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- 	 Une Note sur quelques Méthodes 

• 	 rv:mt a Produire des nombres aléatoires 
- 	 ayant une distribution donnée. 

par 

M.A. Hidiroglou 

(Division des Méthodes d'Enqutes—Entreprises) 

Soimna ire 

Ii existe un besoin pour produire des nombres aléatoires suivant 

une distribution donnée. Pour des petits sondages, une table de 

nombres aléatoires peut suffir a obtenir une liste des unites a 
Cchantillonner. Cependant, a mesure qu'un sondage devient de plus 

• 	en plus complexe, les nombres aléatoires doivent atre produits 

l'aide de l'ordinateur. Cette note décrit plusieurs mëthodes qul 

peuvent tre utilisées a ce but, et, donne aussi un aperçu des 
problmes associées a la génération de nombres eléatoires par 
ordinateur. 
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	A NOTE ON VARIOUS PtTHODS FOR GENERATING RANDOM 

NLIIBERS WITH A GIVEN DISTRIBUTION 

by 

M. Hidiroglou 

Business Survey Methods Division 

1. INTRODUCTION 

0 	There is a need to generate uniformly distributed random nunbers when it 

comes to sample selection in a survey. For small surveys, a table of 

random nunbers can be used to list the elements to be sampled. However, 

when the survey increases in level of complexity, such as is the case for 

a moderately large business survey, random nunbers have to be computer-

generated. In using a computer random nuiiber generator, one must bear in 

mind that the methods used in creating such nunbers approximate a random 

sequence. Hence, what we are really generating are nunbers which we refer 

to as pseudo-random nuiibers. There are several methods at hand for gener-

ating pseudo-random nunbers. 

Historically, Von Newman came up with a method known as the mid-square 

technique; here, the idea is to take the square of a random nunber and 

0 	extract the middle digits. It is a poor random nunber generator, however, 
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because it may be short cycled. The most widely used method for 

generating random nunbers is known as the congruential method; wwill 

discuss its algorithm and its merits. Random number generators should be 

understood by the user in terms of their mathematical background and their 

validity. To quote Knuth (1970), "There is a tendency for people to avoid 

learning anything about random number generators; quite often, we find 

that some old method which is comparatively unsatisfactory has blindly 

been passed down from one programmer to another". To precisely illustrate 

the above comment, IBM users (see Programmer's Manual 1968) are often 

tempted to use the library routine RANDU. However, as we shall see later, 

RANDU is a poor way to generate random numbers. There are some excellent 

random number generators around. One of them, known as Super-Duper, has 

4 1 	 been written by an authority on random number generators, C. Marsaglia 

(1972). It is superior to RANDU in that it passes the tests of randomness 

and distributional uniformity much better. 

A widely used application of random numbers is in the art of computer 

simulation or Monte-Carlo experiments. For this purpose, it is quite 

important to generate sequences which obey a distributional property. As 

we will see, the basic construction block for various distributional 

sequences is the uniform distribution. It is therefore quite important to 

start off right with a good uniform random number generator. Otherwise, 

inferences derived from the Monte-Carlo experiment may be biased. 

0 
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0 	2. GENERATING UNIFORM RANDOM NUMBERS 

We wish to generate real niinbers U, uniformly distributed between zero 

and one. We generate integers X between zero and some ruinber m where 

m is the word size of the computer, and compute U as: 

U = X /m n 	n 

The algorithms for calculating X will depend on some earlier X e 's so 

that this calculated sequence must eventually be periodic. A successful 

method for generating pseudo-random sequences is known as the linear 

congruential method. This sequence is generated as follows: 

X n+1 = 	 n (aX + c)mod m 

where X 0  is the starting value X 0 ) 0, 

a is the multiplier a) 2, 

c is the increment c ? o, 

and m is the modulus in > X 0 , m)'a m)c. 

Choices of X 0 , a, c and m have to be done carefully, otherwise the series 

will get into a cycle of short length. We refer to two types of 

congruential methods, the multiplicative and the mixed, depending whether 

c = 0 or c / 0, respectively. 
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Choices of the modulus m strongly influences the length of a generator's 

cycle and its speed of generation. Usually, m is in the form of- -a high 

power of 2, dependent on the machine's capacity for handling large 

integers. Also, the multiplier "a" can be chosen so as to give a period 

of maximum length; this is given in the following theorem provided by 

Greenberger. 

The linear congruential sequence has a period of length m if, and only if, 

c is relatively prime to m, 

b = a-i is a multiple of p, for every prime p 

dividing m, 

0 	iii) b is a multiple of 4, if m is a multiple of 4. 

A less used method is the quadratic congruential method. 

X 	:(dX2 -s-aX +c)modm. 
n+1 	n 	n 

A theorem comparable to the previously stated one can also be obtained for 

this method. However, we just note in passing that there are several 

random nt.snber generating mechanisms, which essentially generalize the 

linear congruential method. Once a generator has been decided upon, its 

adequacy in terms of randomness must be statistically validated. 

11 
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0 	3. STATISTICAL TESTS 

Does a given sequence behave randomly? This is the basic question with 

respect to random nunber generators. How does one define randomness? In 

a vague sense, it is intuitively appealing that such a sequence must not 

repeat itself in a regular pattern. 

There are basically two methods for testing the randomness of a generator: 

empirical tests, for which the computer manipulates groups of nuTibers of 

the sequence and evaluates certain statistics; and theoretical tests, for 

which characteristics of the sequence are established by using nuiiber-

theoretical methods based on the recurrence rule used to form the 

. 	
sequence. 

Some of the most widely used general tests are the X 2  test and the 

Kolmogorov-Smirnov test. However, these two tests are like the first 

stepping stones to a fine sorting process when it comes to randomness 

testing. We will briefly describe the first of two clases of tests, the 

empirical tests. We will spend more on the second kind, the theoretical 

test, and more specifically, the spectral test. RANDU's performance as a 

random generator will become quite apparent when the spectral test is 

used. 

(a) Empirical Tests 

0 	As was said in an earlier paragraph, groups of nunbers of a random 

sequence are analysed statistically when this method is used. More 
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sperifically, these tests are applied to the transformed integer 

sequences of the sequence generated between 0 and 1. We proceed to 

name and describe a few of these tests. 

[quidistribution Test 

This test is applied to the transformed integer sequence using the 

Kolmogorov-Smirnov or the X 2 test. 

Serial Test 

This is a two-dimensional (normed) test using the X 2  statistic. 

We measure the degree of independence between pairs of successive 

nunbers in the sequence. 

Gap Test 

This test examines the length of "gaps" between occurrences in the 

is sequence. The X2  test is used on a sequence of gaps. 

The Run Test 

This is one of the strongest empirical tests. It is to be 

recommended for testing random nunbers using the linear 

congruential generator. This test examines the length of monotone 

subsequences of the original sequence. 

(b) Theoretical Tests 

With this type of test the effects of the constraints a, m, and c 

which are part of the linear congruential generator is studied. One 

of the most basic theorems related to a theoretical test provided by 

Knuth (1970) is the following: Let X 0 , a, c and m generate a linear 

congruential sequence with maximum period; let b = a-i, and let d be 

the greatest common divisor of m and b. Then, 
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P(X n+1 < X) = 1/2 + r 0 
where r = [2 c(mod d) - d 1/2rn. 

This is quite an important result, for it tells us that a random 

sequence is likely to oscillate quite frequently during the entire 

period of the generator. We refer to d as the potency of the series: 

series with potencies over 4 are desirable. 

The serial correlation test may be applied over the entire period 

using generalized Dedekind sums. This correlation is defined as 

[m 	Z xS(x) - ( 	E 	x) 2  

c 	o(xm 	oLxm = 
m 	x -  ( 	E 	x) 1  

	

o<x m 	ox' m 

where s(x) = (ax + c) mod m. 

Discarding terms of order 1/m, we have that the serial correlation can 

be expressed as a (a, m, c) 

where 	o(a,m,c) = 12 	Z ((j)) 	 (aj + c 

	

oLj'mi 	m 

C (x) ) 	Z - Izi + 1/2 - 1/2 (Z) 

o(Z) -  5 1 if Z is an integer. 

	

- 	
if Z is not an integer. 
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.0 	Essentially a(a,m,c) is an orthogonal expansion. Examples as to how 

to compute a(a,m,c) are given in Knuth (1972). 

We now turn our attention to a test formulated by Coveyou and 

MacPherson (1965); this test is known as the spectral test. This test 

is important to study the quality of linear congruential random number 

generators. It is by far the most powerful test known. The resulting 

expressions are usually evaluated with a computer program as they 

involve mimimization of quadratic forms over the integers. 

The most important randomness criteria relies on the properties of t 

consecutive elements of the sequence, and the spectral test deals 

0 	directly with this distribution. If we have a sequence [U n ] of period 

m, the idea is to analyze the set of m points 

(UU 	... U n' n+1' 	' n+t-1 

in a t - dimensional space. 

Let i/vt  be the maximum distance between hyperplanes, taken over all 

families of parallel (t-1) dimensional hyperplanes that cover all 

points { (x/m, s(x)/m, st_(x)/m)} ; we call v the t-dimensional 

accuracy. The accuracy of a periodic sequence decreases as t 

increases while it remains the same in the case of a truly random 

sequence. 

0 
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The spectral test consists of the determination of Vt  for smell t, 

say 2 - t - 6. The spectral test rotates a t-dimendional hypercube 

and looks at the maximal distance between successively generated 

points in the sequence. Vt  is obtained by minimizing 

1/2 
( x 1  + x 2  + ... + Xt) 

subject to x 1  + ax2  + ... + at_i x t = 0 (mod m). Knuth (1972) has 

has given an algorithm which would solve this system. 

A criterion which is relatively independent of in is obtained by 

normalizing by the volume of the ellipse in t-space defined by the 

relat ion 

_ 	t-1 	2 	2 	2 
m - x 2  a 	... - x a 	) + x 2  + •.. Xt 4 V 

The resulting coefficients of this normalized volume are, 

11t/2 t 	
t = 1, 2, 

(t/2) !m 

where()! 	
() 	 ( 	

i)... () ilfor t odd 

and 	(t 
 ) 	( t 

	- i)...( i) for t even. 
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Vj 
Table 1 gives the volume of the ellipses as the dimension of the 

hyperspace increases from 2 to 6. 	-_ 

Table 1 - Sample Results for the Spectal Test (Knuth 1972) 

No. a m C2  C 3  C4  C5  C6  

1 23 108+1 0.000017 0.00051 0.014 0.343 4.6232 

2 218+1 2 3.14 2x10 9  2x10 9  5x10 9  10_8  

3 3141592221 1010 1.44 0.44 1.92 0.07 0.08 

4 3141592221 2 1.24 1.70 1.12 2.79 3.81 

5 515 2 35 2.02 4.02 4.03 0.40 2.62 

6 216 _3 232 3.14 10 10 10 0.02 

Case No. 6 is the famous RANDU random nunber generator that is on the 

IBM 360 library program. As can be seen from the tabulated results, 

RANDU is good in two dimensions, however, it fails badly in the higher 

dimensions. It should be noted that RANDU obeys the following rule 

for three successively generated nuiibers of its sequence, that is 

9X n 	ni-i + 6X 	+X n+2 	
0 mod (231). 

This automatically makes it fail in three dimensions. 

. 
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-0 4. TEcHNIUUES TO GENERATE RAtLXJH NUMBERS WITH A GIVEN DISTRIBUTION 

In the following sections, we provide methods that are used to generate 

random numbers with a given distribution. This is important, since 

Monte-Carlo techniques embody the generation of linear forms with a given 

stochastic disturbance. 

(a) The Inverse Cunulative Function Rule 

For the purpose of introducing random variables into a simulation 

model, one of the most important transformations of random variables 

is that which transforms a random variable X according to its own 

cumulative distribution function F(a),  that is, for a continuous 

S random variable X, one can discuss the nature of the random variable U 

defined by 

U = F (x) 

a monotonically and continuously increasing function due to the nature 

of the cumulative distribution function. The resulting variate U is 

restricted to values between 0 and 1, although its distribution 

between those values may not be so apparent until one computes the 

cumulative distribution for U: letting F be the distribution 

(cumulative) function of U, we have 



. 
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(a) = P(U L  a) = P[X - F(a) ] for O 	a 	1, 

where 	(a) is the inverse cumulative distribution function (CDF) 

for the random variable X. That is, 	(a) gives that value X, which 

when substituted into F X  produces a. 

Hence, 	Fu  (a) = P[X 4. F 1  (a) ] 	F< [F 	(a) J 	a. 

Consequently, the random variable U = Fx (X), defined as the 

transformation of any arbitrary continuous random variable X according 

to its cumulative distribution function, is a uniformly distributed 

random variable. 

This result is of special importance in that one can use the inverse 

of the CDF transformation, itself a monotone increasing function, in 

order to generate random variables having a particular cisnulative 

distribution function. To accomplish this purpose, we first generate 

uniformly distributed random variables U; they are next transformed 

according to 

x = F 1  (u). 

This results in random variables whose cunulative distribution 

function is given by IX  (x). 
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- 	We proceed to provide some examples of this technique. For example, a 

commonly arising distribution is the negative exponential, which has 

probability distribution function of the form 

-bx f(x) = Xe 

and cumulative distribution function 

-Xx 
1(x) = 1 -e 

The inverse of this function is: 

x = - log e  (1-1(x) ). 

To generate x according to 1(x), simply choose a U'i.'U (0,1) random 

x = -(1/A) loq (1-U). 

• 	Another application of interest is the Weibull random variable with 

probability density function 

f(x;A,k) 	k A x k-i 	p(-Ax 1<) x 	0 ex 
0 	0 	xZ0. 

The corresponding cumulative distribution function is 

F(x;A,k) 	{1 - exp (-Ax 1< ) x > 0 

	

0 	x40. 

The inverse of this function is: 

x = [C - 1/A) in (1 - F(x; A,k))k. 

To generate x according to F(x;X,k), simply choose a U,v U (0,1) 

random number 

0 	x = [ - ( 1/A) In (i_u)] h'k. 
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(b) Log-Trig Method for Generating Gaussian Variates 

For many density functions, it is not possible to obtain a closed form 

for the cunulative distribution function. Hence, other ways of 

generating random nunbers have to be developed for these 

distributions. 

In the case of the Gaussian or normal (0,1) distribution, the trig 

solution is at hand. 

Supposing that. 

7 	NID (0, a ), i1, 2 

then f(z 1 ,z2 ) z (2 	2) 	exp - ( z 	+ 4)/2a2  ). 

This is equivalent to producing a random point (Z 1 ,Z2 ) in the 

Euclidean space of two dimensions. We may transform our coordinates 

to polar coordinates (R,ø) as follows: 

Z 1 = R cos 0 

Z2  = R sin 0. 

The Jacobian of such a transformation is r, and hence the joint 

density function becomes 

P(r,0) = ( 211 02)_i  r exp (-r 2 /2a2 ) 

for r 0 and 0 40 ± 21 

E 
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The marginal distribution for 0 becomes the rectangular distribution. 

Hence, 	h (0) 	 0 4 0 4 it 

1 	0 	other 0 

The marginal distribution for R becomes the Raleigh distribution of 

parameter a. 

'-2 	2 	2 
h2  (r) 	a 	r exp (-r /2a ), r ) 0 

10 	 , rLO. 

The inverse transformations for h 1  and h 2  are 

O = 2n 

[-2 Ln(1 -h2  (r) 31/2 

Hence, pairs of the following will generate the pairs of variables 

whose parental distribution is the normal distribution: 

[ -2 In (1 - U 1 ) 1 1/2 cos (2U2 ) 

[ -2 In (1 - U 2  ) 1 1/2 sin (2,iU 2 ) 

where U 1  and U2  are uniformly distributed random variables. 

Random variables derived from a N(p, a 
2  ) distribution can be generated 

from the N(0, 1) variables as follows: 

= az + 11 

0 
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0 	(c) The thi-Squared Fanily 

The probability density function of a x2  is 

f(u) 	(1/2)1/2 uV2 	e_U/2 /r(1/2), 

	

o 	 , uj.0 

where r(n) = (n-i) I'  (n-i). The cumulative density function is 

	

1(u) 	fo u (1/2)1/2 1/2  e'2 d(1/r(1/2), u >0 

	

0 	 ,uQ. 

This is not easily inverted; hence, one has to seek other techniques 

for producing random variables generated from such a distribution. 

The samples from this distribution may be obtained by using the fact 

that X2  on n d.f. is the convolution of n variables distributed as a 

0 	X 2  with one d.f., which is in turn the square of a normal random 

variate. Hence, a sample value can be obtained from a X with n d.f. 

by selecting n random normal deviate, squaring and adding them. 

A quicker way to generate a X is as follows. Recalling that a X 

with 2 d.f. is an exponential distribution of mean 2, we use this 

fact. For an even degrees of freedom (n = 2p) we take 

2. 	P 

	

xn 	E V. 
. 11 

where V 1  is exponentially distributed. For odd degrees of freedom (n 

Zp+i), we take 

2 	p 	2 

	

x 	= 	v. +z 
i=1 1 

where Z is normally distributed N(0, 1). 
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- 	 APPEMMX 

A reservoir sampling Computer Program. 

The following FORTRAN program should be used to generate uniform random (0,1) 
nixnbers. It has good properties under the spectral test. 

DOUBLE PRECISION Ui ,U2,DLOG,DSIN,DCISm,DSQRT 

REAL*8 E(2,100) 

INTEGER*4 NA(128) 

C 	NSIZE 	NO. OF ELEMENTS IN SAVLE 

C 	NSAIf - NO. OF SAIVLE5 TO BE GENERATED 

NSA MP 

NSIZE 

IN 

• IOUT 

INTEMP63783 

• IX = 175632999 
ISENI = 68593 

ISEN2 = 63253723 

SEN3 = 0.23283064E-9 

DO 1 	I = 1,128 

IX = IXITEMP 
NA(I) 	= 	ix 

L = IX 

M = L*(5**13) 
KK = M*(5**13) 

DO 2 JJI = 1 ,NSAMP 

DO3JVR=1,2 

DO 3 JI = 1,MSIZE 
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L = L*ISEN1 

M = M*ISEN2 

J = 1+IABS(L)/1677216 

JP 	3 

UI 	0.5+(FLOAT (NA(JP)+L+M)*SEN3 

KK = KK+687471237 

NA(JP) = KK 

L = L*ISEN1 

M = M*ISCN2 

3 = 1+IABS(L)/16777216 

JP = 3 

U2 = 0.5+(FLOAT(NA(JP)+L+M)*SEN3 

KK 	

KK*687471237 

• 	NA(JP) = KK 

C 	RANDOM NORMAL(O,1) DEVIATES 

C 	E(3VR,2*JI1) = DCOS(6.28318*V2)*DSURT(_2.*DLOG(U1)) 

E(JVR,2*J1) = DSIN(6.28318*V2)*DSQRT(_2.*DLOG(U2)) 

• 	3 CONTINUE 

2 CONTINUE 

RETURN 

END 

0 
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