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liNE APPROCHE EMPIRIQUE NON-PARA)IETRIQUE BAYES 
POVR ESTIMER UNE MOYEN14E DE TRAITEMENT DU CONTR&E DE l.A QUALITE 

RESUME 

A Scatisrique Canads lechantillorinage dacceptation est utilise A ticre 

de méthode de concróle de la qualite lors des operations de traitements 
d'enquéte. Les plans dechantillonnage qul sont utilisés assurent un 
rn1nimu dinspeccion A un niveau spécifique d'erreur A l'entrAe. Ce niveau 

derreur est estimé par une quancite connue sous le nom de moyenne de 
traitement. Cest un paraniAtre inconnu qui est habituellement estinié A 
p.rcir de resultats d'tnspection courantes, mais l'estimatjon est souvenc 
difficile A rPaliser A cause des petites tailles d'échantillons. Une plus 
?r3nde precision de l'estimacion peut Acre produite en utilisant plus de 
dnnees des Cchantillons precedents afin d'amCliorer le resultat de 
echancillon courant. Un estimateur empirique non-paramerrique "Bayes" de 

la moyenne de traitement est prCsencC. 	Un intervalle de confiance 
aproximatif est aussi constrult. Des exemples sont donnCs. 

C1s 	contraction, moyenne combinée, meilleur prédicteur lin6aire 
cans blais 
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A BSTRACT 

A 	:3tlst1cs Canada, acceptance sampling is 
ised as a method of quality control for survey 
processing operations. The sampling plans which 
are used will ensure minimum inspection at a 
specific incoming error level. This error level 

s estimated by a quantity known as the process 
..verage. It is an unknown parameter which is 
isually estimated from current inspection 
results, but frequently the estimation is 
difficult because of small sample sizes. Creater 
accuracy in the estimate may be produced by using 
ire data from previous samples to improve upon 
me current sample result. A non-parametric 
empirical Bayes estimator of the process average 
is presented. An approximate confidence interval 
is also constructed. Examples are provided. 

XE? WORDS' shrinkage, pooled average, best linear 
it'Lssed predictor 

I. INTRODUCTION 

c.:vey processing operations at Statistics 
C,jn.ida include processes such as data capture, 
coding editing, transcription, assessment, 
corrections etc. 	Because this processing is 
largely manual and repetitive in nature, It is 
often subject to high levels of error. 	Quality 
control methods, applied at the Individual 
producer (i.e. in this case, operator) level are 
used to control these errors to acceptable 
levels. 

Acceptance Sampling has been found to be an 
effective method for controlling the quality of 
survey processing operations at Statistics Canada 
(Mudryk, 1988). Typically Dodge-Romig sampling 
plans are used, which provide average quality 
protection and minimum inspection for each 
operator at a specific incoming error level. This 
level Is estimated by the process average which 
is defined as an individual's underlying error 
level at a specific point in time. For most 
applications it is expressed as a fraction or 
percent defective. The true process average is 
unknown and it is therefore desirable to estimate 
it as accurately as possible since inspection 
will only be minimized at the true value. 

Estimation using only current data often 
yields inaccurate results because sample sizes 
are small. This is improved somewhat by 
including data from other recent processing 
periods using the Quality Control Processing 
System (QCPS), (Mudryk, 1988). The QCPS is 
quality control software developed at Statistics 
Canada which maintains quality control data for a 
four month period for each individual operator. 
The previous data on the system's historical 
files Is combined with the current sample data 
using a non-parametric empirical Bayes approach 
in an attempt to produce a more accurate estimate 

of an operator's process average. This estimate 
Is then used to select more efficient sampling 
plans for the operator. 

2. EMPIRICAL BAYES METHODs 

The notion of using a Bayesian approach to 
estimate the process average was prompted by the 
work of Hoadley (1979 and 1981) at Bell Labs. He 
was able to show an increase in the accuracy of 
estimates required for quality assurance, by 
using an empirical Bayes technique. 

In empirical Bayes inference the values of the 
hyper-parameters of the prior distribution are 
unknown and are estimated from the marginal 
distributions of the observed data. Hoadley's 
model specifies a Poisson likelihood for the 
observed data, and then takes the conjugate prior 
of the Poisson, the Gamma, as the prior 
distribution. Some fairly complex numerical 
integration is then required. It is possible to 
avoid this by using a non-parametric approach. 
This means essentially, that an unrestricted 
prior is being used. Apart from being simpler 
computationally, it has the advantage that it 
will often provide a more Intuitive form for an 
estimator. This was the approach taken in 
developing an estimator for the process average. 

3. ESTIMATOR OF THE PROCESS AVERAGE 

Assume that the estimate of an operator's 
error rate may be expressed as P 1  - P + ci where 
e 5  is the sampling error and Pj is the operator 
error rate for the ith period. It is assumed 
that the operator's error rates are random and 
homogeneous, analogous to a one way layout with 
random effects, i.e., Pi - P + aj, I - 1 .....t, 
where P is the average error rare and aj is the 
ith period effect with E(ai) - 0. 	The process 
variance, denoted by A, is defined as 	the 
variance of the period effect, A - V(ai). The 
process average estimate is required for period t 
since this is the time at which an operator's 
sampling plan will be revised. The weight 
(shrinkage factor) for period c is constructed as 

Wt - D/(D + A), 	 (3.1) 

where D t  Is the sampling variance for period t. 
The non-parametric empirical Bayes (NPE3) 
estimate of the process average for period t is 
then given by 

+ Wa', 	(3.2) 

where Wt  is the estimate of the weight for the 
period t, P t  is the estimate of the operator's 
error rate for period t and P is the estimate of 
the average error rate over t periods. 





deursiicaily, if the sampling variance is 
small relative to the process variance, the 
weight on the average error rate will be small 
because the currant sample result is accurate. 
If the converse Is true which means that the 
sampling variance is large relative to the 
process variance, the weight on the average error 
rate will be large because the current sample 
result is inaccurate in comparison. 

Morris (1983) notes that a choice between an 
estimate computed from the prior data and an 
stimate computed from the current data may be 
interpreted as a choice between A - 0 and A - 
The shrinkage estimator of the process average 
that is proposed is richer because it allows 
values of A between zero and infinity. This is 
the true benefit of the model and how the weight 

is estimated is far less critical. 
If the average error rate P is estimated 

r'iroue,h weighted least squares: 

+ 

(3.3) 
Zjl/(A + D) 

where 	is the estimated sampling variance, the 
esrimate of the process average in (3.2) is 
'iPpraximately a Best Linear Unbiased Predictor 
cLUP), That is, in the class of all unbiased 
:redictors of the process average, it has minimum 
.arjance (Rao, 1986). 

In practice, there are situations where the 
weighted least squares estimate is impossible to 
oltain because estimates of the process variance 
and sampling variance for one of the periods i 
are both zero. Zero estimates of the process 
variance are a consequence of 	high sampling 
'.'ariances and/or too few periods of data while a 
zero estimate of the sampling variance is a 
degenerate case caused by the absence of errors 
n the sample. 
However, a pooled average calculated through 

ordinary least squares, is another 	unbiased 
e',rlmate which is always available: 

P - Ej$jP, 	 (3.4) 

wLere 1i - N/Z1 Niand Ni is the number of units 
an operator has processed for the ith period. 

Note also that when the estimate of the 
process variance is unavailable, the weight (3.1) 
connot be calculated either. 	This problem is 
discussed under implementation in section 5. 

For the majority of cases, where an estimate 
of the process variance is available, an estimate 
can be obtained by noting that the expected value 
of the weighted residual sum of squares of the 
error rates about their average value will be 
equal to the degrees of freedom; Carter and Roiph 
(1974). 	Therefore, we solve 	the 	following 
non-linear equation 

P) 2  
- t . 1. 	(3.5) 

(A + 6 1 ) 

for A to get an estimate of A. 

!

Morris (1983) suggests solving this equation 
iteratively by 

1) (j 	P) 2  

Eil/(An  + Dj) 
(3.6) 

for t 	4. If the solution A < 0, set A - 0, 
Convergence to a level of accuracy of It of the 
difference between successive iterates can be be 
expected in 4 to 8 iterations (Morris, 1983), A 
starting value for the algorithm may be 
determined by calculating a simple quadratic 
unbiased estimate of A as 

- f)2 
Al - __________ - b. 	 (3.7) 

t - l 

where 	P - ZP/t and 	- ZiÔI/t. Since the 
iterative algorithm requires a positive starting 
value, if the above method for obtaining a 
starting value produces a negative result, a 
small positive initial value may be used. 

4. APPROXIMATE CONFIDENCE INTERVAL 

In the case of equal variances. (D1 - D, I - 
t), when the number of periods is large, 

the process average estimator becomes a Bayes 
estimator and then the Bayes posterior variance 
of each process average is nearly equal to D * (1 

W). Although most of the development for 
empirical Bayes confidence intervals has been 
done for the case of equal variances, experience 
for many QC applications has shown that an 
operator's sampling variance fluctuates 
considerably from one period to the next. It is 
therefore necessary to consider an approximate 
confidence interval which does not assume equal 
sampling variances. 

Another consideration is that the number of 
periods of data to be used in the calculation of 
the process average will be at most 4. In fact 
an operator will typically process for more than 
4 periods, but only 4 periods are used because 
this is the maximum number of periods of data 
which the Quality Control Processing System 
maintains. This small value of t will cause 
higher variances in the process average because 
of estimation of the average error rate and the 
uncertainty in estimating the process variance A. 
The expression for the process average variance 
must account for both sources. 

A result due to Morris (1983) is applied to 
give the estimate of the variance of the process 
average for the current period t as: 

s2(Pt) - t 11 	(4.1) 
+ 4t (t - 

where 
t 	I 

it - 	(j 	)-1, 	(4.2) 
(A+Dt) 	(A+j) 

(t-3) 
it  - - 	Vt, 	 (4.3) 

(t - 1) 





5. IMFIIMENTATION 

- - - 
	t2 	), 	(4.4) 
- 3) 	D,, + A 

+ ó j ) 
arid D'  

1/(A + Dj) 

Not c 	is theoperator error rate for 
the current period and P is the average error 
rate as previously defined. The terms of this 
expression may be interpreted by comparison with 
the Bayes posterior variance, D (1 U). In that 
expression, replace the sampling variance D, 
common to all periods, with f for the current 
period. The weight U is replaced by (4.3) which 
is the weight for the current period with a 
correction factor applied. 

Since the number of periods used to estimate 
the variance will be 4, the coefficient of W 	in 

3) becomes a Constant which is equal to 1/3. 
This is the correction 	for 	the 	curvature 
dependence of W on A. Since Ot is a convex, 
non-linear function of A, substitution of an 
unbiased A will still produce an estimate of W 
ihich has too large a bias. This factor will 
correct for the curvature. 

The coefficient of it in (4.1), (t 
accounts for the increase in the variance of the 
process average due to the small number of 
periods t. Expression (4.2), f t , represents the 
proportion of r for the current period. In 
Morris' more general framework, r is the rank of 
the X matrix of prior data. For the process 
average, since the prior data is summarized by 
the average error rate, r - 1. 

The second term, Ot,  in the variance of the 
process average (4.1) (which is not present in 
the Bayes posterior variance) is the variance of 
the weight. This term accounts for the 
uncertainty of estimating the process variance A 
for a small number of periods. The expression (f' 
+ A)/( + A) reflects the increase in the 
'.'ariance of the process average resulting from 
unequal sampling variances. 

An approximate empirical Bayes 	confidence 
interval for P is given by P ± zS(P) . where z 
is the 100(1 -o/2)% point of a standard normal 
distribution, chosen based on the desired level 
of confidence. 

The evidence 	for 	this 	empirical 	Bayes 
confidence interval is incomplete but there are 
three observations which support its use (Morris, 
1983): 

1. When the variances are equal, the above 
interval reduces to the one 	for 	equal 
variances, which is known to have the correct 
coverage probability 

2 	This 	interval was derived 	using 	Bayes' 
theory. As the 	number of 	observations 
(periods) 	increases, 	A 	converges in 
probability to A, and consequently the 
correct coverage probability is guaranteed by 
the theory. 

3 	Computer simulations have shown the coverage 
probabilities to be valid. 

In most cases implementation of the proposed 
estimator of the process average may be achiev.d 
by simply evaluating (3.2). However, exceptions 
arise when an estimate of the process variance, 
A, cannot be calculated. This means that the 
average error rate cannot be estimated through 
weighted least squares, nor can the weight be 
estimated and hence the process average estimate 
is unavailable. The inability to estimate A Is a 
result of high sampling variances leading to 
negative estimates of A. 

For the average error rate, estimation is 
still possible by using the pooled average 
specified in (3.4). It is an unbiased estimate 
and the efficiency loss in using it is expected 
to be relatively small. Because of this, the 
decision was taken to simplify implementation 
even further by using only the pooled average; 
that is, even when an estimate of A is available. 

On the other hand, for estimation of the 
weight, there is no alternative estimator for W 
which is independent of A. Consequently, the 
process average cannot be estimated using (3.2). 
To compensate for this the process variance is 
assumed to be equal to the sampling variance 
forcing the weight to take a value of 1/2. This 
means that the estimated error rates will 
contribute equally to 	the 	process 	average 
estimate. This is felt to be a reasonable 
decision in the sense that when the variabilities 
of the estimated error rates cannot be compared, 
neither estimate should dominate in the estimate 
of the process average. 

There are also occasions when the weight 
cannot be estimated because the sampling variance 
is unavailable, as was noted In section 3. This 
situation is a consequence of the process average 
being measured as a proportion - when no errors 
are observed, the estimate of the sampling 
variance degenerates to zero which implies no 
sampling variability. Again it is assumed that 
the sampling variance is equal to the process 
variance which results in a weight of 1/2. The 
rationale is as stated above. 

Finally, when there are fever than 25 units 
for the current period, it is felt that the 
sampling variability will be too large to shrink 
between the current sample and pooled average 
error races. Instead, the average error rate is 
taken as the estimate of the process average 
because it Is more stable. Indirectly then, the 
value of the weight is assumed to be one. Note 
that the current sample result does figure in the 
estimate of the process average because the 
average error rate includes the current period 
data. 

6. EXAMPLES 

This section presents examples from S typical 
quality control operations at Statistics Canada. 
For each operation, the process average was 
estimated over 10 periods for a single operator. 
The estimates include the sample •  error rate 
•(t) pooled average error rate, (P). and NPEB 
estimate, (Pr). 

Table 1 displays the average for each estimate 
as well as the average mean square error (NSE) 
over 10 periods. 





The mean square error of the pooled average 
is derived under the model as: 

	

IlSE() - 111j(A + Dj) + A •21, A. 	(61) 

The derivation is straight-forward and will 
not be given here. An estimate of the mean square 
e is obtained by substituting the estimates 
of 	A and the Dj'S 	in 	(6.1). 	Denote an 
estimate of mean square error by mse. 

Table 1: Average 	Estimates and Average Mean 
Square Error for S Individual Operators 
from 5 QC Operations. 

Opera t ion 
av. est. 	Estimator 
cv. mse. 

LFS 1.123 1.108 .946 
.626 .286 .490 

SEPH 1.824 2.543 1.945 
1.062 1.322 1,008 

CODE3 3.156 3.345 3.040 
7.453 6.432 5.844 

CODE4 8.734 8.034 7.489 
17.260 14.812 14.409 

£62 2.726 2.212 2.469 
2.670 2.442 1.595 

A comparison of the mses within each operation 
indicate that the sample error rate does poorly, 
and that there is not a large difference in the 
accuracy of the NPEB and pooled average 
estimates. Although it may be surprising that 
the pooled average estimate is so close to the 
NPEB estimate it must be noted that only the 
minimum number of observations (t - 6) is 
available to calculate the NPEB estimate. If a 
larger number of periods was used for the purpose 
of improving estimation of the process variance. 
the NPEB estimate would be expected to be 
considerably more accurate than the pooled 
average estimate. In fact for the small value of 
t. there is a good indication that the NPEB 
estimate performs quite well. 

7. SUXMARY 

The non-parametric empirical Bayes approach 
outlined in this paper is an attempt to Improve 
estimation of the process average by borrowing 
strength from an additional source of 
information. It is convenient because it avoids  

the complex numerical integration which arises 
when a prior distribution is specified waing a 
parametric empirical Bayes approach. 

A heuristic adjustment procedure has been 
proposed to resolve cases wher, the shrinkage 
factor cannot be calculated. In these situations 
there is insufficient data to use a more rigorous 
approach. The assumption of the sampling 
variance being equal to the process variance is 
felt to be reasonable and conservative, in the 
sense that without an estimate of the weight, 
there is no evidence to support that one estimate 
of the error rate should dominate over the other 
in the estimate of the process average. 

For smaller values of t, estimates of the 
variance for the NPEB are inflated, because of 
the uncertainty in estimating the process 
variance. 	Future work should 	therefore 	be 
directed at improving the estimates of the 
process variance. This could be achieved by using 
more data for each operator or perhaps by pooling 
data for a homogeneous group of operators, for 
the purpose of estimating the process variance. 
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