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ABSTRACT

We use the “survey sample” partial likelihood score function to fit the proportional hazards
regression model to survey data with complex sampling designs. The survey sample
maximum partial likelthood estimator 1s the solution of the survey sample partial likelihood
score function. Many authors applied this method to fit survival survey data. Binder (1992)
dealt with inference on the descriptive census population parameter, that is, design-based
inference on the maximum partial hkelihood estimate that could be calculated had a census
been taken on the finite population. Lin (2000) gave a formal justification of Binder’s method
under the super-population approach and dealt with inference on the model parameter. Neither
Binder nor Lin provided conditions for the respective asymptotic results to hold. Rubin-
Bleuer (2003 b) used Lin’s (2000) set up of the super-population approach and developed
counting process methodology for a joint design-model space to obtain, under stated sufficient
model and design conditions, a proof of Binder’s approximation of the SPLS. In this paper,
we give a rigorous proof of the weak convergence of the SPLS process and the asymptotic
normality of the sample maximum partial likelihood estimator in a formally expressed joint
design-model space and we propose a consistent variance estimator. Furthermore, using
counting processes tools in the joint design-model space, we show that Lin’s (2000) variance
estimator is asymptotically unbiased and robust against misspecification of the correlation
model. We also show that it is design-model consistent, and that it is less efficient than the
variance estimator proposed here. Strict rates of approximation for Lin’s (2000) variance
estimator are given.

Key words: complex survey data, partial likelihood, proportional hazards, counting processes.

RESUME

Nous utilisons la fonction de score de vraisemblance partielle « d’échantillon » pour ajuster un
modele de régression a risques proportionnels a des données provenant d’enquétes a plan de
sondage complexe. L’estimateur du maximum de vraisemblance partielle d’échantillon est la
solution de la fonction de score de vraisemblance partielle d’échantillon. De nombreux auteurs
ont appliqué cette méthode afin d’ajuster un modele a des données d’enquéte sur la survie.
Binder (1992) s’est penché sur I’inférence concernant les paramétres descriptifs de population
dans des conditions de recensement (population fini¢), ¢’est-a-dire |'inférence basée sur le
plan de sondage concemant I’estimation du maximum de vraisemblance particlle qui pourrait
étre calculée si la population finie avait été recensée. Lin (2000) a cherché a justifier
formellement la méthode de Binder sous I’approche de superpopulation et a traité¢ de
I’inférence concernant les paramétres du modele. Ni Binder ni Lin n’ont préeisé les conditions
suffisantes pour que leurs résultats asymptotiques respectifs tiennent. Rubin-Bleuer (2003 b) a
utilisé les conditions de 1’approche de superpopulation de Lin (2000) et a élaboré une méthode
basée sur un processus de comptage pour un espace conjoint plan de sondage-modele afin
d’obtenir, sous des conditions suffisantes clairement énoncées s’appliquant au modele et au
plan de sondage, une preuve de l'approximation du score de vraisemblance particlle
d’¢chantillon (SPLS pour Sample Partial Likelihood Score) de Binder. Dans le présent article,
nous donnons une preuve rigoureuse de la faible convergence du processus du SPLS et de la
normalité asymptotique de |’estimateur du maximum de vraisemblance partielle d’¢chantillon
dans un espace conjoint plan de sondage-mode¢le exprim¢ formellement, et nous proposons un
estimateur convergent de la variance. En outre, au moyen d’outils pour les processus de
comptage dans I’espace conjoint plan de sondage-modéle, nous montrons que 1’estimateur de
la varniance de Lin (2000) est asymptotiquement sans biais et robuste a I’erreur de spécification
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du modeéle de corrélation. Nous montrons aussi qu’il est convergent par rapport au plan de
sondage et au modéle, quoique moins efficace que I’estimateur de la variance propose ici.
Nous donnons des taux d’approximation stricts pour I’estimateur de la variance de Lin (2000).

Mots clés : Données provenant d’enquétes a plan complexe; espace mixte tenant compte du
plan de sondage et du modéle; modéle de risques proportionnels; processus de comptage;
robustesse



1. INTRODUCTION

The Cox (1972) proportional hazards regression model (PHM) provides a method for studying
the effects of primary covariates on failure times, while adjusting for other vanables. If we
assume that no covariates vary with time and let S(#| X)=1-P(T <1 | X) be the conditional
survival function of the failure time 7 associated with an r-dimensional vector of

covariates X |, then the conditional hazard function (or instantaneous conditional failure rate) is
defined by

At X)=limh '\ Pe<T <t+h|T 21, X).
hlo
The PHM specifies that the conditional hazard rate A(f| X) of the failure time 7T is given by

A X) = Ag () -exp(f'- X)),
where Ag(¢) is an unspecified baseline hazard function and £ is an r-dimensional vector
valued regression parameter pertaining to the log hazard ratio.

Most methods of survival analysis were developed for a random sample from a given model.
In order to analyze survey sample data, survey samplers often think of it as the result of a two-
phase randomization procedure (an approach introduced by Hartley and Sielken in 1975),
where the infinite population (also called super-population) generates a finite population in the
first phase, and the sample is sclected from the finite population in the second phase. The
finite population could have been completely observed, had we taken a census. The analysis
of the data obtained in the first phase (that is, of the finite population) is called “the census
case” from now on.

Fitting the PHM to survey data poses difficulties because complex survey data consist of
dependent observations and are often subject to selection bias due to unequal selection
probabilitics (see for example, Pteffermann, 1993). As a consequence, the usual asymptotic
theory does not apply. The problem is to determine the properties of the “survey sample”
estimator of # for inference.

The census case

The failure time 7 (also called lifetime) is subject to right censoring given by C. Let /(A) be

the indicator function of the set 4. Let T = min(7,C) denote the censored lifetime,
0 = 1(T < C) the indicator of whether the lifetime was censored or not, and Y (1) = T =0,

the indicator of whether the unit with lifetime 7 was at risk or not at time f. The data
consists of a realization of random triples (7’,—,6,-,}(,-), i=1,..,N, independent but not

necessarily identically distributed random vectors defined on a probability space(€2, 3, P).
Under the PHM fcan be estimated from the “Census” Partial Likelihood Score (PLS)

function

N s P

upy=x (5,{/\’1-—(5)&;—:1—)}, (1.1)
i=1 STUBT)

where the S-functions, given the covariates, are linear combinations of the risk functions
I(T; 21):



N ; N =l )
SO =~ LI 20PN and SO0 =~ LX, 1T, 2001
i=1 i=1

The solution to U(f) =0 yields S, the maximum partial likelihood estimator of the model
parameter fBy. We call Sy the census parameter. Under regulanity conditions, the

expression JN (Bn — Bg)is asymptotically normal with zero mean and covariance matrix that

can be consistently estimated by /7' (8)=—{(1/ N)oU/3B} ' (By) (Andersen and Gill,
1982).

The survey data case

We assume now that the units of the finite population (census population) are classified into L
strata, with Ny primary sampling units ( psus) within stratum h, h=1,..,L, and Ny,

i
secondary sampling units within psu i, i=1..,N,. We define N=) N,, and
h=1
L Np _ ) o
M=% % Ny;,respectively, as the number of psus and the number of ultimate units in the
h=1i=|

finite population. Throughout the paper we assume that the psu sizes Nj; remain bounded
while the number of psu's N increases towards infinity. Hence M and N are

asymptotically equivalent. Even though here the number of ultimate units in the population is
M , the solution to the Census PLS equation U(f) = 0 will again be denoted by S, .

The survey data consist of a subset s of the finite population,
( Tln'k N 5hz’k ’Xhik ), k= l,...,nh,' W= l,...,nh s in= l,...,L, n=m+..+ng,

which is selected according to a “without replacement™ sampling design. Consider now a
survey sample estimator of the Census Partial Likelihood Score function. For the sake of
brevity, we will use the word “sample” rather than “survey sample””. The “Sample Partial
Likelihood Score” (SPLS) function is given by:

. S8, T,
U= X Opix Xhik_wﬁ‘f—lk) ! 7 ik
hike s S8 Thix)

where hik € s means the unit hik in the finite (census) population is included in the selected
sample, 7, is the sampling inclusion probability for the unit /ik and the S -functions are the
Horvitz-Thompson (HT) estimators of the finite population S-functions shown in (1.1) (see
Sarndal et al, 1992, p.43 for the definition of HT). The solution of the estimating equation
given by the SPLS function U(f)=0 yields B,v, the Sample Maximum Partial Likelihood
estimator (SMPLE).

Briefly, we determine the properties of ﬂ n for inference, propose a variance estimator of ﬂ N

and compare it with Lin (2000)’s variance estimator. The motivation for this work stems from
the recognition that even though the asymptotic theory developed by Andersen and Gill
(1982) for the census case is intended for quite general sequences of probability spaces, their
asymptotic results do not apply directly to the Sample Partial Likelihood process. The Sample

Partial Likclihood process lives in a joint design-model space, and the design induces some
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stochastic dependencics that cannot be accommodated by the results for independent random
failure times. This claim is illustrated by the following. In the census case, the finite
population is assumed to be a realization from M stochastically independent censored
lifetimes and the normalized Partial Likelihood Score (PLS) process can be approximated by
the following sum of stochastically independent terms with mean zero:

! 1
Ube) 1 & N }[ka sWgu)

N VRN Y s s P ¥ D
where the s() (4,1),j=01 are non-stochastic functions,
My, (u)z{()',,,-kdl(f,,,-k gu)—l(fm Zu)e/"xm ,lo(u)du} and dI(Ty; <u) is the measure that
assigns the value g(73,;) to a function g. Andersen and Gill (1982) have shown that from
this approximation follows the weak convergence of the normalized PLS process.

]dM,,,k (), 0<t<r,weq,

s (B,0)

In the survey case, the normalized SPLS process can also be approximated by a sum of zero
mean but not necessarily independent terms:

M M pikeso sz, u)

~ ¢ M
\/-’;U(ﬂ,t,w,s)zﬁl 5 I[Xhik—s—M]thik(“)/”hike 0<t<r, weQ:

(1.2)

There are two approaches that are used to look at this process and its asymptotic distribution:
one is to view it as a random vector in a design-model “product space”. The terms in the sum
above are, in general, stochastically dependent in the product space, and this holds whether the
design is with replacement or not. In order to calculate its asymptotic distribution in a rigorous
way, using the theory of counting processes, we neced to define counting processes,
martingales, their associated filtrations, etc., in a particular probability space that is the joint
design-model space, as well as examine the behavior of the processes associated with the
proportional hazards model in that space.

The second approach used by some analysts when considering the asymptotic distribution of
the SPLS process is to “ignore the design, omit the sampling weights”. What we are actually
doing when we analyze complex survey data without sampling weights is working with the
conditional probability of the product space given the selected sample. For a simple random
sample without replacement (SRSWOR) design, we can ignore the design and work in the
realm of the super-population. However, the most common designs (stratified SRSWOR,
stratified multi-stage, ctc.) usually generate selection bias, and this may cause the original
stochastic terms in (1.2) which have zero model mean, to become random variables with mean
different from zero, once we condition on the selected sample. Even if the random variables
remained independent under the conditional probability given the selected sample, this would
not be enough to ensure the convergence of the sum (for a detailed exposition of stochastic
dependence in the design-model product space and in its conditional probability spaces, see
Rubin-Bleuer and Schiopu-Kratina, 2005, Section 4).

Four previous papers applied the PHM to data from complex surveys: the first paper (Binder,
1992) dealt with inference on the census population parameter f ; a second paper by (Lin,

2000) dealt with inference on the infinite population (or model) parameter f; a third paper
on the subject (Rubin-Bleuer, 2003) provided a theoretical justification of an approximation
7



property used by Binder and Lin for their work; and the fourth paper (Rubin-Bleuer, 2004)
dealt with the asymptotic distribution of the SPLS process and the corresponding SMPLE
function,

Binder (1992) proposed a method of fitting proportional hazards models to survey data from
complex designs, based on asymptotic theory in the design probability space. His method
provides inference on the “descriptive” census estimator # that would be completely known
if all the values of the finite population were known. It does not assume a super-population
model and it is entirely based on a fixed finite population from which the sample is observed.
He assumed that the SPLS function is asymptotically equivalent (in design) to the sample
estimator of a total and from this, he derives the asymptotic normality of the SPLS and of the
solution ﬁ n of the SPLS estimating equation (for the asymptotic normality of a sample total

see, for example, Krewski and Rao, 1981).

Lin (2000) proposed a method to perform inference on the model parameter By . He worked
with the super-population approach of Hartley and Sielken (1975) and showed how the sample
maximum partial hkelihood estimator Vi n » proposed by Binder (1992), can provide inference
for the model parameter B¢, with a variance that accounts for both the design and the model
randomizations. Lin (2000) stated that both, the SPLS function and the sample maximum
partial likelihood estimator Vi n are asymptotically normal, provided that certain sample
processes were tight. However, he did not provide design nor model conditions under which
these sample processes are tight. Lin (2000) also proposed a variance estimator of ﬁ N-

Rubin-Bleuer (2003) used the super-population approach working on a joint design-model
space in a formal way, to obtain a rigorous proof of Binder's and Lin's conjecture on the
approximation of the SPLS function. To obtain this approximation result, even for Binder’s
apparently model free approach, there was a need to assume the correct specification of the
hazard model underlying the finite population from which the sample is selected. In this
paper, Rubin-Bleuer also assumes the stochastic independence of the super-population
censored lifetimes and their covanates.

Rubin-Bleuer (2004) showed that the SPLS process converges to a Gaussian process and that
the SMPLE is asymptotically normal and gave sufficient sampling design and super-
population model conditions under which these results hold. She also gave the expression of
the asymptotic variance of both the SPLS process and the SMPLE.

Here we look at the SPLS as a process in the product design-model space, which is the
original approach of Lin (2000). The M censored lifetimes arec assumed stochastically
independent. The design set-up is a stratified two stage design without replacement in the first
stage. It may introduce selection bias because there are unequal probabilities of selection, and
sampling correlation due to selection without replacement and to the sampling correlation
within the psus. The selection bias is taken care of with the sampling weights and the
sampling correlations disappear due to the convergence of the process to the sample mean and
the model independence of the hik units.

In this paper, we work with the normalized SPLS process {ﬁy%, 0<t< r}, &

positive, in the style of the original result of Andersen and Gill (1982), rather than with the
8



i U
normalized SPLS functionn —(/552 . Consequently, the results are more general than those

obtained by the previous authors. We develop a counting process methodology for the design-
model product space. We obtain a rigorous proof of the weak convergence of the SPLS
process in this space, the consistency of the sample maximum partial likelihood estimator

,[§ n(#)and its asymptotic normality about the model parameter fyand give sufficient model

and design conditions. We obtain a closed form of the limiting variance of the SPLS process.
We prove weak convergence of the SPLS process directly, using neither Binder’s (1992)
approximation nor Andersen and Gill (1982) results for the PLS. We work from *“scratch”
using the Central Limit Theorem for Martingales and apply it to the design-model product
space. These outcomes require the correct specification of both the hazards model and
correlation structure of the super-population. The above results, developed for the case where

the first stage sampling rate % — f, with f positive, are contained in the JSM proceedings

paper by Rubin-Bleuer (2004). Here we extend them to the case f > 0, and give the proofs in
detail. In addition, we propose variance estimators 3, fl;,] and f),_nlfl,,i;,l of the SPLS, the

PLS and /} n (7) respectively, and prove that they are design-model consistent (see Sarndal et

al, 1992, for the definition of design-consistency and other sampling theory concepts).
Furthermore, using the tools of counting process methodology, we investigate the properties
of Lin’s (2000) variance estimator, which is based on the approximation of the SPLS function
to the sample HT estimator of a total of the finite population. For this purpose, we give a new
proof for obtaining Binder’s (1992) approximation to the SPLS function, which is valid under
the semi-parametric model for the hazard function, even if the correlation structure of the
super-population is not correctly specified. Furthermore, we show that if the underlying
super-population lifetimes and covanates are stochastically independent, Lin’s (2000)
variance estimator of the normalized SPLS process is design-model consistent though less

efficient than £ . On the other hand, consider SPLS with our normalizing constant rather

than that used by Lin’s (2000) and assume %—)0, then we can argue that Lin’s (2000)

variance estimator is a robust variance estimator against misspecification of the correlation
model.

Before going into the organization of the paper, we provide some comments about the
assumptions and techniques used here. The proofs follow similar techniques used for the
census case by Andersen and Gill (1982), modified for simple situations by Fleming and
Harrington (1991). But there are some considerations that we must make and this is why the
proofs here arc carefully rendered. For example, some of the processes that are bounded
almost surely in the census case, are now 7z -weighted processes which are only bounded in
probability. Also, the limit of the information matrix does not coincide with the limiting
covariance matrix of the SPLS process: new finite population “7 - weighted” S processes
turn up in the calculation of this variance. In addition, design conditions have to be stated for
the design consistency of the HT sample estimators of the processes involved. Finally, we
also use the property that convergence in design probability does imply convergence in the
design-model space in which we work. The proof of this statement is not trivial, and we refer
to previous work on the subject (Rubin-Bleuer, 2005, Theorem 5.1).

In the census case, there exist results for more general model assumptions than those we
present here. This article was done under somewhat restricted conditions (i.e., continuous
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failure times, covariates constant over time and uniformly boundcd, a common baseline
hazard function and conditionally independent failurc and censoring times) to concentrate on
the added complexity of the survey-model process. Many practical situations occurring with
survey data fall under these conditions and some of the restrictions arise from the practical
issues in the collection of the data. Survey data is, in general, obtained from a stratified
multistage design with a large number of strata and a small number of clusters per stratum,
usually two or three. In each stratum, the first stage of sampling selccts the clusters with
probability proportional to size. Accordingly, for the asymptotic set-up, the number of strata is
assumed to increase towards infinity, while the sample size stays bounded within each
stratum. Also, in many situations the design clusters are specified by operational reasons and
not by an assumption that the underlying super-population is clustered (for example
employment in the Canadian Labor Force Survey may depend on economic regions (the
strata) but analysts have in general, assumed that employment status is independent within
each stratum regardless of the designed clusters). The results presented here assume that the
super-population of lifetimes and censoring times are stochastically independent. As a caveat,
it is noted that data obtained from a longitudinal survey could be subject to a significant
amount of censoring due to attrition, and that attrition is sometimes not independent of failure
times. This situation is not treated in this paper. Finally, we assume that the vector of
covariates X does not depend on time. As a result, simpler model conditions are used. At this
moment there is also a practical reason for working with covariates that are constant in time:
there is a hitch with its application for survey data. The variance estimators proposed until

now (see for example Binder, 1992 and Lin, 2000) contain terms in X j(fi), for subjects i

and j respectively. These cannot not be observed if, for example, subject j died before
subject /.

The paper is organized as follows. In Section 2, we give the notation used throughout the
paper, and define a stratified super-population model and design. In Section 3, we formally
express the joint design-model space envisaged by Lin (2000) as a “product space” containing
both the model and the design probability spaces. Also, we state the counting process
methodology developed by Rubin Bleuer (2001) and Rubin Bleuer (2003 b) for the design-

model space, which is used to derive the results in this paper. The S and S processes are
functions of the number of units at risk at time. Tightness of many survival processes often

follows from the convergence in sup norm of the S and S processes. In Section 4, we prove
the  uniform  convergence  of  the s Ball and  the 7 -weighted

S(j)(ﬂ,t), j=0, 1, 2 finite population functions, their sample estimators and certain

combinations of them. We also give the new proof of Binder’s approximation. The weak
convergence of the SPLS, the consistency of the maximum partial likelihood estimator, the
calculation of the limiting variance of the maximum sample partial likelihood estimator and of
the limiting sample information matrix, the consistency of their respective sample estimators
and the asymptotic normality of the maximum sample partial likelihood estimator are given in
Section 5. In Section 6, we investigate the properties of Lin (2000)’s variance estimator and
compare it with the variance estimator proposed in this paper. Finally, in Section 7, we
summarize the results and present conclusions.

2. THE MODEL AND THE DESIGN

2.1 The model



Consider right censored lifetimes defined on a probability space(€2, I, P). The lifetimes
are classified into L strata, and for the sake of consistency of notation with the design, we
assign the censored lifetimes and respective covariates into N, primary sampling units

(psus) within stratum A, h=1,.,L, and Nj; secondary sampling units within

psu i, i=1,..,Ny. The data values will be labeled by the number of psus in the finite
population. The model is defined by triples:

(hlk’(shlk’ hlkl k:],...,Nhi, le,...,Nh, hzl,...,L, (2])
such that

a) XN are r-dimensional covariates constant over time, k = 1,... Ny, i=1..,Ny, h=1..L,

b) T, ’v = T xk /\Ch‘k are censored failure times, where failure time and censoring time variables
T};ik and Chik are assumed conditionally independent given Xhik’ and

k=l,...,Nh‘-, i:l,...,Nh, h=l,...,L,

c) §N = I(Th]:z =T, ) are indicators of whcther a failure time is actually being observed or not,
k=1.,Ny, i=1L..,Ny, h=1..,L.

dthe triples ([N ,5Y xN ) k=1.,Npy, i=1..Ny, k=1L are stochastically
independent.

The Cox (1972) proportional hazards model specifies that the hazard rate ﬂllxk(t)(or

instantancous failure rate) of the failure time T hik satisfies

hzk(’) Ag(1)- exp(ﬂo . hk),k:l,...,Nh,-, = ey, Bl g oy (2.2)
where Ag(f) is an unspecified baseline hazard function, with absolutely continuous survival

function Sy(¢)=1-Fy(r) and By is an r-dimensional vector valued regression parameter. In

the asymptotic set-up the number . of strata increases towards infinity while the number of
clusters N, within strata remains bounded. Thus, even though the failure times are not
necessanily identically distributed, they share the same bascline hazard function. The
differences among hazard rates are to be taken into account by the conditional distributions
given the covariates. £, and V, denote, respectively, the expectation and variance in the

space (€2, 3, P).

From now on, whenever there is no room for confusion, we omit the superscript N . In the
following, we usc standard notation for counting processes and state their properties under the
proportional hazards model given above (see Fleming and Harrington, 1991).

L M,

L@ giy="% X% Z hik ), i () = I1(T, hik _t)§hk denote a counting process, which is
h=li=lk=I

the number of failed uncensored observations by time t. We use the notation 7(t) for a
counting process, and M(z)for a martingale, instead of the usual N(r)and M(¢)

respectively, because in this study N denotes the number of clusters (or primary sampling

units) in the finite population, and M dcnotes the number of ultimate units in the population.
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Let the number of units at rsk at time tbe given by
L Ny Ny,

Fity= X Z Z Yaik (), Yy (1) = 1( hik 24) .
h=1i=1k=]

The symbol ®2 denotes the outer product of the vector within brackets (i.e. X S _x-x .
We write X®' =x and X®° =1. Let S(j), j=0, 1, 2 be respectively, a scalar, an r-

dimensional vector and an r xr dimensional matrix defined by:

) 1 L Np Ny g 1 L Ny Ny
S (ﬂ,t)=ﬁ Dy Ypip (1) -€” “hik =— 3 Z Z Yhzk(t) ?
h=1i=1 k=1 M poyiot k=
SOB =L 5 F W Vi) F Kow 2] ﬁ%% Faie (1)
,t e hik hik t)-e w —=__ hik 4 e
M e M pZyiz) k= ’"k ’
and
(2.3)
2) 1 L) Ny &b ) BX,. 1 L Np Ny
\) (ﬂ,t)=ﬁ > Xnik - X ik - Yaix (1) -€” 7~ hk =— Z Z X ,,,k Yy (1) -€P
h=1i=1 k=1 M h=1i=1 k=1

Here we dewviate from the usual model conditions and introduce “z-
weighted” § ,(,j ), j=0, 1, 2 that are respectively, a scalar, an r-dimensional vector and an

rxr dimensional matrix process defined by:

. L NN,
sPB=L 53 L x® v K, oo, 2 (2.4)
M po1izlk=1 7hik
Also let
) (2) O p o )
O T ) A Pl (20 7 e 2
SO0 $@(8.1)
(2.5)
ay ) , s g
V(ﬂt):sﬁ,z’(ﬂ,z)_s(,)(ﬂt) SYpBy ST 50 (ﬂt)+( (/3,1))® sO a1
ol 0) z WL (0)
B s©p.0f (‘0’(/3 r))2 (s“”(ﬂ,z))2 $TB

Let 3, be the sigma field defined by the failure and censoring indicators, that is,

S = o W) 15 @k =1, Npyiy i =1 Ny, =101, 0<u<r).



Under the proportional hazards model (2.2), the process
t

M (1) = Myig (B0, 1) = ik (1) = [ Vg @) exp{Bo X pi |- Ag(w)du is a  martingale  with
0

respect to the filtration {3 (12 O}and has absolutely continuous compensator
Apie = [ Vhie @ePX0E 4o ddu, k =1,..,Ny;, i=1,.,Ny, h=1..L.

The continuity of the Ay, follows from the absolute continuity of the failure time
distributions. Let (M), M) denote the predictable co-varation of the martingales M and

!
My. Then My (1), Myix () = | Vi @) exp{BX ix |- A9 ()du . The partial likelihood score
0

(PLS) process can be expressed by
t

!
UBD=% [{Xpk —elBouldnny)=% [{X pix —e(Bu)dMyy (Bo,u),
hik 0 hik 0
and it is also a martingale, since it is the sum of stochastic integrals of predictable processes
with respect to a martingale. If the M, (f,?) are independent. the predictable co-variation
process is given by:
!
UV = T [ Kpig =B Viig 0 xD6Xpi |- g ), (2:6)
hik 0
(see Theorem 2.4.3, p.40 and Theorem 2.5.2, statement 1, p.75 in Fleming and Harrington,
1991).

An apparent limitation in the theory is the requirement that the data used must be restricted to
an interval 0 <t <7 (see Fleming and Harrington, 1991, p.307). This is to ensure that for the

development of the asymptotic properties we have both that the function S(O)( 2.1) is
bounded away from zero and that the integral of the baseline hazard function has a finite value
in such interval. Both requirements would hold if 1) the censoring variables C; arc defined in

0<t<r7 and have densities of the formg,(NI(t <7)+(1-P(C; <7 | X;)0,(1)in0<t <0
where g, (f)are functions with finite integrals and 0, (¢)is the delta measure with mass point
at + =7 ; and 2) the baseline lifetime distribution F(¢) = P(T' <t) has support in an interval
larger than 0<r <7 (ie., if 0<F(r)<1). In most studies with survey data, there is a pre-
fixed time Cywhen the study ends, and censoring variables with densities of the form outlined
above have a positive probability of being realized at time ¢ = Cy. In this case, all observed
failures would fall within the interval 0 <7 < C and all the data could be utilized to build the
Sample Partial Likelihood Score function evaluated at 7 =Cjy. We could then say that

U(p)=U(B,7)=U(f,).

2.2 The design

Consider a general stratified, without replaccment, two-stage design on a finite population
obtained from independent failure and censoring times and independent covanates. For an
outcome @ e of the super-population, the finite population is represented by

(fh}x\; (a)), (5,‘?{,{ (cu), Xilr\ilk (a) ) k=L Ny, i=L. Ny, h=1,..,L Let II;Xk denote  the
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probability that the unit hik is selected in the sample. For simplicity we omit the superscript
N in the notation of the inclusion probabilities. The number of primary sampling units in the
L Ny i
sample is n and the number of ultimatc sample units is m= Y > np; with n= Y nj, . The
h=1i=1 h=1
sample selection indicators are defined by:
I (s)=1if hik € s, I, (s)= 0 otherwise, k = 1,.., Ny,

i=1yy Ny, h=1,., L.Q27)

We denote by Sy the collection of all possible samples under the sample scheme, by c(Sy)

the collection of subsets of Sy, and by p,\ a sampling probability distribution defined
on C(S ). Then the design space is given by the triple(Sy., C(Sy), pgn). In the following

E; ‘and Vjdenote, respectively, the expectation and variance with respect to the sampling
design.

Remark 2.1 Traditional notation under the proportional hazards model use “S™ for the

random functions and their deterministic limits: S(j)(ﬂ,t,a))—) s(j)(ﬂ,t)jzo, 1, 2. For

w € ), the respective scalar, vector and matrix functions$S ( )(ﬂ,tl j=0, 1, 2, are finite
population parameters. Their sample estimators depend on the selected sample se Sy :
S‘(j)(ﬂ,t,s.a)) j=0, 1, 2 . The use of “s ™ to denote an outcome of the sample design is also
a well known convention in survey theory, and we will do so here with the caveat that the
sample s should not be confused with the deterministic limit functionss(j)(ﬂ,t)j = 2

Design-unbiased estimators of the S -functions (Sdrndal et al, 1992), p.167) are given by their
Horvitz-Thompson (HT) sample estimators:

a(j 1 L NaNwi g, ; "X,
§SDBy =L 5 P F ) y8i gy FFhk o, 1, 2 (2.8)
h=)i=1k=1 7 hik
and
(7 L NpNpi [,. . "y
SBH=—— > FF '"2(3) X AP k=012, (2.9)
M poyizik=t 7 ik
Also let

$D .08 B,0-5Vg,0-5Y (8,1)

&B.0) =5V B.0/ 89 (B,1) andlet V(S.1) = ‘
SOp.0)?

and

(2.10)



$PB0 W 8% pf g0,

_§Ma,0) SO s+
(S(O)(/x,z))z §%qa.0)

The HT estimators of the S(j)(ﬂ,t)and the —]%S,,(j)(ﬁ,t),jzo, 1, 2 functions arc also
design consistent under Conditions Cy, C, and Cj stated at the end of this section. Under the

B - R n . . .
same conditions, it is easy to show that ¢, } and WV” arc design-consistent estimators of

n 5
e, Vand T V. respectively, as n — .

In what follows the S‘(j)(ﬁ,t) and %szj)(ﬂ,t), Jj=0, 1, 2 can be replaced by any design-

consistent estimators of the corresponding finite population processes. The sample partial
likelthood score vector is defined by the sum of stochastic integrals:

. L NyNy
U(p,1)= Z Z Iol//;,,k (S, u)dnpy (1) with (2.11)
h=li=1k=1
- - Ilu'k (s) - = . .
Fhik (Bo0) = 72 (X 8B}, k=1 Ny i =L Npy h= oL (2.12)
hik

For a fixed sample, the process U(g,r) has also a martingale representation under the model
given by (2.2):

R & '
0pn=% 3 b To7 ik (B (B, (2.13)
[: :

which follows from subtracting from U(,r) the zero expression
L NN,

5 3 S it (B, 1) Yo 1) 25X g -

h=li=1k=10

'Throughout the paper we will assume subsets of the following regularity conditions on the
sampling design.

In the following 3  denotes the 6-way sum of units selected to the sample and
hik #¢imes

E denotes the 6-way sum of units in the finite population, that is,
hik# ¢jme Pop

k=1..,Ny, k=1.,Ng, i=1,,Ny, j=l..,Ny,
he=1,.., L.



Co: f=lim,n/N20 as n > .

1 N
C): max =O(—J as n — .
hik 7 pik n

Cy: %—),u asN - 0.

1 7 hiktjm — 7 hik 7 ¢ N
Gy — P ol — 7 o Z|as no,
M hik#tjmePop 7 hik 7% 0jm n

Remark 2.2 If we impose f >0 in Condition Cywe ensure that the relationship between the
sample and population number of psus remains the same as we increase the number of psus
in the population towards infinity. For the asymptotic properties shown in this paper we
assume [ 20. Condition C; means that as n— o the selection probabilities are

approximately of the same magnitude. If the first stage selection probabilities are proportional
to the size of the psusin the stratum, and the second stage selection probabilities are

SRSWOR, then C| means that no psu is of disproportionate size. Condition C5 implies that
the number of units in the psus in the finite population remain bounded as the numbcr of
clusters in the finite population increase (N — ). Condition C; holds for SRSWOR and for

N
a design with size measures Z;and probabilities 7; ~nZ; /3 Z; with Z= 3 Z;/N — zas
J J=1
N — o and Cj holds for SRSWOR. C; and Cy together are sufficient for obtaining design-
consistency of HT sample estimators in general.

3. COUNTINC PROCESS THEORY IN THE PRODUCT SPACE

In this section we show that the SPLS process is also a martingale with respect to a filtration
where the sample
varies at random as well. The product space determined by the proportional hazards model

given in Section 2 and one stage sampling designs is given by (QxSy, IxC(Sy), Py.p)

with probability measure defined in the elementary rectangles by:
Py m(sxF)= [p (s,0)dP(w), seC(Sy), Fe3.
If the sampling design is two sI:age, and the model probability P, is the conditional
probability given the design prior information {Z (w) = z}, then the product space determined
by the modcl and the two stage sampling design is (Qx Sy, IxC(Sy), Py m) where
probability measure is defined in the elementary rectanglcs by:
Py m(sxF)= Pn(s)-Pz(F), seC(Sy), Fed.

See Rubin-Bleuer and Schiopu-Kratina (2005), Example 4.2 for a description of the product
space where the modcl probability is conditional to the prior information. Next we define the
tools of counting proccss theory in the product space.

3.1 Filtrations



Martingale and counting process theory is developed on a stochastic basis, that is, a
probability space with a filtration. A filtration is an increasing family of right continuous sub-
o -algebras. With the new indexing, the filtration corresponding to the counting process
n () in the proportional hazards model s given by:

S, = o (pig W)y Ty (), VSES Ny, 1SiS Ny, 1Sh<L, 0<u<i).
We define here a stochastic basis for the product space. The family of sub- o -algebras defined

by{Sd’m =C(Sy)x3,, t20}is a filtration; it is increasing and right continuous because
{

{3,, 120} isso.

3.2 Sample Counting Processes and Martingales
: ' X L Dy Ny
We define the sample counting process 7(t,5,0)= ¥ Y Y npix (1, @) - Ly () 7wpip. 7 is a
h=li=1k=1
counting process in the product space with respect to the filtration @fim 2 0} , since each
term 1s the product of a counting process with respect to the original filtration {‘3, i = 0} in
(Q,3,P) and the factor Thik which 18 C(S y ) -measurable. Let

Mpix () = My (B.1), k=1,.,Ny;, i=1..,Ny, h=1,..,L be the martingales associated

with the 7,4 in (Q,3,P) with respect to {3, :#>0}. They are also product space
martingales with stochastic basis

Qam» C)XT, IE™ Py ).

Then the martingale sample process defined by:

. L NpNy;
M(B,t,5,0)=3 3 3 Mpy (B,t,0) Ly () mpix 3.1
h=1 i=1k=]

is a martingale in the product space. We can casily verify the three necessary conditions (see
Definition 1.2.8, Fleming and Harrington, 1991, p. 22) Each term of Misa martingale since
forall hik, k=1..,Ny, i=1..,Ny, h=1,.,L, wehave:

1) My (1, ) iy () gy is adapted to {59 212 0},
2) Eg (| My (1,0) - 14 (8)/ wpjp |) < oo forall ¢ <oo, and
3) E g m(Myig € +10) Lig () hip | 5™ = (Ui () i VE g (Mpig (¢ +10) | T,)
= Unik (Y Zpig WMpi (1)~ for all
t>20, u=>0.
Thus#(¢), the product-space martingale My (¢, @) i (s)/ 7py  and  the model

martingales My (/) are martingales with respect to the filtration {S,d” 2z 0} in the product



space. Now, if each martingale M, (¢) k=1..,Ny;, i=1..,N,, h=1..L has absolute
continuous compensator
fo Ynix W) explBoX pix Mo(u)du, then the sample process M) = 7(t) - /i(t) is a
martingale with

A(Bot,s,0) =M - |5 SO (Bu)Ag(u)du. (3.2)

Since Ed’m(;i(!))<oo, ;1(0)=0, then by the uniqueness portion of the Doob-Meyer
Decomposition Theorem (see Fleming and Harrington, 1991, p.37), /3(!) is the absolutely

continuous compensator of the product space martingale M(t) .

3.3 Predictable co-variation processes

In order to complete the tool bag for counting process in the product space, we need to ensure
that the counting processes yield martingales such that for any two of them their predictable
co-variation processes are zero. This property is crucial for calculating co-variances of the
stochastic integrals under consideration, and for applying the Central Limit Theorem for
Martingales.

We say that {n, (1), k=1 ,Ny, i=1..,Ny, h=1,.,L}are multivariate counting

processes, if not two of them jump at the same time. If the sequence of processes above are
multivariate counting processes, or if the processes

{Anpi (1), k=1, Ny, i=1..,Ny, h=1,..,L} are independent random variables, we
have that the following predictable co-variation processes are zero:

(Mpik » Myjm )(£) =0, (3.3)
bl on d 2 5 oF % ans dabr= Laas i =b.mMm el =lmmwl; ¥20 (see Flaming
and Harrington (1992) Lemma 2.6.1 p. 81). If the
i (@), k=1 ,Nyi, i=1..,Ny, h=1,.,L}are multivariate counting processes in the
super-population, then the sampling processes
ik O pie (S) whiges k=1.,Np;, i=1.,Nyp, h=1,.,L}are also multivariate counting

processes in the product space. Independent failure times in the super-population, with
continuous distribution functions yield multivariate counting processes. However, if failure
times are not continuous, and the {7, (t)} are not multivariate counting processes,

independent differences
{Anpa (), k=L, ,Npi, i=L. Ny, h=1,.,L}
do not yield independent differences in the product space of the form
{Anpi O pix () g, k=1 ,Np;, i=1.,Ny, h=1,. L}

Instead we have:

Lemma 3.1 If the counting processes {n,y (1), k=1,..,Ny;, i=1..,Ny, h=1..L}are
stochastically independent in the super-population (model) space, and the corresponding
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sample martingales are{My; (N pit () 7pip, k=1 Ny, i=1L. Ny, h=1.,L}

then the predictable co-variation sample-processes satisfy (3.3).

Proof: We follow the argument of Lemma 2.6.1 in Fleming and Harrington (1991), taking
into consideration that calculations are with respect to the product space filtration

(397 = C(Sy)x S, 120).

4. A REPRESENTATION OF THE SPLS

The sup-norm convergence in probability of a sequence of bounded monotonic random
functions has been previously used by many authors and we state it below in Lemma 4.1, for a
sequence of probability spaces so we can use it for problems posed in the joint design-model
space. One consequence to Lemma 4.1 for example, is the sup-norm convergence of the
sample empirical distribution functions, (Rubin Blcuer, 2003), which in turn yields tightness
of the sample weighted log-rank statistics (Rubin Blcuer, 2001). Of interest to this article is
another consequence of the lemma, Theorem 4.1, the sup-norm convergence of the risk
functions involved in the sample partial likelihood score under the proportional hazards
model.

Lemma 4.1 Let {Gp(f):—o<t<o} be a sequence of random functions defined on

probability spaces (€2 .3y, Py ) with sample paths that are monotonic bounded functions.

In addition, they are right-continuous if non-decreasing, and left-continuous if non-increasing.
Let {g(¢1):—wo<t<w»} be the non-stochastic bounded monotonic limit in probability

of{Gy(t):—o <t <o}, such that Gp(1)-g(t) >0 in Py for all ¢ and either
Gn(t-)—g(t-)—> 0 in Py for all ¢ if non-decreasing, or Gy (1+)—g(t+) >0 in Py for

all ¢ if non-increasing. Then sup |Gy (1) —g(¢)|[=> 0 in Py.

t
Proof:
We use the same argument in the proof of the Glivenko-Cantelli theorem for the census case
but applied to convergence in the product space (see the uniform convergence of the sample
empincal distribution function in Rubin-Bleuer (2003 a), also the argument used for the
S functions in Fleming and Harrington, 1991, p.305).

Theorem 4.1 We assume the proportional hazards model given in (2.1) a), b) and ¢) and (2.2),
the design conditions Cy, Cy, C,, C3 and the following model conditions:

My: The covariate  vectorsX,,are constant (in time) and  bounded:
sup
hik
M, : There exists a neighborhood A of figand, respectively, scalar, vector and matnx

Xhik\SB as. as N - o,

functions 5@, s and s'?) defined on Ax[0,7] such that for ;=012 and for

0<t<r, BeA wehave:



5 sD(p0= tim L £ Y E 1x8i 0. F
1) s ty= lm — t)-e hi .
NowM p_pi-| k=1 ’"k -

L NyNpi ) "
i) s (B,14) = llm L. % L Z’E ngj-Yh,-k(H)-e’BY’"" ;
oM p=1i=1k=1
M3: There exists a neighborhood A of Bpand, respectively, scalar, vector and matrix

functions s,,(o), s,,(')and s,,(z) defined on A x[0,r] such that for j=0,2, and for

0<t<r, feA wehave:
L Ny Ny n

(N - ®) BX
n 5 A4 lim E aX & - Y, o(tYe” "k 5 i

' Nh Nhl
i) s, (B,14) = Jim LSSy {X,“f Yy (1) e thk}/;r,,,-k.
oM p=ti=1k=1 N

T
M 4 : The time 7 is such that [Ag(f)dt < .
0

Msq: liminf—l—zzz P BEN ) AL
Noo Nj ik

We also define the matrix functions vand v, on A x [0,7] by

@ (0) ) M’
By~ S B0s (ﬂ(:))) Lipn0 @,
(B0

(4.1)

DB 05, Vo Pen o 0wl 0,

- . s _
v (B.t) ROy g ,)(S(O)(ﬂ’,))z ((O)(ﬁ t))z (B.1)+ (“”(ﬁ,r))z sO5.0)

Then we have:

s, 055D a0, sV, t+)—>v(/)(ﬂ t+), S‘f)(ﬂ t)—-)v(/)(ﬂ.t),
- S(’)(,B t+)—>s(j)(ﬂ,t+)

(4.2)
as N >, j=0, 1, 2, foreach ¢20.
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P

sup|  S/(B,0)-s/(B,0)]>0 j=0,1, 2 asN >, (4.3)
0<i<r, PeA
w, . Fym
sup| S/(B.H-S/(B,0)] >0 j=0,1, 2 as n> o, (4.4)
0<t<r, PeA
n G() Otgalse i
Sup _S”_I_ (ﬁ’t)_sﬂ! (ﬁ’t)_)o» .] =0a l, 2 as N—)CO, (45)
o<i<r, feAlN
B oark . Eyom
sup —Sz(r’)(ﬁ,t)—s;’)(ﬂ,t) =0, j=0,1, 2, as n > o, (4.6)
o<t<r, peAlV

2 |
25O =s0B,0 and ——sO B0 =sP(B1) for 0<1<7, feA, @)
op op*

sOB,)2a(r) ) 0 forall 0<r <7, B e Aand the families of functions s*/)(-¢)and

.s-‘T(j)(-,t) 0<t<r, j=0,2, areequicontinuousat f, (4.8)
e dm
sup VA, O=v(p.0 =0, as n— oo, (4.9)
0<r<r,feA
n o~ Pd,m
sup | =V (B.t)-v.(B,)] = 0, as no> o (4.10)
0<t<r, BeA

Remark 4.1. Under SRSWOR, s)(B8,1)=sY(B,1), j=0, 1, 2. Condition M,

implies that E,,,{Xg?l{ Yhik (t).eﬂXm

}SBl <ooforall h,i,k, N. This enable us to

establish equations (4.3), (4.5) and (4.6) and the equicontinuity of the s(j)(ﬁ,t) and
sgj)(ﬁ,t), j=0, 1, 2 functions. We note also that Condition M4 follows if

0<P(T <7|X =0)<1). Condition M5 is necessary to ensure that the s(o)(ﬂ,t) function is

bounded away from zero and it would follow, for example, from a study of fixed length of
time 7 , where the censoring variables are continuous until time ¢ = 7 and have densities of the
form outlined in Section 2.1. The proot of Theorem 4.1 is in the Appendix.

Next we state below Lenglart’s inequality, first proved by Andersen and Gill (1982), and
shown in Lemma 8.2.1 of Fleming and Harrington (1991), since it is an essential part of the
proof of Corollary 4.1, Theorem 5.1 and lemma 6.1 below. The proof can be found in Fleming
and Harrington (1991).
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Lenglart’s inequality. Letn be a univariate counting process with continuous compensator
A.Let M=n—-A and let H be a locally bounded predictable process. Then for all &, p
positive and any ¢t 2 0,

Pd,m( sup

0<u<t

u 5 ! )
[HAM| > p) < 5+ Py ([H2d4)> 5).
0 P 0

Corollary 4.1 Approximation for the normalized sample partial likelihood score process
under the proportional hazards model. We consider the SPLS as a process in the product
space, where both the sample s and the outcome weQ of the model variables are random.
We assume the proportional hazards model given in (2.1) a), b) and c) (we do not assumc d),
i.e., the stochastic independence of the censored lifetimes) and (2.2), as well as model
conditionsM|,M 5, M, and M5. We assume the design described in section 2 along with

design conditions Cg, Cy, Coand C3. We also assume that 7is the upper bound of the

censoring variables, so U(f,)=U(f,7). We express the SPLS function as in equation
(2.13), that is, as a sum of terms which are martingales under the model given in (2.2):

L Nj Ny,

U(p,7) = P 137 hik (B, w)dMpi (10,

where for brevity, My (1) = My (Bo,u) and w(B,u)is as in (2.12). Now let the process
U(B.7)be defined by

- L Np Ny
UBr)= 3 ¥ 3 Wik (B.10)dMpy (1) (4.11)
He=li2) =
where
V hik (ﬂ.U) =L};[”;ﬂ-(Xhik —e(ﬂ,u)). = 1,...,Nh,-, i= 1,...,Nh, =1 . .0 (4.12)
ik
Then we have:
%(O(ﬂ,r)—ﬁ(ﬂ,r))=o‘pd’m (1, n— . (4.13)

The proof of Corollary 4.1 is in the Appendix.

Remark 4.2. The approximation (4.13) holds for every0 <t < r, and this means equivalence
of the finite dimensional distributions. Here we have not proven tightness of the process in
0<t<r, and thus we cannot conclude from Corollary 4.1 that the processes

{ U(B,1), 0<t< T} and { (7(,3,{), 0<t< r} are equivalent in distribution. However,

under the correct assumption of a correlation structure in the model, tightness would follow
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from the same arguments we use in Section 5 to show tightness of the process
{ U( G.1) Q1 S 1’} directly. Also we remark that this is a different proof of that in Rubin-

Bleuer (2003) done anew with the aim to obtain the approximation without assuming a
correlation structure in the super-population.
5. WEAK CONVERGENCE OF THE SPLS

For each 7, 0 <t <00, we denote by ﬁN () the solution of the estimating equation derived

from the SPLS process U(,B,t) =0.If t=0, we write ﬁN = ﬁN(oo) as established in the

introduction. In the developments below, for simplicity of notation we write ,B = ﬁ n(t). Let
: iy dij(u)
b A)=|]— 14 JU)—, and let

(B0 =] o 2 (fsu) .

(f.4)= £, (p, t)—IV(ﬁ ).

Theorem S.1. Assume the PHM given in (2.1) a), b), ¢) and d) and (2.2) and the design stated
in Section 2. Assume the conditions of Theorem 4.1 and assume that the matrices

' {
Z.A8.0= 3v,,(ﬂ,u)s‘°)(ﬂ,u)zo(u)du and X,,,(,1) = [v(Buw)s' D (B Ag()du  (5.1)
0 0

are positive definite, for 0 <7< 7. Then the normalized vector sample partial likelihood

score process (SPLS) {J}M;OS,ST} whose value at time ¢ 1s
M

UBo,t) _ 1 L Nl
¥ (f; )_Thzl,z j{("hik(ﬁOv“)}d’lhik(“)’

W converges weakly in D[O,r] to mean zero r-dimensional Gaussian process such that each
component process has independent increments and the covanance function at ¢ for

.l .
components ¢and ¢' is—Z, (fg,1), ¢ with
H

¢
LBy = [va (,Bo,u)e,f's(o)(ﬂo,U)ﬂo(u)du, (5.2)
0

ﬁ = ﬁ(z), the solution of the estimating equation given by the SPLS function J;M, isa
M

consistent estimator of fy, for 0<s<r,

(5.3)
e X, (B.1) is the asymptotic variance of the SPLS and
sup [£, (B2 (,Bo,t)| 250 as now, (5.4)
0<t<r

e X, (f,1)is the asymptotic variance of the Partial Likelihood Score process in the census case

and

Pdm
- Oasn—oowo. (5.5)

I(ﬂ I) Em(ﬂoJ)

sup
0<t<r
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Statement (5.5) means that the information matrix converges to the same limit as that of the
census case, but it does not coincide with the variance of the SPLS. The proof of Theorem 5.1
is in the Appendix.

Remark 5.1 Note that the model conditions imposed by Theorem 4.1 and Theorem 5.1 are not
too different from the conditions imposed on the model by Fleming and Harrington, 1991,
Theorem 8.4.1, for the partial likelihood score function to converge. The extra model

conditions M, and M3 stem from the generalization of that theorem to the case of non-
identically distributed failure times and to the joint design-model product space.

Remark 5.2 We have two comments about the proof. First, we do not use the approximation
to the SPLS of Corollary 4.1 to show weak convergence of the SPLS process, as Lin (2000)
docs. Second, in the course of the proof, depending on what is most convenient, we will use
either that the model martingales M, associated with the counting processes 7,4 are also
martingales in the product space with respect to the filtration bf’m 4 20} or that both

product space processes 7 and HMare respectively a counting process and its associated

martingale with respect to the filtration {‘3;“" - O}.

Corollary 5.1
The solution B = fBn(t) be the solution of the SPLS estimating equation evaluated at ¢,
which we call maximum sample partial likelihood estimator, is asymptotically normal and

- | -
Vulf = po) = N2 Bo.0%2 (Bt (oot (5.6)
where im and '2‘.,, are defined in (5.1). The proof'is standard and given in the appendix.

6. A ROBUST VARIANCE ESTIMATOR

When working within the design-model space, we can define at least two different vanance
estimators, , denoted here by v (defined in (A.6.13)) and v, (defined in (A.6.12)), for
sample estimating equations when the terms have zero model expectation and are
stochastically independent in the model space. Both variance estimators are consistent if the
correlation structure is correct. As their names indicate, v, has the smaller variance while

Vyobust 1S robust against misspecification of the correlation structure of the model space. The

corresponding definitions and a detailed illustration are given in the Appendix (see “Robust
versus efficient variance estimators’™).

Lin (2000) considered the SPLS function U(fy) = U(fy,7) normalized by the constant ﬁ ,

where M is the number of units in the finite population. He sets

UBo) _UBo) -USo)  Uho)
M M M
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and uses the approximation

Ufo)-UBo) __1 ¥ 1(s)

where
sO (g
Ui(B0) = I (Xit0) - PO - explgo X Mo oar - (63)
S (B 1)

In the following, we use Lin’s (2000) notation i =1,2,.... M, for the umt labels, without the
design classification into stratum, psu, and secondary sampling unit identification. Equation

(2.13) and Corollary 4.1 shows that the approximation (6.2) is valid if the semi-parametric
model for the hazard function is correct, and it does not require specification of the correlation
structure of the model. Lin (2000) proposed as variance estimator of (6.2) the statistic

1 &p 5" Hagy =
Vi == gy _Ui(ﬂ)Uj(ﬂ), (6.4)
iesjes ij
where
= & . B2 . dn
Ui =Rl - e(ﬂ,:){dn,- -V exp( X)) — o — |. (65)
MS© (4,1

In Lemma 6.1, we show that v;,, is asymptotically unbiased.

Lemma 6.1. We assume the conditions of Corollary 4.1, as well lim%>0 (/>0 in

Condition Cy) and - Po=0 ) as M — oo, then vy, is asymptotically unbiascd.

1
Fim (m

The proof of Lemma 6.1, which uses Lenglart’s inequality, can be found in the Appendix.

Remark 6.1. Note that with —— as the normalizing constant, the result is invalid if the first

IM

stage sampling rate is negligible (i.c., if Iim% = @)

On the other hand, Theorem 5.1 shows that if in addition, the censored lifetimes and
covariates are stochastically independent, the limiting variance of each of the terms in (6.1) 1s

lZ,[, lZ,, —Zand Z,, respectively. Morcover, ﬁiﬂ, ﬁf.,, ~3%,,and £,,, as defined
n

L | n

in (5.4) and (5.5) are the respective design-model consistent estimators. Two questions arise:
. Ne = . )
1)Yhow does vj;, compares with —Z_  —X_ when the correlation structure of the model is
n

correct, and

2)is vy;, robust as a vanance estimator of the normalized SPLS function?

Lemma 6.2 below answers the first question and we can make the robustness argument if we
. . n . 1 . n
work with the normalizing constant )Y (instead of ——) and assume hmﬁ =0 as n > o.

M

Indeed, let us express the normalized SPLS function as the sum of two terms:
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&[U(ﬂo)]z J;{U(ﬂo)—U(ﬂo)}+ JZ [U(ﬂo)} 66

M M M| M

The limiting variance of the normalized SPLS in (6.6) is now l2’.,,(,30,1)whereas the
H

limiting variance of the first term in (6.6) isl{Z,,(,Bo,t)—f-Zm(,BO,t)}. Now we write
u

Lin’s (2000) vanance estimator as

VLin = Veff t Vresid (6.7)
where
0 A
Veff:———Z(——l) ﬂ (6.8)
M2 ics 7 7T
and
v._Lzﬁg.‘g.‘ 6.9
resid = 5 (3 j(,B) (6.9)
M izjes Tij

Lemma 6.2. We assume the conditions of Theorem 5.1. Then we have:

N - n e 1
Veff = _AZZH(/BOJ) “Hzm(ﬂO»t) hie OPd,m (ﬁ) as n—x. (6.10)
If we also assume
1 N o
Cy: max —=0(—)“ as n — oo,
iePop,jePop 7Tjj n
then
1
Vresid = OPd_m (ﬁ) as n —» oo. (6.11)

Note that with the new normalizing constant we have, by Corollary 5.1,

) - bo = Opd J_). The proof of Lemma 6.2 is in the Appendix.

Lin’s (2000) variance estimator is of the type v,,p,, Whereas the variance estimator proposed
here is of the type v,y . Lemma 6.2 implies that the variance of the first term in (6.6)
proposed by Lin (2000) is consistent:
1
Viin —);Z,,(,Bo,t)—gzm(ﬂo,t) as n— .
From the discussion of robust versus efficient estimators given in the Appendix, the variance

of vy, is always larger than the variance of % i,,(ﬂo,t) — —;Tim(ﬂo”)’ under the correct

model for the correlations of the units in the super-population, and hence v, is less efficient.
On the other hand, if the second term in (6.6) 1s negligible we could say that v;;, is “robust”
in the sense that it 1s an asymptotically unbiased estimator of the variance of the normalized
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SPLS function even if the correlation structure of the super-population model is not correctly
specified.

7. CONCLUSIONS

Data from most complex surveys are subject to selection bias and clustering due to the
sampling design. Hence, results developed for a random sample from a super-population
model do not apply. Ignoring the survey sampling weights may cause the divergence of the
involved processes. The data is subject to a two phase randomization and accounting for this
means working in a “‘product space” that includes the model and the design.

The design conditions we assume refer to the order of magnitude of the sequence of selection
probabilities {”;Xk } and of the joint selection probabilities {”/ﬁkfjm } as n — oo (see conditions

Cp to Cyin Section 2.2 and C4 in Lemma 6.2). They are mild conditions in the sense that are

verified by a SRSWOR design and that are minimum sufficient conditions for the Horvitz-
Thompson estimators to be design-consistent. We distinguish between three sets of model
conditions:

General regularity conditions: A series of baseline model conditions, e.g., (2.1) conditions a),
b)and c), and M|, M,, M3, M4 and Ms.
Proportional hazards model: The model specification for the hazard function:
ik U1 X ) = A (@) - exp(By - X )
k=1.. Ny, i=1..,Ny, h=1..L (givenin equation (2.2)).

Correlation model: The model specification for the correlation structure, that is, the censored
lifetimes and covanates are stochastically independent (given in equation (2.1) d)).

Given the censored lifetimes T, with corresponding covariates X 4 , recall that the S () and

the 7 -weighted S ,(,j ) are processes which are functions of the units at risk at time ¢, and that

77 is the sample counting process assoctated with the proportional hazards model and the
design.

Under design conditions Cy to Cj, and general regularity conditions we obtained the
following:

Result 1. Assuming in addition the proportional hazards model, counting processes tools
were developed in the joint design-model “product space”.

Result 2. Assuming in addition the proportional hazards model, the normalized “survey
sample” partial likelthood score process (SPLS) function

Vn s An $D(B, Ti)
YO0p="" % Shu Xhik‘%:,l ! ¥ hik
L hikes SOB. Thix)

is approximated by the Horvitz-Thompson sample estimator of a total:
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Result 3. Assuming in addition the proportional hazards model and the correlation model, the
normalized SPLS process converges weakly to a Gaussian process in converges weakly in

D[O, r]’ to mean zero r-dimensional Gaussian process with covariance function at ¢ given by:

1 1¢ (0)
L s e (Bor1) = vz (B )s® (B, u)g ()
H Ho

where the v, function is the point-wise limit of a combination of § () and 7 -weighted
S,(,j.)ﬁmctions and yzlim%as n-—»o0.

Result 4. Assuming in addition the proportional hazards model and the correlation model,
the matrix

N - nt. )
ﬁz,’r(ﬂ(}’t):ﬁo = (Bo.uMdn(u)/ M

is a design-model consistent estimator of the variance of the normalized SPLS process.

Result 5. Assuming in addition the proportional hazards model and the correlation model,
and denoting by ﬁ, the maximum sample partial likelihood estimator of S, then

\/;( ﬂ - Po)is asymptotically normal with mean Zero and variance

iz,;‘(ﬁo)z,,(ﬂmz,;‘ (Bo), where

14
% (B0) = [v(Bo,w)s' ¥ (Bo, o (w)du .
0

Result 6. Assuming in addition the proportional hazards model and
J;(ﬁ—ﬁo)=0pdm(l)then viin. the variance estimator proposed by Lin (2000) is

asymptotically unbiased. The variance estimator v;;,, when the SPLS function is normalized

n . . ; . Y .
by | T is robust against misspecification of the correlation structure when the first stage

sampling rate is negligible (% —> O] and the PLS is bounded in probability.

Result 7. Assuming in addition the proportional hazards model, the correlation model, and
design condition C, then the variance estimator of the SPLS proposed by Lin (2000), when

. n 1 —
normalized by 1 attain the approximation
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N 1
Viin =HZ”(’BO’[)+0P¢1,M($] as n—> .
Result 8. Assuming in addition the proportional hazards model and the correlation model,

N ; . .
then k2 L . (fo,t) is more efficient than v, .

Result 9. All of the above results are shown for a particular estimator of PLS, an
“approximate” HT estimator of the PLS process (with HT estimators S ofthe S processes),
which is design consistent under design conditions C} to C5. But the proofs hold for any

design-consistent estimators of both, the § and the PLS processes, under a “without
replacement” design.

Result 10. All of the above results are valid for both the unconditional and the conditional
(given the covariates) proportional hazards model, since we assume that the covariates are
uniformly bounded.
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APPENDIX

Proof of Theorem 4.1:
The point-wise convergence of the S processes (Statement (4.2) of the theorem) follows from
assumptions M, and M3, the independence of the units of the super-population, the

WLLN’s (see Chung, 1974, Theorem 5.1.1) and the fact that the terms in the s (B,1), in the

7~ weighted S,(,j)(/?,t) and respective evaluations at f+  are uniformly bounded

in0 <t <wand a compact neighborhood of ;. Under design conditions Cy, C, and Cj,

the HT sample estimators S‘U)( LB, 5‘(])( ,t+),l$‘(j)( ,H)and iLSA‘U)( ,{+) are design :
N T N "
consistent. Indeed, for ease of notation, set zj;; =X;§1{ Vi (Dexp{fX i} and T to
hik # €jm
denote the 6-way sum over the indices. Then Ed(%ﬁ‘,(,j)(ﬂ,t)—%S,(,j)(ﬂ,t)) =0 and itg

design variance is equal to

1 L NaNw (1 1 (n)?, 1 T hikejm = T hik 7 tjm 1 n\?
— i L2 -1 51 ] Zhs B 2 ~ | ZhikZem
M? not ==t \Thik ) M? hikztim  ThikToim  Thik T gm \ N

- 0(&)
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as n — o, bounded this way by the design conditions given above and by the fact that the
zi are uniformly bounded. The design consistency of the other HT sample estimators follow

from the same considerations. The design consistency and (4.2) imply the point-wise
convergence of the HT estimators to the non-stochastic s functions in the probability of the
product space (Fy ,,): convergence in design probability implies convergence in the

probability of the product space (Rubin-Bleuer and Schiopu-Kratina, 2005, Theorem 5.1).

The uniform convergence in probability of the §- processes and their sample estimators,
j=0, 1, 2,is established along the same lines. We first note that as functions of

t, 0<t <oo, all of these functions are left-continuous and non-increasing, hence Lemma 4.1
and the point-wise convergence in probability P for the § processes and in probability P, ,,

for the $ processes, implies uniform convergence in 0 <t < 7 in their respective probability.
The uniform convergence in a compact neighborhood of ffor (4.5) follows because the
functions

sup | =S (B,0-s (B0, j=0,1, 2

0<e<rt!

converge to zero as N — o0, and are continuously differentiable with respect to £ with
uniformly bounded derivates (if both fand the covariates X j;; are uniformly bounded). The

same argument holds to obtain the uniform convergence in a compact neighborhood of fgin
(4.3) to (4.6).

Statement (4.7) follows from the Dominated Convergence Theorem and the uniform bounded
character of the covariates X j; which are sufficient to justify the interchange of
differentiation and expectation.

That the function 59 (B,t) 1s uniformly bounded away from zero (statement (4.8)) follows

from adapting the argument in Fleming and Harrington (1991), Theorem 8.4.1, p.306, to the
case of non-identically distributed model variables. The equicontinuity of the functions at
= Pofollow, also using similar arguments to those in Fleming and Harrington (1991),

Theorem 8.4.1, p.306:

i . L Nh N,”- . - ! .
sups /) (B 0) 5P B, < lim = 5% 3 Epi| X (elfm ol ol
0<it N—ooM p=yi=1k=1

<oayelfn Aol 1y 0 a5 g, - By >0,

since the covariates are uniformly bounded. The same arguments hold for the

functionss,,(j)(ﬂ,t), J = 0,1,2, under design condition Cj.

Statements (4.9) and (4.10) follow from the uniform convergence of the § -processes and

from the fact that s (4, 1) 1s uniformly bounded away from zero.

Proof of Corollary 4.1:
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The functions defined in (4.11) are locally bounded ‘3;1"" -predictable processes (note that in
the model space, the (X —e(B,u)), k=1..,Np;, i=1L.,Ny, h=1.,L, are locally

bounded 3, -predictable processes).

HUBD-UBD) _n

In L S L@ (SBw S (A
M M p=tistk=t T o So(ﬂ,u) S’O(ﬂ,u)

}thik (ll) :

=ﬂ;{3‘(ﬂ,u)_ $'(B.u)

F() - (A4.1)
Mo SO(B.u) S‘°(/3,u)}d -

The process M(u) in (A.4.1) is the martingale defined in (3.1) with compensator A(u) as in
(3.2).

Design conditions Cj, Cyand C; imply that point-wise §U) (,B,t)—S(j)(,B,t) — 0 and
3(-i)(ﬂ,t+) s (B,t+4)—> 0 in Py ,,. Lemma 4.1 imply that this convergence is uniform in
Qs i By 5. 1 s© (4,1) is bounded away from zero uniformly, then S(O)(,B,t) and

§O (,t) are bounded away from zero uniformly on 0 <7<7. Hence

al 1 P,
sup |{‘?0(ﬁ’u)_so(‘6’u)}l i',() as n — o0, (A42)
osuzr SO(Ba) SO(Bu)

Now we can show that the martingale in (A.4.1) converges to zero in the probability of the

product space. Using Lenglart’s inequality, and since M(u)is a martingale and the integrand is
a bounded predictable process, we have:

P[I.m[

r ol Al
i S SHB s
Mo s%pu) $%B.u)

| ol
n S B S (ﬂ,u>}zd/~,(u)25]

1)
2plE—+Pip —
pJ R [Mzo S%p S°pw

p
(A43)
By design condition C5 we have
B e §® = hin
P dA(t) = Na SY(Bo,t)Ag(t)dt = Opd‘m (N) as n — ¢, (A4.4)

Equations (A.4.2), (A.4.3), (A.4.4) and condition M, imply that the second term of the right

hand side of (A.4.3) converges to zero as n —» . Hence the first side of (A.4.3) also
converges to zero and the corollary is proven.

Proof of Theorem 5.1: we follow arguments similar, but not identical, to those used in the
version of the census case theorem shown in Fleming and Harrington (Theorems 8.2.1 in
p.290, 8.3.1, p. 297 and 8.4.1, p. 305) for the weak convergence of the partial likelihood score
process and the consistency of the maximum partial likelihood estimator.

Proof of (5.2): Weak convergence of the SPLS process.
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In the same¢ manner of Theorem 8.2.1 mentioned above, we must show that the process

{J; U(ﬂO")' 0<t< T} verifies the conditions of the Central Limit Theorem for Martingales
M

given in Theorem 5.3.5, Fleming and Harrington (1991). Consider again the martingale
representation:

U( ) _An
Yn B0 X5 g sty
M M ik o
with the functions wy;(u), k=1,..,Np;, i=1.., Ny, h=1,.,L defined in (2.12) with

B =P and M, (u) =My (Bo,u). Let  piup the £-the element of the vector of r
components ¥, (the number of components of 7, is the number of components of the

vector of covariates X ;. ).
The ¢ -the element of the SPLS vector process is given by

0 Ly W, oyt
ﬁ%zgh&z 2 | Wik ()M (1)

=1 k= 0
For positive £ we define
U ) W LN, N,
Mz T Z . J—Wlaxkf(")l{(é w) J—Wlaxk[( )> 5}‘17"{/11A(“)
M h=li=1 k:l() M M

To prove the statements in (5.2) we use the Central Limit Theorem for Martingales and we
show the following statements:

a) A;Z <(](‘,.‘;(/60")’0(’5(,00,'»(1)—*)0 n Pd,m n —> 00, f’,f':l,m,r, g)O, OSIST,

no - . 1 '
b) F<U€(ﬂo,’)aU€'(ﬂo,')>(‘)—*;Zn(ﬂ,f)e,e' as n—ow, {0 =1..,r, 0<t<7,

To show a), consider a positive numbere and ¢ =1,...,», we follow the argument of Theorem
8.2.1, part 1, though the bounded covariates make some steps trivial. Using the inequality

la—b* 1{a - e} < ala]® Haper2}+ 4 1{pher2),

valid for any real numbers a,b, we have

= U .e(Bos 1), Ufs(ﬂo,l))———z ¥ >:J g’ IWn "””""( Yk W) o oy (e POX0 40 ()l
M M h=li=l k=lg "*
Ny Ny A
<_4"7 fx_: i' f’; iI’“‘ (S) ﬁM > &/ )Yy (“)eﬁoxhﬂd Ao (u)du

M? h=lislk=1 0 7, ”'“ M T hik

‘\/; €¢ (u)lhik (S) >g/ Z)Yhik (u)eﬂoxhlk! ﬂo(ll)du (AS l)
hik

38

4n L NpNp t 1, (s
NN ’”‘” HOU S
M “ h=1i=1k=1 Oirhk




Jn

Since X ke is uniformly bounded and design condition C, implies that — % < O(—l—]

M JN

as n—» o, we haveEy ,, lJ;X;"-kg lhik(s)l — 0 uniformly in hikas n— . A similar
| M Thik |
s s
argument used to obtain (A.4.2) yieldsé; = ,([0) —» (€O) uniformly in ¢, 0<¢<rin the
8
probability of the product space. Thus we have E m{%e (u )Ih’k () } — 0 uniformly in
7 hik
hik as n — .
Hence both
Vi L) Jn ik (5)
& 2¢l/2:=0 1) and /{|—¢é u) ks eyt =0 1) as
{| M hikf o | Pd‘m( ) M f(ﬂo ) Thi Pd,m( )

n—» oo,
uniformly for all hik¢ and t, 0 <t <. Hence the two terms in (A.5.1) are bounded by

§‘-’< )

4nt .
OPd’m (])‘Hn({sg) (u)/lg(u)du + (}& (1)—] S(Z) (u)lo (u)du :Opd,m ) as n — oo,

SO0

M §(0 S(O)(’) Op, . (1) uniformly in ¢, 0<t<rtand the
(1)

since ﬁé’(’? )= OPd‘m (h,

baseline function is integrable in 0 <t < r. Thus we obtained a).

To show b), let 7,/ =1,...,r, 0 <t <o0,then the predictable co-varation in the product space
yields:

n - n n L 3 PoX,:
W(Ue(ﬂo;')s(/f'(ﬂo,'»(f)=—M—2h% {)V/hikg(u)"//hikg'(u)'Yhik(u)'e 0 hik Ao (u)du

ik (5
_IM hik hk (X ke =80 Bo. ) (X pixer =602 (Bo))- Y () -0 ik 3 )
0 i ”hk
MUy i i )
h ﬁ({% Va ('BO’“)M'S(O)(ﬂosu)ﬁo(ll)du .

(A.5.2)
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Statement b) above follows from the uniform convergence of the %V,, (fo,u) matrix in the

product space probability (statement (4.10) of Theorem 4.1) the bounded character of the
function V”(ﬂo,')(’g's(o)(ﬁo ) and Condition M4 of Theorem 4.1.

Proof of (5.3): Consistency of B

Here we also follow the proof of Fleming and Harrington (1991) for the consistency of the
maximum partial likelihood estimator, but we deviate from the proof slightly at the end. We
base the proof, as Fleming and Harrington (1991) do, in the property that states that if a
sequence of concave functions gy (8,7,5)of B, converge in probability (£ ,,)to a concave

function g(/,¢)with unique maximum f; and for each N, BN (¢) 1s the umque maximum

Pd.m
of the concave function gy (f,1) then SBy(1) > By(see Fleming and Harrington,1991,

p297).

U B.Y -1 By
N

evaluated at 7 and #, and at ¢ and S respectively for ¢, 0<t<r:

Let gn(B,0)=

be difference between the sample log partial likelihoods,

gN(ﬂJ)=}(,3—ﬂo)'[*l— 2 X pikd ik (")/”hik]_log M [L Zdnpik (u)/ﬂhik]-
0 M pikes SO (By,u) LM hikes

Let
S (B,u)

: SO ( By, u)Ag (u)du -
5O (Bo,u)

! 1
"N(ﬁ,1)=I(ﬁ—ﬁo)'S”)(ﬁo,u)ﬂo(u)du—108[
0

Pd,m

It is easy to see that hy (5.t,5) — h(B,1) as n > o, 0<t <7, with

s (B,u)
S(O) (Bo,u)

g 1 0)
h(B,1) = [1(B - Bo)'sP (By,u) - log s (Bg,u) } Ao (u)du .
0

Now, the martingale gx(B3.t)—hy(S.1) = 0, in the probability of the product space, for
0<t<t as n > . Indeed,

SO(B,u)

1 ‘ e
gn (Bt -hy(Bits) =2 3 I{('B_/}O)X""‘ IOZL{S'“”(/’O»“)

hikes(

J}d%ik (u)! 7 pik

is a locally square integrable martingale. Its variance according to the formula in Theorem
2.6.2 in p.82, Fleming and Harrington, 1991 is:
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_ al ' S‘(O)(ﬂau) LoXpir 2
M'Vd,m(gN(ﬂ,tvg)_hN(ﬁatsS))—Ed,mg)H % {(ﬁ_ﬁo)xhik _log[W Yyix (w)e /7 bk

hikes 0.4)

The integrand above is bounded and thus
Fdm

Vd‘m(gN(,B,t,s)—hN(ﬂ,t,s))=O($)as n—oohence gy (f.t.5) = h(B,1) as

n—oo, 0<t<r.
As it is with the difference between the logs of the census partial likelihoods, gy (4,t,5) is a

sequence of random concave functions of A with a unique maximum ,B N (1) , which is the

solution of the SPLS process.

We also note that since are bounded, the Dominated Convergence Theorem justifies the

interchange of differentiation and expectation for all the s-functions, and furthermore, they

constitute equicontinuous families at # = S, for 0 <t < r (see Fleming and Harrington, 1991,
Pd,m

p.298). Thus #(B3,1) has a unique maximum at g = fjand hence :éN ®» = fy.

Proof of (5.4): Uniform convergence of the variance estimator of the SPLS process
(Consistency)

To prove this part, we again follow a similar reasoning of Theorem 8.2.1, p.295 in Fleming
and Harrington (1991); we bound the difference i”(ﬁ)—zn(ﬂo,t) respectively by four

terms and show that each term converge to zero:
v,,(,B u)—v. (o, u)}fii

{ ()= v (B, u)}d )
[ v o) (Bo.0) — 5O (B ) o ()

[£2(B.0-2(Bo.0)| <

+

fv,,(ﬂo,u{ 4711 - SO u)/lo(u)duH+
. M

By (410) swp V(B -va(Bu) =0

P, (Dasn—-o and the process 7(f)/ M is

PeA0<i<r
bounded in the probability (P, ,,)since E {UA(/;) } <1 forall0<t <o, M21.
Hence
_—r - 7 t
lfa{l Vn(ﬂ,u)—vn(ﬂ,u)}dmls Sup |2 P (Ba) v (B 20 2 o, , () as
N M ,BeA,051<r '
n— o,
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That is, the first term converges to zero uniformly in 0 < ¢ < rin the probability of the product

space. The equicontinuity of the family of functions s(j ) (j), j=0, 1, 2 imples the

equicontinuity of v, and thus the integrand of the second term converges to zero uniformly in
O0<u<rif ﬁ is consistent for f, . This convergence and the fact that 7(¢)/ M = Opdm 1))
also implies that the second term converges to zero in the probability of the product space.
Similarly, the fourth term above converges to zero in probability(Fy ) uniformly in
0 <t < 7. Finally, for the third term, we use Lenglart’s inequality. We look at each c¢lement of
the v-matrix vy (fg,u), ¢,¢' =1,..,r, and set:

t

J vt o (Bould ——= n(u) - 8O gy, u) Ao (w)du) = f Var,e'(Bo u)d MA(JH)
0

Using Lenglart’s inequality we have:

(f) vate (Boni)d MA(J“)

> ) S5+ By (vt (B0, SO (B, g )i > 5)
p 0

Pd,m( sup
0<t<r

thus as n — o0, the second term above goes to zero, and since J, p are arbitrary, we have the
left hand side above converging to zero in probability (Fy ).

Proof of (5.5): Consistency of the Information matrix
Now calculate the inforiation matrix given by I(B.1):

1(3,1) = —(aU/aﬂ)(ﬂ ) ——I(—ﬂe)(/f u)dF = I P(fuyd 1 ’7(“’

The sup norm convergence of I( ,H,t) to Z,,(4,0) follows from the same arguments used in
proving (5.3).

This finalizes the proof of Theorem 5.1.

Proof of Corollary 5.1:
This proof is standard. We express the SPLS statistic by

U(Bo.1) = Ufo.) ~U(f.1) = %w‘,r)(ﬂo P,
where |,B' —,80| < |ﬁ—ﬂ0'. Hence,

? B -1 31
n(B - Bo) = = aﬂw ) U Bos0).

The corollary follows from the asymptotic normality of the normalized SPLS process, the

consistency of ﬂ(t) ) =z (Bo,t)and La—U(,H 1), and Slutsky’s theorem.

M of
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Proof of Lemma 6.1:
We first show that

max(0;(5) - U, (fo)| = :

Opdm J—

Ui(Bo) = 5(X; = &(Bo,D)dM;(Bo,1), i=1,.. M.

as M — oo, (A.6.1)

where

We recall that the covariates are uniformly bounded, S s bounded away from zero and

P 1
P — Po =0p, (—=). Hence subtracting and addin
0 Py m M g
p(BoXi

5 - a0 (0 SRLXD 450y 1)
| ; 5O (Bg.0)
to U; () we obtain:
: dn
U, dn; -, it o, R,
i(B)= fo( ~ (B, t)h[ n; —Y; (1) exp( B I)MS(O)(,HO’[))}+ ""'(x/ﬁ)

uniformly in i.

Similarly, subtracting and adding ]0( e(ﬂ t))Y (Nexp(foX;)Ao(1)dt we obtain:

Jr
U, () =13 (x; — &3, 0 M (0.0 + [5(X, ~e(B.0); 0y exp(Bo X Ao ()i - -5(—0)7,5—1))
0>
(A.6.2)
The second term in (A.6.2) can be written as:
TRV UL VL AV e

$§O 8,0

Since the integrand in (A.6.3) is a bounded predictable process and - M(fg,¢)is the

martingale given n (A.4.1) with compensator ﬁ(t) =M [(', 5(0)(u)/10(u)du, we use
Lenglart’s inequality to obtain that the stochastic integral in (A.6.3) converges to zero as

1
0 (—==)as M — oo, uniformly in i.
fan M
Finally the VM - consistency ofﬂv also imply that sup |e(/i)—e(ﬁ0)| Op, (L) as
0<t<r " \/H
M — oo, hence the first term in (A.6.2) is equal to Uhik (Bo) + Opd (L) and (A.6.1)
m \/ﬁ
is obtained.
Equation (A.6.1), design conditions C; and C and Iim% >0 yield
1
Vi =—4 T T L0800 (o) + O, , (——) (A.6.4)
b M {JCSJGS i Ao Fam \/ﬁ
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Also, (A.4.2) imply that

Ui(Bo) = [5(X; —e(Bo, DM (Bo,0) +0p, (1), i=1,.., M as M -,

and hence we have;

_ MM
Ed,m(VLin) = Iy {Z > AyEm{U ('BO)U (/80)}} +o(l),

i=1j=1
which proves the Lemma.

Proof of Lemma 6.2:

Equation (A.6.1) is now valid with the rate 0p (L) as n — . This and condition C; yield:

d,m _\/;

72

In order to obtain (6.10) we note that U,- (o) are right-continuous local square integrable

martingales in 0 <t <oo, and hence (7,-2 (Bo) = {U;(Bo),U;(By)) are right-continuous local
martingales with predictable co-variation function

U (Bo)Ui(Bo)) = Jo(X; —é(ﬂo,t))®2 Y ()exp{ByX; Ao (t)de. Then the first term in
(A.6.5) can be written as:

sl o 20) = it). T )], s (L p GOy,

. ies ”1 i M?%ie i T

(A.6.6)

The first term in (A.6.6) 1s a mean of M martingales in the product space and Lenglart’s

inequality together with design condition C; imply that it is of order Op, . (L). Equation

In

(2.6) implics that the second term in (A.6.6) is equal to:

- i =By, NE2Y; () exp{ By X, Yo (0)dt | 7;
:ﬂf{irﬁ (Bort) —— Vs (Bo z)}ﬁ(‘”(ﬁo 1)Ag ()t (A.6.7)
Mo N T b) N m ’ ] )

Now we revert the argument used for the consistency of fl,, (ﬁ,t) : equation (A.6.7) is equal
to:

NT - " - . N (- 2
=H(f){%”n(ﬂo»!)-%Vm(ﬂovf)}{f(o)(ﬂo,f)io(!)df—d'i(f)/M}+M+{En(ﬂo,f)—%Em(ﬂo,')}

and use Lenglart’s inequality to obtain:
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=0p, ( J_ N{E (ﬂo,f)——zm(ﬂosf)}

which yields (6.10) of Lemma 6.2.

To obtain (6.11) we look at v,,;;, recall that the U;(fp) are uniformly bounded and apply

(A.6.1) to obtain:
1 n Ay

Vryesid = M ) U i(Bo )U (fo) + OPd ‘\/_)

i#jes Tij

(A.6.8)
M? i# jes 7ij

Now —1<A;; <0 for all i andj, by the usual restriction imposed to any zps design, which

implies that Condition C5 is equivalent to

L i PRl =0(ﬁ) (A.6.9)
M i#] ”iﬂj n

which implies that E; | 5 Ul Z |AU|—0(1) This in turn implies that the
|M l¢jES 7if I

last term in (A.6.8) is an Opd N (—l-)

in

The design-model expectation in the first term of (A.6.8) is equal to zero, since

theff,- (Bo) and U j (Bp), i# j,though not stochastically independent, are martingales with

predictable co-variation equal to zero. The variance of the first term in (A.6.8) is the expected
Aji ~ .

value of the M2 cross-products of terms of the form iU[ (Bo)U ; (Bo).

Zij
All the cross-product terms with at least one single label i different from the others have

model expectation equal to zero, and the terms in U ,-2 ( ﬁo)ﬁ f( L) are uniformly bounded, so

design conditions C», C3 and C4 imply that the vanance of the first term in (A.6.8) is
bounded by:

P
e (a;) 20[1)

M " izjePop 7ij h

and thus v 4 = ()(—l—

=

) as n — o, which is equation (6.11).

Robust versus efficient variance estimators

Keeping the classic hik sample label notation, consider a sample estimating equation of the
form:
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L NhNhi 1 .
ﬂ 5" 5 (__’"k (s) _1)11,”.,c =0 (A.6.10)
M poyizlk=I\ Thik

withE (I () =7pig, En(Upx)=0 and model independent variables Uy,

k=1,.,Np, i=1L.,Ny, h=1..L The design-model variance of the estimating equation
function in (A.6.10) is

J— L NhNh: !hk(‘s)
Vam= Ede{ o : 1 Wik p=Ep _2 2 i AhtkfijhIkU!‘jm
h=Yi=1k=1\ 7 hik M © hikéjmePop

(A.6.11)
: Thiktjm ~ Thik ¢}, : S : - .
with Apigim = L -l where 75 ¢ip, 18 the joint inclusion probability of units
T hik 7 tjm

hik -and {jm . A design-model asymptotically unbiased estimator of V; , is given by

htké’jm
Vrobust = h OB Uik Ufjm
M hikes tjimes T hikéjm
2
n 1 U hik A hikéjm
== Y ( 1] ! 5 Uhikul’jm J (A.6.12)
M < | hikes\ T hik T hik hik #€jmes 7 hikéjm
Under  the  model for  independence  of  the  terms Upik for

k=1.,Np, i=1L.,Ny, h=1..L, the terms with joint probabilitics of selection disappear

in the varianceVy ,,

n 1 9 n
Vam =Em % (——1}11;,,-;( +—= X X DpigtimUnikU gjm
M2 hike Pop\ 7 hik M © hik+ ¢jmePop

n 1
T Py
M hike Pop \ 7 hik
since Epy W nitUgjm | = Em Uik VEm U gjm § = O for hik = gjm .

In this case, a design-model consistent estimator of the variance ¥, ,, is given by

U
Veff =— Z( 1 —IJ hilt . (A.6.13)
M2 | hikes\ Thik 7 hik

Moreover, under the independence assumption, v,z is more efficient than v, . Indeed,
setting
Ahikfjm

Vresid = )

UhikUl’jm’ (A.6.14)
hik#tjmes 7 hikéjm

we have
41



Va,mrobust) =Vameg )+ VamVresid) 2 Vam (veﬁ')for all n,
(A.6.15)

since the covariance term in (A.6.15) is zero: it is the design-model expectation of a weighted
sum of products of four Uy, functions with at least one index hik different from the others,

which makes the model expectation of each term equal to zero.

Note that the main reason for the efficiency is that when the model consists of stochastically
independent units, the terms with joint probabilities of selection in the variance formula
disappear. This last property, though not formally expressed, has been used previously in the
estimation of the variance (see for example Sudhratar and Kovacevic, 2000, for the GEE
approach to the analysis of longitudinal ordinal survey data).
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