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ABSTRACT

For a target socio-economic variable, two sources of data with different precisions and
collecting frequencies may be available. Typically, the less frequent data (e.g. annual
report or census) are more reliable and are considered as benchmarks. The process of
using them to adjust the more frequent and less reliable data (e.g. repeated monthly
survey) is called benchmarking. For the implementation of some advanced benchmarking
procedures, the survey error model is needed and usually is not given. In this paper,
we will show the relationship among three types of benchmarking methods in the litera-
ture, namely the Denton (original and modified), the regression, and the signal extraction
methods. Assuming the survey error series follows an AR(1) model, by simulation, we
imvestigate the impact of mis-specification of the model on the benchmarking predictions
based on the criterion of minimizing root-mean-squared error of prediction. It is con-
cluded that the survey error modelling procedure proposed by Chen and Wu (2000, 2001)

may lead to results as good as those obtained from using the true survey error models.

Résumé

Deux sources de données de précisions différentes et avec des fréquence de collecte
différentes peuvent étre disponibles pour une variable socio-économique. D’habitude,
la source de données moins fréquente, par exemple un rapport annuel ou bien un
recensement, est plus fiable et est considérée comme un étalon. On appelle étalonnage
le processus qui consiste a utiliser la source de données moins fréquente pour corriger
les données plus fréquentes, par exemple une enquéte mensuelle répétée. Pour la mise
en ceuvre de certaines méthodes d’étalonnage, le modele pour I'erreur d’échantillonnage
est nécessaire mais est rarement disponible. Dans cet article nous examinons la relation
entre trois méthodes d'étalonnage, a savoir la méthode de Denton (originale et modifiée),
la méthode basée sur un modele de régression, et 1a méthode basée sur I'extraction du
signal. En supposant un que Perreur d’échantillonnage suit un processus autorégressif
d’ordre 1, nous examinons, a I'aide d’une simulation, I'impact d’une mauvaise
specification du modele sur les données étalonnées en utilisant un critére de minimisation
de Ferreur quadratique moyenne des prévisions. Nous concluons que la méthode de
modélisation de I'erreur d’échantillonnage proposée par Chen et Wu (2000, 2001) peut
donner des résultats aussi bons que ceux obtenus en utilisant le vrai modele pour l'erreur
d’échantillonnage.
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1. Introduction

For a target socio-economic variable, two sources of data with different precisions and
collecting frequencies may be available. Typically, the less frequent data (e.g. annual
report or census) are more reliable and considered as benchmarks. The process of using
them to adjust the more frequent and less reliable data (e.g. repeated monthly survey) is
called benchmarking. A good example of benchmarking is the adjustment of the monthly
retail trade series obtained from surveys by the annual total fignres obtained from a more
reliable source, e.g. see Hillmer and Trabelsi (1987), and Dagum, Chollete, and Chen
(1998). Simulations in Chen, Cholette, and Dagum (1997) showed that by using some
advanced benchmarking methods, the root-mean-squared error of prediction of the target

variable may be reduced by more than 10% from the currently used methods.

Suppose we have monthly observations y(t)
y{t) = nt) +e(t), t=1,--,n, E[e(t)] =0, (1.1)

where 7(t) is the target socio-economic variable an e(f) is the monthly Survey error.
Also, suppose that. we have the annual sum, the benchmarks z(7'), obtained from a more
reliable source, i.e.

2T)=3 9(t), T=1,---,N, n> 12N, (1.2)

tel

where the notation ¢ € T means month ¢ is in year T". The benchmarking problem is
then to predict 7(¢) using both the monthly survey data y(¢) and the annual benchmarks
z(T'). The predictions of 7(t) are called the benchmarking predictions or the benchmarked
values. In this paper, we consider the situation that all 2(T) do not contain observation
errors as described in (1.2). In this case, z(T) are called binding benchmarks; otherwise,
z(T') are called non-binding benchmarks. We assume that the survey error series follows

the mnodel

e(t) = de(t — 1) + £(1), (1.3)



where 0 < ¢ < 1 and {£(¢)} is a white noise series with mean zero and variance ¢2. It is a
stationary AR(1) model when 0 < ¢ < 1 and a randomn walk when ¢ = 1. It was pointed
out by many authors [e.g., Scott, Smith and Jones (1977), and Chen and Wu (2001)]
that this assumption is reasonable when the survey design does not involve a complicated

panel rotation.

The vector representation of (1.1) and (1.2) can be written as

Yy = n+te
(y=n 14

where Y= (1/(1)7 e 7y(n))la n = (’7(1), el 7”(”))': 2 = (2(1)5 S 7Z(N))I etC., n 2 12N.
L is a matrix of 0's and 1’s which relates the monthly values to the benchmarks. For

example, if n = 12N then

™ =
el = = ¢ L =il = Dgsas:

I3

¥ o I

Nxn

Denton (1971) introduced a well-known method where the benchmarking prediction

7 = (7(1),---,7(n)) of 17 minimizes the penalty function

p(n,y) = (n—y)YA(n—-y) (1.5)
subject to the constraint z = L7 for a reasonable choice of a symmetric n x n positive

definite matrix A. Thus we have
N =y+ AL (LATL) (2 - Ly). (1.6)

Denton (1971) suggested keeping the month-to-month changes as small as possible [equiv-
aleutly the movement of 7(t) as close as possible to that of y(¢)]. Thus the penalty function

(1.5) becomes

p(n,y) = Xedn(e) — n(e = D] = [p(1) - y(t - D]} (17)
=) - y(8)) = In(t - 1) — y(t - D]}?, '

with initial value n(0) = 4(0). As a result, A = P'P where

1 0 0 .. 0 0
~1 1 0 .. 0 0
P=|0 -1 1 0 0 (1.8)
0 0 -1 1



and

) [ | 1
. Mo 2y pe 2
il S (1.9)
I 2" e

Cholette (1984) noted that spurious fluctuations of 7(t) at the beginning of the series
often occur due to the imposed initial condition n(0) = y(0). Consequently, he suggested

using the following modified penalty function

p(m,y) = i:{lﬂ(t) —y(t)] = [n(t - 1) = y(t — 1)} (1.10)

This modification is well received by many practitioners as it keeps the early part of the
series 7)(t) having a similar movement to y(t) and provides smooth backcasts. The modi-
fied Denton method is widely used by many statistical agencies. However, the matrix A
corresponding to (1.10) becomes a (n — 1) x n matrix obtained by deleting the first row of
the matrix in (1.8). Thus A = P'P is degenerate and the formula (1.6) no longer works

and another more complicated algorithm must. be used (Cholette, 198.1).

From the statistical point of view, one would prefer that the benchmarking predictions
minimize the variances of the prediction errors, Var(1 — 77). The Denton method did not
address the problem in such a way. This drawback has been well recognized by many
authors including Hillmer and Trabelsi (1987), Cholette and Dagum (1994), and Chen,
Cholette and Dagum (1997). Consequently, several advanced benchmarking methods have
been derived. However, all these methods, including the state-space approach (Durbin
and Quenneville, 1997), require the autocorrelation of the survey error, or equivalently,
its time series model. Unfortunately, some very restrictive and unrealistic assumptions

for the model of 7(t) are required. See for example, Scott, Smith and Jones (1977).

Assuming the covariance matrix V, of the survey error e is known, Cholette and
Dagum (1994) introduced a benchmarking method based on regression, regarding (1.4)
as a regression model with “parameters” 1 and errors e, where e(t) is a stationary series.

If the mean of e(t) is zero, then the benchmarked value 7 of 7 which minimizes Var(7) -



n) is
1=y + VL' (LV.L)}(z — Ly). (1.11)
This is the generalized least squares (GLS) solution for the regression model and 7 is the

best linear unbiased estimate (BLUE) of 7).

Comparing (1.11) with (1.6), we see that the benchmarking formula is the same as
that of the original Denton except that A~! in (1.6) is now replaced by V..

Assuming e(t) follows model (1.3), 0 < ¢ < 1, the variance and the autocovariances
of e(t) are

ve(k) = ¢*0?/(1 = ¢%) = v(0)p*, k=0,1,2,---. (1.12)

Then V, in (1.11) can be replaced by

1 b . P!
n—2

o | ¢ 1 .. &
d)n—l ¢'n_2 1

Assume ¢e(t) is a random walk [Without loss of generality, we set ¢® = 1]; then A™!
in (1.9) is the conditional covariance matrix of e = (e(1),---,e(n)) given e(0). Some
authors tried to build consistency of Denton’s solution with the BLUE. Fernandez (1981)
assumed ¢(0) = 0 and left-multiplied the first equation of (1.4) by P [P is given by
(1.8)]; then the BLUE of 17 becomes (1.6). Note that e(0) is unknown in practice. Due
to (1.3), rewrite (1.1) as y(t) = e(0) + n(t) + €'(t), where €/(t) = >}, £(j), we see that
the unknown “parameter” e(0) can be regarded as the “bias” of the survey error in the
regression model (see Cholette and Dagum, 1994) and can be estimated together with
n(t) by the GLS method. This GLS solution is the BLUE of ¢(0) and 7; it should not
be the same as Fernandez’s (or Denton’s) solution. This contradiction is caused by the
unreal assumption e(0) = y(0) — 7(0) = 0. Therefore (1.6) does not provide the BLUE

when the survey error series is a random walk (usually it does not happen in practice).

In fact, the penalty function formulae based on the original Denton, the modified

Denton and the regression methods can be viewed as special cases of the following more

4



general penalty function:

Pos(m,¥) = (1) — w(D)}? + é{[n(t) —yO) - gln(t - 1) — gt — DI (1L13)

Analogous to (1.8), we have

s 0 0 0 0 1/8 0 0 0 0
-&% 0 6 0 0 é/B 1 0 . 00
Pos=| 0 - 0 0 0. [, Pyz=| ¢*/8 ¢ 1 5 @ @,
0 0 . B —(/S 1 (/J)n——l/’g ¢n—l (j)n—? B ¢ 1
and N
32 - ? —¢ 0 0
b 1+ (752 —¢ g
App=PlonPyy= 0 - 0
' RS [T (;52 —¢
0 0 — 1

The choice of ¢ (0 < ¢ < 1) determines how nmich the movement of y(t) is kept in
7(t). The two Denton methods intend to keep it mostly by choosing ¢ = 1. The choice of
B (0 < 3 < 1) determines how much the correction to y(1) will be. The original Denton
method minimizes this correction by choosing 3 = 1 while the modified Denton method
totally ignores that.

When ¢ 1 1 and 3 11, Ayl = P;},(P;ﬁ,)’ — A" in (1.9) which gives (1.6), the
formula of the original Denton method. Let B2 =1 — ¢2, then the first entry in Ay 4
15 1, and hence A;b = ®. Replacing A™' by ® in (1.6), we obtain the formula of the
regression method with survey errors following an AR(1) model. In particular, when ¢ 1 1
(consequently 3 ] 0), (1.13) reduces to (1.10), the modified Denton method. Hence, the
benchmarking prediction of the modified Denton method can be approximated by the
regression method with a coeflicient ¢ very close to 1 in the AR(1) model for the survey
error. It means that the modified Denton method, which does not enforce e(0) = 0, es-
sentially abandons the random w‘a]k assmmption for survey errors and is a special case of

the regression method. However, the impact on the benchmarking predictions from usin
£ . 24 :



a ¢ very close to 1 needs a thorough study. This will be examined that by simulation.

The regression method regards (n(1),---,n(n)) as a set of constants, the parameters
in the regression model (1.4). Hillmer and Trabelsi (1987) regarded 7n(t) as a stochastic
series and proposed a benchmarking procedure based on signal extraction. [As 7(t) are
regarded as random variables, we call 7(t) “prediction” rather than “estimate”.] Chen,

Cholette and Dagum (1997) assume 7(t) follows a “difference stationary” (DS) model:

VVia n(t) = ¢(t); (1.14)

where ((t) is a stationary series with mean zero, and possibly over-differenced, V = 1—- B,
Vy» = 1 — B2, and B is the backshift operator defined by B*n(t) = n(t — k). This is a
very general nonstationary model which can fit many real series very well and is widely
used. The term “DS” was introduced by Nelson and Plosser (1982). With model (1.14),

the benchmarking prediction i of 1 via signal extraction is given by

) = iy + Aes (1.15)
where
flo = SV 'y, (1.16)
e = L (LL) Yz — L7y,), (1.17)
Q= (V' +Vy') T, (1.18)
N == D'VE‘D, (1.19)

and D is a (n — 13) x n matrix with entries 1, —1 and 0 defined by (1.14). VC 15 a
(n — 13) x (n — 13) Toeplitz matrix with elements v¢(|z — j|), the autocovariances of {(t)
at lag |2 — g, in its (2, j) entry.

Note that these formulae are of the same format as (1.11): y in (1.11) is now replaced
by 77, the extracted signal; and V, in (1.11), the covariance matrix of e = y — 7, is now
replaced by €2, the covariance matrix of 7, — 7). Regarding 73, and y as two different

preliminary predictions of 77, 7, is better than y (obviously, €2y < V.). Thus the signal

6



extraction method may provide better results than the regression method. However, for
implementing this procedure, we need both V. and V.

Both the regression and the signal extraction methods require V,. Except for v.(0),
the v.(k) are usually unknown. In Appendix A, we provide a brief discussion of the
problem of estimating V., or equivalently, of modelling e(t). Moreover, we outline the
survey-error-modelling procedure proposed by Chen and Wu (2000, 2001) with a focus on

the major steps of the procedure.

In Section 2, we provide a simulation study to compare the performance of the above-
mentioned benchmarking methods. The survey-error-modelling procedure suggested by
Chen and Wu (2000, 2001) is used and compared with the situations where the para-
meters of the survey error model are known, either correctly specified (true model) or
mis-specified. It concludes that the original Denton method and the modified Denton
method are not recommended. 1t also concludes that for both the regression and the
signal extraction methods, the survey error modelling procedure of Chen and Wiy may
provide predictions as good as those from using the true model.

In practice, VC is always unknown and is needed in the signal extraction method.
The simulation in Section 3 shows that when VC in (1.19) is replaced by its estimate
obtained by the nonparametric method of Chen, Cholette, and Dagumn (1997), the im-
pact on the benchimarking prediction is quite large. However the prediction is usually still
mich better than that from the regression method. The simulation also concludes that
the survey-error-modelling procedure of Chen and Wu combined with the nonparametric
method for estimating VC may provide predictions as good as those from using the true

survey-error model.

2. Comparison of benchmarking methods

This section provides the simulation study to compare the benchmarking methods in

the manner mentioned above. We always assume that the survey error e(t) follows an

'



AR(1) model as in (1.3) with 0 < ¢ < 1. Without loss of generality, we set 02 = 1. We
take ¢ = 0.5 [0.(0)"/2 = 1.16] or ¢ = 0.9 [v.(0)"/? = 2.29] as the “true parameter” to
generate the data of e(t). These two cases, which represent the survey error series weakly

or strongly autocorrelated, are called a “low ¢” case and a “high ¢” case in Chen and Wu

(2000, 2001).

The target variable 7(t) is assumed to follow a DS model as in (1.14) with a model
specification for {(t) given below. Note that, for the regression method, a specified model
for ¢(t) is unnecessary in the benchmarking formula, but is needed for generating data.
For the signal extraction method, VC is required in the benchmarking formulae, and in
this section as we assume that VC is known; hence a specified model is also needed to

calculate VC' Here, we let ((t) follow the seasonal MA model as follows.
¢~ (1 0,B)(1 - 0,B™)ay (1) ey

where a,(t) is a white noise with mean zero and variance o;‘;. The autocovariance function

ve(k) of {(t) is as follows:

v (0) = an(1+06;+0;+0.07) (2.2)
ve(l) = —a26,(1 + OF) (2.3)
v(11) = -026,0, (2.4)
v (12) = 020,(1+62) (2.5)
v (13) = w(11) (2.6)
Ry = 4 h# R LTERE & (27)

We take 0, = 0.8 and 6, = 0.6. In fact, models for ((¢) and the specification of their
coethicients usually have no significant effect on the simulation conclusion. We only report
the simulation results with ((t) defined by (2.1) with the abovementioned specification.
In fact, we also worked on some other models, such as ((t) following the seasonal AR
model (1 —¢,B)(1—®,B')((t) = a,(t) with ¢, = 0.8 and &, = 0.6. The results are very

similar.
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However, the ratio 02/0* does have a huge impact on the results. This ratio may
represent the signal-to-noise ratio (S/N). Here “signal” means the stochastic variation
in 7(t). It was pointed out by several authors, e.g., Trabelsi and Hillmer (1990), and
Chen, Cholette, and Dagum (1997), that if the S/N is very high, benchmarking via signal
extraction leads to almost the same results as those from the regression method. The
lower the S/N is, the more the reduction of the error of the benchmarking prediction
via signal extraction is. Thus, our investigation abont the effect of mis-specification and
estimation of the survey error model is combined with different choices of S/N. We take
o, = 3, 1, or 1/3 which represent situations of high, medium, and low signal-to-noise
ratios (S/N) respectively. Note that we always let o = 1, then 03/(72 =9, 1and 1/9
respectively,

For each set of parameters, we generate data e(t), t = 1,... 132 (11 years), ac-
cording to (1.3) and n(t) according to (1.14) and (2.1). Then y(t), ¢t = 1, . 132 and
2(T), T = 1,...,10, are obtained as (1.1) and (1.2). Here we assume that vear 11 has
no benchmark. This is a very common situation in practice as the report for the last
year may be unavailable because of delay. For each set of parameters, we repeat the data
generation 10,000 times. The data of the jt replication are denoted by n(t), and the
corresponding benchmarking predictions (BMPs) are denoted by 700 (¢), ¢ — 1.2, . . T,
The performance of a benchmarking method is measured by the root-mean-squared error

(RMSE) for month t and for year T which are respectively defined as

1 1000 ! —
oo 2 BVO - 10@RY2 =1, 132, (2.8)
’ J=1
and
1 10,000 . . o
{m Z Z [7’(1)(1,) = 7)(1)(t)]~} / e 1 (2.9)
’ S teT jml

Usually, estimates of v,.(0) are given (say, from publications of statistical agencies).
For investigating the impact of parameter mis-specification on the BMPs, we assume v, (0)
is known. [Note that ¢ and o2 in (1.3) are still unknown, but they have the relationship
o? = v (0)(1 ¢?).] Thus, if ¢ is mis-specified as ¢, then ve(k) are mis-specified as

v (k) = v (0)P*, k = 0,1,2, . and the 9.(k) are used to form V. in the benchmarking

&



formulae. Some different values of ¢ in the range of [0,0.99] are tried. “¢ = ¢ (conse-
quently, 6% = 1) means the “correct model” for the survey error. Note that in (1.11), the
formula of the regression method, V. can be replaced by @; then only ¢ is used to replace
¢ in P, and hence v.(0) becomes irrelevant. Also note that the results of the regression

method with ¢ = 0.99 can be regarded as the results of the modified Denton method.

Table 2.1 RMSE of BMP for different methods, true ¢ = 0.5

¢

y/ym Method 0 03 05 07 09 099 ¢ Denton

1 Reg(l) 1.02 1.0 101 10l 102 103 101 1.02
SE(3) 096 094 094 094 097 1.02 091
SE(1) 072 0.70 069 0.70 078 096 0.69
SE(1/3) 0.42 042 041 042 047 075 0.4l

6 Reg(1) 1.01 101 101 101 101 101 101 1.0l
SE(3) 094 092 091 092 095 1.00 091
SE(1) 0.67 064 064 065 071 094 0.64
SE(1/3) 0.38 038 0.38 038 043 072 0.38

10 Reg(l) 1.02 101 1.00 1.0 102 103 101 1.03
SE(3) 095 093 092 093 096 1.01 0093
SE(1) 069 067 066 067 0.76 097 0.66
SE(1/3) 0.41 040 0.40 040 045 073 0.40

11 Reg(l) 116 115 115 L15 118 1.30 116 133
SE(3) 1.10 1.08 107 108 1.14 1.27 1.07
SE(1) 085 082 081 082 091 1.13 081
SE(1/3) 048 047 046 047 052 080 0.46

1.1 Reg(l) 1.08 1.07 1.07 107 1.08 LIl 107 109
SE(3) 101 099 099 100 102 1.10 0.99
SE(1) 075 073 073 074 079 101 0.73
SE(1/3) 0.43 0.42 0.42 043 046 072 0.42

10.12  Reg(1) 108 1.07 1.07 107 108 111 107 1.12
SE(3) 101 097 097 097 1.00 110 097
SE(1)  0.72 069 068 069 077 098 0.68
SE(1/3) 0.41 041 0.40 041 046 072 0.40

11.12 Reg(l) 116 1.16 1.16 116 117 131 1.16 1.36
SE(3) 1.10 1.08 1.07 1.08 114 128 1.10
SE(1) 089 08 0.86 087 096 1.15 0.86
SE(1/3) 051 0.49 049 050 053 0.78 0.49

Note: v.(0)1/2 = 1.16.

10



Table 2.2 RMSE of BMP for different methods, true ¢ == 0.9

¢
y/ym Method 0 05 07 09 095 099 ¢  Denton
1 Reg(l) 127 1.23 122 121 121 123 122 130
SE(3) 132 1.16 1.08 101 1.03 1.15 1.06
SE(1) 084 078 0.74 068  0.71 090 0.71
SE(1/3) 044 043 043 042 043 054 042
6 Reg(l) 1.26 119 1.16 115 115 115 1.15 115
SE(3) 129 111 1.02 093 096 108 0.99
SE(1) 074 0.72 066 062 064 083 064
SE(1/3) 040 0.40 039 039 039 049 039
Reg(l) 127 123 121 120 121 122 121 1%
SE(3) 130 1.14 1.05 097 1.00 1.13 099
SE(1) 081 075 070 065 067 085 068
SE(1/3) 043 042 041 041 041 052 041
L Reg(l) 229 223 218 208 213 235 214 245
SE(3) 216 1.88 1.74 162 167 208 1.72
SE(1) 132 1.06 097 092 094 125 096
SE(1/3) 053 049 048 047 048 060 048
LT Reg(l) 161 159 1.59 155 157 162 158 19
SE(3) 147 1.37 132 1.26 1.30 150 1.32
SE(1) 088 085 082 078 081 1.08 080
SE(1/3) 046 045 044 043 044 056 0.44
1012 Reg(1) 161 159 158 151 156 1.60 157 1.63
SE(3) 146 130 122 1.14 1.18 143 1.20
SE(1) 087 079 071 069 071 094 0.72
SE(1/3) 046 0.45 044 043 044 057 043
1112 Reg(1) 231 231 230 2.27 231 268 230 286
SE(3) 228 211 199 187 193 239 197
SE(1) 152 123 114 109 1.11 145 1.13
SE(1/3) 060 054 053 052 053 064 053

1

—
S’

Note: v.(0)!/2 = 2.29.

For investigating the impact of the estimate (&,62) obtained by the survey-error-
modelling procedure of Chen and Wu (2000, 2001) on the BMPs, we make the situation
more practical. Since in practice the provided values of ve(0) always have errors, thus in
the simulation we generate them following a distribution with the true value of v.(0) as
its mean. In each replication, such a generated value is used for obtaining (¢ %) by the

procedure. ‘Then, we use 0, (k) q&o"&z/(] - ?) [see (1.12)] to replace ve(k) in V. in the

11



benchmarking formulae. That means, we also revise the provided estimates of v.(0) by
5:(0) = 62/(1 — $*). Again, for (1.11), the formula of the regression method, only ¢ is

needed and 9.(0) becomes irrelevant.

Tables 2.1 and 2.2 list the RMSE of benchmarking prediction (BMP) by various
benchmarking methods when the true ¢ = 0.5 and 0.9. For ¢ = 0.5, we try ¢ =
0, 0.3, 05, 0.7, 0.9 and 0.99; for ¢ = 0.9, we try ¢ = 0, 0.5 0.7, 0.9 0.95 and
0.99. The columns ¢ are the results of using (¢, a?) to form V,. Note that only the
RMSFEs for a middle year (year 6) and ending years or months are listed. The notation
y/y.m in cohnnn 1 represents either the year or the year.month. The notations Reg(q)
and SE(q), ¢ = 3,1,1/3, represent respectively via regression and signal extraction when
o, = 3,1,1/3. The S/N changes with o, as we always put 02 = 1.

The values in the rows of Reg(1) are from o, = 1. For the regression method, as we
have pointed out, V¢ in (1.11) can be replaced by ®. From (1.4), we may write (1.11) as
71=17+e+ PL(LP®L') 'Le. Hence 7 — n depends only on ¢ and e. Thus the RMSEs
are the same for all choices of o, as long as ¢ and e are the same. This is confirined by our
simulation: the rows of Reg(3) and Reg(1/3) under the same ¢ are the same as that of
Reg(1). On the other hand, in the column ¢, V., calculated from (b, %) may change when
S/N changes, since (c,b, %) is an estimate of (¢, 0?), which may depend on 7. However
our simulation result shows that the differences are negligible. Hence the rows of Reg(3)
and Reg(1/3) are omitted.

Since the original Denton method has nothing to do with either é or é), its RMSFESs
are listed in the last cohunn and put in the rows of Reg(1) for clear comparison with the
regression method, especially with the modified Denton method (approximated by the

regression method with ¢ = 0.99)

In the following, RMSE ~ v.(0)"/? represents the situation that the RMSE and
v.(0)/2 are very close so that the BMP makes little or no improvement. over the original
data y(t). RMSE < v.(0)"/? means that the BMP is helpful and RMSE < v,(0)'/?
means that it is very helpful. RMSE > v,(0)"/? means that the BMP is harmful (if we
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carry out benchmarking in such a way and in such a case) and RMSE > v,(0)"/? means
that it is very harmful. From Table 2.1 and 2.2, we observe the following: (d; 1 0 means

¢ decreasing and it is close to 0; ¢ 1 1 means ¢ increasing and it is close to 1.)
* For the regression method with a specified ¢:

I. In the years with benchmarks (years 1 to 10): For “low ¢”, RMSE « v.(0)1/2
holds; the change in the RMSFE is very small for all ¢ € [0,0.99]. For “high
¢, RMSE < v,(0)"/? alway holds and the RMSE slightly increases when
610

2. In the year without a benchmark (year 11): For “low ¢”, RMSE ~ v(0)1/2
when ¢ is not large, RMSE > v.(0)'/? for larger ¢ and RMSE > v(0)1/2
when ¢ 1 1. For “high ¢, RMSE < v,(0)"/2 or RMSE < v.(0)}/2 holds
when ¢ = ¢ but the RMSE increases rapidly when d) departs from ¢ in either
direction. RMSE > v.(0)"/% may happen when d) T 1 and the “forecasting”
lag increases.

3. To compare with the original Denton wmethod in the years with benchmarks:
For “low ¢”, the regression method is almost the same as the Denton method
no matter what J) 15. For “high ¢”, in the middle years, if q‘) is not too low,
the regression method is almost the same as the original Denton method and
worse if ¢ is too low: in early months of year 1, for whatever ¢ in [0,0.99], the
regression method (and hence the modified Denton method) is much better

than the original Denton method.

4. To compare with the original Denton method in the year without a benclunark:
In every case, it is always better than the original Denton method which is

harmful.

e Using ¢ obtained by the procedure of Chen and Wu keeps the RMSE at the same

level as that of using the true ¢.

According to Points 3 and 4 above, we sce that the modified Denton method is superior

to the original Denton method which has already been abandoned by statistical agencies.

13



The General Benchmarking System developed in Statistics Canada features the modified
Denton method and the regression method with the default value of ¢ = 0.9 which are
currently used by most users as the survey-error model is usually unavailable. According
to Point 1 above, both ¢ = 0.9 and 0.99 (0.99 means modified Denton method) are good
choices for either “low ¢” or “high ¢” if the benchmarks cover the whole period where
one wants to predict. However as most users are interested in predicting the variable in
the current year where a benchmark may not be available, then from Point 2 above, we
see that the modified Denton issvery harmful and should not be recommended. With
the regression method, users may tentatively use the default value ¢ = 0.9, however they
should try their best to obtain a reasonable estimate of ¢ for further reducing the BMP
error in the year without a benchmark. We also see that if the true value of ¢ is not very
high (such as ¢ < 0.95), when the lag of “forecasting” reaches 12, the regression method
shows no improvement over the original data and may be worse if ¢ remains away from

the true value. For that, we should turn to the signal extraction method.

e For the signal extraction method with a specified (¢,5?%) [62 = v.(0)(1 — ¢?)):

1. The RMSF of benchmarking prediction via signal extraction depends heavily
on 02/0? (the S/N). Compared with the regression method, the signal extrac-
tion method always reduces the RMSE and the reduction may be drastic for
low S/N. A lower S/N is more effective in reducing the RMSE than having

a good estimate of (¢,0?). However the S/N is not under users’ control.

2. In the years with benchmarks (years 1 to 10): For “low ¢”, the RM SFE increases
significantly only when ¢ 1 1 and does not vary much for other ¢. For “high
¢, the RMSE attains a minimum at gf) — ¢ and increases when ¢ departs
from the true ¢ in either direction; this phenomenon becomes less obvious for

low S/N.

3. In the year without a benchmark: The abovementioned increases, for either
“low ¢” or “high ¢”, become more significant; we may have RAMSE > v.(0)'/?

if ¢ 11 when the S/N is high.

14



4. If the S/N is not low, for years either with or without benchmarks, a reasonable

estimate is useful in a case of “high ¢”.

e For the signal extraction method, using (&, ?) obtained by the procedure of Chen

and Wu keeps the RMSE at the same level as that of using the true (¢, 0?).

3. Signal extraction method with unknown
autocovariance of signal

Benchmarking via signal extraction has its advantages however it requires knowledge
of the autocovariance structure of the “signal” [under assumption (1.14), it is VC]' In
practice, VC is unknown. In this section, we carry out a simulation study for the signal
extraction method only and in almost the same way as in the previous section except, that
the elements v, (k) of VC are estimated by the nonparametric method proposed by Chen,
Chollete, and Dagum (1997).

For estimating vc(k), at first we assume the model for the survey error e(t) is given.
For simplicity of statement, here we specify this model as (1.3) with parameters (¢, 07?),
either the true values or some other values. The major steps of the method of Chen,

Cholette and Dagum (1997) are as follows.

Step 1 Let
VViy(t) = w(t) = ¢(t) + '), i=)4, ... o (3.1)

where ¢*(t) = VV,e(t). The sample autocovariances of w(t) are

n—k
Falh———— 5 i), £ =it 12 (32)

n—13 &5

An estimate of the spectral density of w(t) is
n—14

fuld) = %[@wm) +23 B (k) cos(kA)], (3.3)

k=]

and the values of fu(,\) at A= X =73/10n, 7=0,1, .. 10n, can be calculated.



Step 2 Calculate the estimate of the spectral density of ((t) as

feA) = max{ fu(A) — fer(N),0} (3.4)

at the frequencies A;;, where fe.(A) is the theoretical spectral density of e*(i),
= e —ePHPPo?  4(1 - cosA)[L — cos(12X)] @

fer (3) = |1 — peir|? on 1 —2¢cos A+ ¢? 2 Lo
Step 3 Calculate
n 2w 1% fo (X)) cos(kA,

elk) = 2 [ fo(M) cos(kA)x ~ 7 Lgmi Jehs) cosEAy) (3.6)

0 10n

and finally, the estimates of v (k) are given by

c v fedku(),  k=0,...,M,

R= { 0, M<k<n-14 (3.7)

As suggested by Chen, Cholette, and Dagum (1997), M is about n/3 (we use M = 40

in this simulation); u(x) is the Parzen window given by

1 — 622 + 6|z}, lx] < 05,
u(z) = 2(1 — |z])3, o5 |of 2 1, (3.8)

0, elsewhere.

Table 3.1 RMSE of BMP using estimated VC’ true ¢ = 0.5

¢

y/lym o, 0 03 05 07 09 099 ¢
1 3 098 096 095 09 093 1.01 0.95

1 083 0.78 0.77 0.80 090 1.00 0.78

1/3 066 062 062 069 085 100 0.66

6 3 097 094 093 093 09 100 093

1 077 0.72 071 074 086 0.98 0.72

1/3 058 053 053 061 080 098 0.60

10 3 1.00 097 096 096 099 1.03 0.96

1 081 075 074 077 088 102 0.75

1/3 0.63 057 058 064 082 101 0.57

1 g~ 108 A0 30 T 406 LIt Lt

I 098 092 090 093 1.03 1.27 0.92

1/3 084 077 075 078 094 1.26 0.79

11.12 3 1.14 1.13 113 113 116 131 1.13
1 099 096 095 097 1.06 127 097

1/3 0.87 083 0.81 083 096 126 0.85

Note: v(0)!/2 = 1.16.
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Table 3.2 RMSE of BMP using estimated VC’ true ¢ — 0.9

¢

y/ym o, 0 05 07 09 095 099 ¢
1 3 146 120 1.09 1.03 1.07 1.17 1.09
1102 08 077 080 092 1.13 077

1/3 071 052 049 066 085 1.12 061

6 3 152 123 1.09 097 1.00 1.10 107
1090 078 0.72 071 083 1.06 0.70

1/3 061 045 043 056 0.75 1.04 052

10 3154 127 114 1.03 1.07 119 119
1101 08 076 077 08 1.15 076

1/3 0.72 053 049 063 082 1.13 059

I1 3 231 203 187 1.76 187 229 1%7
1203 166 142 1.33 158 222 139

1/3 1.88 146 L19 116 148 220 190

W12 3 249 234 219 205 215 263 217
I 238 211 181 166 188 256 1.77

1/3 228 1.99 166 150 180 255 159

Note: v.(0)!/2 = 2.29.

When we carry out these steps in the simulation, we let (¢,02) in (3.5) (in Step 2)
take the trial values (¢,52) [62 = v (0)(1 — $%)] no matter they are true or false, or take
the estimate ((15,62) obtained by the procedure of Chen and Wy (2000, 2001). Usnally
the estimates o¢(k) of v (k) are the best when (¢,62) = (o, 1), but it is not necessarily
always like that (see discussion pomt 3 below and Appendix B). Thus the RMSE of the

BMP may not necessarily attain its mimimum at (b, 6%) = (¢, 1).

Table 3.1 and 3.2 list the RMSEs of the BMPs via signal extraction for some years
and the last month of year 11 (the end year without benchmark) when 1 (k) is used
in the entries of VC' For the parameters of the survey-error model specified as ((13,62)

[62 = v.(0)(1 — #%)], we observe the following:

L. For the same ¢ and ay, the RMSE increases from the replacement, of v (k) (the
true value) by o, (k); the percentage mcrease of the RAM SE from this replacement, is

more when the S/N decreases (see Table 2.1 and 2.9 for comparison). However, to
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compare these RMSFE from using ve(k) with those from the regression method, we
roughly see that: When the S/N is high (say 0, = 3), it is smaller for ¢ € [0,0.99]
in a “low ¢” case, and for ¢ € (0.5,0.99] in a “high ¢” case; when the S/N is low
(say 0, = 1/3), except ¢ | 0 and ¢ 11, for all other ¢ it is much smaller either in a

“low ¢” case or in a “high ¢” case.

. When q‘; increases from the true ¢: The RMSE always increases; the lower the S/N,

the faster the increase. When ¢ 1 1, the RMSE converges to a limit which does not
depend on S/N. Hence, using a ¢ very close to 1 loses more advantage in a low S/N
case. In a year with benchmark, this limit is smaller than :(0)"/2 (more evident

for “high ¢”). In the year without benchmark, this limit may be much larger than

v, (0)'/2.

3. When ¢ decreases from the true ¢: For “low ¢”, the RMSE increases slightly. For

“high ¢” and high S/N, the RMSE increases and significantly when ¢ is close and
outside the lower end of the “high ¢” range. For “high ¢” and medium or low
S/N, the RMSE maybe decreases af, the beginning and then increases: the lower
the S/N, the lower the ¢ where the RMSE reaches the minimum. The reason
is explained in Appendix B. However, in the year without benchmark the RMSFE

reaches the minimum at the true ¢ In any case.

- In the year without benchmark, for “high ¢”, the value of ¢ is very sensitive to the

RMSE. A small deviation of é from ¢, cither less or more, may lead to a large
mcrease of the RM SE. This is the case where a good estimate of (¢, 0?) is the most

crucial.

Fromm above discussion, we see that, in practical situations (VC is unknown), a good

value of (¢,02?) is much more mmportant for the signal extraction method than im the

situation where V¢ is known (unreal). The reason is clear: (¢,0%) is not only in the

BMP formulae; it also plays a role in estimating VC' From Table 3.1 and 3.2 we observe

that,

using (Q;),fr?) obtained by the procedure of Chen and Wu, the RMSE is usually at
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the same level as that from using the true (¢,0%). For “high ¢”, when the S/N is not
high (the cases where a lower ¢ may lead to a smaller RMSE), ($,62) may even lead
to a smaller RMSE than that of using the true (4,0%). These demonstrate that the
survey-error-modelling procedure suggested hy Chen and Wu (2000, 2001) combined with
the nonparametric method of estimating VC proposed by Chen, Cholette, and Dagum
(1997) may provide very good results of BMP in practice. The advantage of this strategy
ts that all statistical information is “cooked” from the data: monthly survey y(t) and

annual benchmarks z(7).
Appendix A. Survey error model and a modelling procedure

Estimates of v,.(0), the variance of survey error ¢(t), are usually obtained in the survey
process and published by statistical mstitutions; but estimates of the autocorrelation
v.(k)/v.(0), or equivalently, the model for e(t), are rarely given.

I values of individual units (or other elementary estimates such as values for rotating
panels) obtained in a survey process are available, the methods of estimating the antocor-
relation or modelling the survey error are referred to as primary analyses of Survey error
(e.g. Scott, Smith and Jones, 1977; Pleffermann, 1991). Unfortunately, in most practical
situations, these values are not available due to various reasons such as confidentiality,
inadequacy of data identification, and the problem of accessibility. In such cases, the
methods of modelling survey error (or estimating autocorrelation of survey error) have
to rely on the aggregated data, y(t), in the published forin. These methods are referred
to as secondary analysis of survey error. For most of these methods, observations y(t)
are fitted with an integrated autoregressive moving-average (ARIMA) model which can
be decomposed into two component. models for the variable 5(t) and the SUrvey error
e(t). Unfortunately, the conditions for such a decornposition are very restrictive which,
combined with the lack of auxiliary information, enforce the analysts to be quite sub-
Jective. For example, in Scott, Smith and Jones (1977), the AR parts of the models for

the observations, the variable of mterest, and the survey error are assumed to be the same.
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Chen and Wa (2000, 2001) proposed a method of modelling survey error by using ag-
gregated survey data as well as benchmarks. As more information is used in the procedure
than in the secondary analysis, we refer to this kind of approach as eztended secondary
analysis of survey error. Unlike assuming very restrictive models for the variable, Chen
and Wu assume only that the variable of interest 7(t) follows the DS model (1.14). As-
suming that the survey error follows (1.3), the method of modelling survey error simply

involves the estimation of ¢ and o? using {y(t), t = 1,---,n} and {2(T), T =1,--- N}.

The basic idea is as follows. From {y(t)} and {z(T)}, calculate

y'(t) = VViylt), t=13,---,n, (A1)
and
11 11
e(T) =S y(12T — 1) — 2(T) = Y e(12T —t), T =1,---, N. (A.2)
-0 =0

Define the sample covariance between y*(k) and (1) as
N
ielk) = 3 { Z y (12(T = 1)+ K)e(T) + 3 5" (12(T + 1) — (k— 2))5(7")}, (A.3)
i T=2

for 14 < k < 25 (k = 25 is slightly different, see Chen and Wu, 2001). Assume the series
of survey error e(t) and the series of target variable 7)(f) are mutually uncorrelated and let
e*(t) = V'V, e(t); then 0,..(k) are estimates of v.-.(k), the covariance between e*(k) and
£(1) which can be expressed by the second term in the braces of (A.4) below. We may

get an estimate of (¢, 0?), denoted by (¢y,07), by minimizing (nonlinear LS estimation)

25
S(p,0%) = 3 {bye(k) — p(k, )o?/ (1 - $7)}?, (A1)
k=14
where
plk, @) = =21 1+ ¢ F L 1, k=14,15,---. (A5)

However this ininimization gives good estimates only when N, the number of benchmarks,
15 large; say, a hundred or more. Unfortunately, in reality, only a few benchmarks are
available. To overcome the difficulty, Chen and Wu (2000, 2001) studied the behavior
of the target function p(k, ¢) and captured some useful features of its sample counter-

part in order to improve the estimates significantly. Thus, some technical strategies are
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involved in the practical implementation of the method. For convenience, an outline of
the procedure is presented in the following. For more details, see Chen and Wu (2001).
Note that in the minimization procedures in Steps 1 and 5, the areas for searching opti-
mal values of ¢ and/or 02 are some neighbourhoods of (¢, 0?) satisfying the relationship
0® = v.(0)/(1 - ¢*); where v.(0) is the variance of the survey error and its estimate is

usually published by statistical agencies or provided by survey experts.

Step 1 As described in the above, a tentative estimate (¢1,07) is obtained by minimizing

(AA).

Step 2 Use some auxiliary features (statistics) and ¢, to obtain a reasonable estimate

¢2 and to test if the true ¢ is “low” or “high” (if there is no prior knowledge about

).

Step 3 Trim p(k) = 9y (k)/5.(0) to p* (k) (outlier adjustment) according to “low ¢” or

“high ¢, where @y, (k) is given by (1.9). Obtain ¢3 by minimizing

20
Z [R'(k)‘ R(kf,qﬁ)]?, R (k) ';)‘(k)/C(gﬁz). (A.6)
k=14
where
R(k,®) = p(k, $)/G($), (A7)

p(k, ¢) is given by (A.5) and

= {— L lo(k, §) — p(k — 1, $)]*}/2. (A.8)

kl';

Step 4 For further improving ¢, re-define p(k) as

pk) = Be-c (k) /[0:(0)(1 — ¢2)/(1 = ¢2))]. (A.9)

and then get p*(k) as in Step 3. Redo the minimization (A.6) to obtain an optimal

value ¢4 which is the tinal estimate of .

Step 5 The final estimate o2 of ¢ based on ¢, is obtained by minimizing (A.4) in a

certain region of o® with ¢ replaced by ¢, in (A .4).



Appendix B. The minimum of the RMSE may not be at ¢ = ¢

For benchmarking via signal extraction, when v.(k) are “known” (true, false or esti-
mated), the key step for implementing benchmarking via signal extraction [(1.16) through
(1.20)] in practice, is estimating v (k).

When S/N is low, ((t) is a weaker component in w(t) = ((t) + €*(t) to make a contri-
bution to f,(}), the true spectrum of e*(t) does not necessarily lead to the best estimate
of fc(A) [see (3.4)], and hence the best ©¢(k). Then the RMSE of the benchmarking
prediction may not necessarily attain its minimum at the true value of (¢, 0?). In Table
B1, we list some means (each is obtained from 1,000 réplications) of 9¢(k) (only the results
for k = 0 and 1 are listed). The formulae for the true values of v (k) are given by (2.2)
through (2.7).

From this table, we sec that, when o, = 3 and 1, i.e. the situations of high and
medium S/N, the mean of o¢(k) (k = 0,1) is the closest to the true values of ve(k) at
$ = 0.9. However when a, = 1/3, the mean of ©(0) is the closest to (sometimes the same
as) the true value of v (0) at ¢ = 0.7. Even ¢ = 0.5 and 0 is better than ¢ = 0.9 for
k = 0; although for k = 1, ¢ = 0.9 gives the best ve(1).

Table Bl Some means of the estimate of vc(k) , true ¢ = 0.9

¢
ko, 0 0.5 0.7 0.9 095 099 true vc(k)

0 3 907 1425 1708 2040 2134 22.14 20.07
1 0354 0542 1.145 2750 3.463 4.184 2.230
1/3 0236 0148 0225 098 1531 2.184 0.225
3 -337 -725 -864 -959 -971 -975 -9.79
1 0226 -0.089 -0.450 -0.994 -1.105 -1.149 -1.088
1/3 0.206 0.104 0040 -0.121 -0.170 -0.192 -0.121

1

Acknowledgment

Our sincere thanks are extended to Benoit Quenneville, Pierre Cholette, Siu Hung

Chung, and John Higginson, for stimulating discussions and valuable comments, also for

22



help with the editing. This research was partially supported by the Hong Kong RGC
Earmark Grant CUHKA4314/02H.

References

Chen, Z. G., Cholette, P. A. and Dagum, E. B. (1997). A nonparametric
method for benchmarking survey data via signal extraction. Journal of
the American Statistical Association, 92, 1563-1571.

Chen, Z. G. and Wu, K. H. (2000). Survey error modelling in the presence of
benchmarks. Proceedings of the Survey Methods Section, Annual Meeting
of Statistical Society of Canada,, 93-101.

Chen, Z. G. and Wy, K. 1. (2001). Survey error modelling in the presence of
benchmarks. Working Paper no. BSMD-2001-013E, Statistics Canada.
Chollete, P. A. (1984). Adjusting sub-annual series to yearly benchmarks.

Survey Methodology, 10, 35-49.

Chollete, P. A. and Dagum, 1. B. (1994). Benchmarking time series with
autocorrelated survey errors. International Statistical Review, 62, 365-377

Dagum, E. B., Cholette, P. A. and Chen, Z. G. (1998). A unified view of
signal extraction benchmarking, interpolation and extrapolation of time
series. International Statistical Review, 66, 245-296.

Denton, F. T. (1971). Adjustment of monthly or quarterly series to annuals-
An approach based on quadratic minimization. Journal of the American
Statistical Association, 66, 99-102.

Durbin, J. and Quenneville, B. (1997). Benchmarking by state space models.
International Statistical Review, 65, 23-48.

Fernandez, R. B. (1981). A methodological note on the estimation of time
series. The Review of Economics and Statistics, 63, 471-476.

Hillmer, S. C. and Trabelsi, A. (1987). Benchmarking of economic time Series.
Journal of the American Statistical Association, 82, 1064-1071.

Nelson, C. R. and Plosser, C. 1. (1982). Trends and random walks in macro-
economic time series. Journal of Monetary Economacs, 10, 139-162.

Pleffermann, D. ( 1991). Estimation and seasonal adjustment. of population
means using data from repeated surveys. Journal of Business and Eco-
nomic Statistics, 9, 163-175.

Scott, A, 1., Smith, T. M. F. and Jones, R. G. (1977). The application of time
series methods to the analysis of repeated surveys. International Statistical
Review, 45, 13-28.

Trabels), A. and Hillmer, S. T (1990). Bench-marking time series with reliable
bench-marks. Applied Statistics (JRSS, Series C), 39, 367-379.

23



Bl

AAAAAAAAAAAAAAAA
TTTTTTTTTTTTTTTTTTTTTTTTTTT

WAL LR

10103785



