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9 	 1. INTRODUCTION 

Regression analysis is a very widely used tool for analysing 

multivariate data. The analysis of multivariate data has recently 

been greatly aided by the development of computer packages. Users of 

such packages quite often ignore the assumptions that should be sup-

ported by the data sets they analyse. One of the major assumptions 

underlying regression analysis in computer packages is that the ob-

servations are independent. This crucial assumption is violated if 

the data has been collected using cluster or multistage sampling de-

signs. The subsequent analyses using standard computer packages do 

not take this important consideration into account with the net effect 

being that the standard estimators for the variance of the estimates 

regression coefficients are likely to be serious underestimates. Test 

statistics and confidence regions based on those variance estimators 

are also badly affected. 

The problem of multiple regression estimation in finite popula-

tion sampling has been studied by Konijn (1962), Frankel (1971), 

Fuller (1975), Hartley and Sielken (1975), Holt, Smith and Winter 

(1980), Särndal (1978) and more recently by Scott and Holt (1982). 

These authors have pointed out to the dangers of using traditional 

computer packages and have provided some theory to handle the non-in-

dependence problem caused by multistage or cluster sampling. There is 

not much literature on the applications of these theories to data 

sets. Some indication of the performance of the estimators of vari-

ance for the regression coefficients, using this theory has been re-

ported by Frankel (1971), Shah et al. (1977), and Scott and Holt 

(1982). Frankel (1971) studied the empirical behavior of multiple re-

gression coefficients computed from a stratified cluster sample. The 

data used for this study were a sample of U.S. households selected by 

the U.S. Bureau of the Census in the March 1967 Current Population 

Survey. The objective of the regression analysis was the estimation 

of the finite population parameters as defined by the population mom-

ents. Frankel used the Taylor approximations to the variance formula 

suggested by Tepping (1968). 
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In this paper, small sample properties of regression estimators 

and their estimated variance will be presented in the context of 

finite population sampling. That is, stratification and clustering 

will be taken into account when estimating the finite population re-

gression parameters. Two types of regression procedures will be 

studied. One where the data are not subject to measurement error and 

the other where the data is subject to measurement error. The proce-

dures for data with measurement error should be of particular inter-

est to survey samplers because the data collected in sample surveys, 

particularly those collected from human respondents, are subject to 

measurement error. The U.S. Bureau of the Census (1972) has reported 

estimates of the response variance, as a percentage of the total var-

iance, that range from 0.5 to 40 percent. Regression analyses per -

formed under these circumstances must therefore take these errors in-

to account. Fuller (1981) has extensively investigated the proper-

ties of measurement error (error in variables) for estimators of re-

gression parameters. 

The simulation was carried out using the computer program SUPER 

CARP (1981). The structure of the paper is as follows. The investi-

gated models are presented in Section 2. The design of the sampling 

experiments and the simulation results are given in Sections 3 and 4 

respectively. 

2. MODELS 

The finite population model is given by 

YN = N OLS + 	 (2.1) 

where y is an Nxl vector of observations on the dependent variable; 

xN  is an Nxp non-stochastic matrix of observations on p regression; 

OLS is the p-dimensional vector of regression coefficients; eN  re-

presents an Nxl vector of deviations from the linear relationship. 

. 
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N is the size of the population interest. In the absence of measure-

ment error on y and x, minimizing the sum of the squared deviations 

over the entire population yields the following definition (Frankel, 

1971) for the population regression coefficients B OLS as 

T 	-T 
OLS = 	N 	N N 	

(2.2) 

where the inverse of (x T N xN) may be the Moore-Penrose inverse. 

The estimator for BOLS is obtained via a two-stage stratified 

clustered sample obtained as follows. The population is first divided 

into h1, 2, ..., L strata. For each stratum, a sample of size 

is drawn from N clusters and from each selected cluster of size N. 

	

h 	 nj 

a sample of n
j 
 elements is drawn using a given drawing mechanism at 

each stage. A natural estimator for B OLS 
 which appeals to survey 

statisticians is one which takes the survey weights into account. 

Such an estintor is given by 

bOLS = (x 1  w 	_ 	T w 	 (2.3) 
ri - 	- -n -n 	-n -n n 

with the rs-th element of W x is given by 
-n -n -n 

h Thj Xhjkr jks Whik 
h=1 j=1 k=l 

where 

Whik = weight associated with the hjk-th observation, 

x.. nj 
.kr = the hjk-th observation on the r-th independent 

variables, 

Lab 

	

n = E 	E m.. (the effective sample size). 
h=l j=l 

Similarly, the rs-th element of x T  w y is given by 
-n -n -ft 

. 
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h=l jl k=l Xhjks hjk  Whik 

with y 
hjk 

 being the hjk-th observation on the dependent variable. 

Fuller (1975) provided an estimator for the covariance matrix of b OLS 

under certain regularity conditions to ensure the convergence to nor-

mality and consistency. This estimator is given by 

	

OLS 	( 	n 	OLS 	n 	(2.4) 

where the rs-th element of G
OLS 

 is 

L 

h=l 	J=l 	
hj.rdh..r)hj.s..$) 	(2.5) 

with 	f h = n.h /Nh 

. 	

dhjkr  = 'hjkr Vhjk 

p 
Vhjk = hjk - r 1 bOLSr jkr = 

j.r 	
k 	

jkr 
=1  

and 

= . 
	j.r'% 

In the presence of measurement error, the finite population 

model is given by 

XN = N EV +N 	(2.6) 

0 	
where Y and 	are the observed random variables Incorporating 
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measurement error. That is 

XN = XN+uN and N 	NN 

where 6 = ( EN' UN) is the matrix of response errors for the popula-

don. Assume that the covariance matrix for UN is known and is 

denoted as Z• Similarly to the ordinary least square case (BOLS), 

EV may be defined as 

	

PEV = c 	XN_N UU 	N !N 	 (2.7) 

A sample estimator for B is given byEV 

EV = 	W x -n z 	x w Y 	 (2.8) 
-n -n 	-uu 	-n -n -n 

where the elements of xT  w x and of xT  W Y are defined as previously 
-n -n -n 	-m -n -n 

provided. A consistent estimator for the covariance matrix of bEv is 

given by 

V =(XW X - nZ ) G (X W X - nj ) EV 	-n -n -n 	-uu 	-EV -n -n -n 	-uu 

with the elements of G EV  defined as in (2.5) with 

dhjk r  = Xhjk r  Vhjk Whik 
p 

v 	Y 	- 	b 	X 

	

hjk 	hjk 	EV,r 
r=l 	

hjkr 
 

Regularity conditions for the above covariance matrix's consistency 

have also been provided by Fuller (1975). 

3. MONTE-CARLO STUDY USING CPS DATA 

The data used for this investigation were those used by Frankel 

[19711 and were collected by the U.S. Bureau of the Census in the 

40 	March 1967 Current Population Survey [1963). The finite population 
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consisted of 45,737 observations grouped in 3240 primary units. Two 

sample designs were used in this investigation. In sample design I 

the original 3,240 primary units in the population were divided into 

6 strata containing 540 primary units each. In sample design II, the 

3,240 primary units were divided into 12 strata, each of size 270 

primary units. This stratification was carried out by splitting each 

of the 6 strata used in design I into two strata. In sample designs I 

and II, two primary sampling units were selected s.r.s. without replace-

ment from each stratum of the population. The data was stored on a 

tape. Each individual element stored on this tape was identified by 

a household number and a p.s.u. code. The p.s.u. numbers were order-

ed from 1 to 3,240. All the elements associated with a specific 

p.s.u. were grouped together within the strata defined by the posi-

tion of the p.s.u. on the sequence. In the case of the 6 strata de-

sign, the first 540 p.s.u. made up stratum I, the second 540 p.s.u. 

made up stratum II, etc. In the case of the 12 strata design, each 

stratum was arranged in a sequence of 270 p.s.u. Each of the two 

sampling designs called for the selection of two primary sampling 

units from each stratum of the population. A computer program was 

written to select the two primary sampling units using a simple ran-

dom without replacement sampling scheme. For sample design 1, 6 in-

dependent pairs of random numbers were generated. Each element of 

the pair was generated by a uniform (0,1) random number generator. 

The elements of each pair were multiplied by 540 and the product was 

truncated. For sample design II, 12 independent pairs of random num-

bers were generated, with each element of the pair generated by a un-

iform (0,1) random number generator. The elements of each pair were 

multiplied by 270. Two hundred independent samples were selected in 

this manner for each sampling design. 

The dependent variable of interest was log Income of the licese-

hold head and the independent variables were age, age squared and 

education. To ensure that the matrix of sums of squares and products 

of the independent variables was nonsingular, the independent van-

ables were coded as: Age-43, (Age-43) 2 - 70 and Education-l2. 
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Let XhJk (rl, 2, ..., 4) denote the value of the r-th independent 

variable and Y hjk the value of the dependent variable for the k-th 

element (k=l, 2, ..., M1 ) in the j-th p.s.u. (j =1, 2, ..., N 1 ) of 

the h-th stratum (h1, 2, ..., L) of the population. Similarly, 

Xhjkr denotes the value of the r-th independent (r=l, 2, ..., 4) 

variable and Yhjk the value of the dependent variable for the k-th 

element (k=l, 2, ..., M) in the j-th primary (j=l, 2) of the h-th 

stratum (h=l, 2, ..., L) of a selected sample. In addition, define 

Xhjkl = 1 and Xhjkl = 1 

for all h, j and k. The sampling behavior of the two sets of statis-

tics associated with the O.L.S. estimator given by (2.3) and those 

associated with the error-in-variables procedure given by (2.8) will 

be investigated. 

For the case of errors-in-variables, it is assumed that the res-

ponse errors are independent between secondary units (clusters in our 

case) within the same primary unit (stratum) as well as between secon-

dary units on different primary units. For the errors-in-variables 

model, age and education were observed subject to response error. 

Using the U.S. Bureau of the Census (1972) coding study, response 

variances, for Age - 43, (Age-43) 2  -70 and Education - 12, were as-

sumed to be 0.3, 91.0 and 3.0 respectively. It was assumed that the 

response error of variance was uncorrelated with that of age and 

education. In our case, 
0 0 	00 

- 	0 0.3 0 
uu 	0 0 91 0 

0 	0 	03 

The "t-statistics" are given by 

b -B 
t(b ) = r 	r r=1, 2, ..., 4 r 	s(b) r 

0 	where b, Br  and s(b) are the sample regression estimates, population 
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regression parameters and standard deviation of br respectively for 

the O.L.S. or E.V. case. The properties of t-statistics are also of 

interest. 

4. RESULTS FROM THE MONTE-CARLO STUDY 

The data obtained in the 200 samples for each sample design was 

used for both regression procedures. The results of the two experi-

ments are presented in several tables. Table 1 gives for each experi-

ment the mean and variance for the regression coefficients. Note that 

the standard error in design I are approximately /T times the stan-
dard errors of the corresponding coefficient in design II. This is 

to be expected, since the number of primary sampling units in the 12 

strata design is twice the number in the 6 strata design. From 

Table 2, considering the ratio of the estimated bias of 200 sample 

regression estimates to the estimated standard error of their mean to 

be distributed as Student's t with 199 d.f., we conclude that the 

bias is reduced as the sample size increases. 

Additional information concerning the frequency distributions of 

the estimates computed in the Monte-Carlo study is given in Tables 3 

and 4 which contains the observed percentiles of the calculated t's. 

Examination of Tables 3 and 4 reveals that the distribution for t(b) 

and t(b(e)) agrees more closely with the theoretical t distribution 

near the median than in the tails. Comparisons of the 1%, 5%, 95% 

and 99% points for the t statistics in Tables 3 and 4 reveal the ef-

fects of increased sample size. For instance, in Table 3 the 5% and 

95% points for t(b 3 (e)) are -2.321 and 2.573 which are considerably 

higher than the corresponding points for the t distribution with 6 

degrees of freedon, ± 1.943. For these same statistics, the 5% and 

95% points in Table 4 are -1.641 and 2.076 as compared to ±1.782, 

the corresponding points for the t distribution with 12 degrees of 

freedom. These observations suggest that the variances of the sample 

regression coefficients estimates have been underestimated in small 

samples, though not by much. 
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Comparing the results for O.L.S. regression coefficients in 

Table 5, it is evident that Frankel's calculated t's for these coef-

ficients are closer to the theoretical t distribution than the ones 

obtained in our study. One explanation for this is that only urban 

males between the ages 28-58 were selected for our study. This re-

sulted in decreasing the average number of elements in the sample for 

designs I and II from 170.3 and 339.5 (as used for Frankel t s study) 
to 61.5 and 124.5 (as used for our study) respectively. 

In sutmnary, the results of this investigation indicate the sample 

estimates of the multiple regression coefficients have small biases, 

and the distribution of the t-statistics computed for both the O.L.S. 

and errors-in-variables procedures are well approximated by the the-

oretical t distribution. In addition, the agreement improves as the 

number of strata used in the design increases. 

. 

1] 



. 

. 

0 



11 

- 10 - 

TABLE 1: Means of 200 Regression Sample Vectors 

Nuniber Cf 
strata in 
experiment 

Regression 
coetfictents 

LEAST-SQUARES 	I 	ERRORS - IN-VARIABLES I __ 	 MODEL  	MODEL 
b2  b3   b1 (e) b 2 (e) - b 3 (e) b4 (e) 

Population 
6 value 8.9289 0.0029 -0.0007 0.0846 8.9405 0.0053 -0.0006 0.1194 

Means of 

6 200 samples 8.9115 0.0027 -0.0009 0.0812 8.9207 0.0055 -0.0008 0.1213 
Est ha ted 
Standard 

6 
deviation of 
estimates 0.1136 0.0112 0.0013 0.0308 10.1082 0.0116 0.0015 0.0477 

Estimated 
standard 

6 
error of 
mean 0.0080 0.0008 0.0001 0.0022 p 0.0076 0.0008 0.0001 0.0034 

12 
Population 
value 8.9289 0.0029 -0.0007 0.0846 p8.9405 0.0053 -0.0006 0.1194 

12 
Mean of 200 
samples 8.9254 0.0039 -0.0006 0.0842 8.9344 0.0068 -0.0006 0.1225 

Estimated 
standard 

12 deviation of 
estimates 

0.0724 0.0075 0.0008 0.0228 0.0712 0.0078 0.0009 0.0332 

Estimated 
standard 

12 error of 
mean 

0.0051 0.0005 0.0001 0.0016 10.0050 0.0005 0.0001 0.0023 

. 
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0 	TABLE 2: Estimated Bias of Regression Estimates for 200 Replicates 

Number of 
strata in 
experiment 

LEAST-SQUARES MODEL ERRORS-IN-VARIABLES MODEL 

 b2  b 3 	- b4  b(e) b2 (e) b 3 (e) b4 (e) 

6 _0.0174* -0.0002 _0.0002* -0.0034 _0.0198* 0.0002 0.0002 0.0019 

12 -0.0035 0.0010 0.0001 -0.0004 -0.0061 _0.0015* 0.0000 -0.0031 

*significant at the 5% level 

40 
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TABLE 3: Comparison of Observed Percentiles of the Calculated t's 
with the theoretical percentiles for the t distribution 
with 6 degrees of freedom 

Prubabtlttv 
In percent 

Theoretical 
percentile 

for 
student's 

OBSERVED PERCENTILE 
for t(b) 

OBSERVED PERCENTILE 
 for t b(e))  

b, b b3  b4  b1 (e) b 2 (e) b 3 (e) b4 (e) 

1 -3.143 -4.841 -3.794 -3.479 -5.315 -4.720 -3.316 -3.329 -5.545 

5 -1.943 -2.616 -2.053 -2.278 -2.650 -2.366 -2.055 -2.321 -2.203 

10 -1.440 -1.855 -1.734 -1.652 -1.773 -1.667 -1.547 -1.615 -1.811 

20 -0.906 -1.070 -1.131 -1.153 -1.314 -0.973 -0.908 -1.110 -1.082 

30 -0.553 -0.695 -0.625 -0.731 -0.823 -0.623 -0.515 -0.825 -0.637 

40 -0.265 -0.392 -0.258 -0.481 -0.434 -0.328 -0.263 -0.535 -0.395 

50 -0.000 -0.057 -0.037 -0.211 -0.222 -0.053 0.016 -0.202 -0.102 

60 0.265 0.221 0.298 0.153 0.083 0.212 0.262 0.126 0.213 

70 0.553 0.630 0.632 0.478 0.468 0.428 0.677 0.459 0.551 

80 0.906 1.236 0.902 0.906 0.982 1.104 0.932 0.826 0.845 

90 1.440 1.828 1.736 1.874 1.664 1.774 1.564 1.799 1.450 

95 1.943 2.567 2.898 2.789 2.148 2.849 2.142 2.573 1.666 

99 3.143 4.418 4.679 5.116 3.638 5.022 3.852 4.8'0 3.351 

40 
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TABLE 4: Comparison of Observed Percentiles of the Calculated t's 
with the theoretical percentiles for the t distribution 
with 12 degrees of freedom 

Probability 
in percent 

Theoreij,al 
percentile 

for 
student's 

OBSERVED PERCENTILE 
t(b) 

OBSERVED PERCENTILE ( 
e 

b 2  b 3  b4  b1 (e) b2 (e) b 3 (e) b4 (e) 

1 -2.681 -2.442 -3.167 -2.545 -3.278 -2.694 -2.679 -2.526 -3.222 

5 -1.782 -1.777 -1.813 -1.536 -2.306 -1.822 -1.659 -1.641 -1.659 

10 -1.356 -1.364 -1.294 -1.316 -1.440 -1.258 -1.273 -1.308 -1.236 

20 -0.873 -0.975 -0.666 -1.004 -0.961 -0.842 -0.693 -0.863 -0.796 

30 -0.539 -0.554 -0.364 -0.623 -0.451 -0.511 -0.407 -0.542 -0.309 

40 -0.253 -0.195 -0.124 -0.301 -0.145 -0.298 -0.090 -0.161 -0.036 

50 0.000 0.076 0.138 0.032 0.056 -0.024 -0.326 0.122 0.195 

60 0.253 0.277 0.492 0.378 0.306 0.266 0.554 0.412 0.379 

70 0.539 0.640 0.756 0.666 0.694 0.504 0.784 0.653 0.636 

80 0.873 0.981 1.141 1.043 0.987 0.938 1.114 0.963 0.930 

90 1.356 1.543 1.709 1.644 1.538 1.566 1.735 1.516 1.345 

95 1.782 i 1.976 2.016 1.951 2.028 1.848 2.112 2.076 1.757 

99 2.681 2.860 2.786 3.300 2.944 2.824 3.057 3.284 2.428 
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TABLE 5: Comparison of Observed Proportion for 
Calculated t(b) within stated limits 
to the theoretical proportion for the 
t distribution 

NUMBER OF 
STRATA IN INTERVALS 

THE ORETI CAL 
OBSERVED PROPORTION 
FRANKEL'S OUR 

PROPORTION  
EXPERIMENT  STUDY STUDY 

6 ± 2.576 0.9580 0.9421 0.9350 

6 ± 1.960 0.9023 0.8733 0.8525 

6 ± 1.645 0.8489 0.8146 0.8104 

6 ± 1.282 0.7529 0.7167 0.7037 

6 ± 1.000 0.6441 0.6029 0.5950 

12 ± 2.576 0.9757 0.9662 0.9640 

12 ± 1.960 0.9264 0.9121 0.9103 

12 ± 1.645 0.8741 0.8496 0.8447 

12 ± 1.282 0.7760 0.7437 0.7500 

12 ± 1.000 0.6630 0.6217 0.6100 

. 
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