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VARIANCE ESTIMATION IN SAMPLE SURVEYS 

J. Kovar, P. Ghangurde, M.-F. Germain, H. Lee, G. Gray 

Introduction 

The variance estimation problem has traditionally received a great deal of attention 

in the sample survey literature. This note will attempt to guide the reader through the 

papers relating to variance estimation of nonlinear statistics in sample surveys; surveys 

with complex designs in particular. While variance estimators of statistics expressable 

as linear functions of the observations can be derived explicitly (Rao, 1975 and 1982), in 

the case of nonlinear functions of the observations various approximation methods must 

be used. The methods considered here include Taylor series linearization, balanced 

repeated replication (BRR), jackknife repeated replication (JRR) and the bootstrap. 

- Most of these approaches were originally introduced for the independent, identically 

distributed (iid) case. With a few exceptions, investigations of their application to the 

complex sample survey have been only relatively recent, notably Frankel (1971), Bean 

(1975) and Woodruff and Causey (1976). Good overviews of these methods as they apply 

to complex surveys can be found in Rao (1985), Rust (1984) and Wolter (1979) among 

others. 

In the next section, we will review these methods and indicate their properties and 

limitations. Topics of special interest to Statistics Canada, both current and upcoming, 

will be discussed in subsequent sections. 

Variance Estimation 

2.1 Taylor Series Linearization 

The Taylor method (also called the delta method) is based on linearizing a 

complicated estimator using the Taylor expansion about the mean. 

Let 0 = f(Y1, ••• Y m  ) be an estimator of interest expressed as a function of 
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m totals (Y 1 , ... , 	= Y. The first order Taylor exparsicn of f about the expected 

value of Y, E(Y), is given by 

	

rn 	f(E(Y)) 

	

f() 	f(E(Y)) + 	E 
1 	1 i=1 	 (2.1.1) 

and thus the variance of G can be approximated by 

	

V(0) 	V(E 	
- 

Y), 	
(2.1.2) 

where the partial derivatives, 
---, 

are evaluated at the expected values of 

Y E(Y 1) (Tepping, 1968). Now, Y = E y., where y. is the weighted observation 
j=1 	J 

of the j -th unit in the sample. Then 

m 	n  af 

	

V(s) 	V( E 	E 	 Y) 
i=1 j=1 	i 	J 

n 
= V( E d.) 

j=1 	 (2.1.3) 

where 

m  af 

	

d. 	E —y.. 
i=1 31 	J i 	 (21.4) 

The variance estimate, v(6), can be obtained by evaluating the derivatives at the 

estimated Y. instead of E(Y 1), and by applying the usual variance formula for a 

• 	 single variable to V( Z d.). Reordering the summation simplifies the evaluation of 
• 	 j=1 

the variance greatly by avoiding the computation of m variances of Y's and m(m- 

1)/2 covariances of Y and Y (i;~ ) in (2.1.2). This simplication is due to Woodruff 

(1971). 
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The Taylor linearization method is general and is applicable to any sample 

design, provided the partial derivatives 	exist and the variance formula for 

V( E d.) is available. Woodruff and Causey (1976) computerized the method for 
j=1 

general use. An application of the method to the variance of ratio-adjusted 

estimators in household surveys is given in Ghangurde and Gray (1981). 

2.2 Balanced Repeated Replication 

The origins of replication can be found in the works of survey statisticians as 

early as the 1940s. Among others, Mahalanobis (1944) and Deming (1956) suggested 

the use of several interpenetrating independent samples (replicates), each selected 

with the same design, for the purposes of variance estimation. This idea of simple 

• 	 replication was later adapted to yield a number of procedures, three of them being 

- 	 presented in this section, namely the random groups, the balanced repeated 

replication (BRR) and the partially balanced repeated replication (PBRR) methods. 

Rust (1984) provides a good overview of these techniques. 

For the random groups method, developed at the U.S. Bureau of the Census and 

described by Hansen, Hurwitz and Madow (1953), the original sample is 

divided into a number of groups which are formed so that each reflects the sample 

design. For instance, in stratified sampling, the sample is allocated to the groups 

within each stratum. Let e be the full sample estimator of the parameter of 

interest, e, and let er be the estinator computed from the r'th random group 
k9 

(r=1, ..., k). The average 9 = Z j-  is an estimate of 8 and its variance 
r= 1 

k 
V (8) = k(k-1) r=1 	 (2.2.1) 
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provides an estimate of the variance of 8. This procedure, as all simple replication 

procedures, suffers from a dilemma with regard to the choice of the number of 

replicates (groups). The larger the number, the higher the bias of the variance 

estimator, whereas a fewer number of groups yield a lower precision variance 

estimate. As such the estimator performs well in large surveys, or surveys with a 

large number of primary sampling units (PStJ) per stratum. 

However, for surveys with a large number of strata but few PSU per stratum, the 

random groups method is unsatisfactory. For such designs, and in the case where 

two PSU per stratum are selected in particular, the method of balanced repeated 

replication has been developed by McCarthy (1966a). The BRR variance estimator is 

based on a set of "balanced" half-samples formed by deleting one unit from the 

sample in each stratum. The method is as follows. Let 8 and e be the population 

parameter of interest and its estimator. For each stratum, denote at random one of 

the two sampled PSU as being first and the other as second. A set of S half-samples 

may be defined by an SxH matrix A =jh  of +1 or -1 6=1, ..., S; h=1,..., H) 

depending on whether the first or the second PSU is in the h'th stratum in the j'th 

half-sample. The columns of A are balanced and A is orthogonal, that is 

S 	 S 

1 S. 	
= 0 and 	E 6 jh 6jh' = 	(hh'). 

j j=1 

A minimal set of S half-samples may be constructed using the method developed by 

Plaekett and Burman (1946), with H+1 < S < H+4. From the half-samples, S 

estimates of 8 denoted are computed and the variance estimator of 9 is given 

by 

2  = 	•  

J= 1  (2.2.2) 
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This estimator does not have the shortcomings of the previous one, achieving good 

precision with only a limited number of replicates. One can also use the S 

complementary half-samples and estimate v(8) with three other variations of the 

BRR variance estimator: 

a 	 S 	a • 	a 	 a . 

• 	 vBRR_s( 0 ) = 	E 	{(8(J)_8)2 + (8(J)_8)2} 

	

j=1 	 C 	 (2.2.3) 

a 	 S a. 	 a 

e - 	z 	( J)_82 

	

j=1 	 (2.2.4) 

• 	 v 	(8) =. 	(0(J) - 
BRR—D 	4S j=1 	 c 	 (2.2.5) 

where 8is the estimator of 8 computed from the complement of the j'th half- 

sample. (Note that vBRRH(e)  is equivalent to When sampling with 

replacement is used, the BRR will have a low bias and be relatively precise for non-

linear statistics. For designs in which sampling without replacement is used, the 

BRR variance estimator is positively biased. 

For surveys where a large number of strata renders the balanced repeated 

replication method prohibitive, McCarthy (1966b) and Lee (1972 and 1973a) have 

proposed the method of partially balanced repeated replication. The H strata are 

now divided into g groups with H/g strata in each group. A set of kpB  partially 

balanced half-samples is constructed in the first group of strata and the same 

01,  construction is then repeated in each group. The variance estimator has the same 

form as (2.2.2) but is based on a fewer number kpB  of replicates where H/g + 1 < 

kpB <H/i + " 
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A number of authors have studied empirically the BRR as a method of estimating 

the variance of statistics like ratio estimators, regression coefficients and 

correlation coefficients (McCarthy, 1969; Kish and Frankel, 1970 and 1974; Frankel, 

1971; Levy, 1971), post-stratified means (Bean, 1975) and even estimates of 

covariance matrices (Freeman, 1975). Gurney and Jewett (1975) also extended the 

use of BRR to designs where the number of sampled PSU per stratum is a prime. 

Krewski (1978b) provides some insight as to the efficiency of the random groups, 

the BRR and PBRR methods in the linear case 9 = st, Also, a few studies (both 

empirical and theoretical) compare the BRR with the jackknife and the linearization 

methods. These papers are discussed in the following sections. We will only 

mention that Efron (1981) links the BRR with the bootstrap method and that Rao 

and Wu (1983b) study the asymptotic behavior of the four BRR variance estimators 

((2.2.2) to (2.2.5)). 

2.3 Jackknife Repeated Replication 

Another sample reuse method, the jackknife, was originally introduced by 

Quenouille (1949) as a method of reducing the first order bias of a statistic. In a 

later paper Quenouille (1956) generalized the method and explored its bias reduction 

properties in the context of simple random sampling from infinite populations. The 

use of the jackknife was expanded when Tukey (1958) suggested that the individual 

subsample estimators may be regarded as lid random variables. In this way, a very 

simple estimate of variance and an approximate t statistic could be calculated and 

used for hypothesis testing as well as interval estimation. 

The method, in its simplest form, is described as foElows. Let Y 1 , ..., Y be iid 

random variables from a distribution F and 6(F) be the parameter of interest. An 

estimator 9 of 6 is computed from the sample. Suppose we divide the sample into g 

groups of size r = n/g, and for each group, we compute 9, the estimator of 0 of 
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the same functional form as 0 but computed from the sample after the omission of 

the j'th group. We define the "pseudo-values" 8 as 

O i  = go - (g-1) 	
(2.3.1) 

and the jackknife estimator of 8 as 

-' 	g 	8. 
8 = E 

3=1 g 	 (2.3.2) 

The jackknife estimator of the variance of 8j  and of 8 (Hinkley, 1977a) is given by 

g 
g 	 (9. - 8 (g-1) 	 )2 

j=1 	 (2.3.3) 

the variance between the subsample estimates. The statistic 

/ (J - 8) 
t= 

1 	g 	
1 (e.—e) 2 }- g 	j=1 	 (2.3.4) 

is assumed to follow an approximate t distribution with g-1 degrees of freedom. In 

order to maximize the degrees of freedom, g=n is by far the most common choice in 

applications. 

Further research of the bias reduction and variance estimation properties was 

done in the context of simple random sampling with replacement or sampling from 

infinite populations, on statistics such as ratio estimators (Durbin, 1959; Rao, 1965; 

Rao and Webster, 1966), regression coefficients (Miller, 1974a; Hinkley, 1977b), 

maximum-likelihood estimators (Brillinger, 1964) or U-statistics (Arvesen, 1969). 
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Although the usefulness of the jackknife has been proven in many areas it fails to be 

consistent in the case of order statistics and quantiles (Miller, 1964). In fact, Miller, 

in his subsequent review (1974b) mentions that in order "for the jackknife to operate 

correctly, the estimator 8 has to have a locally linear quality". 

The extension of the jackknife to finite population sampling and surveys with 

complex designs is not straightforward. The initial studies were empirical investig-

ations concerned for the most part with stratified (without replacement) schemes 

(Folsom, Bayless and Shah, 1971; Frankel, 1971, Kish and Frankel, 1974; Sharot, 

1976; Lemeshow and Levy, 1979). In their comparison of the linearization, the 

jackknife and the BRR variance estimators, Kish and Frankel (1974) found that the 

linearization estimator was more stable than the jackknife which in turn was more 

stable than the BRR estimator. However, for the purpose of interval estimation, 

their performance was in the reverse order, that is, the BRR method provided a t-

statistic which followed the t distribution more closely than the other methods. At 

that time, several versions of the jackknife variance estimator in the stratified 

sampling context were proposed (Lee, 1973b; Jones, 1974; McCarthy, 1966a). Wolter 

(1979) provides a good overview of their findings. 

Theoretical justification of the linearization, the BRR and the JRR methods has 

begun only recently with papers by Krewski (1978a) and Royall and Cumberland 

(1978) whose concern was with the asymptotic behaviour of the methods. Later, 

Krewski and Rao (1981) established the asymptotic normality and the consistency of 

all three variance estimators in stratified (with replacement) multistage sampling. 

The first order asymptotic results of that paper did not, however, separate the three 

methods. It was in a subsequent paper by Rao and Wu (1983b) where the second 

order asymptotic properties established an important result. That is, in the special 

case of two units per stratum, all of the jackknife variance estimators presented in 

earlier papers were found to be asymptotically equivalent to the linearization 

variance estimator but not to the BRR variance estimator. 
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2.4 The Bootstrap 

The bootstrap was introduced recently by Efron (1979) in the context of simple 

random sampling or sampling from infinite populations. Briefly and freely adapted 

from therein, the method can be described as follows. Given a sample {} from a 

distribution function F and a parameter of interest 0(F), we estimate F by : {mass 

1/n on each y1}.  A bootstrap sample of size m, {y*} m' S then obtained from P by 

sampling it with replacement. An estimate of 8 can then be computed from this 

sample, say §({y* }). This process can be repeated a large number (B) of 

times, leading to e 41 , e, ..., 8. A bootstrap variance estimator of e is then given 

by 

= j! 	
(8 - 8)2 / B 	

(2.4.1) 

where 

B 	. 8* 	E e / B 	
(2.4.2) 

is a bootstrap estimator of 0. 	Efrort (1979) links the jackknife and bootstrap 

estimators in the above set up by showing that the jackknife estimator is in fact the 

first order Taylor approximation of the bootstrap estimator. 

Three adaptations of this method to data arising from complex sample surveys 

exist to date. First, there is the Bickel and Freedman (1984) approach, which 

consists of creating a superpopulation from the sample at hand, by replicating each 

of its units a number of times equal to its weight. The superpopulation is then 

sampled without replacement to obtain the individual bootstrap samples. Secondly, 
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McCarthy and Snowden (1983) resample the sample with replacement, choosing the 

bootstrap sample size (m) such that the variance of the bootstrap estimator of the 

mean is asymptotically correct. Subsequent studies suggest, however, that this 

approach fails to capture moments of higher order and can be misleading if applied 

to highly skewed populations. Both approaches can be applied to simple random 

samples or stratified simple random samples with or without replacement. Thirdly, 

an approach due to Rao and Wu (1983a) involves the use of adjusted values, 

somewhat analogous to Tukey's pseudo values for the jackknife. Their approach is 

applicable to virtually any survey design and any estimator that can be written as a 

function of means. 

The theoretical justification of the bootstrap for finite samples is scarce. Babu 

and Singh (1983) prove some asymptotic properties of the bootstrap variance 

estimator by letting the stratum sample size go to infinity. Bickel and Freedman 

(1984) generalize these results by considering stratified samples selected with or 

without replacement and by letting the total sample size tend to infinity (that is, 

either the number of strata, or the stratum sample size or both tend to infinity). 

They show that the bootstrap variance estimator, in their superpopulation context, 

is asymptotically normal and consistent for the case of estimating linear 

combinations of stratum means. Rao and Wu (1983a) extend these first order 

asymptotic results to various other designs and to all estimators of functions of 

means. 

Other empirical justifications of the boostrap in the case of finite populations 

are scarce and remain mostly unpublished. Clearly, this is an area that is in need of 

a lot more research. 
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3. Special Topics 

3.1 Estimation of the Variance of the Median 

The sample median is a robust alternative to the mean for estimation of location 

-  for skew and heavy tailed populations. Quantiles and percentiles are also of 

practical interest for distributions of variables such as personal income. Their 

variances can be obtained by methods developed for the median. Direct theoretical 

estimation of the median and its variance is possible for samples composed of iid 

observations. Various resampling methods such as the bootstrap and the jackknife 

based on Monte Carlo approximations are also available. The following paragraphs 

present some of these methods, including methods based on order statistics, 

resampling methods as well as Woodruff's method based on the inversion of the 

distribution function. The conspicuous lack of results pertaining to samples from 

complex surveys indicates the need for further research in this context. 

Let X(m)  be the sample median, where X(1)  X(2)  ..., x are the order statistics 

based on a random sample of size n (n = 2m-1) from a distribution function F. It is 

known from standard asymptotic theory, that as n tends to infinity, V(X(m)) 

approaches 1/(4nf 2 (8)), where f(s) is the probability density at 8, the population 

median (Kendall and Stuart, 1950). An estimate of this variance, V(X(m))  can be 

obtained by estimating f(8) based on the observed order statistics. Maritz and 

Jarrett (1978) have obtained the values of V(X(m))  for rectangular, exponential and 

standard normal distributions. However, even for simple random samples from 

finite populations, the substitution by sample order statistics does not work and an 

implicit assumption of an infinite super population may be necessary. 

Alternatively, we can consider methods based on resarnpling the parent sample, 

including the bootstrap and the jackknife. Extensions of these methods to complex 

surveys and various estimators have been discussed above. 	However, these 
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extensions are generally not available for functionals such as the median. For 

independent, identically distributed observations from a distribution F with a 

continuous density 1(x), Efron (1982) shows that in the case of the median, the 

bootstrap variance estimator approaches the correct asymptotic value of 

1/(4nf 2 (e)). No comparable results exist in the context of sample surveys. In the 

case of the jackknife, on the other hand, it can be shown (Miller, 1964) that even in 

the case of iid variables, the jackknife variance estimator is inconsistent. 

The above nonparametric methods necessarily emphasize the parent sample and 

with it, the uncertainty about the sampling distribution. If the form of the 

distribution is known, as can be argued in the ease of income, it should be possible to 

improve the estimates. One alternative is to fit an appropriate distribution, say 

Pareto, to the data and obtain the appropriate parametric estimates. More 

generally, one can use a broad parametric family, with Pareto as a special case, and 

obtain, by maximum likelihood estimation, 8 and v(8). These methods will better 

exploit different data sets collected over time from different areas. Steinberg and 

Davis (1981) compared various confidence interval estimates for quantiles including 

those based on order statistics and the bootstrap. They found that when the form of 

the distribution is known, the parametric confidence intervals are often considerably 

shorter than those of nonparametric methods. It is not clear, however, how 

extensions of the parametric methods to complex sample designs can be made. 

Finally, Woodruff (1952) obtains a confidence interval for the median of the 

empirical distribution function, which can be used to obtain a confidence interval 

for the median itself. The method seems to work in the case of complex sample 

designs; however, the sampling distribution of the estimator of the standard error of 

the median has not been investigated. It is not appropriate to obtain the same by 

using normal approximation results, especially for skew populations, which would 
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make the sampling distribution of e skew in moderately large samples. The 

extension of the method to quaritiles and percentiles is simple as far as confidence 

intervals are concerned. However, obtaining accurate estimates of standard errors 

for quantiles and percentiles for skew populations seems more difficult. 

3.2 Seasonally Adjusted Data 

Seasonally adjusted data receive considerable attention in data analysis 

pertaining to continuous surveys where trends over time, adjusted for seasonal 

factors, are frequently dealt with. While variances of unadjusted data in surveys 

have been estimated with regularity, there has only been a marginal amount of work 

undertaken to estimate the variances of seasonally adjusted data. 

- 	 The variances of linear and nonlinear estimates are generally easily derived 

theoretically with first order Taylor series or various sample reuse approximations, 

as described in Section 2. However, the variance of seasonally adjusted data, 

whatever the method employed, has not, to our knowledge, been theoretically 

obtained. The closest to a theoretical development of that variance may be found in 

Wolter and Morisour (1980), where the problem of variance estimation for a 

deseasonalized series is discussed and a variance of the seasonally adjusted data by 

each of several procedures is obtained, assuming a time-series model for the 

seasonal adjustment algorithm. 

From a practical point of view, for a continuous survey, the balanced repeated 

replication method can be used to derive the variance of seasonally adjusted data. 

An identical orthogonal BRR matrix is used for both current and previous surveys. 

The derived sets of half sample data are then seasonally adjusted and a variance 

between these adjusted figures is derived. See Gray (1976) for an application to the 

Canadian Labour Force Survey. 
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4. Current Uses at Statistics Canada 

While estimates of variance are as yet not available for all characteristics produced 

by all surveys at Statistics Canada, numerous surveys do produce variances of their 

estimates by many varied methods. The following serve as examples only, they are not 

meant to be all exhaustive and perhaps not even representative of all the surveys at 

Statistics Canada. 

Of the methods discussed above, with the exception of the bootstrap, all are in use 

at Statistics Canada. The National Farm Survey estimates, for example, are all 

accompanied by coefficients of variation estimated by independent replication 

(Davidson, 1984). The Taylor linearization method is in frequent use, notably to estimate 

the variances of the first iteration raking ratio estimates of the Canadian Labour Force 

Survey (LFS) characteristics (Chaudhry and Lee, 1984). Moreover, studies are underway 

to produce the variances of the seasonally adjusted data from the LFS using balanced 

repeated replication (Gray, 1976). Finally, the jackknife methodology is employed in 

estimating reliability measures for the Industry Selling Price Index (Sande,t a., 1983). 

As of late, numerous demands are being made of Statistics Canada to produce 

reliability measures for more and more new characteristics; nonlinear estimates in 

particular. Variances of furictionals such as the median and other percentiles are also 

being sought. It is our responsibility to produce these measures but first and foremost, it 

is our duty to ensure that our estimators are theoretically sound. To this end, several 

research endeavours have been undertaken at Statistics Canada; other initiatives need to 

follow. 
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