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RÉSUMÉ 

tans ce rapport, deux mthodes pour calculer Un intervalle de confiance de Ia 
rnoyenne dtun  échantillon tire d'une population normale sont comparées. L'intervalle 
de confjance A est construit en utilisant Ia théorie des fonctions d'estimation alors 
que l'intervalle B est itin terva lle  de conf lance standard. La probabilite de couverture 
observee de même que Ia largeur de ces deux intervalles sont comparees. Les 
résultats de I'etude indiquent que l'intervalle de conf lance A est meilleur que 
Pintervalle B. 





THE USE OF ESTIMATING FUNCTIONS FOR CONFIDENCE INTERVAL CONSTRUCTION; 
THE CASE OF THE POPULATION MEAN 

INTRODUCTION 

In this report, we describe a study which was conducted to compare two 
different confidence intervals for a population mean when a simple random 
sample is selected from a normally distributed population. The theory of 
estimating functions was used to obtain the first interval. The second 
interval is the usual confidence interval based on the approximately normal 
distribution of the sample mean. 

The purpose of the study was to demonstrate how the theory of estimating 
functions works in the case where a well established technique already 
exists. Proof that the estimating function theory works well in interval 
estimation for the mean in this instance should stimulate interest in 
conducting empirical studies to test the performance of the theory in cases 
where new interval estimation methods are needed (eg. estimation of  
percentiles, ratios ... ). 

The theory of estimating functions is briefly summarized in Chapter 2. The 
two methods of constructing confidence intervals for the mean are described 
Th Chapter 3. The length and the coverage of the two intervals are 
compared in Chapter 4. Chapter 5 summarizes the results of the study. 

THEORY OF ESTIMATING FUNCTIONS 

The theory of estimating functions is discussed by Godambe and by Godambe 
and Thompson ([3], [4], [5], [6], [7]). Let S - y, Y2 .... y denote the 
observed values of a simple random sample Y1, Y2, . .Y selected from a 
population with an unknown parameter 9. Then a real function g(S,9) is 
called an estimating function if an estimate of the parameter 9 can be 
obtained by solving the equation 

g(S,9) - 0 	 (2.1) 

for 9. The equation (2.1) is called an estimating equation. 

An estimating function g is said to be unbiased if 

E[ g(S,9) I - 0 	 (2.2) 

for all permissible values of 9, where E denotes the expectation. In [3], a 
regular estimating function and an optimum estimating function are defined 
in full. Briefly, a regular estimating function is an estimating function 
which satistfies four general conditions given in f3j. An optimum 
estimating function 	S. 	s s cet1ar esrc Hr.ct.r. for '.;hch 
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E(g2 9)/[E( (og/8) I9)) 2  

is minimized among all regular estimating 
values of 0. Hence, by this definition, 
the estimating function which has a small 
E[ g(S,9+9)I9 ] is as far away from 
sensitive to the changes of 0).Under the 
proved in [3] that the maximum likelihood 
population parameter is unknown. 

(2 

functions and for all permissibLe 
an optimum estimating function is 
variance and, at the same time, 
0 as possible (ie. g which is 

usual regularity conditions it is 
estimation is optimum if only one 

If S is selected from a population with two or more unknown parameters and 
only one of them is to be estimated, the maximum likelihood fails to be the 
optimum. The optimum estimating function to estimate 81, when S is 
selected from a population with two unknown parameters, 91 and 92,  is given 
in [4]. It is a linear combination of derivatives of log likelihood 
function and constants depending on 81 and 62 (such that the resulting g* 
is independent of 82).  For instance, let S be selected from a normal 
population with an unknown mean p and an unknown variance j 2 . Then solving 
the estimating equation g*(S ,c2)_O gives the optimal estimate of population 
variance, E(y1-) 2/(n-l), while the maximum likelihood estimate, (y - 7) 2/n 
is biased. 

A linear estimating function is defined in [7] as 
n 

g(S,9) -E (i(yj,O))ai( 0 ), 
i-i 

where Oi is a real function with E() - 0, and a(9) is any real function 
of 0, i-i,... ,n. A linear estimating function is said to be linearly 
optimal if (2.3) is minimized for all linear estimating functions. As shown 
in [7], 

n 

	

g(S,0) - E ((Yi°)) 	 (2.5) 
i-1 

is linearly optimal if 

	

C, 	 (2.6) 

where C is a constant. ( Often, the optimal estimating function is in the 
form of (2.5). However, in some cases, although no optimal estimating 
function exists, a linear optimal estimating function may exist.) Also, if 

j -  and (2.6) holds, then (2.5) is optimal. 

The theory of estimating functions can be extended to estimation of a 
survey population parameter when more complex sampling designs are used and 
to estimation of several population parameters. This is also discussed by 
Godambe and Thompson in [7] . Some applications of the theory were discussed 
by other authors as well. For instance, Fieller (2] used the approach to 
derive confidence limits for a ratio, and Binder [1] applied the theory for 
estimating the variance of estimated parameters based on complex sample 
designs from finite populations. 
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3. TWO METHODS OF CONSTRUCTING CONFIDENCE INTERVALS FOR THE MEAN 

3.1 Confidence Interval for the Mean Based on the Theory of Estimating 
Functions 

We consider a specific example of an estimating function. A simple random 
sample S - yj, Y2.•••Yn is selected from an infinite population with mean 
M. The optimum estimating function to estimate p is 

n 
g(S,p) - E (Yj  -p). 	 (3.1) 

i—i 
The estimating equation g(S,p) - 0 solved for p yields the usual sample 
mean as an estimator of p. 

Let v(g(S,p)) be a consistent estimator of the variance of the estimating 
function g(S,p). Then, it implies from some basic limit theorems (see [9, 
for instance), that 

g(S,p)/(v(g(S,p))) 1- / 2 	 (3.2) 

approaches the standard normal variable N(O,l) as n increases, where p is 
the true mean of the population. 

use E(y - )4)2 as 	a 	consistent 	estimator 	of the variance of 

g(S,). Hence 

i—I 	

2l/2 
	

(3.3) 

approaches N(O,l) as n increases. 

Let za/2 denote the (1 - a/2)th percentile of the standard normal 
variable. Then 

Pr( - za/2 < Z(yj - p)/[E(y - p) 2 ] 1/2  < Za/) 

- Pr(-z12 < n(y-p)1[(n-l)s 2+n(y-p) 2 1 1-1 2  < z,i2) 	1 - a, 	(3.4) 

where y  and s 2  denote the sample mean and variance respectively. 

After some algebraic operations, the inequality in parenthesis in (3.4) 
can be rewritten as 

< za/2 2 [(n-l)/(n - za/2 2 )), 	if (n.z/2 2 ) > 0. 

Hence if rt > za,,i2 2  the left side of (3.4) can be expressed as 

Pr(-za/2J(n-l)/(n-zo/22) < Jn(y-p)/s < Za/2J(fll)/(flZa/22)}. 	(3.5) 

If the variable to be measured, Y, possesses the normal probability 
isrtbution, then he middle expression in (35) has the Student's t 
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distribution with (n-i) degrees of freedom. Thus s' 	ohatn the ex.io 
probability (1 - r), 0 < r < I 

Pr(-z/2J(n - l)/(n - za/2) < tn_i < za/2(nl)/(nza/2)) 	I 	r.(3.6) 

By using the pivotal method for constructing confidence intervals we 
obtain the claimed (1 - 2)100 % confidence interval for the mean 

;; ± za/21(nl)/(n.za/22)s/jn.  

We will call the interval given in (3.7) interval A. When the population is 
normally distributed then the true coverage probability of interval A is 
(1 - r). 

The interval (3.7) is the (l-a)l00% confidence interval for the mean 
based on the theory of estimating functions when the true parameter p was 
used in the estimator of the variance of g(S,p). It should be noted that a 
different interval for p based on the theory of estimating functions can be 
obtained by choosing a different consistent estimator of the variance of 
g(S,p), v{g(S,p)). 

3.2 Classical Confidence Interval for the Mean 

We compare the interval (3.7) with the classical confidence interval for 
the mean. If the sample is large (usually n > 30), then the classica 
(1-a)100% confidence interval for the mean p is constructed by using the 
values of the standard normal variable instead of the t-values: 

Y ± Za/2S/ifl. 	 (3.8) 

We will denote the interval given in (3.8) as interval B. Again, if the 
sample is selected from a normal population, then the true coverage 
probability of interval B is (1 - 6), 0 :5 6 :5 1 

Pr(-z/2 < Jn(y - p)/s < Z/2) - Pr( - za/2 < tj < Z/) 	
(3.9) 

4. COMPARISON OF THE TWO CONFIDENCE INTERVALS FOR THE MEAN 

4.1 Comparison of the Length of the Intervals A and B 

The length of the confidence intervals A and B is compared. Let L(.) denote 
the length of the confidence interval. Then 

L(A) - (2z/2s/In) [J(n-l)/(n - za/2)] 
	

(5.1) 

L(B) = 2Z m  ,os/jn. 
	 ( 2 
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For Z/22 > 1 (ie. for 1 - a > .6826) the following relationship holds: 

L(B) < L(A). 	 (5.3) 

Hence, the confidence interval A is wider than the classical confidence 
interval B in most practical situations. The difference between the length 
of A and B increases as the confidence level increases and decreases as n 
becomes large. However, it is known (and will also be discussed in 4.2), 
that interval B is not wide enough. Its true coverage probability is always 
less than its stated confidence level (1 - a). Thus, an improved symmetric 
confidence interval must be wider than interval B. 

4.2 Comyarison of the True Coverage for the Intervals A and B 

The coverage probabilities of the two confidence intervals for the 
population mean were also compared for simple random samples from normal 
populations. To this end, the true coverage probabilities (l-r) and (1-8) 
were computed for the intervals A and B, respectively, for different 
claimed confidence levels (1-a) and different sample sizes n. 

Graphs 1.1, 1.2 and 1.3 show the true coverage probabilities of intervals 
A and B against sample size n for a claimed confidence level of .90, .95 
and .99, respectively. The coverage probability for interval A is slightly 
below the preassigned confidence level on Graph 1.1 and slightly above the 
preassigned confidence level on Graphs 1.2 and 1.3. On the other hand, the 
coverage probability for interval B is always below the stated confidence 
level, The difference between the true and the claimed coverage 
probabilities decreases with increasing n . This difference is considerably 
smaller for interval A than for interval B, especially for (1-a) - .90 and 
.95. 

Graphs 2.1, 2.2 and 2.3 show the true coverage probabilities of intervals 
A and B against claimed confidence level for a sample of size 15, 30 and 
50, respectively. The true coverage probability for interval A is below 
the claimed confidence level for smaller values of (1-a) and above the 
claimed confidence level for (1-a) > .90. The true coverage probability 
for interval B is always smaller than the claimed confidence level and the 
coverage probability for A. As n increases the distance between the true 
and the claimed coverages decreases for both intervals, but the true 
coverage for interval A is always closer to the claimed confidence level 
than that of interval B. 

5. CONCLUSION 

Two methods of constructing confidence interval for the population mean 
are described. These confidence intervals are compared when a simple random 
sample of units is selected from a normally distributed population. 
:er-?al A is consrruced by using the theor'. of esrimitinZ functions. 



Interval B is the usual confidence interval based on the approximatel': 
normal distribution of the sample mean. Since both intervals are symmetric 
centred at the sample mean, the criterion used to compare the performance 
of the two intervals is the coverage probability only. The coverage 
probability of A is always closer to the claimed confidence level than the 
coverage probability of B. For (1-cr)>.90, A provides slightly conservative 
intervals. Otherwise, the true coverage is always below the stated 
confidence level. Hence we can conclude that interval A is a better 
confidence interval for a normal population mean than interval B. It should 
be noted that interval B is usually used for large samples only (n>30). The 
Student's t distribution is used to construct confidence intervals when 
small samples are selected. 

The major objective of the study was to investigate how the theory of 
estimating functions works in the case where a well established technique 
already exists, rather than to select the better method of the two. The 
study shows that the confidence intervals based on the estimating functions 
theory provide good interval estimators of a mean of a normally distributed 
population. This result encourages us to investigate the performance of 
confidence intervals based on the theory of estimating functions in cases 
where new interval estimation methods are needed (eg. estimation of 
percentiles, ratios etc.). 
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