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RESUME

Dans ce rapport, deux méthodes pour calculer un intervalle de confiance de la
moyenne d'un échantillon tiré d'une population normale sont comparées. L'intervalle
de confiance A est construit en utilisant la théorie des fonctions d'estimation alors
que l'intervalle B est l'intervalle de confiance standard. La probabilité de couverture
observée de mé&me que la largeur de ces deux intervalles sont comparées. Les
résultats de l'¢tude indiquent que l'intervalle de confiance A est meilleur que
l'intervalle B.






THE USE OF ESTIMATING FUNCTIONS FOR CONFIDENCE INTERVAL CONSTRUCTION:
THE CASE OF THE POPULATION MEAN

1. INTRODUCTION

In this report, we describe a study which was conducted to compare two
different confidence intervals for a population mean when a simple random
sample is selected from a normally distributed population. The theory of
estimating functions was used to obtain the first interval. The second
interval is the usual confidence interval based on the approximately normal
distribution of the sample mean.

The purpose of the study was to demonstrate how the theory of estimating
functions works in the case where a well established technique already
exists. Proof that the estimating function theory works well in interval
estimation for the mean in this instance should stimulate interest in
conducting empirical studies to test the performance of the theory in cases
where new interval estimation methods are needed (eg. estimation of
percentiles, ratios...).

The theory of estimating functions is briefly summarized in Chapter 2. The
two methods of constructing confidence intervals for the mean are described
in Chapter 3. The length and the coverage of the two intervals are
compared in Chapter 4. Chapter 5 summarizes the results of the study.

2. THEORY OF ESTIMATING FUNCTIONS

The theory of estimating functions is discussed by Godambe and by Godambe
and Thompson ([3], (4], [5), (6], [7]). Let S = yi, y¥3.,...yn denote the
observed values of a simple random sample Y;, Yp,...Y, selected from a
population with an unknown parameter #. Then a real function g(S,4) is
called an estimating function if an estimate of the parameter # can be
obtained by solving the equation

g(8,4) = 0 (2.1)
for 4. The equation (2.1) is called an estimating equation.
An estimating function g is said to be unbiased if

E[ g(5,8) 1 =0 «2.2)

for all permissible values of #, where E denotes the expectation. In [3], a
regular estimating function and an optimum estimating function are defined
in full. Briefly, a regular estimating function is an estimating function
which satistfies four general conditions given in [3]. An optimum

estimating function g7(S,#) is a regular es€imscing €unctisn for which

L2



E(g2|6)/[E((og/c8)|6)]2 (2.3

is minimized among all regular estimating functions and for all permissible
values of §. Hence, by this definition, an optimum estimating function is
the estimating function which has a small variance and, at the same time,
E[ g(5,9+aA8)|8 ] is as far away from O as possible (ie. g which is
sensitive to the changes of 4).Under the usual regularity conditions it is
proved in [3] that the maximum likelihood estimation is optimum if only one
population parameter is unknown.

If S is selected from a population with two or more unknown parameters and
only one of them is to be estimated, the maximum likelihood fails to be the
optimum. The optimum estimating function to estimate §¢;, when S5 is
selected from a population with two unknown parameters, #) and f3, is given
in [4]. It is a linear combination of derivatives of log llkellhood
function and constants depending on #] and f, (such that the resulting g
is independent of 4). For instance, let S be selected from a normal
population with an unknown mean p and an unknown variance 22, Then solving
the estimating equatlon g*(s, 02)=0 gives the optimal estimate of populatlon
variance, Z(yj- 7) /(n-1), while the maximum likelihood estimate, Z(yj- y) /n
is biased.

A linear estimating function is defined in [7] as

n
g(5,8) = Z {$1(yi.9)1ai(8), (2.4)

i=1
where ¢; is a real function with E(¢;) = 0, and a;(#) is any real function
of 4, i=1l,...,n. A linear estimating function is said to be linearlv

optimal if (2.3) is minimized for all linear estimating functions. As shown
in [7],
n
g(S,8) = Z {¢$5;(yi.8)) ’ (2.5)
i=1
is linearly optimal if

E(3¢;/28)/E($;2) = C, (2.6)

where C is a constant. ( Often, the optimal estimating function is in the
form of (2.5). However, in some cases, although no optimal estimating
function exists, a linear optimal estimating function may exist.) Also, if
¢;=¢ and (2.6) holds, then (2.5) is optimal.

The theory of estimating functions can be extended to estimation of a
survey population parameter when more complex sampling designs are used and
to estimation of several population parameters. This is also discussed by
Godambe and Thompson in [7]. Some applications of the theory were discussed
by other authors as well. For instance, Fieller [2] used the approach to
derive confidence limits for a ratio, and Binder [1] applied the theory for
estimating the variance of estimated parameters based on complex sample
designs from finite populations.



3. TWO METHODS OF CONSTRUCTING CONFIDENCE INTERVALS FOR THE MEAN

3.1 Confidence Interval for the Mean Based on the Theorv of Estimating
Functions

We consider a specific example of an estimating function. A simple random

sample S = ¥1., ¥2....¥n is selected from an infinite population with mean
u. The optimum estimating function to estimate u is
n
S8 =B (T =) (3.1)
i=1

The estimating equation g(S,u) = 0 solved for u yields the usual sample
mean as an estimator of u.

Let v{g(S,u)) be a consistent estimator of the variance of the estimating

function g(S,u). Then, it implies from some basic limit theorems (see [9],
for instance), that

g(S,u)/(vig(s,u)))l/2 3.8

approaches the standard normal variable N(0,1) as n increases, where g is
the true mean of the population.

n
We use T (yi - y)z as a consistent estimator of the variance of
i=1
g£(S,u). Hence
n n ]
T (yy - W/ L E (yg - w2172 (3.3)
i=1 i=1

approaches N(0,1) as n increases.

Let Zq/2 denote the (1 - a/2)th percentile of the standard normal
variable. Then

Pr(-zq/ < E(yi-#)/[E(yi-w)211/2 < 249)
= Pr(-zg/p < n(y-p)/[(n-Ds24n(y-w)21/2 < 25 9) = 1 - a, (3.4)
where ; and s2 denote the sample mean and variance respectively.

After some algebraic operations, the inequality in parenthesis in (3.4)
can be rewritten as

n(y-u)2/s2 < z4/92[(n-1)/(n-24/2?) ], if (n-zg/2) > 0.

Hence if n > za/zz the left side of (3.4) can be expressed as

Pr(-24,2/(n-1)/(n-2q,9%) < /n(y-w)/s < zq/2/(n-1)/(n-24/29)).  (3.5)

If the variable to be measured, Y, possesses the normal probability

-

discribution, then the middle expression in (3.5) has the Student’'s ¢



distribution with (n-1) degreess of freedom. Thus we can obtain the exsct
probability (1 - r), 0 = r =<1

Pr{-za/zj(n-l)/(n-za/zz) < th-1 < za/zj(n-l)/(n-za/zii) =1 - 7.(3.6)

By using the pivotal method £or constructing confidence intervals we
obtain the claimed (1 - a)100 % confidence interval for the mean u

Yy * 2q/2/(n-1)/(n-2q/22)s//n. (3.7)

We will call the interval given in (3.7) interval A. When the population is
normally distributed then the true coverage probability of interval A is
Ql = @)

The interval (3.7) 1is the (l-a)l00% confidence interval for the mean u
based on the theory of estimating functions when the true parameter u was
used in the estimator of the variance of g(S,uz). It should be noted that a
different interval for u based on the theory of estimating functions can be
obtained by choosing a different consistent estimator of the variance of

g(S,u), vig(S,m)).

3.2 Classical Confidence Interval for the Mean

We compare the interval (3.7) with the classical confidence interval for
the mean. If the sample is large (usually n > 30), then the classical
(1-a)100% confidence interval for the mean g is constructed by wusing the
values of the standard normal variable instead of the t-values:

; gt za/zs//a. (3.8)
We will denote the interval given in (3.8) as interval B. Again, if the
sample is selected from a normal population, then <the true coverage

probability of interval B is (1 - ), 0 =6 =<1

Pri-zq/2 < /n(y - #)/s < 24/2) = Prl-25/3 < tn.1 < Zgy2) = 1 - 6.
(3.9)

4, COMPARISON OF THE TWO CONFIDENCE INTERVALS FOR _THE MEAN

4.1 Comparison of the Length of the Intervals A and B

The length of the confidence intervals A and B is compared. Let L(.) denote
the length of the confidence interval. Then

L(A) = (2zq/2s//m) [/(n-1)/(n-24/29)], RN

L(B) = 2z,,9s//n. ‘

N
2]
e




For Za/22 > 1 (ie. for 1 - a > .6826) the following relationship holds:
L(B) < L(A). (S]]

Hence, the confidence interval A 1is wider than the classical confidence
interval B in most practical situations. The difference between the length
of A and B increases as the confidence level increases and decreases as n
becomes large. However, it is known (and will also be discussed in 4.2),
that interval B is not wide enough. Its true coverage probability is always
less than its stated confidence level (1 - a). Thus, an improved symmetric
confidence interval must be wider than interval B.

4.2 Comparison of the True Coverage for the Intervals A and B

The coverage probabilities of the ¢two confidence intervals for the
population mean were also compared for simple random samples from normal
populations. To this end, the true coverage probabilities (l-r) and (1-§)
were computed for the intervals A and B, respectively, for different
claimed confidence levels (l-a) and different sample sizes n.

Graphs 1.1, 1.2 and 1.3 show the true coverage probabilities of intervals
4 and B against sample size n for a claimed confidence level of .90, .95
and .99, respectively. The coverage probability for interval A is slightly
below the preassigned confidence level on Graph 1.1 and slightly above the
preassigned confidence level on Graphs 1.2 and 1.3. On the other hand, the
coverage probability for interval B is always below the stated confidence
level. The difference between the true and the claimed coverage
probabilities decreases with increasing n . This difference is considerably
smaller for interval A than for interval B, especially for (l-a) = .90 and
.95. .

Graphs 2.1, 2.2 and 2.3 show the true coverage probabilities of intervals
A and B against claimed confidence level for a sample of size 15, 30 and

50, respectively. The true coverage probability for interval A is below
the claimed confidence level for smaller values of (l-a) and above the
claimed confidence level for (l-a) > .90. The true coverage probability

for interval B is always smaller than the claimed confidence level and the
coverage probability for A. As n increases the distance between the true
and the claimed coverages decreases for both intervals, but the true
coverage for interval A is always closer to the claimed confidence level
than that of interval B.

S. CONCLUSION

Two methods of constructing confidence interval for the population mean
are described. These confidence intervals are compared when a simple random
sample of wunits is selected from a normally distributed population.
interval A is econstructed by using the theory of estimating functions.



Interval B is the wusual confidence interval based on the approximatelv
normal distribution of the sample mean. Since both intervals are symmetric,
centred at the sample mean, the criterion used to compare the performance
of the two intervals 1is the coverage probability only. The coverage
probability of A is always closer to the claimed confidence level than the
coverage probability of B. For (l-a)>.90, A provides slightly conservative
intervals. Otherwise, the true coverage 1is always below the stated
confidence level. Hence we can conclude that interval A 1is a better
confidence interval for a normal population mean than interval B. It should
be noted that interval B is usually used for large samples only (n>30). The
Student’s t distribution is used to construct confidence intervals when
small samples are selected.

The major objective of the study was to investigate how the theory of
estimating functions works in the case where a well established technique
already exists, rather than to select the better method of the two. The
study shows that the confidence intervals based on the estimating functions
theory provide good interval estimators of a mean of a normally distributed
population. This result encourages us to investigate the performance of
confidence intervals based on the theory of estimating functions in cases
where new interval estimation methods are needed (eg. estimation of
percentiles, ratios etc.).
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