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ABSTRACT 

We use the "survey sample" partial likelihood score function to fit the proportional hazards 
regression model to survey data with complex sampling designs. The survey sample 
maximum partial likelihood estimator is the solution of the survey sample partial likelihood 
score function. Many authors applied this method to fit survival survey data. Binder (1992) 
dealt with inference on the descriptive census population parameter, that is, design-based 
inference on the maximum partial likelihood estimate that could be calculated had a census 
been taken on the finite population. Lin (2000) gave a formal justification of Binder's method 
under the super-population approach and dealt with inference on the model parameter. Neither 
Binder nor Lin provided conditions for the respective asymptotic results to hold. Ruhin-
Bleuer (2003 b) used Lin's (2000) set up of the super-population approach and developed 
counting process methodology for a joint design-model space to obtain, under stated sufficient 
model and design conditions, a proof of Binder's approximation of the SPLS. In this paper, 
we give a rigorous proof of the weak convergence of the SPLS process and the asymptotic 
normality of the sample maximum partial likelihood estimator in a formally expressed joint 
design-model space and we propose a consistent variance estimator. Furthermore, using 
counting processes tools in the joint design-model space, we show that Lin's (2000) variance 
estimator is asymptotically unbiased and robust against misspecification of the correlation 
model. We also show that it is design-model consistent, and that it is less efficient than the 
variance estimator proposed here. Strict rates of approximation for Lin's (2000) variance 
estimator are given. 

Key words: complex survey data, partial likelihood, proportional hazards, counting processes. 

RÉSUMÉ 

Nous utilisons Ia fonction de score de vraisemblance partielle o d'échantillon > pour ajustcr un 
modèle de regression a risques proportionnels a des données provenant d'enquêtes a plan de 
sondage complexe. L'estimateur du maximum de vraisemblance partielle d'échantillon est Ia 
solution de Ia fonction de score de vraisemblance partielle d'échantillon. De nombrcux auteurs 
ont appliqué cette méthode afin d'ajuster un modCle ii des données d'enquête sur Ia survie. 
Binder (1992) s'est penché sur l'infércnce concernant les paramètres descriptifs de population 
dans des conditions de recensement (population linie), c'est-à-dire l'inférence basée sur Ic 
plan de sondage concernant l'estimation du maximum de vraisemblance partielle qui pourrait 
Ctre calculée si Ia population finie avait été recensée. Lin (2000) a cherchC a justifier 
formellement Ia méthode de Binder sous l'approche de superpopulation et a traitC de 
l'inférence concerniant les paramètres du modèle. Ni Binder ni Lin n'ont précisC les conditions 
suffisantes pour que leurs résultats asymptotiques respectifs tiennent. Rubin-Bleuer (2003 b) a 
utilisé les conditions de l'approche de superpopulation de Lin (2000) et a élaboré une méthode 
basée sur un processus de comptage pour un espace conjoint plan de sondage-modèle afin 
d'obtenir, sous des conditions suffisantes clairement énoncées s'appliquant au modèle Ct au 
plan de sondage, une preuve de l'approximation du score de vraisemblance partielle 
d'échantillon (SPLS pour Sample Partial Likelihood Score) de Binder. Dans Ic present article, 
nous donnons une preuve rigoureuse de Ia faible convergence du processus du SPLS et de Ia 
normalitC asymptotique de l'estimateur du maximum de vraisemblance partielle d'échantillon 
dans un espace conjoint plan de sonidage-modèle expnimé formellement, ci nous proposons un 
estimateur convergent de Ia variance. En outre, au moyen d'outils pour les processus de 
comptage dans l'espace conjoint plan de sondage-modele, nous montrons que l'cstimatcur de 
Ia variance de Lin (2000) est asyrnptotiquement sans biais et robuste a l'erreur de specification 
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du modèle de correlation. Nous montrons aussi qu'iI est convergent par rapport au plan de 
sondage et au modéle, quoique moms efficace que l'estimateur de Ia variance propose ici. 
Nous donnons des taux d'approximation stricts pour l'estimateur de La variance de Lin (2000). 

Mots des : Données provenant d'cnquCtes a plan complexe; espace mixte tenant compte du 
plan de sondage et du modèle; modèle de risques proportionnels; processus de comptage; 
robustesse 



1. INTRODUCTION 

The Cox (1972) proportional hazards regression model (PHM) provides a method for studying 
the effects of primary covariates on failure times, while adjusting for other variables. If we 
assume that no covariates vary with time and let S(t I X) = I - P(T :!~, t I x) be the conditional 
survival function of the failure time T associated with an r-dimensional vector of 
covariates X , then the conditional hazard function (or instantaneous conditional failure rate) is 
defined by 

2(11 X) = limh ' P(t :~ T <t + h I T ~ t, X). 
h 0 

The PHM specifies that the conditional hazard rate 2(t I X) of the failure time T is given by 
2(tIX)=A4J(t) . exp(fl' . X) ,  

where Ao (t) is an unspecified baseline hazard function and fi is an r-dimensional vector 
valued regression parameter pertaining to the log hazard ratio. 

Most methods of survival analysis were developed for a random sample from a given model. 
In order to analyze survey sample data, survey samplers often think of it as the result of a two-
phase randomization procedure (an approach introduced by Hartley and Sielken in 1975), 
where the infinite population (also called super-population) generates a finite population in the 
first phase, and the sample is selected from the finite population in the second phase. The 
finite population could have been completely observed, had we taken a census. The analysis 
of the data obtained in the first phase (that is, of the finite population) is called "the census 
case" from now on. 

Fitting the PIIM to survey data poses difficulties because complex survey data consist of 
dependent observations and are often subject to selection bias due to unequal selection 
probabilities (see for example, Pfeffermann, 1993). As a consequence, the usual asymptotic 
theory does not apply. The problem is to determine the properties of the "survey sample" 
estimator of/I for inference. 

The census case 

The failure time T(also called lifetime) is subject to right censoring given by C. Let 1(A) be 
the indicator function of the set A. Let T = min(T, C) denote the censored lifetime, 

ö = I(T !~ C) the indicator of whether the lifetime was censored or not, and Y(i) = 1(T ~! 1), 

the indicator of whether the unit with lifetime T was at risk or not at time t. The data 
consists of a realization of random triples (1, ö1 ,X 1 ), I = l,...,N, independent but not 

necessarily identically distributed random vectors defined on a probability space(f, Z, P). 
Under the PIIM ,80 can be estimated from the "Census" Partial Likelihood Score (PLS) 
function 

N  U(/3)= > 

where the S-functions, given the covariates, are linear combinations of the risk functions 
1(7', ~: t): 
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s°(fl,t)=1 >I(i• ~ t).e 1 	and s(1)(p,t)= 	X1  •J(I >l)e. 
N, = 1 	 N =1  

The solution to U(fl) = 0 yields fN,  the maximum partial likelihood estimator of the model 
parameter /1o. We call 8N  the census parameter. Under regularity conditions, the 

expression JX1(/3N 
- fib) is asymptotically normal with zero mean and covariance matrix that 

can be consistently estimated by I(fi) = —{(l/N)aU/afi}(fiN) (Andersen and Gill, 
1982). 

The survey data case 

We assume now that the units of the finite population (census population) are classified intoL 
strata, with Nh primary sampling units (psus) within stratum Ii, h = 1,..., L, and Nh/ 

L 
secondary sampling units within psu i, i = 1,..., Nh.  We define N =Z Nh, and 

h=1 
L Nh 

M = 	Nj 1  , respectively, as the number of psus and the number of ultimate units in the 
h=li=1 

finite population. Throughout the paper we assume that the psu sizes NhI  remain bounded 
while the number of psu's N increases towards infinity. Hence M and N are 
asymptotically equivalent. Even though here the number of ultimate units in the population is 
M , the solution to the Census PLS equation U(8) = 0 will again be denoted byJJ. 

The survey data consist of a subset s of the finite population, 

(T17/k '(5hik , Xhk), k = 	phi' i = 1 	'2h'  h = 1,..., L, 	= fl1 + ... + nL, 
which is selected according to a "without replacement" sampling design. Consider now a 
survey sample estimator of the Census Partial Likelihood Score function. For the sake of 
brevity, we will use the word "sample" rather than "survey sample". The "Sample Partial 
Likelihood Score" (SPLS) function is given by: 

(l)n 
' 'i-" hik U(fi) 	ö/ j/ Xjj 

- '(0) hikes 	 S (fi,Thk) 

where hik E s means the unit hik in the finite (census) population is included in the selected 
sample, 2thjk  is the sampling inclusion probability for the unit hik and the S -functions are the 
Horvitz-Thompson (HT) estimators of the finite population S-functions shown in (1.1) (see 
Sarndal et al, 1992, p.43  for the definition of UT). The solution of the estimating equation 
given by the SPLS function U(fi) = 0 yields /1N'  the Sample Maximum Partial Likelihood 
estimator (SMPLE). 

Briefly, we determine the properties of AN  for inference, propose a variance estimator of/3 N , 
and compare it with Lin (2000)'s variance estimator. The motivation for this work stems from 
the recognition that even though the asymptotic theory developed by Andersen and Gill 
(1982) for the census case is intended for quite general sequences of probability spaces, their 
asymptotic results do not apply directly to the Sample Partial Likelihood process. The Sample 
Partial Likelihood process lives in a joint design-model space, and the design induces some 

6 



stochastic dependencies that cannot be accommodated by the results for independent random 
failure times. This claim is illustrated by the following. In the census case, the finite 
population is assumed to be a realization from M stochastically independent censored 
lifetimes and the normalized Partial Likelihood Score (PLS) process can be approximated by 
the following sum of stochastically independent terms with mean zero: 

U(/3,t,w) 	I L NhNhe t 	
dMhik 

	0 ~ t ~ T, WE c, f;i = 7 h I i=1k=1O 

where 	the 	s(fi,t),j = 0,1 	are 	non-stochastic 	functions, 
dfMhIk (u) = :5 u) 

- ~! u)ek 20 (u)du and dl(Th,k u) is the measure that 
assigns the value g(T 1 ) to a function g. Andersen and Gill (1982) have shown that from 
this approximation follows the weak convergence of the normalized PLS process. 

In the survey case, the normalized SPLS process can also be approximated by a sum of zero 
mean but not necessarily independent terms: 

fj 

	

t ( 	-

)dMhik (u)/ 7rhik, 0 !~ t  !~ r, WEXhikM 	Mhtk€so, 	s ° (fl,u) 
(1.2) 

There are two approaches that are used to look at this process and its asymptotic distribution: 
one is to view it as a random vector in a design-model "product space". The terms in the sum 
above are, in general, stochastically dependent in the product space, and this holds whether the 
design is with replacement or not. In order to calculate its asymptotic distribution in a rigorous 
way, using the theory of counting processes, we need to define counting processes, 
martingales, their associated filtrations, etc., in a particular probability space that is the joint 
design-model space, as well as examine the behavior of the processes associated with the 
proportional hazards model in that space. 

The second approach used by some analysts when considering the asymptotic distribution of 
the SPLS process is to "ignore the design, omit the sampling weights". What we are actually 
doing when we analyze complex survey data without sampling weights is working with the 
conditional probability of the product space given the selected sample. For a simple random 
sample without replacement (SRSWOR) design, we can ignore the design and work in the 
realm of the super-population. However, the most common designs (stratified SRSWOR, 
stratified multi-stage, etc.) usually generate selection bias, and this may cause the original 
stochastic terms in (1.2) which have zero model mean, to become random variables with mean 
different from zero, once we condition on the selected sample. Even if the random variables 
remained independent under the conditional probability given the selected sample, this would 
not be enough to ensure the convergence of the sum (for a detailed exposition of stochastic 
dependence in the design-model product space and in its conditional probability spaces, see 
Rubin-Bleuer and Schiopu-Kratina, 2005, Section 4). 

Four previous papers applied the PI-IM to data from complex surveys: the first paper (Binder, 
1992) dealt with inference on the census population parameterflN;  a second paper by (Lin, 
2000) dealt with inference on the infinite population (or model) parameter ,8; a third paper 
on the subject (Rubin-Bleucr, 2003) provided a theoretical justification of an approximation 
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property used by Binder and Lin for their work; and the fourth paper (Rubin-Bleuer, 2004) 
dealt with the asymptotic distribution of the SPLS process and the corresponding SMPLE 
function. 

Binder (1992) proposed a method of fitting proportional hazards models to survey data from 
complex designs, based on asymptotic theory in the design probability space. His method 
provides inference on the "descriptive" census estimator /3N  that would be completely known 
if all the values of the finite population were known. It does not assume a super-population 
model and it is entirely based on a fixed finite population from which the sample is observed. 
He assumed that the SPLS function is asymptotically equivalent (in design) to the sample 
estimator of a total and from this, he derives the asymptotic normality of the SPLS and of the 
solution /3N  of the SPLS estimating equation (for the asymptotic normality of a sample total 
see, for example, Krewski and Rao, 1981). 

Lin (2000) proposed a method to perform inference on the model parameter flo• He worked 
with the super-population approach of Hartley and Sielken (1975) and showed how the sample 
maximum partial likelihood estimator/3N , proposed by Binder (1992), can provide inference 

for the model parameter fib, with a variance that accounts for both the design and the model 
randomizations. Lin (2000) stated that both, the SPLS function and the sample maximum 
partial likelihood estimator /3N  are asymptotically normal, provided that certain sample 
processes were tight. However, he did not provide design nor model conditions under which 
these sample processes are tight. Lin (2000) also proposed a variance estimator of fiN• 

Rubin-Bleuer (2003) used the super-population approach working on a joint design-model 
space in a formal way, to obtain a rigorous proof of Binder's and Lin's conjecture on the 
approximation of the SPLS function. To obtain this approximation result, even for Binder's 
apparently model free approach, there was a need to assume the correct specification of the 
hazard model underlying the finite population from which the sample is selected. In this 
paper, Rubin-Bleuer also assumes the stochastic independence of the super-population 
censored lifetimes and their covariates. 

Rubin-Bleucr (2004) showed that the SPLS process converges to a Gaussian process and that 
the SMPLE is asymptotically normal and gave sufficient sampling design and super-
population model conditions under which these results hold. She also gave the expression of 
the asymptotic variance of both the SPLS process and the SMPLE. 

Here we look at the SPLS as a process in the product design-model space, which is the 
original approach of Lin (2000). The Al censored lifetimes are assumed stochastically 
independent. The design set-up is a stratified two stage design without replacement in the first 
stage. It may introduce selection bias because there are unequal probabilities of selection, and 
sampling correlation due to selection without replacement and to the sampling correlation 
within the psus. The selection bias is taken care of with the sampling weights and the 
sampling correlations disappear due to the convergence of the process to the sample mean and 
the model independence of the hik units. 

In this paper, we work with the normalized SPLS process { 	U(fi0  t) 
0 4!~ :~ 4, v 

positive, in the style of the original result of Andersen and Gill (1982), rather than with the 
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normalized SPLS function 	
LJ(/$0) 

M 	
Consequently, the results are more general than those 

obtained by the previous authors. We develop a counting process methodology for the design-
model product space. We obtain a rigorous proof of the weak convergence of the SPLS 
process in this space, the consistency of the sample maximum partial likelihood estimator 
/3N(t)and its asymptotic normality about the model parameter,8 0  and give sufficient model 
and design conditions. We obtain a closed form of the limiting variance of the SPLS process. 
We prove weak convergence of the SPLS process directly, using neither Binder's (1992) 
approximation nor Andersen and Gill (1982) results for the PLS. We work from "scratch" 
using the Central Limit Theorem for Martingales and apply it to the design-model product 
space. These outcomes require the correct specification of both the hazards model and 
correlation structure of the super-population. The above results, developed for the case where 

the first stage sampling rate -> f, with  .1 positive, are contained in the JSM proceedings 

paper by Rubin-Bleuer (2004). Here we extend them to the casef ~! 0, and give the proofs in 

detail. In addition, we propose variance estimators E
.,  , M and of the SPLS, the 

PLS and fiN  (1) respectively, and prove that they are design-model consistent (see Samdal et 
al, 1992, for the definition of design-consistency and other sampling theory concepts). 
Furthermore, using the tools of counting process methodology, we investigate the properties 
of Lin's (2000) variance estimator, which is based on the approximation of the SPLS function 
to the sample FIT estimator of a total of the finite population. For this purpose, we give a new 
proof for obtaining Binder's (1992) approximation to the SPLS function, which is valid under 
the semi-parametric model for the hazard function, even if the correlation structure of the 
super-population is not correctly specified. Furthermore, we show that if the underlying 
super-population lifetimes and covariates are stochastically independent, Lin's (2000) 
variance estimator of the normalized SPLS process is design-model consistent though less 
efficient than On the other hand, consider SPLS with our normalizing constant rather 

than that used by Lin's (2000) and assume -f-- —* 0, then we can argue that Lin's (2000) 

variance estimator is a robust variance estimator against misspecification of the correlation 
model. 

Before going into the organization of the paper, we provide some comments about the 
assumptions and techniques used here. The proofs follow similar techniques used for the 
census case by Andersen and Gill (1982), modified for simple situations by Fleming and 
Hamngton (1991). But there are some considerations that we must make and this is why the 
proofs here are carefully rendered. For example, some of the processes that are bounded 
almost surely in the census case, are now .ir -weighted processes which are only bounded in 
probability. Also, the limit of the information matrix does not coincide with the limiting 
covariance matrix of the SPLS process: new finite population ".'r - weighted" S processes 
turn up in the calculation of this variance. In addition, design conditions have to be stated for 
the design consistency of the HT sample estimators of the processes involved. Finally, we 
also use the property that convergence in design probability does imply convergence in the 
design-model space in which we work. The proof of this statement is not trivial, and we refer 
to previous work on the subject (Rubin-Bleuer, 2005, Theorem 5.1). 

In the census case, there exist results for more general model assumptions than those we 
present here. This article was done under somewhat restricted conditions (i.e., continuous 
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failure times, covariates constant over time and uniformly bounded, a common baseline 
hazard function and conditionally independent failure and censoring times) to concentrate on 
the added complexity of the survey-model process. Many practical situations occurring with 
survey data fall under these conditions and some of the restrictions arise from the practical 
issues in the collection of the data. Survey data is, in general, obtained from a stratified 
multistage design with a large number of strata and a small number of clusters per stratum, 
usually two or three. In each stratum, the first stage of sampling selects the clusters with 
probability proportional to size. Accordingly, for the asymptotic set-up, the number of strata is 
assumed to increase towards infinity, while the sample size stays bounded within each 
stratum. Also, in many situations the design clusters are specified by operational reasons and 
not by an assumption that the underlying super-population is clustered (for example 
employment in the Canadian Labor Force Survey may depend on economic regions (the 
strata) but analysts have in general, assumed that employment status is independent within 
each stratum regardless of the designed clusters). The results presented here assume that the 
super-population of lifetimes and censoring times are stochastically independent. As a caveat, 
it is noted that data obtained from a longitudinal survey could be subject to a significant 
amount of censoring due to attrition, and that attrition is sometimes not independent of failure 
times. This situation is not treated in this paper. Finally, we assume that the vector of 
covanates X does not depend on time. As a result, simpler model conditions are used. At this 
moment there is also a practical reason for working with covariates that are constant in time: 
there is a hitch with its application for survey data. The variance estimators proposed until 
now (see for example Binder, 1992 and Lin, 2000) contain terms in X 1  (7.), for subjects i 

and j respectively. These cannot not be observed if, for example, subject j died before 
subject i. 

The paper is organized as follows. In Section 2, we give the notation used throughout the 
paper, and define a stratified super-population model and design. In Section 3, we formally 
express the joint design-model space envisaged by Lin (2000) as a "product space" containing 
both the model and the design probability spaces. Also, we state the counting process 
methodology developed by Rubin Blcuer (2001) and Rubin Bleuer (2003 b) for the design- 

model space, which is used to derive the results in this paper. The S and S processes are 
functions of the number of units at risk at timet. Tightness of many survival processes often 

follows from the convergence in sup norm of the S and S processes. In Section 4, we prove 

the 	uniform convergence 	of the 	S(/3,z), and the sr-weighted 

S(/3,t), 	1=0, 1, 	2,finite 	population functions, 	their sample estimators and certain 

combinations of them. We also give the new proof of Binder's approximation. The weak 
convergence of the SPLS, the consistency of the maximum partial likelihood estimator, the 
calculation of the limiting variance of the maximum sample partial likelihood estimator and of 
the limiting sample information matrix, the consistency of their respective sample estimators 
and the asymptotic normality of the maximum sample partial likelihood estimator are given in 
Section 5. In Section 6, we investigate the properties of Lin (2000)'s variance estimator and 
compare it with the variance estimator proposed in this paper. Finally, in Section 7, we 
summarize the results and present conclusions. 

2. THE MODEL AND THE DESIGN 

2.1 The model 
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Consider right censored lifetimes defined on a probability space(f, 3, P). The lifetimes 
are classified into L strata, and for the sake of consistency of notation with the design, we 
assign the censored lifetimes and respective covariates into Nh  primary sampling units 
(psus) within stratum h, h = 1,..., L, and Nhj  secondary sampling units within 

psu I, i = l,...,Nh. The data values will be labeled by the number of psus in the finite 

population. The model is defined by triples: 
frN 5N 	xN 	k=l,...,Nhl , i=l,...,Nh,  h=l,...,L, 	 (2.1) hik' hik' hik)' 

such that 

- a) 	Xk  are r-dimensional covariates constant overtime, k = 1..... N, i =l,...,Nh,  h 

77 = 	A Ck are censored failure times, where failure time and censoring time variables 

Th'ik 	and C'k 	are assumed conditionally independent given X,k,  and 

k=l,...,Nh e , 1=l,...,Nh, h=l,...,L, 

8 = ii% = Thik 
N 

h:k 	( ) are indicators of whcther a failure time is actually being observed or not, 

k=l,...,A1,,1, '''"'th'  h1,...,L. 

d)the triples 	(N 	N XN 	k=l,...,Nh : , i=l,...,Nh, h=1,...,L, 	are 	stochastically ' hik' hik' 	hikfr 
independent. 

The Cox (1972) proportional hazards model specifies that the hazard rate AN  (t)(or 

instantaneous failure rate) of the failure time Th satisfies ik 

Ahik(1) = A0 (z).exp(fl0  . Xk),k = l,...,NhI, i = l,...,Nh, h = l,...,L, 	(2.2) 

where 20(t) is an unspecified baseline hazard function, with absolutely continuous survival 
function S0  (t) = I - Fj (t) and 80  is an r-dimensional vector valued regression parameter. In 
the asymptotic set-up the number L of strata increases towards infinity while the number of 
clusters Nh  within strata remains bounded. Thus, even though the failure times are not 
necessarily identically distributed, they share the same baseline hazard function. The 
differences among hazard rates are to be taken into account by the conditional distributions 

• 

	

	given the covariates. Em  and Vm  denote, respectively, the expectation and variance in the 
space (Q,3,P). 

From now on, whenever there is no room for confusion, we omit the superscript N. In the 
following, we use standard notation for counting processes and state their properties under the 
proportional hazards model given above (see Fleming and Harrington, 1991). 

L 11 h Nh I  
Let i(1) = 	 T7jj (1),  qhik  (t) = I(Th jk :5 i) j, denote a counting process, which is 

h=Ii=Ik=1 
the number of failed uncensored observations by time t. We use the notation q(1) for a 
counting process, and %1(t)for a martingale, instead of the usual N(t)and M(t) 
respectively, because in this study N denotes the number of clusters (or primary sampling 
units) in the finite population, and M denotes the number of ultimate units in the population. 
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Let 	the 	number 	of 	units 	at 	risk 	at 	time 	I be 	given 	by 
L Nh1V,,I 

Y(t)= 	Yhik 	Yhik(t)=I(Thjk ~ t). 
h=1 i=lk=I 

The symbol 02 denotes the outer product of the vector within brackets (i.e. X 02  = X•X'). 
We write X 0 1 = X and X ®0  = 1. Let j = 0, 1, 2 be respectively, a scalar, an r-
dimensional vector and an r x r dimensional matrix defined by: 

I 

	

 s°(/3,i) 	
L Nh NhI 	 j L Nb Nh 	

'3 x = — 	Yj,(t).e 	hik = 	X 	•YhIk(t).e 	/iik 

	

Mh=[,=l k=1 	 Mh=111 k=1 

I LNN1 1 LNh NhI  
X 	.y1 •k(t)•e'° hik =_ 	x 01 .yh.k(t).e fulk'h:k 

Mh=1=l k=1 	 Mh=111 k=1  hik 

and 

(2.3) 

I LNN, 	 1 LNh NbI 
02 s 2 (p,t)=— 	X 	X1k 'hik(t) 	hik =- 	 .yhik(t).efihik 

Mh11=1 k=1 	 M h=1 i=1 k=1 

Here we deviate from the usual model conditions and introduce "ir-

weighted" j = 0, 1, 2 that are respectively, a scalar, an r-dimensional vector and an 
r x r dimensional matrix process defined by: 

1 L Nh Nh, 	1 X 	hik (1) efi 	k ir ( 	 , J = 0, 1, 2. 	 (2.4) Sfl,t)=— 	 hik 1  
k=1 i=lk=1 JThjk 

Also let 

e(fi 0 
- 5(1)(/3g) 	= S 2 (/3,t)S ° (fl,t) - 	 . (1) (fl,j) V(/3,t) 	 and 
- s(0)(p,) 	 (S°(fl,t))2 

(2.5) 

	

______ 	 ________ ________ 	 (s'(p,t))®2 S°(fl,t) Vif  (fi 
- s ( z) 

- S(fl, t)_s' 	
t) - s' (fi, _s' 

(fi,!) + 
- 

 

	

S (0 ) (AI) 	(S °) (p,i) 	(s (°) (p,i) 	 (s(°)(p,t) 	S ( 0) (911) 

Let 3 , be the sigma field defined by the failure and censoring indicators, that is, 

= a((u), r7hik(')'  k = l,...,Nha, i=l,...,N/? ,h =1,...,L, O:5u :50. 
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S 

Under 	the 	proportional 	hazards 	model 	(2.2), 	the 	process 

hik (t)  %lik (fib I) = hik (1) - I hk (u)  exp{/36X/lfk }. A (u)du is a martingale with 

respect to the filtration {, :1 ~ 0) and has absolutely continuous compensator 

Ahk = JYhik(u)efb hi  20 (u)du, k = l,...,Nhj, i = l,...,Nh, h = 

The continuity of the Ah,k  follows from the absolute continuity of the failure time 
distributions. Let (%4 ,7t'(2) denote the predictable co-variation of the martingales !M and 

Then (h1k(t),Ihfk(t)) = JYhk(u)exp{/3Xh1k }.20(u)du. The partial likelihood score 

(PLS) process can be expressed by 

U(fi,t)= 	{X 1  —e(fi,u)}dq,, (u)= 	{Xhk —e(fi,u)(hk  (fi0,u), 
hik 0 	 hik 0 

and it is also a martingale, since it is the sum of stochastic integrals of predictable processes 
with respect to a martingale. If the IMhk(fiO,t)are independent, the predictable co-variation 
process is given by: 

(U(fi,i),U(fi, t)) = 	f (X 	- e(fi, t))®2 hik  (u) exp{fiX hik 2 (u)du, 	 (2.6) 
hik o 

(see Theorem 2.4.3, p.40  and Theorem 2.5.2, statement I, p.75 in Fleming and Harrington, 
1991). 

An apparent limitation in the theory is the requirement that the data used must be restricted to 
an interval 0 !~ t :!:- r (see Fleming and Barrington, 1991, p.307). This is to ensure that for the 

development of the asymptotic properties we have both that the function st 0 (fi,i) is 
bounded away from zero and that the integral of the baseline hazard function has a finite value 
in such interval. Both requirements would hold if 1) the censoring variables C, are defined in 

0 < t < r and have densities of the form g,(l)I(t < r) +(l — P(C, <r I X1)ö(1)  mO !~ t <  oo 

where g, (t) are functions with finite integrals and (5. (t) is the delta measure with mass point 
at I = r; and 2) the baseline lifetime distribution F(t) = P(T :!~ t) has support in an interval 
larger than 0 ~ t :!~ r(i.e., if 0< F(r) <I ). In most studies with survey data, there is a pre-
fixed time CO when the study ends, and censoring variables with densities of the form outlined 
above have a positive probability of being realized at time I = Co . In this case, all observed 
failures would fall within the interval 0 :5 t 15 CO and all the data could be utilized to build the 
Sample Partial Likelihood Score function evaluated at r = Co . We could then say that 
U(fi) = U(J3,r) = U(/3,00). 

2.2 The design 

Consider a general stratified, without replacement, two-stage design on a finite population 
obtained from independent failure and censoring times and independent covariates. For an 
outcome (0 E 0 of the super-population, the finite population is represented by 

ök(w),Xk(ü)i 	k = l,...,N11 , i = l,...,Nh, h = l,...,L. Let 	hik  denote the 
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probability that the unit hik is selected in the sample. For simplicity we omit the superscript 
iV in the notation of the inclusion probabilities. The number of primary sampling units in the 

Lh 	 L 
sample is n and the number of ultimate sample units is in = 	hi with n = nh. The 

h=li=1 	 h=1 
sample selection indicators are defined by: 

'luk (s) = I if h ik e s, 'hik  (s) = 0 otherwise, k = 1,..., N hi' 

Nh, Ii = 1,..., L .(2.7) 

We denote by SN the collection of all possible samples under the sample scheme, by C(SN) 

the collection of subsets of SN,  and by pdN  a sampling probability distribution defined 

on C(S). Then the design space is given by the triple (SN. C(SN), PdN)•  In the following 

Ed •and Vddenote, respectively, the expectation and variance with respect to the sampling 
design. 

Remark 2.1 Traditional notation under the proportional hazards model use "5" for the 
random functions and their deterministic limits: Sf(/3,t,w)—>s 3 (8,1)j=0, 1, 2. For 

WE Q, the respective scalar, vector and matrix functions St' ) (S,t), j = 0, 1, 2, are finite 

population parameters. Their sample estimators depend on the selected sample s E 

() (fi,t,s,w) j=0, 1, 2 . The use of"s" to denote an outcome of the sample design is also 
a well known convention in survey theory, and we will do so here with the caveat that the 
sample s should not be confused with the deterministic limit ftinctionss(fJ,t)j = 0, 1, 2. 
Design-unbiased estimators of the S -functions (Särndal et al, 1992), p.1  67) are given by their 
Horvi tz-Thompson (HT) sample estimators: 

- 	1 L NhNhjjh.k(5)®/ 
X 	Yhk(i)e 	hik, j=0, 1, 2 	 (2.8) 

/i=1 i=lk=1 7thik 	
hik 

and 

S(/3,t) 	1 	NN1 	
(S) Xhik .Yhjk (t). c fl Xhik, j=0,l,2. 	 (2.9) 

M h=1 i=lk=I Ir hik 

Also let 

(fi, t) and let 	(fl, t) 
= 	2) (fi,i)S °  (fi, t) - 	(fl,t) . ( 1) 	, 1) 

(S ° (/1,t)) 2  
and 

(2.10) 
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(/3,1) 
- (2) 	

- 	 661 t) 	(/3,t) 	 (I)(fl )2 	0) 
is 	(/3,z)+ - 	0) (/1, t) 	 (o) (/3 )2 - ((o (/3 ,))2 
	 ((o) 66 t)) 	

0) (13, t) 

The lIT estimators of the S"(fl,t)and the --S,(/3,t), j = 0, 1, 2 functions are also 

design consistent under Conditions C1, C2 and C3  stated at the end of this section. Under the 

same conditions, it is easy to show that ê, V and -- V,r  are design-consistent estimators of 

e, V and -- V, respectively, as n —* oo. 

- 	In what follows the S () (fl,t) and --S/( fl,t),j=0, 1, 2 can be replaced by any design- 

consistent estimators of the corresponding finite population processes. The sample partial 
likelihood score vector is defined by the sum of stochastic integrals: 

L Nh Nh, 
with  

h=I :=1 k=I 

'hik (s) = 	(Xhjk —ê(/3,u)), k = l,...,NhI, i = l,...,Nh, h = 1,...,L. 	(2.12) 

For a fixed sample, the process U(fl,t) has also a martingale representation under the model 
given by (2.2): 

LNh NhI  
U(/3,t)= 	1?h1k(/3,u)d%1hk00,11), 	 (2.13) 

h=1 i=1 k=1 

which follows from subtracting from U(fl,t) the zero expression 
L NhlVh( 

J Whik (/1, u)Yhak  (u) . e''° 	A0 (u)du 
h=1i=Ik=IQ 

Throughout the paper we will assume subsets of the following regularity conditions on the 
sampling design. 

In the following 	denotes the 6-way sum of units selected to the sample and 
h'k#ejmes 

denotes the 6-way sum of units in the finite population, that is, 
hik # €jm E Pop 
k = 1,..., Nh1,  k = 1,..., N, i = I,..., Nh, j = 1,..., N, 

h,=l,..., L. 
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CO: f=1imn/N ~!O as n  —*cc. 

(N' max 1 = Oj — as n —* cc. 
hik 	hjk 	fl I 
M  ---.pasN--+co. 

i 	 fthikejm  — 2thik'tfjm 
= 

1N'1 
—) 

as n —* cc. 
Mhik # ejm€pop 	frhik/rPjm 	 fl 

Remark 2.2 If we impose f >0 in Condition Co we ensure that the relationship between the 
sample and population number of psus remains the same as we increase the number of psus 
in the population towards infinity. For the asymptotic properties shown in this paper we 
assume f ~ 0. Condition C1 means that as n -3 cc the selection probabilities are 
approximately of the same magnitude. If the first stage selection probabilities are proportional 
to the size of the psus in the stratum, and the second stage selection probabilities are 
SRSWOR, then C1  means that no psu is of disproportionate size. Condition C2 implies that 
the number of units in the psus in the finite population remain bounded as the number of 
clusters in the finite population increase (N -4 cc). Condition C1  holds for SRSWOR and for 

N 
a design with size measures Z 1  and probabilities ir nZ 1  />Z1  with Z = 	Zi IN -9 z as 

I 	j=1 
N -3 cc and C3 holds for SRSWOR. C 1  and C3  together are sufficient for obtaining design-
consistency of 1-IT sample estimators in general. 

3. COUNTING PROCESS THEORY IN THE PRODUCT SPACE 

In this section we show that the SPLS process is also a martingale with respect to a filtration 
where the sample 
varies at random as well. The product space determined by the proportional hazards model 

given in Section 2 and one stage sampling designs is given by (f x SN, Z x C(SN), d.m) 

with probability measure defined in the elementary rectangles by: 

Pd m (SXF) 	 SE C(SN), FE ZL 
F 

If the sampling design is two stage, and the model probability P is the conditional 
probability given the design prior information {Z(w) = z}, then the product space determined 

by the model and the two stage sampling design is (2xSN, 3xC(SAT), d,m) where 

probability measure is defined in the elementary rectangles by: 

Pd,m(sxF)pdN(S)PZ(F), SEC(SN), FE 23 . 

See Rubin-Bleuer and Schiopu-K.ratina (2005), Example 4.2 for a description of the product 
space where the model probability is conditional to the prior information. Next we define the 
tools of counting process theory in the product space. 

3.1 Filtrations 
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Martingale and counting process theory is developed on a stochastic basis, that is, a 
probability space with a filtration. A filtration is an increasing family of right continuous sub- 
a -algebras. With the new indexing, the filtration corresponding to the counting process 

(z) in the proportional hazards model is given by: 

r/k(u),l ~k~ Nhj, l ~i~N11 , lSh ~ L, O~u~ t). 

We define here a stochastic basis for the product space. The family of sub- a -algebras defined 

by {1m 
= C(SN) x Z,, I ~! 0) is a filtration; it is increasing and right continuous because 

{, t~!0} is so. 

• 	3.2 Sample Counting Processes and Martingales 
L NhNh I  

We define the sample counting process 1(t,s,o)= 	 7 isa 
h=li=Ik=1 

counting process in the product space with respect to the filtration 	: t ~ O , since each 

term is the product of a counting process with respect to the original filtration 	: t ~: o} in 
(, 3, P) 	and 	the 	factor 	'/ik 	which 	is 	C(SN ) -measurable. 	Let 

= ?vIh 1k(fi,t), k = l,...,NhI, i = l,...,Nh, h = l,...,L be the martingales associated 

with the 'ihik  in (0, 3s , P) with respect to :1 ~! 0). They are also product space 
niartingales with stochastic basis 

	

(d,m, C(S)x3 	
d,m 

	

, 	t 

Then the martingale sample process defined by: 

L NhNh 
Mh1k(fl , t , w)'Ih1k(s) 17rhk 	 (3.1) 

h=1 i=Jk=I 

is a martingale in the product space. We can easily verify the three necessary conditions (see 
Definition 1.2.8, Fleming and Harrington, 1991, p.  22) Each term of IM isa martingale since 
for all hik, k = 1,..., NhI,  i = 1,..., Nj, h = l,...,L, we have: 

is adapted to{i.m  :z ~! 0), 

Ed, m  (I Xhik (t, w) '1:1k  (s) t7rh1k I) < oo for all I <, and 

Ed,m(!7frIhik  (I + u) 'hik (s)/ ,rhlk Ii') = ('hik (s) I .lThjk )Ed,, ('1/ik (t + ii) c 1  ) 
= (I/uk (s) / 2Thik )'1h1k (t) 	for 	all 

t~!0, u~!0. 

Thus i4f(t), the product-space martingale 7I'fhik  (t ,o)Ihk (s)/.7rhk and the model 

martingales 7iIhjk (i) are martingales with respect to the filtration {1.m  :1 ~ 0 in the product 
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space. Now, if each martingale 1v(hfk (t) k = l,...,Nh,, j = 1,..., Nh,  h = 1,..., L has absolute 

continuous compensator 

JO Yhk(u)exp{/3OXh,k }A0(u)du, then the sample process I7v[(t) = - A(t) is a 
martingale with 

A(/3,1,s,w) =M .J S°(/3,u)Ao(u)du. 	 (3.2) 

Since Edm  (A(t)) < co, A(0) =0, then by the uniqueness portion of the Doob-Meyer 

Decomposition Theorem (see Fleming and Harnngton, 1991, p.37), A(t) is the absolutely 

continuous compensator of the product space martingale 1M('t). 

3.3 Predictable co-variation processes 

In order to complete the tool bag for counting process in the product space, we need to ensure 
that the counting processes yield martingales such that for any two of them their predictable 
co-variation processes are zero. This property is crucial for calculating co-variances of the 
stochastic integrals under consideration, and for applying the Central Limit Theorem for 
Martingales. 
We say that {q,(t), k = l,...,Nhj, i = I,...,Nh, h = l,...,L} are 

processes, if not two of them jump at the same time. If the sequenc 
multivanate 	counting 	processes, 	or 	if 

{177hik(t), k = l,...,NhI, i  =l,...,Nh,  h = l,...,L} are independent 

have that the following predictable co-variation processes are zero: 
('4ik ,Mijm)(t) = 0, 

multivariate counting 

of processes above are 
the 	processes 

random variables, we 

(3.3) 

h #1 or i # j, or k # m, k,m =l,...,Nhj,  i,j =l,...,N1 , h,l = l,...,L, t ~! 0 (see Fleming 

and Harrington (1992) Lemma 2.6.1 P. 81). If the 

{;ik(), k l,...,Nh,,  i = l,...,Nh, h = 1,...,L} are multivanate counting processes in the 

super-population, then the sampling processes 
{hik(t)Ihak(s)/7r/1 k, k = 1,...,NhI, i = l,...,Nh, h = l,...,L)are also multivariate counting 

processes in the product space. Independent failure times in the super-population, with 
continuous distribution functions yield multivariate counting processes. However, if failure 
times are not continuous, and the {llhjk(t)}  are not multivariate counting processes, 
independent differences 

(/ 11hik(t) ,  k=l,...,Nh1 , i=l,...,Nh, h=l.....L) 

do not yield independent differences in the product space of the form 
k = l,...,Nh 1 , i 	l,...,Nh,  h = l,...,L) 

Instead we have: 

Lemma 3.1 If the counting processes {ihjk(t),  k = l,...,Nh,, i = l,...,Nh, h = 1..... L} are 

stochastically independent in the super-population (model) space, and the corresponding 
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sample martingales are{7vI/1 k(t)Ih 1k(s)I7rhk, k = l,...,N11 , I = l,...,Nh, h = l,...,L) 

then the predictable co-variation sample-processes satisfy (3.3). 

Proof: We follow the argument of Lemma 2.6.1 in Fleming and Hamngton (1991), taking 
into consideration that calculations are with respect to the product space filtration 
{ d.m =C(SN )x3 	t~!O}. 

4. A REPRESENTATION OF THE SPLS 

The sup-norm convergence in probability of a sequence of bounded monotonic random 
functions has been previously used by many authors and we state it below in Lemma 4.1, for a 
sequence of probability spaces so we can use it for problems posed in the joint design-model 
space. One consequence to Lemma 4.1 for example, is the sup-norm convergence of the 
sample empirical distribution functions, (Rubin Blcuer, 2003), which in turn yields tightness 
of the sample weighted log-rank statistics (Rubin Bicuer, 2001). Of interest to this article is 
another consequence of the lemma, Theorem 4.1, the sup-norm convergence of the risk 
functions involved in the sample partial likelihood score under the proportional hazards 
model. 

Lemma 4.1 Let {GN (1) : -co  < t <cx} be a sequence of random functions defined on 
probability spaces (N,'3N,N)  with sample paths that are monotonic bounded functions. 
In addition, they are rigiit-continuous if non-decreasing, and left-continuous if non-increasing. 
Let {g(t) : - < I <co) be the non-stochastic bounded monotonic limit in probability 

of{G N  (z) : - <.1 <cx)), such that GN (t) - g(t) —+ 0 in PN for all t and either 

G(I—)—g(t—)—O in PN for all I if non-decreasing, or G(I+) — g(t+)--0 in PN for 

all t if non-increasing. Then sup I GN (1) - g(I) — 0 in 

Proof: 
We use the same argument in the proof of the Glivenko-Cantelli theorem for the census case 
but applied to convergence in the product space (see the uniform convergence of the sample 
empirical distribution function in Rubin-Blcuer (2003 a), also the argument used for the 
S functions in Fleming and Harrington, 1991, p.305). 

- 	 Theorem 4.1 We assume the proportional hazards model given in (2.1) a), b) and c) and (2.2), 
the design conditions CO3  C 1 , C2 , C3 and the following model conditions: 

The 	covariate 	vectors Xh1k  are 	constant 	(in 	time) 	and 	bounded: 

sup I X hik 	B a.s. as N—.cx). 
/z,i, k 

There exists a neighborhood. Aoffl 0 and, respectively, scalar, vector and matrix 

functions s, sWand  s (2)  defined on Ax [O,r] such that for j = 0,1,2, 	and for 

0:5~ i:!:-r, flEA wehave: 
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I L NhNhI 
i) s(fl,t) = urn 	 Em{Xd 	 hik  

N—*co M h=1 1=1 k=1 

1 LNiNh 
,fl 

1 	I®. 

	

sc: 1 )(fl,t+) = lirn 	 EX,A? •YhIk(t+).e 	hik 
N-3c/Mh=1j=1k=1 

M 3 : There exists a neighborhoodAof/J 0 and, respectively, scalar, vector and matrix 

functions s,and defined on Ax [O,r] such that for 1=0,1,2, and for 

0:~ t:!~ r, flEA wehave: 

s,1 (/3,t) = urn - 
I L NhNhjfl 	

1X®j 
N—coMh 11=Ik=1N ml hik 

1 L NhNh 
s(fi,t+) = urn 	 _Em {X' .yh.k(1+).e 	hik I I ;rhik. 

N-+oo M h=1 1=1 k=1 N 

M4: The time r is such that f20(t)dt <cx. 

M 5 : liminf1 	P(Ch Ik ~!) ) 
0. 

N—riN/,jk 

We also define the matrix functions v and V,.t  on A x [o, r] by 

- 	 t) 
- 

	

v(fl,t) 	 and 
(0,  (flu))2 

(4.l) 

- 

v (/3, t) 
- $) 	 (/3,1) 	(/3,1) 	 (so) (fl')? s 	(/3,1) 
 (0)

—s(fl,1) (0) 
S 	(fi,t) 	(s (°) (pt 	- (s(°)(fl,z) 	+ (s 0) ,t 	S 	(fi,t) 

Then we have: 

P 	

N 

P 	 P 
, 	 --S(fl.t) -4 sS/(/3,1 ) '  

t' 
P 

-- s
't 

 (/3,1+) —* 4j)  
N 

(4.2) 

as N —* oo , / = 0, 1, 2, for each t ~! 0. 
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P 
supi 	S'(/J,t)-s 3 (/?,t)I--*O j=0, 1, 2 asN  -+co, 	 (4.3) 

0!~15r, fl€A 

-. 

sup 	s (fi, t) - s i (fi, t) I -* 0 j = 0, 1, 2 as n -* oo, 	 (4.4) 
0:Q!5r, fleA 

P 
sup 	 -p0, j = 0, 1, 2 as N -* oo, 	 (4.5) 

0!~ t!5r,fleA N 

In 
sup 	l-S/(fl,t) - s/(/3,t) -> 0, j = 0, 1, 2, as n -+ oo

, 	 (4.6) 
0~t~ r ,/3 E AIN 

- 	 s(0)(fl,t) = s 1 (,t) and 	s ° (fl,i) = s 2 (fl,t) for 0 t r, fi € A, 	(4.7) a,u 	 lop 

s ° (p,t) ~:a(r) ) 0 forall 0:51 :5r, 8cAandthefamiliesoffunctions s(•,i)and 

T() 0 :5 t :5 r, j = 0,1,2, are equicontinuous at fl0. 	 (4.8) 

0, as n 	 (4.9) 
Otr,J3eA 

sup 1) - v (fi, t) - 0, as n - 	 (4.10) 
05t:!~ v,fleA N 

Remark 4.1. Under SRSWOR, s'(fl,t) = s(8,t), j = 0, 1, 2. Condition M1 

implies that E, 1 	 (t) . e* ft :!~ B1 < oo for all Ii, 1, k, N. This enable us to hik 

establish equations (4.3), (4.5) and (4.6) and the equicontinuity of the s-'(/3,t) and 

s.1(,B,t), j = 0, 1, 2 functions. We note also that Condition M4 follows if 

0 < P(T :5 r I X = 0) <1). Condition M5 is necessary to ensure that the s ° (/3,t) function is 
bounded away from zero and it would follow, for example, from a study of fixed length of 
timer, where the censoring variables are continuous until time I = r and have densities of the 
form outlined in Section 2.1. The proof of Theorem 4.1 is in the Appendix. 

Next we state below Lenglart's inequality, first proved by Andersen and Gill (1982), and 
shown in Lemma 8.2.1 of Fleming and Harrington (1991), since it is an essential part of the 
proof of Corollary 4.1, Theorem 5.1 and lemma 6.1 below. The proof can be found in Fleming 
and Harnngton (1991). 
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Lenglart's inequality. Let i be a univariate counting process with continuous compensator 

A. Let M = - A and let H be a locally bounded predictable process. Then for all 8, p 

positive and any t ~! 0, 

°d,m( SUP JHd1 ~ p) ~ 4 + i,rn(JH2dA) -2! 8). 
0!~ u:510 	 P 	0 

Corollary 4.1 Approximation for the normalized sample partial likelihood score process 
under the proportional hazards model. We consider the SPLS as a process in the product 
space, where both the sample s and the outcome ü. ec of the model variables are random. 
We assume the proportional hazards model given in (2.1) a), b) and c) (we do not assume d), 
i.e., the stochastic independence of the censored lifetimes) and (2.2), as well as model 
conditionsM1,M2, M4 and M5. We assume the design described in section 2 along with 
design conditions CO, C1 , C2  and C3 . We also assume that r is the upper bound of the 

censoring variables, so U(fl,c) =U(fi,r). We express the SPLS function as in equation 
(2.13), that is, as a sum of terms which are martingales under the model given in (2.2): 

L NhNhe 
U(/J,r) = 	ifhIk(fl,u)dIM•hik(H) 

h=li=lk=l 

where for brevity, 9v(hak  (u) = ?vIhjk (/o , u) and i(fl, u) is as in (2.12). Now let the process 

U(/3, r) be defined by 
L NhN,11  

Wh,k (fi' u)d!7v(,7 k (u)  
h=li=lk=l 

where 
hik(s) 

c1 fh k(/Lu) = 
A' 	(Xh jk —e(fi,u)), k = l,...,NhI, i = l,...,Nh, h = 1,...,L. 	(4.12) 

hik 

Then we have: 

n 	 (4.13) 

The proof of Corollary 4.1 is in the Appendix. 

Remark 4.2. The approximation (4.13) holds for every 0 :! ~ I !~ r, and this means equivalence 
of the finite dimensional distributions. Here we have not proven tightness of the process in 
0 :!~- i :!~ r, and thus we cannot conclude from Corollary 4.1 that the processes 

{ O(fl,t), 0 :!~ I !~ and I U(fl,t), 0 t !~ r} are equivalent in distribution. However, 
under the correct assumption of a correlation structure in the model, tightness would follow 
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from the same arguments we use in Section 5 to show tightness of the process 

j 0(/3,t), 0 :5 t :~, directly. Also we remark that this is a different proof of that in Rubin-
Bleuer (2003) done anew with the aim to obtain the approximation without assuming a 
correlation structure in the super-population. 
5. WEAK CONVERGENCE OF THE SPLS 

For each t, 0 !~ t 15 oo , we denote by /3N (t) the solution of the estimating equation derived 

from the SPLS process U(/J, t) = 0. If t =oo , we write IN = fiN (ce) as established in the 

introduction. In the developments below, for simplicity of notation we write/i = IJN (t). Let 

tndrj(u) 
= J—V,.(/3,u) 	,and let 

0 N 	M 

- 	

I(fi;t) = m (fi,t) 	2(/J,u) di(u) 

Theorem 5.1. Assume the PHM given in (2.1) a), b), c) and d) and (2.2) and the design stated 
in Section 2. Assume the conditions of Theorem 4.1 and assume that the matrices 

(fi,t) = Jv, (fi,u)s ° (fi,u)2ij(u)du and Z ,, (/3,t) = Jv(fi,u)s °)  (/3,u)20 (u)du (5.1) 

are positive definite, for 0 :~- S 15 r. Then the normalized vector sample partial likelihood 

score process (SPLS) 0 ('80 1): o <: whose value at time t is 

0°"  = 	 (flo,u)}dq (u), 
M 	h=l i=lk=1 0 

converges weakly in D[0,r]T  to mean zero r-dimensional Gaussian process such that each 
component process has independent increments and the covariance function at i for 

components Land C is!(fio ,t) e  p with 
t1 

• I 	(/Ij, t)' = Jv. (fib, u)ee' 	(/3o ,u)Ao (u)du, 	 (5.2) 

j 8 = 6(t), the solution of the estimating equation given by the SPLS function Fn  U(t0') 
, is a 

consistent estimator of 8, for 0 :5 t :5 r, 
(5.3) 

• E ff (,B,t) is the asymptotic variance of the SPLS and 
d,m 

sup 	/I,!)g(/3,t) - 0 as n —*cs, 	 (5.4) 
0!5t<r 

• m (/3, t) is the asymptotic variance of the Partial Likelihood Score process in the census case 
and 

SUp I t) - 0 as n —).. 	 (5.5) 
O!~ t45r 
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Statement (5.5) means that the information matrix converges to the same limit as that of the 
census case, but it does not coincide with the variance of the SPLS. The proof of Theorem 5.1 
is in the Appendix. 

Remark 5.1 Note that the model conditions imposed by Theorem 4.1 and Theorem 5.1 are not 
too different from the conditions imposed on the model by Fleming and Harrington, 1991, 
Theorem 8.4.1, for the partial likelihood score function to converge. The extra model 
conditions M 2  and M 3  stem from the generalization of that theorem to the case of non- 
identically distributed failure times and to the joint design-model product space. 

Remark 5.2 We have two comments about the proof. First, we do not use the approximation 
to the SPLS of Corollary 4.1 to show weak convergence of the SPLS process, as Lin (2000) 
does. Second, in the course of the proof, depending on what is most convenient, we will use 
either that the model martingales Y41k  associated with the counting processes 1lhjk  are also 

martingales in the product space with respect to the filtration 	: t ~ 0} or that both 

product space processes i and 9 f are respectively a counting process and its associated 

martingale with respect to the filtration 	d ,m :1 ~: o}. 

Corollary 5.1 
The solution fi = /3 v (1) be the solution of the SPLS estimating equation evaluated at t, 

which we call maximum sample partial likelihood estimator, is asymptotically normal and 

:=> N:(0, -- :;;' (/3,t)>: g  (fi0 ,t)E' (fi0 ,t)) 	 (5.6) 
/1 

where E M  and E
. 

are defined in (5.1). The proof is standard and given in the appendix. 

6. A ROBUST VARIANCE ESTIMATOR 

When working within the design-model space, we can define at least two different variance 
estimators, , denoted here by Veff  (defined in (A.6. 13)) and Vrobt (defined in (A.6. 12)), for 
sample estimating equations when the terms have zero model expectation and are 
stochastically independent in the model space. Both variance estimators are consistent if the 
correlation structure is correct. As their names indicate, Veg  has the smaller variance while 

'robusi is robust against mi sspeci fi cation of the correlation structure of the model space. The 
corresponding definitions and a detailed illustration are given in the Appendix (see "Robust 
versus efficient variance estimators"). 

Lin (2000) considered the SPLS function 0(/30) = 0(/30 , r) normalized by the constant 

where Al is the number of units in the finite population. He sets 

-7C8o) = 0(fl0 ) —U(/30) +  U(/30) 
fi 

(6.1) 
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and uses the approximation 

	

U(/3 )-U(/3 ) 	M I(s) 0 	0 	 -l)U1 (C0 ), 	 (6.2) 

where 
sO)(R ) 

U(/30)=J (X 1 (w)- 	){dq1  -Yj (t)exp(flX)A0(t)di}. 	(6.3) 

	

s 	(fi0 ,r) 
In the following, we use Lin's (2000) notation I = 1,2,...,M, for the unit labels, without the 
design classification into stratum, psu, and secondary sampling unit identification. Equation 
(2.13) and Corollary 4.1 shows that the approximation (6.2) is valid if the semi-parametric 
model for the hazard function is correct, and it does not require specification of the correlation 
structure of the model. Lin (2000) proposed as variance estimator of(6.2) the statistic 

VLIn  =- 	-1-U(/3)U,(8b, 	 (6.4) 
M IESjES 

where 

gx —e(fl,1)fcli7i  - Y1 (t)exp(V 1 ) 	 . 	 (6.5) 
MS°(fi,t) )  

In Lemma 6.1, we show that VLjn  is asymptotically unbiased. 

Lemma 6.1. We assume the conditions of Corollary 4.1, as well lim-->0 	(f>0 in 

Condition Co ) and fi — 	= ° i.m () as M — 	, then VLin  is asymptotically unbiased. 

The proof of Lemma 6.1, which uses Lenglart's inequality, can be found in the Appendix. 

Remark 6.1. Note that with 
—i--  as the normalizing constant, the result is invalid if the first 

stage sampling rate is negligible (i.e., if lim-- = 0). 

On the other hand, Theorem 5.1 shows that if in addition, the censored lifetimes and 
covariates are stochastically independent, the limiting variance of each of the terms in (6. 1) is 

I g  , I 	
N- 	N- 	- m 

	
- 

— E — E,, - Z. and Em  respectively. Moreover, — E,., — E , — E and  Em,  as defined 
f 	f 	 n 	n 
in (5.4) and (5.5) are the respective design-model consistent estimators. Two questions arise: 

I )how does VLIn  compares with - 	- 	when the correlation structure of the model is 

correct, and 
2) is VLjn robust as a variance estimator of the normalized SPLS function? 

Lemma 6.2 below answers the first question and we can make the robustness argument if we 

work with the normalizing constant -f- (instead of 	and assume km -f-- =0 as n —* oo. 

	

M 	 Al 
Indeed, let us express the normalized SPLS function as the sum of two terms: 
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(6.6) C/(,80)]  = ",~[Cl(,80 )  –  U(,90 )]  + 

The limiting variance of the normalized SPLS in (6.6) is now 1,r(flo,1)whereas  the 
/4 

limiting variance of the first term in (6.6) is 	r (/3ø,t)f• m (/3ø,t)}. Now we write 
p 

Lin's (2000) variance estimator as 
VLIn = V/J + Vresid 	 (6.7) 

where 

n  
Veff >(_"l) 	, 	 (6.8) 

ML 	Yr 

and 
A 

Vresid 	 —í–U 1 (/3)U1 (fl). 	 (6.9) 
M i*jES f 

Lemma 6.2. We assume the conditions of Theorem 5.1. Then we have: 

'cff r(/3O,t)_m(fiO,o)+Opdm(*)as n —. 	 (6.10) 

If we also assume 

C4 : 	max 	 N= O(_) 2  as n - , 
IEPOP,jePOp 2tj 	fl 

then 

'resid = °'d.m (j=) as n 	 (6.11) 
Fn 

Note that with the new normalizing constant we have, by Corollary 5.1, 

fi 

 

—flo = °"d,m (=). The proof of Lemma 6.2 is in the Appendix. 

Lin's (2000) variance estimator is of the type Vrobust  whereas the variance estimator proposed 
here is of the type Veg.  Lemma 6.2 implies that the variance of the first term in (6.6) 
proposed by Lin (2000) is consistent: 

VLin * 	if (60,
-- ,( )60,t as n - ao. 

/1 	 /1 

From the discussion of robust versus efficient estimators given in the Appendix, the variance 
- of VLin  is always larger than the variance of N 	

(J0 , t) - - m (/3 , t), under the correct 

model for the correlations of the units in the super-population, and hence VLjfl is less efficient. 
On the other hand, if the second term in (6.6) is negligible we could say that VLin  is "robust" 
in the sense that it is an asymptotically unbiased estimator of the variance of the normalized 
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SPLS function even if the correlation structure of the super-population model is not correctly 
specified. 

7. CONCLUSIONS 

Data from most complex surveys are subject to selection bias and clustering due to the 
sampling design. Hence, results developed for a random sample from a super-population 
model do not apply. Ignoring the survey sampling weights may cause the divergence of the 
involved processes. The data is subject to a two phase randomization and accounting for this 
means working in a "product space" that includes the model and the design. 

The design conditions we assume refer to the order of magnitude of the sequence of selection 

probabilities { rNZk } and of the joint selection probabilities {YrZkefm } as n —* oo (see conditions 

CO to C3  in Section 2.2 and C4  in Lemma 6.2). They are mild conditions in the sense that are 
verified by a SRSWOR design and that are minimum sufficient conditions for the Horvitz-
Thompson estimators to be design-consistent. We distinguish between three sets of model 
conditions: 

General regularity conditions: A series of baseline model conditions, e.g., (2.1) conditions a), 
b)andc),and M 1 , M,, M 3 , M 4  and M 5 . 
Proportional hazards model: The model specification for the hazard function: 

2hik (1 I Xh.k) = ,( t). exp(fl0  

k = 1,..., NhI,  i = 1,..., Nh,  h = I,..., L (given in equation (2.2)). 

Correlation model: The model specification for the correlation structure, that is, the censored 
lifetimes and covariates are stochastically independent (given in equation (2.1) d)). 

Given the censored lifetimes Thk with corresponding eovariatesX h1k,recall that the S (i )  and 

the r -weighted s/ are processes which are functions of the units at risk at time I , and that 

ti7 is the sample counting process associated with the proportional hazards model and the 
design. 

Under design conditions Co  to C3 , and general regularity conditions we obtained the 
following: 

Result 1. Assuming in addition the proportional hazards model, counting processes tools 
were developed in the joint design-model "product space". 

Result 2. Assuming in addition the proportional hazardc model, the normalized "survey 
sample" partial likelihood score process (SPLS) function 

I 
U" 

yfl - 	 ti-" hkpo  
P) 	L "hikV'hik - 	- 	'Irh1k 

M 	Al hkEs 	 S (/,Th1k) 

is approximated by the Horvitz-Thompson sample estimator of a total: 

27 



shzk{Xhzk - S'(fl,Thk)l 
M 	MhikEs 	

?'hik +°Pd,m' 
S ° (/3,Thk )J 

Result 3. Assuming in addition the proportional hazards model and the correlation model, the 
normalized SPLS process converges weakly to a Gaussian process in converges weakly in 
D[O, 1]r  to mean zero r-dimensional Gaussian process with covariance function at t given by: 

i(fl01 1)=!1 v (fl0 ,u)s (0)(fl0 ,u)A0 (u)du, 
/2 

where the Vif  function is the point-wise limit of a combination of 	and r -weighted 

SP 	 M functions and ,i = tim - as n -9 . 
N 

Result 4. Assuming in addition the proportional hazards model and the correlation model, 
the matrix 

r()6,') 	JV,.(fio,u)di(u)/M 

is a design-model consistent estimator of the variance of the normalized SPLS process. 

Result 5. Assuming in addition the proportional hazards model and the correlation model, 
and denoting by fi, the maximum sample partial likelihood estimator of /30, then 

- /?çj) is 	asymptotically 	normal 	with 	mean 	zero 	and 	variance 

()6b ) 	( fin ) 	(fin), where 
/2 

pn(fi) = Jv(fi0 ,u)s ° (fi0 ,u)20 (u)du. 

Result 6. Assuming in addition the proportional hazards model and 

J(fi_fio)=OPd,m ( 1 )then VLIn , the variance estimator proposed by Lin (2000) is 

asymptotically unbiased. The variance estimator 11Lin'  when the SPLS function is normalized 

by —p-, is robust against misspecification of the correlation structure when the first stage 

sampling rate is negligible - 0) and the PLS is bounded in probability. 

Result 7. Assuming in addition the proportional hazards model, the correlation model, and 
design condition C4  then the variance estimator of the SPLS proposed by Lin (2000), when 

normalized by 	attain the approximation 
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N 
	(vn

VLin = 	fr(fiOt)4OPdm) as 

Result 8. Assuming in addition the proportional hazards model and the correlation model, 

then 
N
- 	(fl0, t) is more efficient than VLin . 

Result 9. All of the above results are shown for a particular estimator of PLS, an 
"approximate" HT estimator of the PLS process (with HT estimators S of the S processes), 
which is design consistent under design conditions C 1  to C3 . But the proofs hold for any 
design-consistent estimators of both, the S and the PLS processes, under a "without 
replacement" design. 

Result 10. All of the above results are valid for both the unconditional and the conditional 
(given the covariates) proportional hazards model, since we assume that the covariates are 

- 	uniformly bounded. 
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APPENDIX 

Proof of Theorem 4.1: 
The point-wise convergence of the S processes (Statement (4.2) of the theorem) follows from 
assumptions M 2  and M 3 , the independence of the units of the super- popu lati on, the 

WLLN's (see Chung, 1974, Theorem 5.1.1) and the fact that the terms in the S(/3,t), in the 

- weighted S'(fl, t) and respective evaluations at t + 	are uniformly bounded 
IT 

in 0 :!~ t <cc and a compact neighborhood of flo• Under design conditions C1 , C2 and C3 , 

the HI sample estimators S -'( 8,t), 	 --S(fl,t+) are design 

consistent. Indeed, for ease of notation, set 2 hik = XhYhjk (t)exp{fl'XhIk } 
and 	to 

hikAejm 

denote the 6-way sum over the indices. Then Ed -- .I) (/1, t) - -- s/ (/?, t)) = 0 and itsIr 

design variance is equal to 

1 L NhNhI 	I I n \2 2 
	_-__ 	hikjm 	hiktjm 	I 	fl ) 

2 

2  h=1 i=lk=1 [hik 
ZhIk 

M 2  hik~ fjm 	hikP/m 	hikejm 	
zhikzej 

M 	
m 

= 
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as n - c, bounded this way by the design conditions given above and by the fact that the 
zhik are uniformly bounded. The design consistency of the other HT sample estimators follow 
from the same considerations. The design consistency and (4.2) imply the point-wise 
convergence of the HT estimators to the non-stochastic s functions in the probability of the 
product space (Pd m ): convergence in design probability implies convergence in the 
probability of the product space (Rubin-Bleuer and Schiopu-Kratina, 2005, Theorem 5.1). 

The uniform convergence in probability of the S - processes and their sample estimators, 
j = 0, 1, 2, is established along the same lines. 	We first note that as functions of 

t, 0 < i <, all of these functions are left-continuous and non-increasing, hence Lemma 4.1 

and the point-wise convergence in probability P for the S processes and in probability dm 
for the S processes, implies uniform convergence in 0 I r in their respective probability. 
The uniform convergence in a compact neighborhood of fib for (4.5) follows because the 
functions 

' (i) sup I— S 	-s it  (fi,t), j=0, 1, 2 
N 

converge to zero as N —> oo , and are continuously differentiable with respect to ,8 with 
unifbrmly bounded derivates (if both fi and the covariates Xhjk  are uniformly bounded). The 
same argument holds to obtain the uniform convergence in a compact neighborhood of fib  in 
(4.3) to (4.6). 

Statement (4.7) follows from the Dominated Convergence Theorem and the uniform bounded 
character of the covariates Xhfk  which are sufficient to justify the interchange of 
differentiation and expectation. 
That the function s(0)(fi,t)  is uniformly bounded away from zero (statement (4.8)) follows 
from adapting the argument in Fleming and Harrington (1991), Theorem 8.4.1, p.306, to the 
case of non-identically distributed model variables. The equicontinuity of the functions at 
/1 = fi0  follow, also using similar arguments to those in Fleming and Harrington (1991), 
Theorem 8.4.1, p.306: 

- 	SU 	(/m ,t) — (J) 
(fib ,t) 	urn I 

	Nh NhI 	
{x 	(e 	—fbi 	

- l)} 
0~ :r 	 i=lk=1 NMh=I 	

Em 

:5 0(1)(e" - /ot IBI - 1) - 0 as fm fi0 - 0, 

since the covariates are uniformly bounded. The same arguments hold for the 

functions 	 j = 0,1,2, under design condition C 1 . 

Statements (4.9) and (4.10) follow from the uniform convergence of the S -processes and 

from the fact that s ° (fi,t)is uniformly bounded away from zero. 

Proof of Corollary 4.1: 
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The functions defined in (4.11) are locally bounded 3
, 

,m  -predictable processes (note that in 
the model space, the (Xh jk -e(/3,u)), k =1,...,Nh, i 	h =1,...,L, are locally 

bounded 3 ,  -predictable processes). 

,jU(,8,r)—U(fl,r) 	L NhNhI IhIk(s) 	S(/3,u) 	1 (fl,u) 
M 	= Mh=1 i=lk=1 	hik o S° (fl,u)  

.Jr S'(/3,u) —_____ 

= MS(fi,u) 	(/J,u) 
(A.4. 1) 

The process f(u) in (A.4.1) is the martingale defined in (3.1) with compensator A(u) as in 
(3.2). 
Design conditions C1 , C2  and C3  imply that point-wise 	 — 0 and 

— 	(,C, 1+) -+0 in 1d,m  Lemma 4.1 imply that this convergence is uniform in 

0 :~ t :5 T in d,m' If s 0 (p,t) is bounded away from zero uniformly, then S ° (/3,t) and 

S ° (/J,t) are bounded away from zero uniformly on 0 !~ £ :5 r. Hence 

sup 
{ 	,U)S1CLU)1"0 as n -*. 	 (A.4.2) 

O5u ~ r S 0 (/3,u) S 0 (/3,u) 

Now we can show that the martingale in (A.4. I) converges to zero in the probability of the 
product space. Using Lenglart's inequality, and since I(u) is a martingale and the integrand is 
a bounded predictable process, we have: 

(I.,Jt 1 s I (fl,U) S 1 (f3u) 	 _ 	_______ 

M S° (fl,u) —_____ 	~ P1 	d,m1J{ 	
- '(fiu)}2(u) ~ 8] 

1'd,mJ  ) p 	 0 S 0 (/3,u) 9 0 (fi,u) 
(A.4.3) 

By design condition C2  we have 

---dA(t) —f— . S0(/30,t)2(t)dt = Op (-f-) as n —+ . 	 (A.4.4) 
Np 	d.mN 

Equations (A.4.2), (A.4.3), (A.4.4) and condition M4  imply that the second term of the right 
hand side of (A.4.3) converges to zero as n —+ x. Hence the first side of (A.4.3) also 
converges to zero and the corollary is proven. 

Proof of Theorem 5.1: we follow arguments similar, but not identical, to those used in the 
version of the census case theorem shown in Fleming and Harnngton (Theorems 8.2.1 in 
p.290, 8.3.1, p.  297 and 8.4.1, p.  305) for the weak convergence of the partial likelihood score 
process and the consistency of the maximum partial likelihood estimator. 

Proof of (5.2): Weak convergence of the SPLS process. 
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In the same manner of Theorem 8.2.1 mentioned above, we must show that the process 
0(/30,t) 0

~I~T verifies the conditions of the Central Limit Theorem for Martingales 

given in Theorem 5.3.5, Fleming and Harrington (1991). Consider again the martingale 
representation: 

	

–U(fl0,t) 	i 

M 	
? 	

1
1" hik (u)dMhlk (u), 

with the functions Whik(u), k –1,...,Nh, i = l,...,Nj,, h = l,...,L defined in (2.12) with 

fi = fib and %1hik (u) = MhIk (fib u). Let c?hjke  the € -the element of the vector of r 
components c1hjk  (the number of components of l,?h ik is the number of components of the 
vector ofcovariatesX h1k). 

The e -the element of the SPLS vector process is given by 

L h 

	

U(fl0 ,t) = 	N iV, x 
-rn JWhIk,('h1k( M 	M h=Ii=I /c=10 

For 	 positive 	 we 	 define 

	

JU, E (/Jo ,t) L Nh Nh1! i; 	',ke(U) e}d6ik(u). = 	 J — cvhike(u) 
M 	h1 kI M 	 M 

To prove the statements in (5.2) we use the Central Limit Theorem for Martingales and we 
show the following statements: 

— -(U 6 (fl0 ,.),U(fl0 ,.))(t) —* 0 in Pd,m  n —> oo, £,' = 1,...,r, e)0, 0 !~ t !~ r, 
M 

(Ue(fio , ) , Ue'(fio , ))(t) 	1(fl,t)e,e' as n 	, £,' = l, ... ,r, 0 :5 t !~ 
M 	 I' 

To show a), consider a positive numbere and £ = l,...,r,we follow the argument of Theorem 
8.2.1, part 1, though the bounded covariates make some steps trivial. Using the inequality 

Ia — b12 Ia – bf)e} !~, 4IaI 21 aI)e/ 2 }+ 41b1 2  IbI)e 12 } ,  
valid for any real numbers a,b, we have 

, 	L Nh Nh1! 
j 	2  (u)f( 	wh,ke(u) 

~ E)Y/ (u)e 0 ''Ao(u)c/u 
M 2 	 M 2  h=Ii=I k=IØ hik! 	M 

	

4n L N* Nh( 1 1hik (s) 	2 	A' hik('hik  (s) e 
/ 2)hek (u)efl0'ik1  o (u)thi 

	

M 	hik M 2  /v=Ii=Ik=I 0 ;t 	
hik! 

hk 

4n L NhNhl 	
'hik (s) 2 	LJ êe(u)Ihjk (s)I 

+ - 	 2 	e 	 e / 2)hIk (u)efl0A't ,% (u)du (A.5. I) 
M 2 h=I i=lk=1 0 
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Since Xhjke  is uniformly bounded and design condition C2 implies that 	< 
M N 	( -,['N—  ) 

as n 	, we have Ed 
	o unifoniily in Izik as n 	. A similar 

hik J 

argument used to obtain (A.4.2) yieldsê = -%- - --- uniformly in t, 0 :!~ t :~ r in the 

probability of the product space. Thus we have Ed mJêe(u) jhjk( 
	0 uniformly in 

hik J 
hik as n —p oo . 

Hence both 

I{xhik1 thik(s)I 
~ eul op (I) and 	 ,u) 'hik(S)I ~ ei} = op d ,m (1) as 

Thik I 	J 	d,m 	M 	 2Thjk 

fl —* co, 

uniformly for all hik? and t, 0 :5 t :5 r. Hence the two terms in (A.5.1) are bounded by 

2(u)20(u)du + 0 	(1) 	
(u) 2) (u)(u)du = 	(1) as n Op(l) 	j 

, 	 d,m 	Mo(°)() 

n since —(t) = °d (I) 	
S(t) 0)() Op (1) uniform ly in t, 0 ~ I ~ rand the 

M 	M 	d,m 

baseline function is integrable in 0 :~ t :5 r. Thus we obtained a). 

To show b), let P,' = l .... ,r, 0 !~ t <co, then the predictable co-variation in the product space 
yields: 

--- (U (fib ,)' U (fi,))(t) = 
n 

 - 	 j Jie (u). 1hike'  (u) hik  (u) . 	2 (u)du 
M 	M ,  

(Xhjke ee (/o , u)) . (Xhjke' - ' (fib, u)) hik (u) 	2 (u)du 
- 	

'hik (s) 

- 

N'n - 

= —J— V,.  (fio,u)ep'  °(fi0,u)A0(u)du. M O N 
(A.5.2) 
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Statement b) above follows from the uniform convergence of the -f-- V (fl0,u) matrix in the 

product space probability (statement (4.10) of Theorem 4.1) the bounded character of the 
function v1r (80,)ee's 0 (fl0 ,.)and Condition M4 of Theorem 4.1. 

Proof of (5.3): Consistency of fi 
Here we also follow the proof of Fleming and Hamngton (1991) for the consistency of the 
maximum partial likelihood estimator, but we deviate from the proof slightly at the end. We 
base the proof, as Fleming and Harrington (1991) do, in the property that states that if a 
sequence of concave functions g(fl,t,$)of fi, converge in probability (Pd m)tO  a concave 

function g(/3,t)with unique maximum 80  and for each N, /JN(1) is the unique maximum 

of the concave function g(fi,z) then flN(') - /30 (see Fleming and Harrington,1991, 
p297). 

Let g(fl,t)= 
€(/30 - 4fl,0 

N 
be difference between the sample log partial likelihoods, 

evaluated at t and fi, and at t and 8 respectively for f, 0 :5 t ~5 r: 

(0) 
gN (fl,i) = f(fl - fl )'I

M
I 	 (ti) hik — 	( 

log (0) (flO ,u)][M hi k 	
(u) / hik]. hjk Es  ] 	ES 

Let 
I 	 ( 

	

hN(fl,t)=J(fiO)S'(flQ,U)2O(U)dU —log1 	 0)(fi0,u)20(u)du. 
0 

It is easy to see that h(j3,t,$) —> h(/3,t) as n - 	 , 0 :5 t !~ r, with 

11 	 1 
h(fl,z) = J (fi - fl0)'s(fl0,u) - log s°(fl,u)  ]s(0)0:4)}l4izI. 

01 	 Ls ° (flo,14) 

Now, the martingale g(fl,t)—h(fi,z) —* 0, in the probability of the product space, for 
0!~ tr as n—*x>. Indeed, 

I _________ 
g (/1, t,$) 

— 
 "N (/3,i,$) = 	I (fi —  fib )'X/?ik —  log 

- 	

''' I 	(u) /lrhlk 
MhlkEso 	 s (fi0,u)) 

is a locally square integrable martingale. Its variance according to the formula in Theorem 
2.6.2 in p.82, Fleming and Flarrington, 1991 is: 
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2 
' I 	 ___________ 

M 	 (fl-flo)'Xhik - log 	Yhik(u)eflXhik 	i 20( 
0 M hikEs 	 [o)(fiou)j 	 hk j 

The integrand above is bounded and thus 

V(g(fl,z,$) 
- hN(/J, t,$)) = O(--)as 	n - cc, hence 	9 1y(/3,t,$) --> h(/J,t) 	as 

n -+cc, O!~ t:~ r. 

As it is with the difference between the logs of the census partial likelihoods, g(fi,t,$) is a 
sequence of random concave functions of 8 with a unique maximum /3N  (t) , which is the 
solution of the SPLS process. 
We also note that since are bounded, the Dominated Convergence Theorem justifies the 
interchange of differentiation and expectation for all the s-functions, and furthermore, they 
constitute equicontinuous families at fi =  80  for 0 :5 t :!~ r (see Fleming and Hamngton, 1991, 

p.298). Thus h(/1, t) has a unique maximum at /.? = and hence 13N (1) 

Proof of (5.4): Uniform convergence of the variance estimator of the SPLS process 
(Consistency) 

To prove this part, we again follow a similar reasoning of Theorem 8.2.1, p.295  in Fleming 
and Harrington (1991); we bound the difference z(/1),r(fl,') respectively by four 
terms and show that each term converge to zero: 

ol
V(flu) - v r (I , u)}diI +I j {v, (/,u) - v,t(/3ø,u)}1  "M(uMIIO  N 

+ 

It 
IJ v(fl,u) d- ° (fi0,u)(u)du+j v(fl0,u) ° 0,u)-s ° 0,u)(u)du. 

{ 
M 	 ii 0 

By (4.10) 	sup 	I2(/u)_v,r(/,u 	0d,m  (1)as n —* cc and the process (t)/M is 
flEA ,o ~, ~ N 

bounded in the probability (dm)  since Ed 	~ M 	1 for all 0 ~ / <cc, M ~ 1. 
UIJ 

Hence 
In 

< 	sup 	I—V,Z.(/3,u)—v ff Cl3,u) I 	 = 0d,m w as 

n — cc. 
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That is, the first term converges to zero uniformly in 0 :5 t :~- r in the probability of the product 
space. The equicontinuity of the family of functions 4/), s-',  j = 0, 1, 2 implies the 

equicontinuity of v,r  and thus the integrand of the second term converges to zero uniformly in 

o !~ u :5 r if fi is consistent for /1g . This convergence and the fact that i(t)/ M = ° d 

also implies that the second term converges to zero in the probability of the product space. 
Similarly, the fourth term above converges to zero in probability(Pdm ) uniformly in 
o :5 I :~ r. Finally, for the third term, we use Lenglart's inequality. We look at each clement of 
the v-matrix vee'(130 , u) ,  e' = I ,..,, r, and set: 

j v, j'(fl0,u)(d 
___ - 

S°(/30,u)A0(u)du) = J vj e'(/3o,u)d 
M 	 M 

Using Lenglart's inequality we have: 

'd,m( SUp jv,g(I1O,u)d ~ p)L+pd m (UJv,f(flO,u) 2 S (0) (flO,u)2O(u)du) ~ ö) 
o~t~ rlo 	Al 	p2 	M o 

thus as n —* oo , the second term above goes to zero, and since ö, p are arbitrary, we have the 
left hand side above converging to zero in probability (d,m) 

Proof of (5.5): Consistency of the Information matrix 
Now calculate the infonnation matrix given by I(fl,t): 

(3U /ô/3)(/3,t) = _!_j(--)(fl,u)d, = J V(/1,u)d1. 

The sup norm convergence of I(/3,t) to m(fl') follows from the same arguments used in 
proving (5.3). 

This finalizes the proof of Theorem 5.1. 

Proof of Corollary 5.1: 
- 	 This proof is standard. We express the SPLS statistic by 

aO* 
,t)(/10 —/), 

afl 
where 1 ,6  _/10!~ fl_/301. hence, 

iou 

	

,[(flfi0)( (fi*,))_l 	iU(/3,t). 

The corollary follows from the asymptotic normality of the normalized SPLS process, the 
- consistency of /1(t), Z,  (130 ,t)and ----(/1,1), and Slutsky's theorem. 
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Proof of Lemma 6.1: 
We first show that 

maxU (/1) - U 1  (,8  ) =  0p1  (7L), 	as M - , 	 (A.6. 1) 

where 
U1 (fi0 )=J(X1  —ê(flo ,t))d7sfj (fi0 ,t), i=l,...,M. 

We recall that the covanates are uniformly bounded, s° is bounded away from zero and 

- 	= °''d,m Hence subtracting and adding 

- ê(/J, 4i () 
exp(/3X) 

(di(t) / M) 

to U.(/1) we obtain: 

di 	
+ ° 'd,m 

	

- 
(1) exP(fl6X1) 	(Ø) 

 

uniformly in i. 

Similarly, subtracting and adding fork  - ê(fi, 	(t) exp(fi6X1 )A.çj  (t)dt we obtain: 

	

- ê(fi,z)' (t) exp(/1X1  )(20(t)di 
- 	

d17 

 MS °  (fl,t) 
(A.6.2) 

The second term in (A.6.2) can be written as: 

JO 	
- ë(fi, 4i  (t) exp(fiX1  

s° (/3, t) 
(A.6.3) 

Since the integrand in (A.6.3) is a bounded predictable process and - 7((fi0,t)is the 

martingale given in (A.4.1) with compensator A(t) = M .J S 0 (u)20(u)du, we use 
Lenglart's inequality to obtain that the stochastic integral in (A.6.3) converges to zero as 

(_L=) as M —* cx, uniformly in i. 

Finally the'J- consistency of/iN  also imply that sup 1 ê(J1) - ê(fi0) = °d.m (-=) as 
b!~t~r 

M — , hence the first term in (A.6.2) is equal to UhIk  (/3) + °d,m 
(7L) 	and (A.6. I) 

is obtained. 

Equation (A.6.l), design conditions C1 and C3 and lim - ->O yield 
N 

VLin 
M 

UI(/3))UJ(/TJO)} + °"d,m 	
(A.6.4) 

 lic-sjes ~Tu 

38 



Also, (A.4.2) imply that 

U 1 (fl0)=J(X _e(/Jo t))di4j (/3o ,t)+op (1), ir=1,...,M as M —*co, 

and hence we have: 

11MM 
 AUE Ed,m (vLin ) = 	 + o(l), 

M i=1j=1 

which proves the Lemma. 

Proof of Lemma 6.2: 

Equation (A.6. 1) is now valid with the rate 
0d,m 

(_jr) as n —* oo . This and condition C 1  yield: 

n  I 	 + °"d,m 	
(A.6.5) 'eff M

2 iEslri 	'Ti J 	Vn 

In order to obtain (6.10) we note that U 1 (80 )are right-continuous local square integrable 

martingales in 0 :~ t <, and hence U, (/3) — (Ui (fib),  Ui  (fib ) are right-continuous local 
martingales with predictable co-variation function 
(U1 (fib),  U (fi)) J(X1 — (fi , t)) ®  Y (1) exp{fiX, )2 (t)dt. Then the first term in 
(A.6.5) can be written as: 

4 	(_.!_ —1) J?Cuo — 1 (/3 ) ),U,(,80 )) 	n 	(_L_l)i 0) ' (t 0". 
'Ti 	 ITi 

	 MiEs 'Ti 	iT 
(A.6.6) 

The first term in (A.6.6) is a mean of M martingales in the product space and Lenglart's 

inequality together with design condition C 1  imply that it is of order °d (_j=). Equation 

(2.6) implies that the second term in (A.6.6) is equal to: 

11 -- (1_ l)J(X 1  - ê(/J0 , ,))®2 Y1  (z) exp{/JX 1  }20 (t)dt i' ir 
M 2  

NT( n  
(fiot)}S (0) (/3o 	 (A.6.7) 

M 0  N 

Now we revert the argument used for the consistency of 	(fl,t): equation (A.6.7) is equal 

(fi0,t) - 	 m (130t)} 0 (fi0t)AO(t)th — d(t)/M}+{ 	(fib,') _m(fiO 1 )} 

and use Lenglart's inequality to obtain: 
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= °'d,m (7L )  + --{±(flo t) - 

which yields (6.10) of Lemma 6.2. 

To obtain (6.11) we look at Vresjd,  recall that the (I (fib) are uniformly bounded and apply 
(A.6.1) to obtain: 

n 	A y  
Vresid =2 	- Ui(fio)Ui(/30)+OPd  (J=)-_-_ 	—v- 	(A.6.8) 

i*JES j M i*jES 'j 

Now - I :!~ A ii :5 0 for all i and j, by the usual restriction imposed to any lips design, which 

implies that Condition C3 is equivalent to 

lr-/r1ff =  (N'\ 
- 	 01 — I, 	 (A.6.9) 
M # 	ir1 	n) 

which implies that Ed I'— -Z Lij  U M i#j€s 

last term in (A.6.8) is an Op 
(vin ) - 

--
This in turn implies that the 

M i~j 

The design-model expectation in the first term of (A.6.8) is equal to zero, since 
theU e  (fib) and U1 (fi0 ) '  i * j,thougji not stochastically independent, are martingales with 
predictable co-variation equal to zero. The variance of the first term in (A.6.8) is the expected 

- 	 - 

value of the M 2  cross-products of terms of the form -- U 1  (/3 )U (j3). 
'TI)  

All the cross-product terms with at least one single label I different from the others have 
model expectation equal to zero, and the terms in U (fib  )U (,8o) are uniformly bounded, so 

design conditions C2 , C3 and C4  imply that the variance of the first term in (A.6.8) is 
bounded by: 

() 
i*j€Pop ' j 	0( ' ) 

and thus vresid = o_j=J as n -+ , which is equation (6.11). 

Robust versus efficient variance estimators 

Keeping the classic hik sample label notation, consider a sample estimating equation of the 
form: 

-p 
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L NhNhJJhk(s)  
- 	 _1)Uhik =0 	 (A.6.l0) 
M h=1 i=lk=1 	hik 

	

with Ed ('hik (s)) = rhjk 	Em  (Uhik) = 0 and model independent variables UhIk, 

k = 1,...,Nh 1 , I = l,...,Nh, h = l,...,L. The design-model variance of the estimating equation 
function in (A.6.10) is 

=>J.I 	- 

IJ L NhNhj 
Vd m  EmVd 	 (Jh.k(s) ljUIlik}=EmT_ 	 hikfJmUhik (jfm} M h=1i=1k=l. Jrhlk 1M 2  hiktjmePop 

(A.6.l 1) 

	

rhjke m 	hiktm with ihikejm  = 	 , where 	is the joint inclusion probability of units 
hikjm  

hik and Urn. A design-model asymptotically unbiased estimator of Vdm  is given by 

fl 	 'hiktjm 
Vrobt 	 UhikUfim  

M hikesjmeshikijm 

JU 	+ 	
(A.6.12) 

	

M - hikes 7Thik 	2rhlk hik#ejmes 7thikjm  

Under 	the 	model 	for 	independence 	of 	the 	terms 	Uhk, 	for 

k = l,...,NhI, I = l,...,N11 , I, =l,...,L, the terms with joint probabilities of selection disappear 

in the variance Vd m  

fl 

	

I n 	(_I 	lJU + 	 hikPfmUhikU(/m} Vd m  = Em  
M 2  hik*fjmePop 

_1 —1  
IM hikePop(hik 	

JUh2lk} 

since Em 'kUhikUejm  Em  {UhIk }Em  Pjm J= 0 for hik # Urn, 

In this case, a design-model consistent estimator of the variance Vd,m  is given by 

u 2 I I 
	()Thlik 	

_hik, (A.6.l3) 

	

effp,f2h.E 	) 'hik  

Moreover, under the independence assumption, Veff  is more efficient than vro/)ust.  Indeed, 
setting 

	

'resid = 	
/ukep

Uh1kU,p, 	 (A.6.14) 
hik;6fjmes hiktjrn 

we have 
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Vd, m (Vrobust) = Vd, m (Veff)+ Vd, m (vresid) ~! Vd m (veff)for all n, 

(A.6.l5) 

since the covariance term in (A.6.15) is zero: it is the design-model expectation of a weighted 
sum of products of four Uhk  functions with at least one index hik different from the others, 
which makes the model expectation of each term equal to zero. 

Note that the main reason for the efficiency is that when the model consists of stochastically 
independent units, the terms with joint probabilities of selection in the variance formula 
disappear. This last property, though not formally expressed, has been used previously in the 
estimation of the variance (see for example Sudhratar and Kovacevic, 2000, for the GEE 
approach to the analysis of longitudinal ordinal survey data). 

Ir 
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