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ABSTRACT 

For a target socio-economic variable, two sources of data with different precisions and 

collecting frequencies may be available. Typically, the less frequent data (e.g. annual 

report or census) are more reliable and are considered as benchmarks. The process of 

using them to adjust the more frequent and less reliable data (e.g. repeated monthly 

survey) is called bcnchmarking. For the implementation of some advanced benchmarking 

procedures, the survey error model is needed and usually is not given. In this paper, 

we will show the relationship among three types of benchmarking methods in the litera-

ture, namely the Denton (original and modified), the regression, and the signal extraction 

methods. Assuming the survey error series follows an AR(1) model, by simulation, we 

investigate the impactS of mis-specification of the model on the benchmnarkiiig predictions 

based on the criterion of minimizing root-mean-squared error of prediction. It is con-

cluded that the survey error modelling procedure proposed by Chen and \Vu (2000, 2001) 

may lead to results as goo(l as those obtained from using the true survey error models. 

Résumé 
Deux sources de données (IC prêcisions différentes et avec des fréquence de collecte 

dilférentes peuvent être disponibles pour itne variable socio-écononiique. D'habitude, 
Ia source de donnécs moms fréquente, par exemple no rapport annuel ou bien un 
recensement, est plus liable ci est considérée comme un étalon. On appelle étalonnage 
Ic processus qui consiste a utiliser Ia source de données moms fréquente pour corriger 
les données pitis fréquentes, par exemple tine enquête mensuelle répétee. Pour Ia mise 
en ceuvre de certaines méthodes d'étalonnage, le modèle pour I'erreur d'échantillonnage 
est nécessairc mais est rarement disponible. Dans cet article notis examinons Ia relation 
entre trois méthodes d'étalonnage, a savoir Ia méthode de Denton (originale et modifiée), 
Ia methode basée sur un modèle de regression, ella méthode haséc sur l'extractjon dii 
signal. En supposant un que I'erreur d'échantillonnage suit tin processus autorCgressif 
d'ordre 1, nous examinons, a l'aide d'une simuhition, l'impact d'une mauvaise 
specification du modCle sur les données CtalonnCes en utilisant tin critère de mu -un jsation 
de l'erreur quadratique moyenne des previsions. Nous concluons que Ia méthode de 
modélisation de I'erreur d'échantilk'nnage proposCe par Chen ci Wu (2000, 2001) peut 
donner des résultats aussi bons quc ceux obtenus en utilisant Ic vrai modèle pour l'erreur 
d'echantillonnage. 





1. Introduction 

For a target socio-economic variable, two sources of data with different precisjorjs and 

collecting frequencies may be available. Typically, the less frequent data (e.g. annual 

report or census) are more reliable and considered as benchmarks. The process of using 

them to adjust the more frequent and less reliable data (e.g. repeated monthly survey) is 

called benchniarking. A good example of benclimarking is the adjustment of the monthly 

retail trade series obtained from surveys by the annual total figures obtained from a more 

reliable source, e.g. see Hilimer and Trabelsi (1987), and Daguni, Chollete, and Chen 

(1998). Simulations in Chen, Cholette, and Dagum (1997) showed that by using some 
advanced benclimarking methods, the root-meansquared error of prediction of the I.arget 
variable may he reduced by more than 40% from the currently used methods. 

Suppose we have nionthly observations y(t) 

y(t) 
- 

77(t)+e(t), 1. = '... 	E [e(t)1 	0, 	 ( I I ) 

where i(t) is the target socio-econon-iic variable and e(t) is the niorit.hly survrv 
Also, suppose that we have the annual sum, the benchmarks z(T), obtained from a more 
reliable source, i.e. 

z(T) = E q(t), 	T 	1,... ,N, 	n> 12N, 	 (1.2) 
lET 

where the notation t E T means month I is in year T. The benclimnarking problem is 
then to predict ij(t) using both the monthly survey data y(t) and the annual herichniarks 
z(T). The predictions of i7(t) are called the henchmarking predictions or the berlchmarke(l 

values. In this paper, we consider the situation that all z(T) do not contain observation 
errors as described in (1.2). In this case, z(T) are called binding benchmarks otherwise, 
z(T) are called non-l)ifldim]g benchmarks. We assume that the survey error series follows 
the model 

	

e(t) - 1e(t - I) + (i), 	 (1.3) 



where 0 < 0 < 1 and {(t)} is a white noise series with mean zero and variance a 2 . It is a 

stationary AH(1) model when 0 < < 1 and a random walk when 1. It was pointed 

out by many authors leg., Scott, Smith and Jones (1977), and Chen and Wu (2001)] 

that this assumption is reasonable when the survey design does not involve a complicated 

panel rotation. 

The vector representation of (1.1) and (1.2) can be written as 

y = 	
(1.4) Lij 

where y = (y(l), 	,y(n.))', 	((1), 	, i(n))', z = (z(1),... , z(N))' etc., n > 12N. 

L is a matrix of 0's and l's which relates the monthly values to the benchmarks. For 

example, if n = 121V, then 

(1' 	.. 
L 	.. 	. 	, 	1' - 	(1,..., l)1X12. 

l\ 0 	.. 	1 , I!VXfl 

Denton (1971) introduced a well-known method where the benchmarkirig prediction 

= (i(1), . . . , (n))' of r, minimizes the penalty function 

11,y) - (ij—y)'A(q--y) 
	

(1.5) 

subject to the constraint z 	Lij for a reasonable choice of a symmetric n x n positive 

definite matrix A. Thus we have 

y i A1L'(LA1 L')'(z - Ly). 	 (1.6) 	- 

Deriton (1971) suggested keeping the month-to-month changes as small as possible [equiv-

alently the movement of i(t) as close as possible to that of V(t)I. Thus the penalty function 

(1.5) becomes 

p(i, y) 	>12(] {fr1(t) - (t - 1)] - [y(t) - y(t - 1)1}2 	
1 {[ij(t) - y(t.)] - 	- 1) - y(t - 1)1} 2 , 

vit,li initial value 77(0) = 7/(0). As a result., A 	PP where 

1 	0 	0  

P 	0 	---1 	1 	.. 	0  

0 	0  
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and 
11 	1 

A 	
1 2 .. 2 

 

l2..n 

Cholette (1984) noted that spurious fluctuations of (t) at the beginning of the series 

often occur due to the imposed initial condition 17(0) = y(0). Consequently, he suggested 

using the following modified penalty function 

- 	 p(i, y) = [71(t) - y(t)] - fri(t -- 1) - y(t - 1)1 12 	
(1.10) 

- 	This modification is well receive(l by many practitioners as it keeps the early part of the 
series (t) having a siriiilar movement, to j(t) and provides smooth backcast,s. The modi-

fied I)enton method is widely used by many statistical agencies. However, the matrix A 

corresponding to (1.10) becomes a (n - 1) x ii matrix obtained by deleting the first row of 

the matrix in (1.8). 'Fluis A P'P is degenerate and the formula (1.6) no longer works 
am I am )t. I er more complicated lgorithm must. be used (Cholette, I 981). 

From the statistical point of view, one would Prefer that the henchrnarking predictions 

minimize the variances of the prediction errors, Var(i - 17). The J)entun method did not 

a(ldress the problem in such a way. '['his drawback has been well recognized by many 

authors including I lilimer and Trabelsi (1987), Cholette arid Daguni (1994), and Chen, 

Cliolette and f)aguiri (1997). Consequently, several advanced benchniarking methods have 

been derived. however, all these methods, including the state-space approach (Durbin 

and Quenneville, 1997), require the autocorrelation of the survey error, or equivalently, 

its time series model. Unfortunately, some very restrictive and unrealistic assumptions 

for the model of i(i) are required. See for example, Scott, Smith and Jones (1977). 

Assuming the covariance matrix V. of the survey error e is known, Cholette and 

I )agmnn (1994) introduced a benchrnarking method based on regression, regarding (1.1) 

a regression model with "parameters" -Yj and errors e, where e(t) is a stationary series. 
III he mean of c(t) is zero, then the benchmarked value fj of rj which minimizes Var(i) - 

3 



ij) is 

= y 1 VeL'(LVeL')'(Z - Ly). 	 (1.11) 

This is the generalized least squares (CLS) solution for the regression model and is the 

best linear unbiased estimate (BLUE) of ij. 

Comparing (1.11) with (1.6), we see that the benchmarking formula is the same as 

that of the original Denton except that A 1 in (1.6) is now replaced by Ye . 

Assuming e(t) follows model (1.3), 0 < 0 < 1, the variance and the a.utocovariances 

of e(t) are 

ve(k) I=  OIor2/(, - 2) 	ve (0)cti, 	k = 0, 1,2,---. 	(1.12) 

II1tfl Ve  i fl ( 1.11) can be replaced by 

1 	(/) 	..- 

(' 	 n-2 

n_m 	(15fl2 	-.. 

Assume e(t) is a random walk IWithout loss of generality, we set, a 2  = 1]; then A -

in (1.9) is the conditional covariance matrix of e = (e(1), . . . ,e(n))' given e(0). Some 

authors tried to build consistency of Denton's solution with the BLUE. Fernandez (1981) 

a.s'sunied e(0) = 0 and left-multiplied the first equation of (1.4) by P IP is given by 

(1.8)1; then time BLUE of 77 becomes (1.6). Note that e(0) is unknown in practice. Due 

to (1.3), rewrite (1.1) as y(t) = e(0) 4- mj(t) + e'(t), where e'(t) > (j), we see that 

the unknown "parameter" e(0) can be regarded as the "bias" of the survey error in the 

regression model (see Cholette and Dagum, 1994) and can be estimated together with 

q(t) by the CLS method. rFlIis GLS solution is the BLUE of c(0) and ij; it should not 

be the same as Fernandez's (or Denton's) solution. This contradiction is caused by the 

unreal assumption e(0) = y (0) - i(0) 0. Therefore (1.6) does not, provide the BLUE 

when the survey error series is a random walk (usually it does not happ('n in practice). 

In fact, the penalty function formulae based on the original Dcnt,omi, the modified 

I)entori and the regression methods can be viewed as special cases of the following more 
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general penalty function: 

p, y) = { flE(i) - ( 1 )}}2 + 
	{[(t) 	y(t)j - [(I —1) - y(t - 1)]1 2 .  

Analogous to (1.8), we have 

	

3 	00.. 	00 	 1//3 	0 	0 	..00 

	

- 	1 	0 .. 	0 	0 	 NO 	1 	0 	.. 0 0 
Poo 	0 	- 	I .. 	0 	0. , 	 j2//3 	 1 	.. 0 0 

	

0 	0 	..  
LI it I 

/32 	h2 	0 	0 
--ç 	1+q 2  - 
0 	 . 	... 	() 

i+ 02) 
0 	... 	U 	- 	1 

The choice of 0 (0 < i 	1) (let ('rInnte how flhlI(h the movement of y(t) is kept in 

i(L). The two I)enton methods iiit.emul to keep it mostly by choosing ç - I. The choice of 

/1(0 < /3 < 1) (letermnines how nimicli the correction to y(1) will he. The original Denton 

method minimizes this correction by choosing 0 1 while the modified Denton fllCt.I1O(l 

totally ignores that. 

When 5 t 1 and /5 1 1 , A 	P(P)' - A 	in (1.9) which gives (1.6), the 
formula of the original Denton method. Let 02 	1 - 2 then the first entry in A 

is 1, and hence A = . Replacing A by in (1.6), we obtain the formula of the 

regression method with survey errors following an AR(1) model. In particular, when 0 T I 
(consequently 0 10), (1.13) reduces to (1.10), the modified Dentori method. Hence, the 

henchmnarking prediction of the rnodiuied Denton method can be approximated by the 

regression method with a coefficient 0 very close to 1 in time AR( 1) model for the survey 

error. It means that the modified Denton method, which does not enforce c(0) 0, es-
sentially abandons the rajit loni walk a.ssuinption for survey errors and is a special ease of 

the regression method. However, the impact on the benclmniarking predictions froimi using 



a q very close to I needs a thorough study. This will be examined that by simulation. 

The regression method regards (i(l), 	, i(n))' as a set of constants, the parameters 

in the regression model (1.4). Flillrner and Trabelsi (1987) regarded 77(t) as a stochastic 

series and proposed a benchmarking procedure based on signal extraction. [As i1(t) are 

regarded as random variables, we call i(t) "prediction" rather than "estimate" .1 Chen, 

Cholette and Dagum (1997) assume 77(t) follows a "difference stationary" (DS) model: 

VV, 2  97(t) 
	

(1.14) 

where ((t) is a stationary series with mean zero, and possibly over-difference(l, V = 1 - B, 

V 12  = I - B' 2 , and B is the backshift. operator defined by Bkr,(t) = i1(t - k). This is a 

very general nonstationary model which can ht, many real series very well and is widely 

used. The term "DS" was introduced by Nelson and Plosser (1982). With model (1.14), 

the benchmarking prediction of ij via signal extraction is given by 

77 -I- 	 (1.15) 

whei e 

T7 ()  = 10Vy, 	 (1.16) 

= QoL'(L1 oL')'(z - L 0 ), 	 (1.17) 

(1.18) 

V' D'V'D, 	 (1.19) 

and D is a (n - 13) x ri matrix with entries 1, —1 and C) defined by (1.11). VC is a 

(n - 13) x (ii - 13) Toeplit.z matrix with elements v(Ii - jo), the autocovariances of ((t) 

at lag 1 1 - j, in its (i,j) entry. 

Note that these formulae are of the same format as (1.11): yin (Lii) is now replaced 

by q0 , the extracted signal; and V e  in (1.11), the covariance matrix of e = y - 11, IS now 

replaced by h o , the covariance matrix of Tk - r,. Regarding and y as two (lifferent 

preliminary predictions of 'q, ij is better than y (obviously, Q0  K Ve ). Thus the sigiial 
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extraction metho(l may provide better results than the regression method. However, for 

implementing this procedure, we need both V e  and Vq . 

Both the regression and the signal extraction methods require Ve. Except for ve (0), 
the Ve(k) are usually unknown. In Appendix A, we provide a brief discussion of the 

problem of estimating V e , OF equivalently, of modelling e(t). Moret)ver, we Outline the 

survey-error-modelling procedure PrOpoSed by Chen and \Vti (2000, 2001) with a focus on 

the major steps of the procedure. 

In Section 2, we provide a simulation study to compare the performance of the above-

mentioned benchmnarking methods. The survey-error-modelling procedure suggested by 

Chen and Wim (2000, 2001) is uSed and compared with the situations where the para-

meters of the survey error model are known, either correctly sj)eciIled (true Tno(lel) or 

mniS-specilie(l. It concludes that the original Dent,on method and the !IIodilie(1 [)enton 

method are not. recunlmeflde(l It also concludes that, for both the regression and the 
signal eXtra(t,j( 'ii zIiet.hIo( Is, the survey error mno h'lliug proced ure of (Then and I Wu iiiay 
provide IJL((ltct R)fls as good a,s those from Using the true model. 

In J)racti(e, V (  is always unknown and is needed in the signal extraction method. 

The simulation in Section 3 shows that. when V(  in (1.19) is replaced by its estimate 

obtained by the nonparanietric niethiod of Chen, Cholette, and Daguin (1997), the im-

pact on the henchrnarkiiig prediction is quite large. However the prediction is usually still 

much l)etter thiaii that. froni the regression method. The simulation also concludes that 

the survey-error- modelling proce(lure of ('lien and \Vu combined with the nonparamnetric 

- 	method for estimating V(  may provide predictions as good as those from using the true 
survey-error model. 

2. Comparison of bencimniarking methods 

This Section provides the simulation study to compare the henclimarking methods iii 

the muimn'r mnentiorle(I above. We always assume that the survey error e(f) follows 111 



AR(1) model as in (1.3) with 0< 4 < 1. Without loss of generality, we set a 2 	1. We 

take 0 = 0.5 IVe(0) 2  = 1.16] or 0 = 0.9 Ie(0)112 = 2.291 as the "true parameter" to 

generate the data of e(t). These two cases, which represent the survey error series weakly 

or strongly autocorrelated, are called a "low " case and a "high " case in Chen and Wu 

(2000, 2001). 

The target variable 11(t) is assumed to follow a DS model as in (1.14) with a model 

specification for ((t) given below. Note that, for the regression method, a specified model 

for ((t) is unnecessary in the benchmarking formula, but is needed for generating data. 

For the signal extraction method, VC  is required in the benchmarking formulae, and in 

this section as we assume that, V is known; hence a specified model is also needed to 

calculate V. here, we let ((t) follow the seasonal MA model as follows. 

((t) 	(1 - 0B)(1 -- e,,B 12 )aq (t) 	 (2.1) 

where a q (t) is a white noise with mneami zero and variance a. The autocovariance function 
71 

v( (k) of ((t) is as follows: 

77
< ( 0) 	a(1 -  I - 	+ 	+ G(-)) 	 (2.2) 

—aO,(1 i- B) 	 (2.3)77  

v( (l 1) = -a0,1 eq 	 (2.4) 
77 

v((12) = aO,1 (1+O) 	 (2.5)TI  

v< (13) 	v(11) 	 (2.6) 

v(k) = 0, kL  0, 1,11,12,13. 	 (2.7) 

We take O, 	0.8 and E 	0.6. lii fact, models for ((t) and the specification of t.heir 

coefficients usually have no significant effect on the siniu]ation conclusion. We only report 

the simulation results with ((t) defined by (2.1) with the abovementioned specification. 

Iii fact., we also worked on some other models, such as ((t) following the seasonal AR 

model (1 - B)( I - B 12 )((i) = a,(t) with 0.8 and 0.6. The  results are very 

similar. 



however, the ratio 0/a 2  does have a huge impact, on the results. This ratio may 

represent the signal-to-noise ratio (S/N). Here "signal" means the stochastic variation 
in 11(t). It was pointed out by several authors, e.g., Tabelsi and Hillmer (1990), and 

Chen, Cholette, and Dagum (1997), that if the S/N is very high, benchmarkirig via signal 

extraction leads to almost the same results as those from the regression method. The 

lower the S/N is, the more the reduction of the error of the benchrnarking prediction 

via signal extraction is. Thus, our investigation about the effect of rnis-specificatjoi and 

estimation of the survey error model is combined with different choices of S/N. We take 

3, 1, or 1/3 which represent situations of high, niediuxn, and low signal-to-noise 

ratios (S/N) respectively. Note that we always let a = I, then o/a 2 	9, 1 and 1/9 
respectively. 

For each set of parameters, we generate data c(t), t = 1, . . . , 132 (II years), ac-
cording to (1.3) and 11(t) according to (1.14) and (2.1). 'rhen y(t), I -- 1, , 132 and 
z(T), T = 1, . . , 10, are obtained as (1.1) and (1.2). Ilere we assume that year II has 
no benchmark. This is a very common situation in practice as the 1port for the last 

year may he unavailable because of ( lelay. For each set of parameters, we repeat the data 
generation 10, 000 times. The (lata of the j" replication are denoted by rj() (t), and the 
corresponding berichmarking predictions (BMPs) are denoted by 7(i)(i), t = 1, 2, . , 132. 

The performance of a benchmarkmg method is measured by the root-mean-squared error 

(RAISE) for mouth t and for year T which are respectively defined as 

10,00(1 

10,000 	[•'i) 	•ri(i)(t)1211/2, t• 	., 132, 	 (2.8) 

afl(l 
10,000 

120,00() 	
[7(J)(i) - 11W(t)1211/2 T = 1,..., 11. 	(2.9) 

t1 i-1 

I Tually, estimates of 71(0) are given (say, from J)UbhiCations of statistical agencies). 

For investigating the impact of parameter mis-specification on the 13M Ps, we assume v. (0) 
is known. [Note that 0 and a 2  in (1.3) are still unknown, but they have time relationship 
a2 - vf (0)( I 2)J  Thus, if is mis- specified as q, then v(k) are iIIiS-SJ)eci ed as 
11e (k)= vJO)'f, k 	0, 1, 2, 	and the i(k) are used to form Ve  in the henclumnarkirig 



formulae. Some different values of in the range of 10, 0.99] are tried. " 	" (conse.. 

quently, 2 = 1) means the "correct model" for the survey error. Note that in (1.11), the 

formula of the regression method, Ve  can be replaced by ; then only is used to replace 

q5 in , and hence v(0) becomes irrelevant. Also note that the results of the regression 

method with = 0.99 can be regarded as the results of the modified Denton method. 

Table 2.1 RMSE of BMP for different methods, true 0 = 0.5 

y/y.rn Method 0 0.3 0.5 0.7 0.9 0.99 g Denton 
I Reg(1) 1.02 1.01 1.01 1.01 1.02 1.03 1.01 1.02 

SE(3) 0.96 0.94 0.94 0.94 0.97 1.02 0.94 
SE(1) 0.72 0.70 0.69 0.70 0.78 0.96 0.69 

SE(1/3) 0.42 0.42 0.41 0.42 0.47 0.75 0.41 
6 Reg(1) 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 

SE(3) 0.94 0.92 0.91 0.92 0.95 1.00 0.91 
SE(1) 0.67 0.64 0.64 0.65 0.73 0.94  0.61 

SE(1/3) 0.38 0.38 0.38 0.38 0.43 0.72 0.38 
10 Reg(l) 1.02 1.01 1.01 1.01 1.02 1.03 1.01 1.03 

SE(3) 0.95 0.93 0.92 0.93 0.96 1.01 0.93 
SE(l) 0.69 0.67 0.66 0.67 0.76 0.97 0.66 

SE(1/3) 0.41 0.40 0.40 0.4() 0.45 0.73 0.40 
11 Reg(1) 1.16 1.15 1.15 1.15 1.18 1.30 1.16 1.33 

SE(3) 1.10 1.08 1.07 1.08 1.11 1.27 1.07 
SE( 1) 0.85 0.82 0.81 0.82 0.91 1.13 0.81 

SE(1/3) 0.48 0.47 0.46 0.47 0.52 0.80 0.46 
1.1 Reg( 1) 1.08 1.07 1.07 1.07 1.08 1.11 1.07 1.09 

SE(3) 1.01 0.99 0.99 1.00 1.02 1.10 0.99 
SE(1) 0.75 0.73 0.73 0.74 0.79 1.01 0-73 

SE(1/3) 0.43 0.42 0.42 0.43 0.46 0.72 0.42 
10.12 Reg(1) 1.08 1.07 1.07 1.07 1.08 1.11 1.07 1.12 

SE(3) 1.01 0.97 0.97 0.97 1.00 1.10 0.97 
SE(1) 0.72 0.69 0.68 0.69 0.77 0.98 0.68 

SE(1/3) 0.41 0.41 0.400.41 0.460.720.40  
11.12 Reg(1) 1.16 1.16 1.16 1.16 1.17 1.31 1.16 1.36 

SE(3) 1.10 1.08 1.07 1.08 1.14 1.28 1.10 
SE(1) 0.89 0.86 0.86 0.87 0.96 1.15 0.86 

S}(1/3) 0.51 0.49 0.49 0.50 0.53 0.78 0.19 

Note: 71(0) 1 /2  -- 1.16. 
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Table 2.2 	RMSE of BMP for different methods, true 	:.r 0.9 

ci) 
y/y.rn Method 0 0.5 0.7 0.9 0.95 0.99 Deriton 

I Reg(1) 1.27 1.23 1.22 1.21 1.21 1.23 1.22 1.30 
SE(3) 1.32 1.16 1.08 1.01 1.03 1.15 1.06 
SE(1) 0.84 0.78 0.74 0.68 0.71 0.90 0.71 

SE(1/3) 0.44 0.43 0.43 0.42 0.43 0.54 0.42 
6 Reg(1) 1.26 1.19 1.16 1.15 1.15 1.15 1.15 1.15 

SE(3) 1.29 1.11 1.02 0.93 0.96 1.08 0.99 
SE(1) 0.74 0.72 0.66 0.62 0.64 0.83 0.64 

SE(1/3)0.40 0.40 0.39 0.39 0.39 0.49 0.39 
It) Reg(1) 

SE(3) 1.3() 1.14 1.05 0.97 1.00 1.13 0.99 
SE(1) 0.81 0.75 0.70 0.65 0.67 0.85 0.68 

SE(1/3) 0.43 0.42 0.41 0.41 0.41 0.52 0.41 
11 Reg( 1) 2 13T0 14 

SE(3) 2.16 1.88 1.74 1.62 1.67 2.08 1.72 
SE( 1) 1.32 1.06 0.97 0.92 0.94 1.25 0.96 

SE(1/3) 0.53 0.49 0.48 0.47 0.48 0.60 0,4 
1.1 Reg(1) 1.61 1.59 1.59 1.55 1.57 1.62  

- 

SE(3) 1.17 1.37 1.32 1.26 1.30 1.50 1.32. 
SE(1) 0.88 0.85 0.82 0.78 0.81 1.08 0.80 
E(1/3) 0.46 0.45 0.11 0.43 ftli 0.56 0.44 

Ift 12 e 1g(1) 1 61 1.59 1 
SE(3) 1.46 1.30 1.22 1.14 1.18 1.43 1.20 
SE( 1) 0.87 0.79 0.71 0.69 0.71 0.94 0.72 

SE(1/3) 0.46 0.45 0.44 0.13 0.44 0.57 0.43 
11.12 Reg( 1) 

SE(3) 2.28 2.11 1.99 1.87 1.9:I 2.39 1.97 
• SE(1) 1.52 1.23 1.11 1.09 1.11 1.45 1.13 

SE(1/3) 0.6() 0.54 0.53 0.52 0.53 0.6.1 0.53 

Note: Ve(0)"2 = 2.29. 

For investigating the impact of the estimate (, a 2 ) obtained by the survey-error-

modelling procedure of (lien and \'Vu (2000, 2001) on the UMPs, we make the situation 

more practical. Since in practice the provided values of Ve (0) always have errors, thus in 
the siniiilation We generate them following a distribution with the true value of Vr(0) as 

its mean. In each replication, such a generated value is used for obtaining ( ã) by the 

proce(Iure. 'l'hen, we use f-(k) 2/( I - j2) fsee (1.1 2)1 to replace v(k) in V, in the 



benchmarking formulae. That means, we also revise the provided estimates of v(0) by 

' e (0) = & 2 /(1 - 2). Again, for (1.11), the formula of the regression method, only q is 

needed and i(0) becomes irrelevant. 

Tables 2.1 and 2.2 list the RMSE of benchmarking prediction (BMP) by various 

henchmarking methods when the true 	= 0.5 and 0.9. 	For 0.5, we try 

0, 	0.3, 	0.5, 	0.7, 	0.9 and 0.99; 	for 	0.9, we try 0, 	0.5, 0.7, 	0.9, 	0.95 and 

0.99. 	The columns 	are the results of using (, a2) to form Ve . Note that only the 

RAISEs for a middle year (year 6) and ending years or months are listed. The notation 

y/y.m in column I represents either the year or the year.mont.h. The notations Reg(q) 

and SE(q), q = 3, 1, 1/3, represent respectively via regression and signal extraction when 

3, 1, 1/3. The S/N changes with Uq  as we always put a 2  1. 

The values in the rows of Reg( 1) are from U q  = 1. For the regression met,lI( l, as we 

have 1)Oiilt,e(l Omit, Ve  in (1.11) can be replaced by . From (1.4), we may write (1. 11) as 

= 7j + e + '1'L(L4L)Le. Hence - ij depends only on 0 and e. Thus the RAISE's 

are the same for all choices of a,, as long as 0 and c are the same. This is confirmed by our 

simulation: the rows of Reg(3) and Reg(1/3) uln(ler the same are the same as that of 

Reg(1 ) On the other hand, in the column , V calculated from (4, (i 2 ) may chaiige when 

S/N changes, since (, 5.2) is an estimate of (, a 2 ), which may depend on i. Elowever 

our simulation result shows that the differences are negligible. hence the rows of Reg(3) 

and Reg( 1/3) are omitted. 

Since the original Denton method has nothing to do with either or , its UMSEs 

are listed in time last column and put in the rows of Reg(1) for clear comparison with the 

regression method, especially with the modified [)enton method (approximated by the 

regression method with ç = 0.99) 

In the following, RAISE ' v(0)'I 2  represents the situation that the I?MSE and 

are very close so that the BI1P makes little or no improvement, over the original 

data :q(t). RAISE < v(0)'" 2  means that the BMP is helpful and RMSE • 

means that it is very helpful. RAISE > Ve(0)"2  means that the BJ\IP is hiarumiful (if we 

12 



carry out benchnmrking in such a way and in such a case) and RI%'ISE >> V(0)'/2  means 

that it is very harmful. From Table 2.1 and 2.2, we observe the following: ( .j. 0 means 

decreasing and it is close to 0; 	' 1 means increasing and it is close to 1.) 

For the regression Inetho(l with a specified g&: 

I. in the years with benchmarks (years ito 10): For "low ", RMSE < 
holds; the change in the RAISE is very small for all 	E 10,0.991. For "high 

RMSE < V(0) 2  aiway lloI(l.s amid the RAISE slightly increases when 

(10. 

In the year without a benchmark (year 11): For "low 0", RAISE ' 
when 	is not large, Ri11SE > 1e (0) 11/'2  for larger ) and RAISE > Ve (0) 112  
when 	I. For "high ", RAISE < Ve (0) 112  or RAISE < ve (0) 1 /2  holds 
when p 	but the RAISE increases rapidly when departs from 0 in either 
direction. RAISE >> V(0)" 2  may happen when ç5 I and the "forecasting" 
lag increases. 

To compare witi l  the original I)emmt.on method in the years with benchmarks: 

For "low " , time regressiomi method is almost the same as the Denton method 

110 matter what ç/ is. For "high ", in the middle years, if q' is not too low, 

time regression method is almost the same as the original 1)enton method and 

worse if is too low; in early months of year I, for whatever q in [0,0.99], the 

regression method (arid hence the modified Demiton method) is much better 

than time origilhd 1)emit mi imiet hiotl 

1. To compare with the om igimial I )etit uimiiet.hod in the year vitlioiit, it  1 )emi(lIlImark: 

In every case, it is always better than the original Denton method which is 

harmful. 

• Using l obtained by the procedure of Chen and Wii keeps the RAISE at the same 
level as that. of using the true 0. 

According to Points 3 and 1 above, we see th at the iriodified l)enton method is superior 

to the original D'rit.ori method which has already been abandoned by statistical agencies. 

13 



The General Benchmarking System developed in Statistics Canada features the modified 

Denton method and the regression method with the default value of 09 which are 

currently used by most users as the survey-error model is usually unavailable. According 

to Point 1 above, both = 0.9 and 0.99 (0.99 means modified Denton method) are good 

choices for either "low q5"  or "high " if the benchmarks cover the whole period where 

one wants to predict. however as most users are iiiterestecl in predicting the variable in 

the current year where a benchmark may not he available, then from Point 2 above, we 

see that the modified Denton is 'very harmful and should not he recommended. With 

the regression method, users may tentatively use the default value 0.9, however they 

should try their best to obtain a reasonable estimate of 0 for further reducing the BMP 

error in the year without a benchmark. We also see that if the true value of is not very 

high (such as 0 < 0.95), when the lag of "forecasting" reaches 12, the regression method 

shows no improvement over the original data and may be worse if reiriaiiis away from 

the true value. For that, we should turn to the signal extraction method. 

. F'or the signal extraction method with a specihed (, a2) [&2  v(.(0)(1 - 

The RMSE of benchrnarking prediction via signal extraction depends heavily 

on o/a2  (the S/N). Compared with the regression method, the signal extrac-

t,ion method always reduces the RMSE and the reduction may he drastic for 

low S/N. A lower S/N is iriore effective in reducing the R.iSE than having 

a good estimate of (, a 2 ). However the S/N is not under users' control. 

Iii the years with benchmarks (years 1 to 10): For "low ç", the RMSE increases 

significantly only when 0 j 1 and does not vary much for other . For "high 

the RMSE attains a minimum at - and iilcrea.ses when departs 

from the true 1 in either direction; this phenomenon becomes less obvious for 

low S/N. 

In the year without a benchmark: The abovementioned increases, for either 

"low " or "high ", become more significant; we may have RMSE > 

if 0 t I when the S/N is high. 
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4. If the S/N is riot low, for years either with or without heiichmarks, a reasonable 

estimate is useful in a case of "high p". 

• For the signal extraction method, using (, a2) obtained by the procedure of Chen 
and Wu keeps the RAISE at the same level as that of using the true (,a 2 ). 

3. Signal extraction method with unknown 
autocovariance of signal 

Benchinarking via signal extraction has its advantages however it requires knowledge 

of the aut,ocovariance stnictiire of the "signal" (under assumption (1.14), it is Vd. In 
practice, V is unknown. In this section, we carry out a simulation study for the sigT)al 
extraction method only arid in almost the same way as in the J)revious section except that, 

	

the elements v< (k) of 	are estimated by the noiiparamet.ric method prop >sed by ("heri, 
Chollete, and I )gimmn (1997). 

For estimating V( (k), at lust, we assume the model for the survey error ((f) is given. 

For simplicity of statement, here we specify this model as (1.3) with parameters (, a 2 ), 
either time true values or some other values The major steps of time method of (Then, 
Cholet.te and Dagum (1997) are as follows. 

Step 1 Let 

	

VV 12y(t) 	w(t) = 	t) 	('(t) t = 14,.. . ,n; 	 (3.1) 

where e*(t) VV 12c(t). The sample autocovariances of w(t) are 

Ti k 

i'(k) 	>2 w(t)w(t + k), k = 0,. . . , n - 14. 	(3.2) Tl 	' 

An estimate of the spectral density of w(t) is 

I 	n-H 

	

= 	j1'w (0) -1- 2 > I(k)cos(k\)J, 	 (3.3) 2ir 	k=i 

	

and the values of 	at .\ 	irj/lOn, j 	0, 1,.. . , iOn, cami be calculated. 
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Step 2 Calculate the estimate of the spectral density of ((t) as 

max{J(A) - fe*(\), 0} 	 (3.4) 

at the frequencies Aj, where f. ()) is the theoretical spectral density of e(t), 

ft) 	1(1 - e)(1 - e' 2 )I 2  a 2 	4(1 - cos.\)[1 - cos(12.A)J 0,2 
	

(:.5) 
II - OeiA J 2 	27r 	1 - 2 cos ) + 52 	27r 

Step 3 Calculate 

27r 	f7) cos(k) 3 ) 
ii(k) = 2 J7' f( (A)cos(k\)d\ (3.6) iOn 

and finally, the estimates of v<  (k) are given by 

I V( (k)U, 	k=O,...,M, f(k) = 
	0, 	ill <k <n - 14. 	 (3.7) 

As suggested by Chen, Cholette, and Dagum (1997), Mis about n/3 (we use Al = 4() 

in this simulation); u(x) is the Parzen window given by 

1 - 6x2  1- 6 1x1 3 , 	jx j <0.5, 
u(x) - 	2(1 - I'I), 	0.5 	1, 	 (3.8) 

	

0, 	elsewhere. 

	

Table 3.1 RMSE of BMP using estimated V( true 	0.5 

y/y.rn c, 0 0.3 0.5 0.7 0.9 0.99 
1 3 0.98 0.96 0.95 0.96 0.98 1.01 0.95 

1 0.83 0.78 0.77 0.80 0.90 1.00 0.78 
1/3 0.66 0.62 0.62 0.69 0.85 1.00 0.66 

6 3 0.97 0.94 0.93 0.93 0.96 1.00 0.93 
1 0.77 0.72 0.71 0.74 0.86 0.98 0.72 

1/3 0.58 0.53 0.53 0.61 0.80 0.98 0.60 
10 3 1.00 0.97 0.96 0.96 0.99 1.03 0.96 

1 0.81 0.75 0.74 0.77 0.88 1.02 0.75 
1/3 0.63 0.57 0.58 0.64 0.82 1.01 0.57 

11 3 1.13 1.10 1.10 1.11 1.16 1.31 1.11 
1 0.98 0.92 0.90 0.93 1.03 1.27 0.92 

1/3 0.84 0.77 0.75 0.78 0.91 1.26 0.79 
11.12 	3 	1.14 	1.13 	1.13 	1.13 	1.16 	1.31 	1.13 

1 	0.99 0.96 0.95 0.97 1.06 1.27 0.97 
1/3 0.87083 0.81 0.83 096 1.26 0.85 

Note: ,((1/2 	1.16. 
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Table 3.2 RMSE of BMP using estimated V, true q = 0.9 

y/y.m a 0 0.5 0.7 0.9 0.95 0.99 
1 3 1.46 1.20 1.09 1.03 1.07 1.17 1.09 

1 1.02 0.85 0.77 0.80 0.92 1.13 0.77 
1/3 0.71 0.52 0.49 0.66 0.85 1.12 0.61 

1 0.90 0.78 0.72 0.71 0.83 1.06 0.70 
1/3 0.61 0.45 0.43 0.56 0.75 1.04 0.52 

• __ 
1 1.01 0.85 0.76 0.77 0.89 1.15 0.76 

• 1/3 0.72 0.53 0.49 0.63 0.82 1.13 0.59 

1 2.03 1.66 1.42 1.33 1.58 2.22 1.39 
1/3 1.88 1.46 1.19 1.16 1.48 2.20 1.20 

11.12 3 2.49 2.34 2.19 2.05 2.15 2.63 2.17 
1 2.38 2.11 1.84 1.66 1.88 2.56 1.77 

1/3 2.28 1.99 1.66 1.50 1.80 2.55 1.59 

Note: V(0)" 2  2.29. 

When we carry out, these steps in the simulation, we let ( a 2) i (3.5) (in Step 2) 
take the trial values (, ã) I&2  no matter they are true or false, or take 
the estimate (, 6r 2 ) obtained by the procedure of Chen and \Vii (2000, 2001), Usually 
the estimates ( ( k) of '< (k) are the best wh( ,n (5, a2)  but it. is not necessarily 
always like that (see discussion point, 3 below and Appendix B). Thus the RAISE of the 
BMP may not necessarily attain its iiiinimum at (, &2) ( ) 

Fable 3.1 and 3.2 list the RAISEs of the BMPs via signal extraction for some years 
and the last moiit.h of year 11 (th(, end year without benuhmark) when i (k) is used 
in the entries of V. For the parameters of the survey-error model specilie(I as 

= Ve(0)(1 - 2 )J, we observe the following: 

I. For the same and o, the RAISE increases from the replacement, of V (k) (the 
true value) by i (k); the percentage increase of the RAISE from this replacement, is 
more when the S/N decreases (see Table 2.1 and 2.2 for comparison). I lowever, to 
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compare these RMSE from using (k) with those from the regression method, we 
roughly see that: When the S/N is high (say a, = 3), it is smaller for E [0, 0.991 

in a "low " case, and for 	(0.5, 0.99] in a "high " case; when the S/N is low 
(say a, = 1/3), except 10 and 	' 1, for all other it is much smaller either in a 
"low " case or in a "high " case. 

2. When increases from the true : The RAISE always increases; the lower the S/N, 
the faster the increase. When 1, the RAISE converges to a limit which does not 
depend on S/N. Hence, using a very close to 1 loses more advantage in a low S/N 
case. In a year with benchmark, this limit is smaller than v(0) 1 12  (more evident. 
for "high "). In the year without benchmark, this limit may be mimuch larger than 

3 When decreases from the true : For "low ", the RAISE increases slightly. For 
"high " and high S/N, the RAISE increases and significantly when q is close and 

outside the lower end of the "high " range. For "high 0" and medium or low 
S/N, the RAISE maybe decreases at the beginning and then increases: the lower 
I lie S/N, the lower the g where the RAISE reaches the minimum. The reason 

is explained in Appendix B. However, in the year without benchmark the RAISE 
reaches the minimum at the true 0 in any case. 

4. In the year without benchmark, for "high 0", the value ofis very sensitive to the 
RAISE. A small deviation of from 0, either less or more, may lead to a large 
increase of the RAISE. This is the case where a gocd estimate of (, a 2 ) is the most 
crucial. 

Froiri thove discussion, we see that, iii practical situations (V is unknown), a good 
value of (, (T 2 ) is much more important for the signal extraction method than in the 

situation where is known (unreal). The reason is clear: (0 a 2 ) is riot, only in the 
BMP fori.nulae; it also PlaYs a role in estimating V. From Table 3.1 and 3.2 we observe 
that, using 

( 
a2) obtained by the procedure of Chen and \Vu, the RAISE is usually at 
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the same level as that from using the true (, 0,2 ). For "high ", when the S/N is not 
high (the cases where a lower may lead to a smaller RMSE), (, a2) may even lead 
to a smaller RAISE than that of using the true (, a 2 ). These (lemonstrate that the 

survey-error-modelling procedure suggested by Chen and Wu (2000, 2001) combined with 

the nonparametric method of estimating V proposed by Glien, Cholette, and Dagum 

(1997) may provide very good results of BMP in practice. The advantage of this strategy  
is tluit all statistical information is "cooked" from the data: monthly survey y(t) and 
aitritial benchmarks z(T). 

Appendix A. Survey error model and a modelling procedure 

Estimates of v (.(0), the variance of survey error c(t), are usually obtained in the survey 

process and published by statistical institutions ;  but estimates of the alitocorrelatiori 

or equivalently, the model for e(t), are rarely givemi. 

If values of individual units (or other elementary estimates such LS values for rotating 

panels) obtained in a surv 'y process are available, the methods of estimating the autocor-

relation or nho(lelling the survey error are referred to as przrnar/ analyses of survey error 
(e.g. Scott, Smith and Jones, 1977; Pfefferinann, 1991). Unfortunately, in most 1)r;l(t.ical 

situations, these values are not available due to various reasons Such as conlalentiality, 

inadequacy of data identification, and the problem of accessibility. In such cases, the 

methods of modelling survey error (or estimating autocorrelation of survey error) have 

to rely on the aggregated data, y(t), iii the published form. These methods are referred 
to as secondanj analysis of survey error. For most of these methods, observations y(t) 

are fitted with an integrated autoregressive moving-average (All IMA) model which can 

he (h composc(I into two component imiodels for the varial,le ij(t) and the survey error 
e(t). Unfortunately, the conditions for such a decomposition are very restrictive which, 

COmfll)ined with the lack of auxiliary information, enforce the analyst.s to be (JUite sub-

jective. For example, in Scott, Smith and Jones (1977), the AR parts of the models for 

the observations, the variable of interest, and the survey error are assumed to he the Same. 



Chen and Wu (2000, 2001) proposed a method of modelling survey error by using ag-

gregated survey data as well as benchmarks. As more information is used in the procedure 

than in the secondary analysis, we refer to this kind of approach as extended secondary 

analysis of survey error. Unlike assuming very restrictive models for the variable, Chen 

and Wu assume only that the variable of interest 71(t)  follows the DS model (1.14). As-

sliming that the survey error follows (1.3), the method of modelling survey error simply 

involves the estimation of 0 and a2  using {y(t), I = 1, . ,n} and {z(T), T = 1,.. . , N}. 

The basic idea is as follows. From {y(t)} and {z(T)}, calculate 

y*(t) 	VV 12  y(t), t 	13,--- ,rz, 	 (A.!) 

and 

r(T) 	y(l2T - I) - z(T) 	e(l2T - t), T : 	,. . , N. 	(1.2) 

Define the sample (-ovariance between y*(k) and E(1) as 

2(N— 1) 

IN-I 
y"(12(T— 1)+k)E(T)-I Y Y(12(T+1)_(k_2))(T)1 

for 1-1 < k < 25 (k 25 is slightly different, see (,'hen and Vu, 2001). Assume the series 

of survey error e(t) and the series of target variable i1(t) are mutually uncorrelated and let 

e'(t) : VV 12  e(t); then iTi.(k) are estimates of Ve • E (k), the covariance between e(k) and 

e(1) which can be expressed by the second term in the braces of (Au) below. We may 

get in estimate of (, a 2 ), denoted by (i,  a t ), by minimizing (nonlinear LS estimation) 

25 
S(, a2) 	i: {i,. E (k) - p(k, 5)a2/(1 -02)}2 	 (A.4) 

k= 14 

where 

p(k, ) = _2k-13 	25-k + k-1 	k = 14, 15,•••. 	(il.5) 

however this minimization gives good estimates only when N, the nimniber of benchmarks, 

is large; say, a hundred or more. Unfortunately, in reality, only a few benchmarks are 

available. To overcome the difficulty, Chen an(l \Vu (2000. 2001) studied time behavior 

of the target function p(k, ) and captured some useful features of its sample counter-

part in order to improve the estimates significantly. Thus, some technical strategies are 



involved in the l)ractical implementation of the method. For convenience, an outline of 

the procedure is presented in the following. For more details, see Chen and Wu (2001) 

Note that in the minimization procedures in Steps 1 and 5, the areas for searching opti-

mal values of and/or 0,2  are some neighbourhoods of (, a 2 ) satisfying the relationship 
01 2  7'(0)/(1 - 2); where Ve (0) is the variance of the survey error and its estimate is 

usually published by statistical agencies or provide.l by survey experts. 

Step 1 As describe(I in the above, a tentative estimate (/ , a) is obtained by minimizing 

(i.4). 

Step 2 USe sonic auxiliary features (statistics) and 0 1  to olitain a reasonable estimate 

02 and to test if the true is "low" or "high" (if there is no prior knowledge about 

Step 3 Trim /(k) 	le(k)1i,e (0) to 	(k) (outlier adjustrrient) according to "low q" or 
"high ç1 ", where i ( k) is given by (1 .9) Obtain 103 by minimizing 

20 
S;) 	R(k) - f?(k,)J 2 , R(k) 	p'(k)1G( 2 ). 	(AG) 

k=14 

w hi crc 

	

1?(k,ç5) = p(k,th)/G(ç'), 	 (A.7) 

p(k,) is given by (A.5) and 

C() = 	Ip(k, ) - p(k - 1, )J) 1/2 	
(A.8) 

k= 15 

Step 4 For further improving 03, re-define (k) as 

- ,)/(1 1_ , )j• 	 (il.9) 

and then get p(k) as in Step 3. Redo the minimization (A6) to obtain an optimal 

value 0,1  Much is the final estimate of /. 

Step 5 '11w final est iiiiat.e 	of a 2  based on ç  is obtained by minimizing (A.4) in It 

certain region of a 2  with 0 replaced by 	in (A.4). 

21 



Appendix B. The minimum of the RMSE may not be at q = 

For benchmarking via signal extraction, when Ve(k) are "known" (true, false or esti-

mated), the key step for implementing 1)enchmnarklng via signal extraction [(1.16) through 

(1.20)] in practice, is estimating v(k). 

When S/N is low, ((t) is a weaker component in w(t) = ((t) + e(t) to make a contri-

but.ion to f(A), the true spectrum of e(t) does not necessarily lead to the best estimate 

of fc(A) [see (3.4)], and hence the best (k). Then the RMSE of the benchmarking 

prediction may not necessarily attain its minimum at the true value of (, a 2 ). In Table 

B1, we list some means (each is obtained from 1,000 replications) of b <  ( k) (only the results 

for k - 0 and I are listed). The formulae for the true values of v(k) are given by (2.2) 

through (2.7). 

IOIIIi this table, we see that, when 0,1  -- 3 and 1, i.e. the situations of high and 

medium S/N, the mean of 5< ( k) (k -- 0, 1) is the closest to the true values of v( ( k) at 

09. However when a,1  1/3, the mean of (0) is the closest to (sometimes the same 

as) the true value of v(0) at 	= 0.7. Even 	= 0.5 and 0 is better than ç' 	0.9 for 

k = 0; although for k 	1, 0 = 0.9 gives the best ( (i). 

Table Bi Some mneaiis of the estimate of v(k) , true = 0.9 

k 	U,1  0 0.5 0.7 0.9 0.95 0.99 true v(k) 
0 	3 9.07 14.25 17.08 20.40 21.34 22.14 20.07 

1 0.354 0.542 1.145 2.750 3.463 4.184 2.230 
1/3 0.236 0.148 0.225 0.986 1.531 2.184 0.225 

1 	3 -3.37 -7.25 -8.64 -9.59 -9.71 -9.75 -9.79 
1 0.226 -0.089 -0.450 -0.994 -1.105 -1.149 -1.088 

1/3 0.206 0.104 0.040 -0.121 -0.170 -0.192 -0.121 

A ck nowle(I grnent 
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