w) j = 1,..., N, and selection probabilities Pj = Z j  (w)/ 	Z1 (w) j = I..... N, let 

0 !~ J(r) :~ n j = l,...,N, denote the number of times unit j is selected to sample s . Thus 

(J 1 (s)..... J(s)) follows a multinomial distribution (Jl(s),...,JN(s)) - MN(n,p1 
'-' PN) 

For a two-stage design with (pps ) in the first stage, let us first assume a joint model-design 

space defined in a super-population space where the sizes M 1  = Z1 (w), f = 1,...,N are known a priori, 

i.e., a super-population space where the measure is the conditional probability 

PM = P( I FM), F 1  = {w: M 1  = Z1 (ai), j = l,...,N I (for more detail on this space, see Example 4.2 

in Rubin-Bleuer & Schiopu-Kratina (2002)). 

The design assumes independent selection in each in primary sampling unit (psu) under a 

WOR design with probability ir11  of selecting unit I in psu j, given that psu j was selected in the 

first stage, I = 	 j = 1,...,N. The sample selection indicators of the second stage are defined 

conditionally, by I ji  (s) = I if unit 1 in psu i is selected to the sample given that psu j was 

selected to the sample in the first stage. 

We consider the following conditions for the designs: 

CO: f I im n / N > 0 as ii 

iN I 
C1  : limN E,(— 	) < , E,,( max -) < as a —* oo, and 

N ,= ,ip 	 1icN 11p1  

E,, (Z1 ) 2 +U _< C, j = 1..... N, N -~! I, for ppS one-stage designs. 

1 /V 	1 
C2  : limN E,,,(— -) <oo for SRSWOR, Poisson or ups one-stage designs. 

N 
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N 1 M3  1 
C3: —---(---)=O(1)asn---oo. 

M 11"Pj  l=l.lIj 

Remark 2.1. We remark that the probability in conditions C 1  and C2 are on expectations in the law of 

the super-population (P) to account for the cases where the design probabilities depend on w E 

Note that for one-stage designs, we can define the sample space s N  and the product space 

SN x 9 before we know the "prior information" or outcome ZN(w)  which completely define the 

design probabilities, since every sequence of (expected) n labels from the finite population has positive 

probability of being selected. However, for a two-stage design where the first–stage selection 

probabilities depend on "sizes" or the number Z j  (o) of ultimate units in psu j, j = 1,..., N, the sizes 

must be known a priori for the sample space S N  (and hence the product space S N X f ), to be well-

defined: a two-stage sample is a sequence of blocks of second stage sub-samples and we need to know 

how many labels are in each psu j to define all possible sequences of labels from it (see also Rubin- 

Bicuer & Schiopu-Kratina (2002), Example 4.2). In C3 above, we stated an absolute bound (not in 

expectation), since once the sizes M i  are considered non-stochastic, the second stage selection 

probabilities from a SRSWOR, 1r1 1 j  = rn/M 1 . 1 = 1,...,M 1 , j = 1,...,N are also non-stochastic in 

Remark 2.2 Condition CO  ensures that the relationship between the sample and the population sizes 
(and its impact on the statistics considered) remains the same as we increase the population size towards 
infinity. 

For SRSWOR designs, condition C1 follows directly from Co . For Poisson one-stage designs condition 
C1  means that no probability is disproportionate as N - . For .lrps and pps one-stage designs, 
conditions C1  and C, mean, respectively, that, as N - 00 the sizes are of the same magnitude in 

N 
average. Indeed, if ir = nZ / Zj , C1 and C-, will follow respectively, from CO  and 

i=1 

N 	P 
Z1 IN_u (i is non-stochastic in Q) as N - 	. Similarly, for two-stage design, C3 follows 

j=I 

N 
from CO  and I Z1 (w)/Np (p is non-stochastic in Q) as N - oo .  

i n' 

Definition 2.2. Empirical and Sample Empirical Distribution Functions. Let us assume the design-
model space described above with x N  =(X7). j = I..... N, i.i.d.r.v.'s from a distribution function F - 

6 



iN 
Let FN(t,(o)= — 	1(X(W) st), 0:~-t <°°, WE 92 , bethecorrespondingernpiricaldistributjon 

N j=1 
function and let a sample estimator of FN (t,w) be given by 

iN 	 N 
FN(t,s,w) = -- 	l(Xo) !~ t)S j (s), N = 	51(s), where Jj  = 11 (s)/.ir1  for WOR one-stage 

N 3 =i 	 j=1 
designs and 8 = J(s)Inp1  for pps one-stage designs, j = 1,...,N. In the case of a pps two-stage 

I N M 
design (with second stage SRSWOR) we have FN (t,(9)) = - 	 I(X 11(o) ~ z). 

M j=1 1=1 
We define the sample empirical distribution function by 

1 NMj 	 N 1 j 
E\ (t.s,w) =---- 	1(Xj((0)S:t)511(s), M = 	S(s), and the sample selection coefficients 

lvi j1 1=:1 	 j1 1=1 

= (J 1 (s)1np1 )1 i (s)I9i1, 1 = I..... M, j = 1,...,N. 

3. A CLI VENKO-CANTELLI TYPE THEOREM 

In this section we develop the product space version of the Glivenko-Cantelli Theorem. For this 
theorem the only design requirement is that the empirical distribution function be a design-consistent 
estimator of the finite population empirical distribution function. 

rFheorem 3.1. If the sample empirical distribution function is design-consistent, i.e., if 

EN (z,s, (a) — FN (t, (o) —* 0 in PIN  as N —) oo, 	for all WE Q , 0 :~, t <oo, then 

Slip j FN(1,S,(o)—  F (t) I -*0 in 	d,,n  as N —> oo. 	 (3.1) 
Ot<oo 

I'roof: We define 

IN 	 iN 
N —, o) = — 	1( X, (w) < t) and FN (1—. .v,(o) = -- 	1( X j  (w) < t)S (.s') 

N = 1 	 N=1 

By the Glivenko-Cantelli theorem (see below for a reference) we have, 

FN(t,w) -  F(t) ->0 a.s. (P) and FN(t- ,(9) -  F(t-) -*0 a.s. (P) as N —* co. 

Now E\ (t,s,w) is design -consistent for all WE Q, and FN(t,w)  is model consistent, hence by 

Theorem 5.1 in Rubin-Bleuer and Schiopu-Kratina (2002), both FN(z,w)  and  FN(t,s,(o)  are consistent 
in the product space. Thus 

FN(t,s,o4 — F (1) = EN (L.s,O) — FN(I,(u) + F,.V(t,(o) — F (1) ->0 in 'd,m  as N > oo. (3.2) 
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A similar argument yields 

FN(t —,s,w) --  FO — ) 	° in "d,m  as N 
	

(3.3) 

We now follow, almost in its entirety, the proof of the Glivenko-Cantelli theorem given in Billingsley 
(1979) (Theorem 20.6, p.232). 

Ler ~! 2 be an integer, and for k. = L2,...,r —1, define tr k = min{t : kir F(t)}, trc 	OO , 	= O0 •  

Note that the minimum exists and F(tr,k)  ~! k / r because the distribution function is right continuous. 

Now let t be any real number. Thus, there exist integers r, k such that t r k :!~ t <lr ,k+1. 

We have, 

FN(t,s,(o) - F (1) :~- FN (r  k+1,S,w) - F (tr k), by the monotonicity of both FN and F. 

= frN(tr,k + lmS,(V) — F (trk+1)  + F(tr k+1) - F(tr k) 

!~ FN(lrk+1,S,(0) - F (tr,k+1)  + hr. 

The above inequality follows from F(lr,k)  ~! Or and F(trk+1)  15 (k + 1)Ir. Indeed if 
U <trk+l 	F(u)<(k+1)Ir ,hence F(tr ,k +l)= urn F(u)(k+1)/r. 

By the same token, — (F(tr  k+1) — F(tr k)) ~! —1/ r and 

FN(t,s,(o) F (t) ~! FN(tr k,S,(o) F (tr,k+1) 

= 'N (tr k ,s,w) - F (trk)  + F(tr k) — F(tr k+1) 

~ 	 ,s,o)) - F (tr k ) — hr. 

Similarly, for -Co  <1 tr1  we have 	N(t,S,WY  F (1) I 	I FN (trims,UJ) F (tv ! -0)1 +1/r,and 

for trrj !!~- j <Co we have FN(t,s,)) — F (t) 	I FN(tr, r_1,S,(0) F (trri)  +1/r. 

Thus, for any real number I and all r -~ 2 1  

I FN(t, o)F (1)IDrN(s,(V)+l/r,where 

DN(s,w) 	max 	{ 1N(tr,k,0) - F (r,k) 11 FN(tr,jm5,0.) - F (z,.—) } 
1kr, 1!~ jSr 
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1-lence 

sup IFN (t,s,(t)F(t)I!5DrN (S.(o)+l/r,forall r ~!2, N ~ l, 
-00<1< 00  

Now we first show that Dr,N(S,W) 	0 in 	as N —> 00, for all r :~: 2. Indeed, for a fixed r ~! 2, 

we apply 3.2) and (3.3) to the finite number of sequences converging to zero in the product;pace: 

'd,rn 
FN(tr ,k,S,(V) F (r,k)I — 0 and I FN(tr,k,5,6))F (tr k -) I —> 0 as N 	°° 1~5k ~ r. 

Hence the maximum DrN(S,(v)Of  these sequences also converges to zero in probability. This implies 
the thesis of the thcorem, since for any positive e and 8, there exists an r with fir < e12 and an 
N0 (r,e,(5) and a such that for N ~! N0, 

'd,,n( sup  I FN(t,s,(0) -  F (t) I~! e) !~ Pd rn (Dr N(S,))+ hr ~: e) !~ Pd n (Dr N(S,(0) ~: e/2) !~ 8. 
-00<1<00  

4. TIGHTNESS OF THE SAMPLE EMPIRICAL IROCESS 

In the super-population or model space, the uniform empirical process converges weakly to a 
Brownian Bridge (tied down Wiener process) which is a Gaussian process with continuous sample paths 
and covariance function E 1 (B(u)B(r)) = U A r — ur. 

In this section we are concerned with the sample counterpart of the uniform empirical process, that 
is, with the sample uniform empirical process, and with its asymptotic properties. We shall see that it 
also converges weakly to a Gaussian process, but its covariance function will depend on the design on 
which the sample process is based. 

We consider for now the one-stage designs defined in Section 2, where conditionsCo  and C1  or C2  
hold., and we will show convergence of the finite dimensional distributions and tightness of the sample 
uniform empirical process under the corresponding design. 

Definition 4.1 Sample Uniform Empirical Process. The model uniform empirical process is given by 
WE , 

where the empirical distribution function FN(t,s,W)  is based on an uniform random sample, i.e., 
random variables X 1 .....X,, =uniform U(0,1)which are conditionally independent given the prior 
information (which is, for example. Zl((o),..,ZN((V) for the p.p.s. design described in Section 2 and 
none for SRSWOR). 
The sample uniform empirical process is defined by 

4N(t,s,(0)=-.J(FN(1,s,(0)-1). -00 <t< 00, SE S, WE 2, 	 (4.1) 

where the sample empirical distribution function FN(t,s,(o)  is a consistent estimator of the empirical 
distribution function. 

Theorem 4.1. Covergence of the Finite Dimensional Distributions. The finite dimensional 
distributions of the sample uniform empirical process, under designs for which the sample ratio 
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estimator of the mean is asymptotically normal, converge in distribution to those of a Gaussian Process 

{Bd(t): 0 t 15 l}with covariance function depending on the corresponding sample design. When the 

design is one-stage p.p.s as defined in Section 2, under conditions CO and C 1  the covariance function is 
given by 

E 1 (Bd(u)Bd(r)} = f .(u Ar — ur)+f limN Em ( 	A r—ur. 
Nnp1  

Proof: 

= 	- 1) is a finite population mean of which dO,S,011111 is the ratio 

estimator. Hence N(t,S,W)  converges in the law of the product space to the random variable 
B 1 (t) = o(t)(0,l) where (0,1) is a standard normal random variable and 

a2 (r) = fl(1 -t) + f lim 	 - 
P. 	 (4.2) 

N, np, 
The asymptotic normality of the sample uniform empirical distribution function for every real number t 
follows from Example 6.1 of Ruhin-Bleuer & Schiopu-Kratina (2002). The variance and covariances 
can be calculated from &N(t,S,W)  directly, using Slutzky's theorem and letting N -300 • 

Theorem 4.2. Tightness. Under one-stage designs satisfying conditions CO  and C1  or C-, respectively, 
the sample uniform empirical process is tight, i.e., for each positive e and i7, there exists a 

6, 0<6<1, and a No  such that for N ~! N0 , 

irn{ SUp  I cXN(t,s,W) -  aN(u,s,(0) k! e}  :5 817. 	 (4.3) 
u5t!5u+5 

Proof: For notational convenience we take u = 0, and this is no restriction since the increments of 
aN(t,s,w) are stationary. Thus we will prove 

Pd fl? {sup I aN(t,s,W) k e}  15  817 	 (4.4) 
156 

The proof follows closely the techniques used to prove tightness of the uniform empirical process in 
Billingsley (1968), Theorem 13.1. p. 105-108 . 
Suppose that for all 0:5r :51, 0:5t-i-r 	1 and 0!~ t+r +u 1, there exists a constant C 

independent of N, 1, r, it such that we have: 

E,,flfl&N(t+r) - áN(t)I2  .IN(t+r +u) - áN(t+r)1 2 }<C.r.u. 	(4.5) 
Then, for fixed 6, we deduce, following the same steps of Billingsley (1968) p.107. that 

max IaN(j/1) ~: e} K C82 Ie4  + d{l a'N((5) I~! e/2}, 	 (4.6) 

IDJ 



where C is the constant in (4.5), and K is another constant independent of e, 8, N. We continue as 

in Billingsley, to state that since for each sE S. we Q N( , 	t,S,W) is right continuous in 1, as in .- 

we have max I âN(i(5/m) H sup  I aN (t,s,(0)I for each sE S, we Q . 	 (4.7) 
ti!~rn 	 r!55 

Now, looking at the second term in (4.6) we observe that the sample uniformempirical process 
evaluated at t = 8, approaches Bd(S)  as N - 00 ,where Bd(S)  is defined in Theorem 4.1. 

EU4(O,1))2482 - 4282  
Hence d,,,i (

I aN(S)I~ e12) - P{13(8) ~ e12 1  ~ 	 as N —> 00 (4.8) 
- 

Thus given e and 7 , choose 8 so that 
K . C+ 4282 <Sri. Let now N5 be such that the inequality in 

(4.8) holds for N ~!: N5. Hence together with (4.6) (4.7) and (4.8) we have for N ~! N5: 

K•C+ 42 ,52   Pd,,SUP I aN(t,sw) I~ } _ 	<ài, 
6 

which is (4.4), the statement of the theorem. 

To complete the theorem we have to prove inequality (4.5) which we previously assumed to hold. 
For this we have to account for the differences between the sample and the finite population empirical 
processes and the fact that the sample counterpart is not a sum of stochastically independent random 
variables in the product space. We first change the notation to simplify the look of the long equations 
we will develop. We set: 

a1  = 1(1< X 1 ()t+r)81 (s)—r, /11  = l(t+r< X 1 ((0)t+r+u)8,(s)—u, i =l,...,N. 

We have: E.j 1 (a1) = 0, Ed,fl (/lj) = 0, i = I..... N. 

By condition CO  there exists No  such that for N ~: N0 , N/n !!~ 2/f and hence for N ~! No  inequality 

(4.5) is equivalent to: 

)) iV(2C/f) ru 	 (4.9) 
I 	 J 

Unless the design is Poisson. the a, i = 1,...,N are not stochastically independent in the product space. 

Similarly with the ,4 i = 1,...,N. This implies that many terms in (4.9) do not cancel out as in the proof 

for the super-population uniform empirical distribution process. But we will see that those terms are 
small enough to make inequality (4.9) hold. 

Let us further simplify the look of the equations by setting: 
l,(r) = !(z < X,(w) :5-  t + r), I,(u) = 1(t + r < X-((o) !~ t + r + ii), i = I..... N. 

Now we have: 

(a)2 .(131 ) 2  =(a,2 + 	a1a1 ).(fl12 + 	I]i/Jj ) 
i 	I 	I 	ij,4i 	1 	ij:Aj 
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=(a(fl)+( 	acr1fl)+( 	flfla)+( 	a,a1 /3,fii) 
I 	k 	k i jti 	 k i j*i 	 I j#i k k4 

- SI + S2 + S3 + S4 

7,, 	,, 	,, 
S1 = a'flj + 	aj /3k-  and 

i 	ii#k 

(I, (r)812  (s) - 2rI(r)S,(s) + r 2 ) (I,(u)ö,2  (s) - 2u1 1 (u)81 (s) + u 2 ) 

= 	(s) - 2ru 2  11 (r)ö,(s) + r2  I,(u)812  (s) - 2ur2 ! 1 (u)öj (s) + r2u 2 , 

since 11 (r) - I,(u) = 0. Now 

Ed,,fl(a?fl) = u 2  rEd ((5(s)) - 2r2u 2 Ed(51 (s)) + r2uE(/  (8,2(s)) - 2u 2 r2Ed(6;(s)) + r 2u 2  

For SRSWOR and Poisson designs the design expectations of the sample indicators are bounded as 
N -4 °o.  For the p.p.s.design, the expectations of the 6;(s) = J,(s)/np, follow from the respective 
expectations of f(s) given in the appendix. We have: 

Ed(äj(s)) = 1, Ed(5,2 (s)) = l — lIn+l/np,, i = 	N. 

and by condition C 1 , 1/np, is uniformly bounded in i as n -4 °°. Hence 

Ed,11  ( cr12 flj2 ) 15 N B1  nt 
	 (4.10) 

i 

Now a,/3 is a finite sum of terms which are products of ru times expectations of product 
combinations of 6; 's and for all three one-stage designs considered here, these are uniformly bounded in 
i as n  

Since there are about N (N - 1) terms of the form a/3, there is a constant B2  independent on 

N, r or u such that 

Ed 1 ( 	a2/3?) ~ N 2 -B2 •nt 	 (4.11) 
i i;6k 

From (4.10) and (4.11) we get 

Ed 1 (Sl) !!~ N 2  - C 1  - ru 	 (4.12) 
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Now consider S2 = 	a,a/i). In the proof for the super-population uniform empirical process 
k i j#i 

advantage is taken on the independence of the cr, 's and of the / 's and some terms cancel out. But here 

we have a number of terms of the order of N 3 , so having each term bounded as it - co is not enough to 
obtain a bound in 0(N 2 ) ru. 
We will show that 

	

= 0(1/N). ru for all k, i # j, i,j,k = 1.....N. 	 (4.13) 

Indeed, assume first that k # i, k # j. Note that for a Poisson design, the f3k' a and 

a, i # j, k # i, k j are stochastically independent and 

Ed 1 (a) = 0, E 17 (J3,) = 0. i = 1,...,N. Hence E1j 111 (/3,a1a1 ) = 0. 

Now we look at p.p.s. and SRSWOR designs. 

f1aa = ('k (u)S - 2uJk (u)Si + u2)(l, (r)l(r)SS - r(I 3 (r)S + I(r)8,) + r2 ) 
jj  

UenceEd,(flaIaf) = Ez(E (E(j(/3acxJ ) I Z)) = 

= Ez r  UEd  (58S) - 2r2u 2 E 1  (5<  SjSj) + r2u 2  E1 (SjSj) - r2  uEd (SS) - r2  uEd (5 (5 ) 

+2r2u 2 Ed((YkSj)+2r 2u 2 Ed(8k8j)_r 2u 2Ed((5j)_r2u 2Ed(S,)+r 2uEd(5)_2r2u 2 E(j (5)+r2u 2 } 

= Ez{r 2u Ed(Sj5,SJ - S8J  - Sf5, + S)+ r 2u 2  E(,(-2Skb,Sj  +SS + 28k5j + 25k 8  - 	S -.8, +1)) 

Now the expectation in the first term above for a p.p.s. design is 

- 88J  - 	+ S) = (1 _!)(1_)(1 -)+ (1 --)(1 -)---- 2(1 ---)(1 -.)- 2(1 
n 	n 	1 1 	' "Pk 	11 	11 	ii np 

fl 	"Pk 	17 

Indeed, the terms equal to 1 above all cancel each other since there are same number of positive and 

negative l's. There are two terms of order 	with coefficients 1 and -1 respectively, so they cancel 
Pk 

each other. Thus we have left with terms of order 0(--). some of the with coefficients ---, but these 
ii 	 "Pk 

are bounded as it —3 	by condition C1. And condition CO  yields 

0(--) = O(!_) as n - °°. Similarly, for SRSWOR we also obtain an 0(!)  tinder condition Co . n 	N 	 N 
The expectation of the second term above for a p.p.s. design is 

E(j(54.+ 	+ 25k ( + 25k — 2 t5k — S — (5, + 1) 
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= —2(1 - -
1-)(1 

- 
+ (1 	+ 2(1—!) + 2(1 _!) - 2-1 —1+ 1 = + 	= Q(!) 

And similarly we obtain the same rate of convergence for SRSWOR designs. Hence (4.13) is verified 
for these terms. 

If the index k = i or k = j then some terms disappear (since l(r) I,(u) = 0) and the terms left out are 
bounded in expectation by a cnstant times ru 'Now there are only 2N(N - 1) of these terms, and 

N(N - 1)(N —2) terms that verify (4.13). Thus there exists a constant C2  independent on N, r, u, 

such that 

Ed,(S2):!~ N 2 C2 ru 	 (4.14) 

Similarly, we obtain 

Ed, rn (S3)!~- N 2  C3ru 	 (4.15) 

Now the term S4  = 

	

	a1 c%1fl,/3i consists of about N 4  terms. We will show that each term 
i j*i k k1 

Ed,m(ZiXjflkfl1) = O( — -) as N —* 00 for all distinct indexes i, j' k, I = 1,...,N. As we found with 
N 

S3 , Poisson designs imply that these terms are all zero. For the other designs we note that there are 
N(N — 1)(N — 2)(N — 3) of these terms and at most 4N(N - 1) terms with a repeated index, which are at 

most 

flkflloaaf = I(r)II(r)1k(u)ll(u)SkSJS, 81 —  rIJ(r)Ik(u)l1(u)8k8J51 - rII(r)1k(u)Ij(u)5k8151 
0(1). 

+ r Ik(u)I/(u)SkS! -u1(r)1(r)11(u) 88 + rul(r)l,(u)S1 81 + ru1,(r)Ij (u)81 81  - r 2u11 (u)81  

— 2uI 1 (r)I(r)1k (u)öjjSk + UrIJ(r)Ik (06J8k + urI 1 (r)lk ( 11 )818k - rulk (u)8k + u 2 I 1 (r)1 1 (r)8S1  

—ur 2 ! 3 (r)81  —ur2 11 (r)Sj  +u 2 r2  

Thus for a p.p.s. sample design we have: 

Ed,,lz(/lk fljaa1 ) = r2  u 2  Ed {8i8j5k8l - OJbkl - ö8kb1 + 	- ó8,8 + 8 1 51  + c58 - 

- 51 8j8k + j8k + k - + SjSj - - +1 

r u { 
" 2 n(n — 1)(n — 2)(n —3) 	n(n - 1)(n - 2) 	n(n - 1) 	 1 

it 

= 4 	-4 	 +6 2 fl3 fl 	 fl_ 

And we obtain the same rate of convergence for a SRSWOR design. Hence, there is a constant c4  such 
that 
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E1, 1 (S4 ) ,-!~ N 7  - C4 ru 	 (4A6) 

Thus (410), (4.14). (4.15 and (4.16) together imply (4.9) which is equivalent to (4.5) and the theorem is 
proved 

APPENDIX 

We state some expectations in the design space of the multinomial random vector 

(JJ(s),...,JN(s)) -. MN(n,p1,...,p). 

E(J)=np,, i=1,2,...,N 

Ed(J1)=n(n-1)pI  +np,, z=!,2.....N 

Ed(J 1  k) = n(n-1)p1 Pk  i,k = 

Ed(J, kh)= n(n—l)(n-2)p1  PkPJz'  i,k,h = 1,2..... N 

Ed(JJk) = n(n —1)(n - 2)ppk + n(n ')PjPk'  i,k = 1,2,...,N 

Ed (J?J) = n(n - 1)(n - 2)(n - 3)pp + n(n - 1)(n - 2)(pp + p,p) + n(n 
- l)ppj< , i,k = 

Ed(JJkJ,) = n(n - 1)(n - 2)(n —)p,pkp! + n(n - 1)(n 
- 2)PIPkP/ i,k,h = 1,2..... N 

Ed (J1 k hl) = n(n - 1)(n - 2)(n - 3)p, p p;1pj  i,k,h,l 1,2,..., N 
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