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Résumé 

Ce document décrit une partie de La méthodologie du t'Système généralisé de 
verification et d'imputationt' de Statistique Canada. Cette méthodologie est 

basée sur un algorithme, développé par Chernikova et généralisé par Rubin, qui 
trouve les solutions d'un système d'inégalités linéaires dont Ia cardinalité est 
minimale. L'application de ces résultats I La verification et l'imputation des 
données est due a G. Sande. 
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Use of Chernikova's algorithm in GETS 

0. 	Introduction 

The purpose of this report is to present that part of the methodology of the 
Generalized Edit and Imputation System (GElS) presently being developed at Statistics 

Canada which uses Chernikova's algorithm. This system will be used by several 

surveys, thus saving on development costs. It uses methods from linear programming 
to perform edit and imputation for numerical data. The applicability of such methods 

to edit and imputation in statistical business surveys was revealed by G. Sande (see 

[181, [191). Based on his work, a system was built to deal with numerical edit and 
imputation (NEIS). 

Chernikova's algorithim finds the extremal points associated with a system of linear 
inequalities with nonegative variables (see [ 2], [3] and [18]).  The algorithm is used 
in GELS for part of edit analysis (extremal points and implied edits) and in error 

localization. The methodology of the edit analysis is essentially based on the use of 
the simplex algorithm and will be described elsewhere (see [15j). The search for the 
closest donor to a record requiring partial imputation is done using k-d tree and is 
presented in [51. 

For the sake of completeness, a brief overview of the entire system is given here. A 
numerical set of edits can often be represented as a linear system of inequalities, 
where the values of the variables are generally reported by the respondents. The 

general form of edits is specified by the sub5ect matter specialists. Since the values 
reported in business surveys are non negative, it is assumed that all edits are in the 
form of linear inequalities and that all variables to be reported are nonegative. 
Various techniques employed in linear programming can be used to analyse the system 
of edits to check for inconsistencies, redundancies and hidden equalities. Bounds on all 
variables can be obtained at this stage. Details regarding the edit analysis can be 
found in [13].  The linear system of inequalities representing the edits defines the 
acceptance region associated with this system. If bounded, the acceptance region can 
be described with the help of the extremal points. These can be obtained using 
Chernikov&s algorithm as presented in 1.1. For the purpose of edit analysis, new 
(implied) edits are generated by taking linear combinations with positive coefficients 
of subsets of the original set of edits. These edits contain fewer variables than the 
original edits and are thus easier to handle. 
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A major component of NEIS and GELS is error localization, the module which 

identifies, for each record, the minimum number of fields that should be changed so 

that the corrected record passes the edits. This module, (see [10])  is placed in GELS 

after the edit analysis modules and before the donor imputation modules. 

Conceptually, it provides the link between edit and imputation, as it flags for 

imputation the blank fields as well as the invalid values. Ideally, on each record the 

values for all fields should be reported and the record should pass all edits. Often the 

record is incomplete; that is, some of the fields on the record are blank. Even for a 

complete record, some of the values could be erroneously reported so that the record 

does not pass the edits. These values should then be removed and the corresponding 

fields, as well as the blank fields, should be flagged for imputation. Performing these 

tasks manually for each record is time consuming. It can also lead to errors, as the 

system of edits can be very complex and the number of fields very large. Corrections 
to some of the reported values, when based solely on the experience and the intuition 

of the editor may turn out to be wrong as the corrected record may not pass the edits. 

This is due to the fact that all variables are related through a complex system which is 

difficult to keep track of intuitively. A systematic way of error localization is 
provided by NEIS and GElS. 

Once the fields which require correction have been identified, the record, now labelled 
a recipient or candidate record, is ready for imputation. For the purpose of donor 
imputation, the values on each field on all records are resealed so that they all belong 
to the interval (0,1). A k-d tree is constructed using a class of accepted records (see 

[51). The m closest records to the recipient record are found in the space of matching 
variables using the L distance. From these potential donors, the closest suitable 

donor for the recipient record is selected and all values on the fields to be imputed are 
transfered from this donor record to the recipient record. A potential donor is a 

suitable donor for a recipient record if the recipient record passes the edits once the 
pertinent fields have been imputed from the donor record. The concept of matching 
fields, described in section 2.3 of this report, is intimately related to the concept of a 
suitable donor. 

This report presents the methodology and gives a brief description of the following 
modules used in GELS: the module for finding the extremal points, the module for 
generating the implied edits and the module used for error localization. Potential uses 
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of Chernikova's algorithm in finding the matching fields are also presented (see section 
2.3). 

The report is organized as follows. Chapter 1 gives an overall presentation of 

Chernikova's algorithm. The actual algorithm, as presented by Rubin [171, can be 

found in the Appendix. In Chapter 2, the more theoretical aspects regarding the 

application of Chernikova's algorithm to edit and imputation are discussed. Chapter 3 

gives a general description of the algorithms used in the modules mentioned above. 

This report is addressed to methodologists who wish to gain some familiarity with the 
application of Chernikova's work in GElS. The reader who aims for a general 
understanding of the methodology need not read Chapter 3 whIch contains 
implementation details. On the other hand, the reader who is more interested in the 
implementation, may start by reading Chapter 3 and use Chapters 1 and 2 for 
references. For this reason, we attempted to render each section of Chapter 3 self-

contained. Even so, not all details which were used in programming have been 
included in Chapter 3. The interested reader should consult [8-141 in the references 
for this purpose. 
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1. 	Description of the algorithm 	and Rubin's cardinality constrained vertex generation. 

1.0 Overview 

In [2-31, Cherriikova described an algorithm for finding all nonegative solutions 

of a system of linear inequalities. The general form of such a system is: 

1.la) 	A x < b 

1.lb) 	x>O 

where A is the matrix of coefficients with m rows and n columns, x is a vector in 

R,x = (x 19  ... X and b is a column matrix with m rows. The notation x > 0 

means that all coordinates of x are nonegative, i.e. x i  > 0 1 = 1, ... n. The 

system (1.1) may have no solution. It may also have one solution or infinitely 

many solutions. In the latter case, all points x which satisfy (1.1) belong to a 

polyhedron in R'. Conversely, all points inside or on the facets of the polyhedron 

are solutions of the system (1.1). The region enclosed by the polyhedron is called 

the acceptance region. This region can be described by its extremal points, and 
extremal directions. Chernikova's algorithm produces all this information. 

In [171, Rubin showed that Chernikova's algorithm can be adapted so as to find 

all the solutions of a cardinality constrained linear program (see 2.2.3). In his 
problem, a linear function of x is maximized, subject to (1.1) and a cardinality 
constraint. The cardinality constraint requires that the number of nonzero 
coordinates of the solution be less than or equal to a prespecif led value. Notice 

that the cardinality function defined in 2.2.3 is not linear. Therefore the 
classical simplex method could not be applied to solve a cardinality constrained 

linear program. 

In what follows, we are only concerned with solutions to (1.1) subject to the 
cardinality constraint. Rubin's application of Chernikova's algorithm relies 

mainly on two facts: 

1) as the algorithm proceeds, the cardinality of the points which generate the 

extremal points does not decrease (see Lemma 2 of [17]). 



2) if a solution to (1.1) with the cardinality constraint exists, then at least one 

vertex will satisfy the same constraints. 

We will prove 2) in the case the polyhedron defined by the system (1.1) is 

bounded. The general case can be obtained by "regularization" (see p.  556 of 
[17]). 

Firstly, if f(x) represents the cardinality of x then: 

k 	 k 
Z 	. f(x 4 ), (1.2) 	f( 1  a. x1) 

- 	
a 

i=1 

k 
where a i > 0, 14, ... k and 	E Cl i = 1 

The proof of (1.2) uses the fact that x. > 0, 1 = 1, ... k. 

Secondly, since the polyhedron described by (1.1) is a convex body, every interior 

point x can be written as a convex combination of vertices, 

x = Z a. x.. If f(x) 	< 	f(x.1 ) 	1<i<k, i.e. if f(x) 	attains 	a 1=11 1 	-- 

k 	 k 	 k 
minimum at x, 	then 	• Z a. f(x.) 	a. f(x) = f(x) = f( z a. x.) 

•i=1 1 	1 	i=1 1 	 i=1 	1 	1 

which contradicts (1.2). 

Consequently, it suffices to find the extremal points which satisfy the 

cardinality restriction for a global solution to Rubin's cardinality constrained 
linear program. 

A drawback of Chernikova's method for finding extremal points is the large 

number of transformations that have to be performed at times to arrive at the 

final matrix. This may require extended space for storing intermediate 

matrices. However, as Rubin has shown (see [171), the performance of the 

method can be considerably improved when solving a cardinality constrained 

linear program, due to properties 1) - 2) stated above. 

The importance of property 1) is that it allows the reduction of the number of 

transformations in Chernikova's algorithm. As we shall see in 2.2, many of the 

columns containing vectors which exceed the bound on cardinality can be 

discarded, as they will never produce the desired solution. The growth of the 
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matrix used in Chernikova's algorithm can therefore be curtailed. Consequently, 

there is less danger that the space required for storing intermediate matrices 

will be exceeded. 

The reader is cautioned that in the original work of Chernikova (see [2-3 1) 	the 

algorithm uses the transpose of the matrix of coefficients and the processing is 

done columnwise. In other papers ([17-19 1) the algorithm proceeds rowwise. In 

this report we follow the latter procedure. 

1.1 Description of Chernikova's algorithm 

1.1.1 The homogeneous case. An example. 

The algorithm was initially developed for finding extremal rays (i.e. the 

edges) of a cone defined by the system of homogeneous inequalities: 

A (1.3) 	 x >0  
x 

Generally speaking, the algorithm consists of transforming an augmented 

matrix which contains all the coefficients of the system (1.1) until all 

entries of the augmented matrix are non-negative. The rows 

corresponding to the matrix of coefficients in the augmented matrix are 

processed one at a time, resulting each time in a transformation of the 

augmented matrix. In the transformed matrix, all rows that have 

already been processed have non-negative entries. A transformation 

consists of copying columns which have the desired entries on the row 

being processed (non-negative entries for rows corresponding to 

inequalities and zero entries for rows corresponding to equalities) and 

linearly combining other columns. The coefficients of these linear 

combinations are always positive. 

A complete description of the algorithm can be found in [171. 	For 

convenience, a copy of Rubin's description can be found in the Appendix. 

We present here a simple example which can also be visualized in the 

three dimensional space. Some steps of the algorithm are illustrated by 

means of this example. Further examples can be found in [21, [31 and 

[17]. 



an 

In what follows, the words tableau and matrix are synonymous. 

Example 1 Find the extremal rays of the cone defined by the linear 

inequalities (1.3): 

x+y -z 

2x-y 	>0 
x - 2y - z >0 

x 

y >0 

z 

The vector of unknowns is (x,y,z). The matrix of coefficients for the 

system 1.3a) is 

11 	1  -1-1 

1-2-1J 

A =12 -1 	0 1 
L  

An augmented matrix (tableau) V corresponding to the system (1.3) is 

formed by placing the 3 x 3 identity matrix L at the bottom of the 

matrix A. 

2 -1 0 
1 -2 -1 

V - 	
0 0 1 

0 10 
001 

The first row is first processed to produce the extremal vectors 

associated with 1.3b) and the first inequality in 1.3a). 

The first two columns are copied, sir:ce the corresponding entries are 

positive and the first row corresponds to an inequality. This is a 

consequence of the fact that the unit vectors (1,0,0) and (0,1,0), placed 

on the corresponding columns in the lower submatrix, are already 



extremal vectors of the cone represented by 1.3b) and the fIrst 

inequality in 1.3a). Then the first and the second column are each added 

to the third in order to create zeroes on the third and fourth column of 

the new tableau. The new tableau is: 

1100 
2 -1 2 -1 
1 -2 0 -3 

Y 1 =----------  

0101 
0011 

The first row has now been processed and all the vectors in the lower 

matrix L 1  are extremal vectors associated with the extremal rays of the 

cone: x + y - z > 0 and 1.3b). Indeed, the first two vectors are along 

two coordinate axes, whereas (1,0,1) and (0,1,1) are on the plane x + y - 

z = 0. The knowledge of the extremal rays of the cone is sufficient to 

define the acceptance region. Notice that the zero entries on the first 

row of Y indicate the fact that the corresponding column vectors in L 1  
are actually on the plane x + y -z = 0. Notice also that the vectors in 

L 1  are either unit vectors which satisfy the first inequality in 1.3a) or 

linear combinations of unit vectors which satisfy the first inequality in 

1.3a). In this first step, all combinations of columns which have opposite 

signs on the first row V are calculated. When combining such columns, 

zeroes are created in the first row of the tableau V 1 . Geometrically, 

this means that two of the unit vectors are combined if they are on 

different sides of the plane x + y - z = 0. The coefficients are chosen 

so that the resulting vector is actually on that plane. Notice that the 
constraints imposed by the second and third inequality in 1.3a) have not 

been used so far. 

Now we process the second row of the tableau V 1 . The new tableau 

is: 

1030 
2200 
1 0 -3 -6 

--- 

L 	1111 
0022 
0103 
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Now all vectors in L 2  are extremal vectors of the cone corresponding to 

1.3b) and the first two equations in 1.3a). The first and third columns of 

'(1 which were copied to '(2  correspond to extremal vectors obtained at 

step 1 which also satisfy the second inequality in 1.3a) (see Rule 1 of 

[21). This can be seen in V, since the first and the third columns have 

positive entries on the second row so they are on the "positive" side of 

the plane 2x - y = 0. The first and second, and the third and fourth 

columns of Y are combined to produce the last two columns of 

Other combinations were not performed as required by step 3a of the 

Appendix. Notice that the constraint imposed by the last inequality in 

1.3a) has not been used so far. 

We now process the third row. The first two columns are copied. The 

first column of '(2  is multiplied by 3 and added to the third column to 

produce the third column of '( 3. The last column and the first column of 

'(2 are not combined, again by 3a of the Appendix. The algorithm 

terminates with this step and '( 3  is: 

106 
226 
100 

------ 
1 1 
002 
010 

The top matrix - has non-negative entries. The system (1.3) has therefore 

a nontrivial solution (i.e. different from (0,0,0) which is always a solution 

of (1.3)). The three extremal rays all start at the origin and pass through 

the following points in R 3 : (1,0,0) (1,0,1) and (2,1,0). The region enclosed 

by these vectors is the acceptance region associated with the system 

(1.3). 

1.1.2 	The general case 

The general form of the system of linear inequalities is (1.1). The 

system (1.1), when consistent, represents a polyhedron in R. 	If the 

polyhedron is bounded, its vertices, or extremal points, define the 

acceptance region associated with the system (1.1). In order to solve 
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this system using Chernikova's algorithm, the system (1.1) is transformed 

into a system of type (1.3) as follows. An equivalent form of (1.1) is: 

-A x + b >• 0 

x>0 

This can be reduced to a homogeneous system in n + 1 variables 

(x 1 , ... x 1 , 	), 	> 0: 

-A x + b E >• 0 

(1.4) 

 

[XJ -
, 0 

 

Now (1.4) represents a cone with the vertex at the origin. Every solution 

of (1.4) with = 1 gives a solution of (1.1) and vice versa. It is easy to 

see that the extremal points of (1.1) are the extremal vectors of (1.4) for 

which the last coordinate & = 1. All the extremal points of (1.1) are 

found by using Chernikova's algorithm applied to the system (1.4) and 

retaining those extremal vectors for which the last coordinate is non-

zero. This is so because, if (x,), 0 is a solution to (1.4), then 

(xE 1, 1) is also a solution. When the polyhedron defined by (1.1) is 

unbounded, some of the extremal rays of (1.4) are of the form (x,0) (see 

(181, p. 12). Then the coordinates of x represent the extremal 

directions associated with the polyhedron. 

1.1.3 General comments on Chernikova's algorithm 

With Example 1 in mind we now make some general comments on 

Chernikova's algorithm. 

The original tableau contains the matrix of coefficients A on the top and 

the identity matrix on the bottom. The role of the lower matrix is two-

fold; it keeps track of the transformations successively applied to the 

matrix of coefficients A and it represents the inequalities x 1  > 0, 

= 1, ... n in the search for the extremal vectors of the cone (1.3). 
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The idea is to transform the tableau Y in an optimum way until all the 

entries in the upper part are non-negative. If this cannot be done, then 

either the cone is degenerate at the origin, when dealing with system 

(1.3) or there is no solution, when dealing with the system (1.1) (the two 

differ when at least one of the components of b is nonzero). We consider 

now the system (1.1). The successive transformations applied to it can 

be represented as matrices which multiply Y on the right hand side. Let 

I be the multiplication of all matrices involved in applying Chernikova's 

algorithm to its completion. Assume there is a solution of the system 

(1.1). Then A T > 0, 1 > 0. Since the same transformations are applied 

to the bottom matrix, we have t T = I, where I is the identity 

matrix, so the matrix I appears at the end of the algorithm in the 

bottom part of V. Therefore, T provides a solution to the system (1.1). 

The rules of combining and discarding columns of the original matrix are 

such that I gives only the extremal solutions which define the 

acceptance region in (1.1). 

This procedure brings to mind classical algorithms for finding inverses of 

matrices. For details, see Section 3 of [71. Example 1 in 1.1.1 allows 

for a geometric interpretation of the algorithm. In [1-31 as well as in 
[7], algebraic methods are used. To make the connection between the 

two, the following observation may be helpful. Consider the second 

inequality in 1.3 a). In the upper matrix of Y, it is represented by the 

second row, which also represents the plane whose equation in R 3  is: 
2x-y=0. A vector (x 0 ,y09 z 0 ) is on this plane if its coordinate satisfy 

this equation or, equivalently, if the scalar product of (2,-1,0) and 
(x0 ,y0 ,z0 ) is zero. All intermediate tableaux in Chernikova's algorithm 

have the property that the entry on ith row and jth column of the upper 

matrix is, in fact, the scalar product of the corresponding column vector 

in the lower matrix and the corresponding row vector in the original 

tableau. Indeed, the zero entry on the second row and third column of 

the tableau V is the scalar product of (2,-1,0) and (0,0,1). The fact 

that it is zero corresponds to the fact that (0,0,1) is on the plane 

2x-y=0. This property is preserved as the algorithm proceeds due to 

properties of the scalar product as well as the nature of the 

transformations performed in algorithm (p. 155 of [2]). For example, 
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the entry 1 in the last row of the upper matrix of V 2 	is 	the scalar 

product of (1,0,0) and (1,-2,-1); the latter vector represents the third 

inequality of 1.3 a). Therefore, when zero entries are created in the 

upper tableaux, the corresponding column vectors are on the planes 

defining the original inequalities represented by the corresponding rows. 

Positive entries correspond to column vectors which are on the positive 
side of the plane represented by the corresponding rows. 

We proceed now to a brief overview of the mathematical foundation of 

Chernikova's algorithm. This can be essentially found in [11 and consists 
of a general recursive procedure of finding extremal rays of a cone 

defined by several inequalities. When all variables are nonegative 

(i.e. 1.1 b) holds), the vectors corresponding to the coordinate axes are 
extremal vectors associated with 1.3 b). When the first row of V is 

processed, the recursive procedure is applied to construct, from these 

vectors, the extremal vectors associated with the cone 1.3 b) and the 

first inequality of 1.3 a). According to Rule 1 of [21, the vectors 
(1,0,0) and (0,1,0) are retained because their scalar product with 

(1,1,-i) is positive (indeed, it is equal to 1 in both cases). Then the 
first and the third as well and the second and the third columns are 

combined to create two extremal rays of the new cone, namely (1,0,1) 
and (0,1,1). At the first step, all columns with opposite signs are 
combined as described, since 3 of the algorithm (see Appendix) allows for 
it. Rule 3 of the algorithm, as described by Rubin (see Appendix) is a 
device used for checking the dimensionality of a linear subspace 

associated with rows already processed (see Satz (Proposition) 3 of [11). 
Note that the maximal linear subspace (see (1]) associated with 1.lb) is 

the vector 0 of 

So far we have not discussed the case of equalities in (1.1). An equality 
in the system (1.1) can be represented by two inequalities, and they can 
be treated as such. However, the algorithm can be simplified in the 
presence of equalities. Firstly, when each row representing an equality 
is processed, only the columns which contain zeroes on that row will be 
copied. This corresponds to the fact that all the extremal points of the 
polyhedron will have to lie on the plane described by the equality. In 
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deciding which columns should be combined, the rows containing 

processed equalities need not be checked, as they contain only zeroes. If 

equalities are stored at the top of the upper matrix and are processed 

first, or if all rows in the upper part of the matrix A correspond to 

equalities, the algorithm can be simplified even further. However, it has 

to be emphasized that the general description of the algorithm covers all 

particular situations. 

2. 	Application to edit and imputation (G. Sande) 

2.0 Overview 

Chernikov&s algorithm is used in GElS in three places: to produce the extremal 

points of the acceptance region of the system (1.1) (see [81), to generate 

the implied edits (see [111) and for error localization (see [10]). We also 

present in section 2.3 a possible use of this algorithm for finding the matching 

variables. This procedure was not implemented because it involves finding the 

extremal points of a potentially large system. 

The concept of implied edits was introduced in [6]. 	Essentially, variables are 

eliminated from the original set of edits, to generate new edits containing fewer 

variables than the original ones. The implied edits may be easier to understand 

than the original set of edits. For example, bounds for each of the variables may 

be provided by the new set of edits. The implied edits can provide, to some 

degree, a check of the consistency of the original system of edits. Inconsistency 

might be easier to detect in the new edits which involve fewer fields. Technical 

details concerning implied edits are given in section 2.1. 

A uniform and systematic method for error localization is provided by NETS and 

GElS. Records with missing values and complete records which have not passed 

the edits are treated alike. The blank fields are assigned a value which ensures 

that the record, unless corrected, will fail the edits (say, a negative value so that 

1.1 b) fails). To each value of the now completed record a positive and a 

negative correction is attached. The corrections now become the new variables, 

subject to constraints imposed by the system (1.1). In other words, the condition 

is that the corrected record passes the edits. We now have a system of linear 
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inequalities and we wish to find correction vectors for which the number of 

nonzero corrections is a minimum. This places the problem within the scope of 

Rubin's cardinality constrained program with a twist. The cardinality constraint 

is not given ahead of time; rather it is defined along the way, as extremal points 

are generated. The cardinality of the first extremal point found using 

Chernikova's algorithm serves as a first constraint and so forth. Indeed, the 

minimum cardinality attained at a vertex cannot exceed this constraint. The 
technical details regarding error localization can be found in 2.2. 

Let us consider a record x of which I fields require imputation, 1<1 <n, whereas 
the remaining n-i fields are accepted as reported by the respondent. The 

requirement that the record passes the edits leads, upon replacement of the n-i 

values of fields into the original system of edits, to a new system of linear 

inequalities in i variables. We call this system the reduced system. It is 

important then to choose a donor record in such a way as to ensure that the 

imputed values fall within the acceptance region of the reduced system. The 
imputed record will then pass the edits. If the donor record is chosen at random, 

there is no guarantee that the transferred values fall within the reduced 

acceptance region. On the other hand, if all reported fields are indiscriminately 
used for matching, variables which do not actually determine the reduced 
acceptance region may prevail in the calculation of the L distance and exclude 

suitable donors from the list of potential donors. It follows that only the 
variables that actually determine the acceptance region should be considered. 
These are called the matching variables and should be used in the search for a 
suitable donor from the set of all accepted records. It has to be noted that, in 
some instances, according to this approach no variable is required for matching. 
In such a situation the donor record may be chosen at random from the list of 
potential donors. The technical details regarding the matching variables can be 
found in 2.3. 
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2.1 The implied edits 

2.1.1 	Definition 

As mentioned earlier, the concept of implied edits was introduced by 

Fellegi and Holt in [6]. Their article deals mostly with qualitative data 

but it also touches upon numerical edits. Essentially, a new implied edit 

is an edit which is obtained from the original or the previously implied 

edits by eliminating one or more variables. Successive applications of 

this procedure leads to the creation of all implied edits. The original as 

well as the newly created edits form a complete set of edits. The 

complete set of edits is used in error localization (see p.2). Fellegi and 

Holt also propose the use of implied edits for detecting inconsistencies in 

the original set of edits. The use of implied edits for error localization 

or detecting inconsistencies for numerical data is inefficient, especially 

when a large number of edits or a large number of variables is involved. 

In NEtS as well as GELS, error localization is based instead on 

Chernikova's algorithm as used by Rubin in [171, which leads to a more 

efficient algorithm (see 2.2). Inconsistencies are detected in the analysis 

of edits using the revised simplex algorithm as described in [131. 

For numerical edits given in the form of linear inequalities, the 

definition amounts to successively combining pairs of inequalities so that 

at least one variable is eliminated at each stage. The coefficients 

(weights) used for these combinations are always positive. The problem 

with this definition for numerical edits is that several applications of the 

procedure may lead to the creation of an edit which is not new. For this 

reason, the definition adopted for numerical edits which is given below is 

more restrictive. 

Definition 	A linear inequality associated with a system of edits 

expressed as ni linear inequalities with n variables is an implied edit for 

that system if it is a linear combination with positive coefficients of 

k > 1 such edits and contains at most n - k + 1 variables with nonzero 

coefficients. 
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The new edits contain fewer variables than the original ones and so 

provide the user with some idea about the form of the acceptance region 

associated with the original system of edits (1.1). The implied edits 

provide an additional diagnostic tool for the user. Even if the analysis of 

the original edits indicates that all is well, examination of the implied 

edits may identify problems with the edit specifications. This is the main 

purpose for deriving them in GElS. 

2.1.2 	The minimum set of implied edits. 

The definition of the implied edits has led to an algorithm which will be 

explained by means of an example. 

Example 1 Assume that in the system of edits 1.1a) we combine the first 

three edits to eliminate two variables, x and x 5 . Consider the vector of 

weightsw = (w 1 ,w2 ,w3 ,O,...,O), where the first three components are 

nonzero. If we look at the transpose of the matrix of coefficients, AT , 

then combining the first three edits amounts to multiplying this matrix 

on the right by the column vector of weights w. Notice that the columns 

of the matrix AT  are the original edits. We now group constant terms to 

find the coefficients of the variables to be eliminated. The coefficient 

of x 1  is a 11w 1  + a21w2  + a 31w 3. Likewise, the coefficient of x 5  is 

a w + a w + a w and the condition is that both expressions are 
equal to zero. Let us denote the first row of the matrix A by r 1  and its 

fifth row by r 5. Then, with the column of weights w as above, we are led 

to a homogeneous system of equations which is, in matrix form: 

r 1w = 0 

(2.0) 	r 5w = 0 
w 

Notice that no condition is imposed on r 1 w, 1<i<n, i 1,5. 

We are interested in the vectors of weights which satisfy this system and 
have at most three nonzero components. When the system (2.0) admits 

infinitely many such solutions, the extremal vectors of weights could be 
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obtained using Chernikova's algorithm for such systems (see [2]). Notice 

that the implied edits are obtained by multiplying the transpose of the 

matrix of coefficients on the right by the appropriate vector of weights. 

They appear as newly created columns in the tableau used in the 

algorithm. 

When producing all implied edits we are, in fact, looking at all possible 

systems of type (2.0) involving edits in 1.1) a) and 1.1 b). There could be 

infinitely many vectors of weights with k nonzero components which 

generate edits with at most n - k + 1 variables, k > 1. Many of these 

edits are redundant. In some cases, it is easy to eliminate redundant 

edits or identify identical implied edits. Other cases are more subtle 

(see [161, Appendix 1). We would like to produce a minimum set of such 

weights that generate implied edits which, in some sense, represent all 

implied edits. We are therefore led to considering the entire transposed 

matrix associated with the system (1.1) and applying a modified version 

of Chernikova's algorithm to it. Only the vectors of weights which 

produce implied edits (new columns in the course of processing the 

matrix) as defined above will be retained in the lower matrix used in 

Chernikova's algorithm. 

The initial matrix is then the transpose of the matrix of coefficients 

associated with the system of inequalities (1.1). For consistency, the 

original system is written in the form: 

1.1a) 1 	A 1  x - b 1  <0 

1.lb) 1 	-x 

An edit represented by an equality in (1.1) appears in 1.1 a) 1  as two 

inequalities. If there are m edits in (1.1) of which e are equalities, 

o < e < m, then there are m + e + n edits altogether in the system 

above since there are n variables and therefore n edits in 1.1 b) 1 . These 

edits form the columns of the upper work matrix at the onset of 

Cherrtikova's algorithm. Since there are n variables and the system is 

non-homogeneous, the upper matrix has ii + 1 rows. An additional row 

will be used to indicate, for each column, whether the edit corresponds 
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to an equality or not. The lower matrix contains at the onset the unit 

vectors in Rm±e+t.  It will eventually contain all the "extremal" weights 

generating implied edits as defined above. 

The problem of finding the implied edits is somewhat dual to the problem 

of finding the extremal points described in 1.1.2. The actual weights, 

which appear in the lower subrnatrix of the work matrix, are irrelevant. 

It is the implied edits, which appear in the upper submatrix, that are of 

interest. In this setting, no column is discarded, as each newly created 

column is an implied edit. The purpose of the lower matrix is two-fold: 

Firstly, each vector of weights keeps track of the number of 

combinations that led to the creation of the edit represented by the 

column above. If f(w) is the cardinality of the vector w as defined in 

1.0, then f(w) = k represents the number of edits that were combined to 

generate the edit on the column above. For example, at the onset of the 

algorithm, the cardinality of each unit vector is 1 and the number of 

edits that "generated" the original edits is 1. If two different columns 

are combined while processing the first row, the cardinality of the new 

weight is 2 and so forth. When two columns are combined in the course 

of processing the rth row, the number z of zero coefficients created in 

the first r rows of the new edit is counted and compared to k. Only if 

z> k - 1, is the new edit retained. Note that the row containing the 

coefficients b 1  (see 1.1 a) 1  above) is combined as it is used in the 

calculation of the new edits. It is, however, not used in the calculation 

of z as we are only interested in eliminating variables. 

Secondly, the lower submatrix represents the last constraint in the 

system (2.0) above and is therefore used in Chernikova's algorithm in 

restricting the number of possible combinations that generate the 

"extremal" weights and therefore the number of "representative" implied 

edits. 

On the other hand, the upper matrix could be viewed as an augmented 

matrix in which all systems of type (2.0) are embedded and so it imposes 

no restrictions on the combinations of columns generating the implied 

edits (see [2 J). 
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In summary, the purpose of this algorithm is to generate, edits applicable 

to subsets of variables, by linearly combining a minimum number of 

edits. The coefficients of these linear combinations (weights) are 

positive. The implied edits are stored in the upper submatrix of the 

matrix used in Chernikova's algorithm. 

2.2 Error Localization 

2.2.1 	The problem 

As mentioned in 2.0., the purpose of error localization is to identify, for 

each record, the minimum number of fields which should be modified so 

that the corrected record passes the original set of edits. Records with 

missing values also fall into this category, as the missing fields could be 

given a negative value, say -1, to ensure that the record will not pass 

1.1b) of the original system. 

Let x represent the n values of the n fields of a record (missing values 

have been set equal to -1). Since we do not know which field is correct, 

every field is corrected and the modified record must now satisfy the 

system (1.1). More precisely, let y = (y1, ..., y,,) be the vector of 

positive corrections andz = ..., z,), the vector of negative 

corrections, each with non-negative components. We can look at a 

vector of corrections C as a vector having 2n components, C = 01, 
., y r,; z 19  ... z r ). The corrected record is x + Y - z. The reason 

for using positive and negative corrections is that we want to place 

ourselves in the context of chapter 1 which requires that all variables be 

positive; yet for some fields of the record the reported values are too 

large and a negative correction is required. 

Example I Consider the record x = (x 1 , x 2 ). Assume that x 	 is 

correct and that the value of x has to be decreased by 2 units. Then 

C 1  = (1, 0; 3, 0) will provide the necessary corrections as x, + I - 

=I -2. On the other hand, so does C 2  = (0, 0; 2, 0). There are, 

therefore, infinitely many correction vectors that can be successfully 

used. 
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Definition 2.1 A vector of corrections c = (y19 ..., y; z 11  ..., z,) 

is in reduced form if y i  z 1  = 0, for all i=1, ... n. In other words, for 

each coordinate i, either y1 = 0 or z = 0. This is equivalent to the 

complementary condition of [181, <y, z> = 0 where < > is the scalar 

product in R. 

For details concerning the complementary condition see [181. 

Example 2 In Example 1, C 1  is not in the reduced form, whereas C 2  is. 

The requirement that the corrected record passes the edits yields: 

A (x + y - z) < b 

(2.1) 	x + y - z > 0 

I] 0 

We also require that the number of actual corrections to the record be a 

minimum. If f(x) is the cardinality of x as defined in 1.0, then we wish 

f(y-z) to be a minimum. 

As noted in example 1, there are infinitely many correction vectors 

which provide the same actual correction of the record x. We would like 
to consider only vectors in reduced form, that is, which satisfy the 
complementary condition introduced in Definition 2.1. 

Using (2.1), the problem can now be stated as follows: Find all possible 
correction vectors c = (y;z) such that f(y- z)is a minimum, subject to: 

A(y - z)< b - Ax 

(2.2) 
	

I Z]>  0 

y,z > = 0 

Notice that here x is known and the variables are y and 2. 	We can 

therefore restate the problem in R2 , with appropriate matrices A 1  and 

b 1  (see 2.2.4): 
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Find min f(y-z), where (y;z) satisfies: 

A1 [] 
	

b1 

(2.3) 	rZ1 > 0  
 - 

< Y,z ,= 0 

The complementary condition is not linear in y and z and so it is not 
obvious that the system (2.3) can be solved as a cardinality constrained 
linear program. Neither are we dealing with the cardinality of the 
vector (y,z) in R 2°. We will show in 2.2.2 that, in the presence of the 
complementary condition, we minimize the cardinality of the vector 
(y,z) in R 2 . We also show that, solving (2.3) without the 
complementary condition leads to solutions which, in fact, satisfy it. As 
we shall see, exploiting the properties of the correction vectors which 
are in reduced form leads to the design of a more efficient algorithm. 

If the original system of edits is consistent, there is always a solution to 
the system (2.2). In fact, in most cases, we encounter more than one 
solution, even in the presence of the complementary condition. We are 
interested in the patterns of corrections. 

Example 3 Let c 1  be a vector of corrections in R 2  such that y1 	0, 
z 2 	0 and all other coordinates are equal to zero. Consider another 
vector of corrections C 2 , with y3 	0, z 4 	0 and all other coordinates 
zero. These two vectors have different patterns and the same 
cardinality in R 2 , f(c 1 ) = f(c 2 ) =2. If the first solution is retained, 
we decide to impute the first and the second field; if C 2  is retained, we 
impute the third and the fourth. The decision taken at this point will 
determine the path that the record will follow from here on in the GETS. 

It has to be noted that the actual coordinates of the correction vectors 
given by this method are ignored. Using these values would amount to 
making the minimum change in the corresponding variables in order for 
the record to pass the edits. The records so imputed will then always be 
placed on some facet of the polyhedron defining the acceptance region 
and that will change the distributions or the data variables in the 
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imputed dataset. We would therefore like to use more appropriate 

imputation techniques. 

2.2.2 The complementary condition 

Let f denote the cardinality function in R, n=1, 2... . 	To each 

vector (y1, ••• y; z 1 , ..., z) in R2 	we associate a "reduced" 

vector(y1 - a, ... y, -a r ; z 1  -a1, ••• Zn -a 11 ) 9  where a 1  = mm 
z 1 ), 1=1, ... n. 

Example 4 The reduced vector corresponding to the vector (2, 5; 3, 1) is 

(0,4 ; 1,0). 

Proposition 1 The cardrn 	 2nality of a vector in R 	exceeds the cardinality 

of the associated reduced vector. Equality takes place if and only if the 
vector is in reduced form. 

To justify this property, we look at Example 4. There f(2, 5 ; 3, 1) = 4 

2 = f(O, 4; 1, 0). 

Notice also that, if c is in reduced form, then f(c) = f(y - z), where y 
- z c R". 

Proposition 2 If C satisfies (2.3) without the complementary condition, 
then the reduced vector associated to C also satisfies (2.3) and, of 

course, the complementary condition. This follows from the form of 
(2.2) which is equivalent to (2.3). 

From these properties, it follows that it is possible to solve (2.3) as a 
cardinality constrained linear program in R2  (see chapter 1). Indeed, 
(2.3) is equivalent to solving the problem: 
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Find min f(y ; z) subject to: 

(2.4) 	
A 1  FZ] 
	

b 

ryl 
LzJ 

In 2.2.4 we show how to adapt Rubinrs  cardinality constrained vertex 
generation to solve this problem. 

2.2.3 	The cardinality function 

In 2.2.1 we considered the problem of correcting a record by altering a 
minimum number of fields. The cardinality function used was defined, 
for eachx = (x 1 , ... xr,) by f(x) = 2 5(x) 

if x. = 0 where (x 1 ) = 	1 	n. 
11 otherwise 

This function was applied to the correction vector C = (y1, ..., y  ; 
..., z) in R2 . There are various types of "cardinality" functions 

which could be used, depending on the problem at hand. As long as such 
a function possesses the basic properties required in Rubin's cardinality 
constrained linear program (see 1.0 of this report, as well as p.  13 of 
[181), its minimum, subject to the constraints imposed by a system of 
linear inequalities is attained at a vertex. If follows that one can solve 
eardinality constrained linear programs as described in 2.2.2 where the 
function to be minimized represents a generalized cardinality function. 

Examples of generalized cardinality functions can be found on p.  14 of 
[18]. In GELS we are concerned with generalized cardinality functions 
of the type f(x) 

= • w
1  cs(x 1 ), where w. is a positive coefficient 1=1

(weight) associated with the I th field. If c = (x 1 ,. . . x v,; y1,. . .y,) 
is a correction vector, then the same weight w is associated to both 
X. and y1 , I < n. Note that f is now applied to a vector C in R2 . The 
use of this kind of generalized function in GELS reflects the fact that the 
values reported for certain fields are considered more reliable than 
others. For various patterns with the same number of fields, the 
patterns which require corrections to the least reliably reported fields 
are selected for imputation. 
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It is also possible to solve a eardinality constrained linear program 

applying the generalized cardinality function to the reduced vector of 

corrections in Rtl,  i.e. to y-z. The value of f(y-z) does not exceed 

the value of f(c). Equality occurs if and only if C is in reduced form and 

the global minimum is attained on such correction vectors. By 

Proposition 1, the algorithm as described in Chapter 3 is more efficient 

when f(c) is used, as more columns can be purged. 

2.2.4 	The solution 

As mentioned in the previous sections, we are looking for min f(y ; z) 

subject to the constraints imposed by the system (2.4). As explained in 

2.2.2 the complementary condition can be removed from the constraints 

of (2.3). The matrix A 1  is constructed using the matrix of coefficients A 
and b 1  is constructed using b and the uncorrected values of x. 	More 

precisely, 	 - 

IA 	 IbAx  
(2.5) 	A1 = 

	 fl 	
In] b1 = [ 
	j 

In (2.5), 1 is the nxn identity matrix. The matrix A 1  has 2n 

columns and in + n rows. The column vector b 1  has in + n rows. 

Chernikova's algorithm is applied to the system: 

'yl 
< b1 AlL] 

[Y] 0. . 

For simplicity, from here on we will use the term "cardinality" for 

"generalized cardinality". When the first extremal point is found, the 

cardinality of each of the points of the lower matrix of Chernikova's 

tableau is calculated (see 1.1) and compared to the cardinality of the 

extremal point. All the columns containing points with cardinality 

greater than the cardinality of the extremal point are deleted. These 

columns will never generate, upon subsequent applications of 

Chernikova's algorithm an extremal point of a lower cardinality then the 
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one just found. The cardinality of the first extremal point becomes thus 
the first constraint on the eardinality of all extremal points to be 
generated subsequently. This way, the growth of the tableau is curtailed 
and all solutions to the problem of finding the extremal point of 
minimum cardinality are still produced. Then, the next extremal point is 
found, and its cardinality is calculated. Now the minimum of the first 
constraint and the new cardinality becomes the new constraint etc. The 
process continues until all rows of the upper matrix in Chernikova's 
tableau are processed. Upon completion, the lower matrix contains all 
extremal points of minimum cardinality. 

2.3 Matching fields 

As mentioned in 2.0, the concept of matching variables is related to the concept 
of a suitable donor. The use of matching variables increases the chance of 
finding a suitable donor. If variables that are not matching are used in the 
search for a suitable donor for a recipient record or if some of the matching 
variables are omitted in this search, the selected donor may not be a suitable 
donor and the imputed record may not pass the edits. 

It has to be noted that, for quantitative data, one might not find a suitable donor 
even if the search is done using the matching variables alone. If the matching 
variables of the recipient record and the potential donor coincide, then the 
potential donor is a suitable donor. 

Consider a recipient record x = (x 1 , ..., x) for which the fields to be 
imputed have been appropriately identified. Let us assume that i fields, 
o < 1 < n, were identified for imputation by the error localization procedure 
described in 2.2. The remaining n - I reported fields are potentially matching 
fields. We denote by X the vector whose components are the fields to be 
imputed and by x the vector formed with the remaining n - i components. The 
values of the components of are the components of a known vector x °. Let 
us consider the original system of edits (1.1) with the additional information 
about the values of x for the recipient record, that is: 
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Ax < b 

(2.6) 	x >• 0 

R 	0 x 	= x 

Since x is a concatenation of x' and x R,  the system (2.6) has X I  as a vector of 

unknowns with I coordinates. For this reason we call (2.6) the reduced system 

associated with the recipient record x. 

The reduced system can be written in the standard form with all known values on 

the right hand side and the unknowns on the left hand side. This leads to the 

system (2.7): 

(2.7a) 	A' x t < b 1  

(2.7b) 	X I > 0 

The reduced system defines a polyhedron in R' which is embedded in the original 

polyhedron defined by the system of edits (1.1) in R T" . In (2.7), the components of 

x°  are used to calculate the entries of the column matrix b 1 . Each inequality in 

(2..7a) represents a "reduced" edit. There are at most m such inequalities 

because some of the inequalities of the system (2.6) may have been eliminated 

had they contained none of the variables to be imputed. Thus, we consider in 

(2.7) only the "active" edits as defined by P. Giles in [11]. 

It follows from the systems (1.1), (2.6) and (2.7) that a recipient record will pass 

the postimputation edits (system (1.1)) if and only if the components imputed 

for x t  satisfy the system (2.7). Any potential donor (i.e. in the acceptance 

region of (1.1) ) is therefore a suitable donor (the recipient record passes the 

post imputation edits) if its corresponding components satisfy (2.7). 

Definition 	The matching variables for the recipient record x are those 

components of x that are effectively involved in defining the acceptance region 

of the system (2.7). 

We show now that, if the distance calculated on the matching variables alone 

between a recipient record and a potential donor is zero, then the potential 

donor is a suitable donor. Let us write a potential donor as d = (d ; x 0 ; d ), 



where x is the vector of matching components. Since d is a potential donor and 

the components ofx alone determine the acceptance region of the reduced 

system (2.7), it follows that d' is in the acceptance region of the reduced 
I 	M 	NM system. Then the partially imputed record (d ; x 0 ; x 0  ) belongs to the 

acceptance region of the original system (1.1), so d is, in fact, a suitable donor. 

This reasoning breaks down if nonmatching variables are used. A zero distance 

between a potential donor d and the recipient, calculated on the nonmatching 

variables alone does not guarantee that d 1  satisfies (2.7). In fact, d 1 	could 
belong to a larger acceptance region. If all variables x are indiscriminately 

used in matching, the nonmatehing variables may prevail in the calculation of 

the distance and donors which are not suitable might be chosen. 

It may happen that all the components of x are required for matching or none of 

them is. Each of these situations (as well as any intermediate situation) is a 

consequence of the overall shape and position with respect to the coordinate 

axes of the larger polyhedron determined by the original system of edits. 

There are various ways of establishing the functional dependency of the 

acceptance region of the system (2.7) on (some) of the coordinates of x R.  One 
way is to "fit" the "reduced" polyhedron into the original, larger polyhedron 

deteriined by the system (1.1). Theoretically, this amounts to considering the 

systems (1.1) and (2.7) together. Then the coordinates of x °  which prevent a 

"perfect fit" are those on which the acceptance region effectively depends. 

These coordinates will appear at the vertices of the "fitted" polyhedron. The 

main disadvantage of this method if Chernikova's algorithm is used is that there 
is a real possibility that the storage space will be exceeded before the algorithm 

terminates. The vertices which are not produced could contain matching 

variables which do not appear in other vertices and would therefore be lost. 

A simpler way, used by NEtS and GElS, consists of deriving the Information 

needed for determining the matching variables from the reduced system alone. 

The redundant edits should be removed from the (2.7) form of the system. The 
coordinates of X which are used in calculating the b's 	in 	the 	remaining 
constraints of the reduced system correspond to the matching fields. Notice 

that, according to this procedure, a matching field may or may not appear in a 
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redundant edit but it has to appear in a nonredundant edit belonging to group 2 or 

3 below. On the other hand, a nonmatching field appears only in redundant edits 

(group 1). 

Whatever procedure for removing redundancies is used, one should keep track of 

the coordates of x °  involved in the nonredundant edits. 

Any hyperplane corresponding to an inequality of the system (2.7), which is 

assumed consistent, belongs to only one of the three groups defined below: 

The redundant hyperplanes lie entirely outside the acceptance region. 

The nonredundant unrestrictive hyperplanes do not lie entirely outside the 

acceptance region but their removal would not change this region. 

The nonredundant restrictive hyperplanes "tightly" define the acceptance 

region. If any such hyperplane is removed, the acceptance region will 
change. 

It should be noted that equality edits are nonredundant, according to this 

classification. 

It is clear that the nonredundant hyperplanes contain all the variables which 
determine how the reduced polyhedron fits into the original one. It is not clear, 

just by examining the reduced system, that the nonreduridant unrestrictive 
hyperplanes could be safely deleted without loss of matching variable. For this 
reason, we retain all nonredundant hyperplanes (see [121). The disadvantage of 
this method is that one may use more variables for matching than are really 
necessary. 

Example 1: The original system of edits is: 

X i  < 	0, 	1=1, ... 7. 

	

10 5 x 1  - 	< 0 

	

- 	x 1  + 	10 5 x 3  < 0 

	

-x 4  + 	x 5  + 	x 6 	0 

x 2  - 	x 4  + 	x 7 	0 
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For a particular record, the values of x 2  and x 4  must be imputed. 	Therefore 
x 1 =(x 2 , x 4 ) and xR=(x1,x3,x5,x6,x7).  The reported values are: x 1 =200,000, 

x 3=10 5 , x 5=0.1, x5=0.2, x 7 =0.5. The components of x 	 are all potentially 
matching variables. Upon substitution in the original system, we obtain the 
standard form of the reduced system: 

Components of x involved: 

-x 1 	< 0 	i=2,4 	 none 
-x 2 	<-2 	 x 1  
-X 2 < -1 	 x 3  
-x 4 	< -0.3 	 x 5 , x 6  
x 2  - x 4 <-0.5 	 x 7  

Just by looking at the system, we can see that the third line above corresponds 
to a redundant inequality. Indeed, -x 2  < -2 is a more restrictive inequality than 

< -1. Since x 3  only appears in the latter inequality, it follows that x 3  is not 
a matching variable. From the last inequality it follows that -x 4 	- 0.5 - 
and because x > 0, -x 4  < -0.5. This is a more restrictive inequality than 
-x 4 	-0.3, obtained for)c 5  = 0.1, x 6  = 0.2. Since x 5 , x6  only appear in this 
inequality, they, too, are not matching. The matching variables in this example 
are x 1  and x 7 . 

If the system (2.7) is of small dimension (the number i of fields requiring 
imputation is small), Chernikova's algorithm could be applied to find the 
redundant inequalities in (2.7). As remarked in [4],  the redundant rows can be 
read off the last matrix used in determining the extremal points of the reduced 
system. A row corresponding to an inequality with no zero entries corresponds 
to a redundant edit. In Example 1 of 1.1, the second inequality in 1.3 a) is 
redundant, as apparent in the tableau Y 3. If only one zero appears on such a row 
than the edit defines a hyperplane which contains only one of the vertices 
defining the acceptance region (see section 1.1). 

As mentioned before, for the purpose of defining the matching variables all 
nonredundant edits would be retained. A method for removing redundancies was 
described in [13].  It is based on the use of the simplex algorithm. It is this 
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method that is recommended for use in GElS. The advantage here is that no 

assumption needs to be made on the number of fields to be imputed. 

3. 	Implementation 

3.0 Storage considerations 

The main problem encountered in implementing modules which require the use of 

Chernikova's algorithm is the extensive use of storage space. The final matrix 

which contains the extremal points has a determined number of columns. The 

intermediate matrices, however, may have a larger number of columns and the 

space required for their storage may exceed the available space. When a row 

corresponding to an inequality is processed, as many as p + z + pq columns can 

be created in the new tableau, where p, z, q represent the positive, zero, 

respectively negative entries on that row. When equalities are processed, the 

maximum number of columns of the new tableau is z + pq. The minimum 

number of columns, corresponding to an inequality is p + z; to an equality it is z. 

Thus, processing some rows may lead to a decrease of the number of columns 

from the previous tableau. It follows that a judicious choice of the order of 

processing the rows can curtail the growth of the successive tableaux. Ideally, if 

the matrix containing the extremal points has more columns than the original 

matrix, than the number of columns of the intermediate tableaux should not 

exceed the final value. Since the number of columns of the final tableau is not 

known in advance, it is difficult to devise a strategy which minimizes the number 

of columns of the intermediate tableaux. We adopted a strategy which, at each 

step, controls the growth of the newly created tableau. More precisely, the 

selection of the row to be processed is done according to the following criterion. 

Let ni = z + pq be the maximum number of columns of the newly created matrix 

when the row being processed is an equality. This number is, for an 

inequality, m = z + p + pq. These values are calculated after each iteration (a 

selected row has been processed) for the rows to be processed. Then the 

minimum value of m is calculated, over all rows described above. One of the 

rows that has a minimum value for iii is then processed. This strategy is used in 

some modules that make use of Chernikova's algorithm and it is based on 

remarks found in [171 and [18].  Although this strategy does not ensure an 

optimum overall order of processing the rows, it has proved quite effective, in 

several tests, not only in preventing the intermediate tableaux from exceeding 

the available space but also in considerably reducing the execution time. 
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In spite of the use of the strategy described above, we felt that the possibility of 

exceeding the available space still existed. This is true especially of the module 

which determines the extremal points (see [81). A strategy was devised which, 

when space limitations are about to be exceeded, saves some of the extremal 

vectors providing thus a solution, albeit incomplete, to the problem. The 

vertices of higher cardinality (or generalized cardinality) are sacrificed. The 

user is advised that vertices with cardinality larger than a certain value have not 

been produced. The justification for the claim that all vertices of cardinality 

smaller than the specified value are produced can be found in the works of Rubin 

and G. Sande (see [17], [181). Essentially, we are using the fact that the 

cardinality of the generated columns cannot decrease as the algorithm proceeds. 

3.1 The extremal points 

The input for this module is the matrix of edits as described in step 1 below. As 

mentioned in sections 2.0 and 3.0, Chernikova!s  algorithm is used to find the 
extremal points of the acceptance region associated with the system (1.1). The 

output is the set of extremal points (or a subset of it, if space limitations have 

been exceeded). It can be read of f the columns of the final matrix (see step 8 

below). A complete description of the algorithm can be found in [17] or in the 

Appendix. We give here the main steps of the algorithm. 

The input file of edits is of the form: 

Ax < b 

where A is an mxn matrix of coefficients, x is an nxl column of variables and 

b is an nixi column of constraints. That is, m is the number of edits and n is 

the number of fields which appear in this group of edits. The edits are 

assumed to be in the form produced by the module ED-ANAL(1) (see [13]). 

A matrix V contains the matrix -A followed by the column matrix b. The 

lower matrix contains, at the onset, the identity matrix in R 1 . 	Upon 

termination of the algorithm, it will contain the extremal points. 
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At the onset of the algorithm, an integer value Cmax  may be specified. This 

represents the maximum cardinality (number of nonzero components) of the 

extremal points to be produced by the algorithm. The initial value is 

specified by the user. A value greater than or equal to n corresponds to the 

case when all extremal points are required. A value for cmax  strictly smaller 

than n corresponds to the situation when only extremal points of cardinality 

smaller than or equal to Cmax  could be generated. The value of Cmax  can be 

updated. This happens if, while processing a row, the required number of 

columns of the matrix V being created exceeds the space limitations. 

The row of the matrix V are processed, one at a time. The efficiency of the 

algorithm increases if the choice of the row to be processed (the pivotal row) 

is done according to the following rule: 

Consider a particular row and let p represent the number of positive entries, 

I I the number of negative entries and z the number of zero entries on that 
row. If the row corresponds to an equality edit, define m = z + pq. Other-

wise define m = z + p + pq. The value of in is calculated at the onset of the 
algorithm as well as after each iteration, for all rows that need processing. 

That is, the value of in is calculated for rows corresponding to inequalities 

which contain at least one negative entry and for rows corresponding to 

equalities which contain at least one nonzero entry. The minimum value of rn 
is calculated over all rows described below. We denote this value by n. The 

new pivotal row is selected among the rows for which m = m 0. Notice that, 
according to this rule, rows corresponding to equalities tend to be processed 

earlier. 

At the end of each iteration, all columns for which the last entry is nonzero 

are scaled so that this last entry becomes 1. These columns will contain the 
extremal points defining the acceptance region associated with the system of 
edits (1.1). The components of these vertices can be found on the first n rows 

of the lower matrix L used in the algorithm. The last entry on columns 
corresponding to vertices is then 1. If C inax  < n, the cardinality of every 
vector in the lower matrix is calculated. This cardinality is at most equal to 
n, since the last entry is not used in counting the number of nonzero 
components of the vectors. All columns containing vectors with cardinality 
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greater than Cmax  are deleted. Since the cardinality of the vectors increases 

as the algorithm proceeds, these columns cound not produce vertices of 

cardinality lower than Cmax• 

When processing a row, a new matrix'( is created. If, while creating this 

matrix, the number of columns is about to exceed the space limitations, the 

value of Cmax  is updated for the purpose of purging some of the columns of 

the newly created matrix while retaining all columns that may produce 

extremal points of cardinality smaller than or equal tomax*This  is done as 
follows: 

The previously created matrix Y is recalled. The cardinality of each of the 

vectors with the last coordinate equal to 1 is calculated. The maximum * 
cardinality is taken over all such vectors and is denoted 	c . 	Then 

Cmax = C - 1. Note that the partially created matrix is not used and that 

the algorithm can return to this step repeatedly without creating a new * 
matrix. However, since C 	is an integer, the process will terminate 

eventually. A message will be printed to the effect that no extrernal points * 
of cardinality larger than or equal to C will be produced. 

The algorithm terminates unsuccessfully if, at any stage, a row containing 

only nonpositive elements is found. In this situation, no solution to the 

original system of edits exists, when at least one component of the vector b 

is non-zero. When all components of b are zero, then the only solution is the 

zero solution. In either case, no extremal point is generated by the algorithm 

and a message to that effect is printed. This situation should not occur after 

the application of the module ED-ANAL(1). 

The algorithm terminates successfully when all the rows have been processed 

and the situation described in step 7 above has not occurred. The extremal 

points are read off the columns of the final matrix that have the last entry 

equal to 1. Even when the algorithm terminates successfully, there may be 

no extremal points of the specified cardinality, if cmax < n. 
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3.2 The implied edits 

In this module, the input is the transpose of the matrix of coefficients A 	along 

with a submatrix corresponding to equalities in the original system of edits. Part 

of Chernikova's algorithm is used in producing the implied edits associated with 

the system (1.1). The output is a set of implied edits. A complete description of 

the algorithm can be found in [ill. We give here the main steps of the 

algorithm. 

The input file is of the form: 

Ax < b 

where A is an mxn matrix of coefficients, x is an nxl column of variables and 

b is an mxl column of constants. That is, m is the number of edits and n is the 

number of fields which appear in this group of edits. The edits are assumed 

to be in the form produced by the module ED-ANAL(1) (see [131). Each row 
of the matrix A corresponds to an equality or an inequality and should be 

labeled as such. In this module, equalities are treated as double inequalities 
and so a submatrix E of A containing all rows that correspond to equalities is 

created. Let e be the number of equalities corresponding to the system (1.1). 

Notice that O<e<rn. 

A matrix Y is created to be used in the algorithm. In this modification of 
Chernikova's algorithm, no column is deleted as the algorithm progresses, 
unless it corresponds to an existing edit (original or previously accepted as 
implied). The upper part of the matrix is formed by adjoining to the 
transpose of the matrix A the negative of the identity matrix in R 1' 	followed 
by the negative of the transpose of the matrix E. The lower part is formed 
with the identity matrix in R 	in the first m + Tn + e rows, followed by a 
row containing the coefficients b and then by an indicator row. There are 
thus m + n + e columns in the matrix V and 2n + m + e + 2 rows. The second 
last row of the matrix V contains the transpose of the vector of coefficients b 

followed by a string of n zeroes and then by the negative of the transpose of 
b corresponding to equalities in the original system. 
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Notice that in this set-up the original edits are placed columnwise and the 

use of the Chernikova's algorithm amounts to combining edits in which at 

least one of the variables has opposite signs. The identity matrix which 

appears in the upper part of the matrix Y as well as the string of zeroes in the 

lower part represent the "positivity" edits; that is, the edits which require 

that all variables be positive. Edits corresponding to equalities are 

represented as double inequalities; they are represented in the matrix A once 

and then by the matrix E with an opposite sign. The last row contains, at the 

onset, indicators for the original edits. A zero entry in this row indicates 

that the column above represents an equality edit whereas a nonzero entry 

corresponds to an inequalitiy. This holds true throughout the processing of 

the matrix V. 

At the onset of the algorithm, the user may specify cmax 	the 	maximum 
number of new edits that he or she may want to see. The default value for 

cmax should be set high enough to ensure that all implied edits are produced. 

Chernikova's algorithm is modified so as to produce all implied edits (see 

section 1.1 as well as 3.1 for comparison). All rows of the upper matrix are 

processed, one at the time and in their natural order. Neither the original 

edits nor the accepted new edits are deleted from the matrix V 	as 	the 
algorithm proceeds. Therefore the number of columns of the original matrix 

V cannot decrease. Also, the entries of the final matrix V 	need 	not 	be 
nonegative. 

While processing rows, new columns are being created. Not all are, however, 

retained. A newly created edit may be accepted only if it effectively 

eliminates variables. This is accomplished by comparing the number of zero 

coefficients created on the column representing the new edit and the number 

of combinations that generated the edit. It is then checked if the created 

edit is essentially new. 

Edits representing the same equality with opposite signs are unduplicated. At 

the end of the algorithm, all original and new edits will have been generated 

and they are stored in the final matrix V. If, at any time during processing 

the number of columns of the intermediate matrices exceeds the available 
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space or the value of Cmax  is exceeded, the processing stops. A message to 

this effect is then printed. 

3.3 Error localization 

The input consists of the system of linear inequalities 1.1, a record x 	requiring 

partial imputation and a vector of weights. A positive and negative correction is 

attached to each field of this record. Rubin's cardinality constrained linear 

program is applied to an augmented matrix with a generalized eardinality 

function (see 2.2.4 and step 2 below) in order to minimize the weighted number 

of corrections. The output is the set of all solutions to this problem with unique 

patterns (step 8 below). A complete description of the algorithm can be found in 

[101. We give here the main steps of the algorithm. 

The input file is of the form: 

Ax < b 

where A is an rnxn matrix of coefficients, x is an nxl column vector of data 

and b is an mxl column of constants. That is, m is the number of edits and n is 

the number of fields which appear in this group of edits. The edits are 

assumed to be in the form used by the module ED-ANAL(1) (see [131). 

A matrix is created to be used by the algorithm. At the onset, the top part 

of the upper matrix U contains the negative of the matrix of coefficients, - A, 

followed by A and then by the column vector b - Ax. The lower part of the 

matrix U contains the identity matrix in R followed by its negative and then 

by the column vector x. The upper matrix U has then 2n + 1 columns and 

m + n rows. The lower part L of the matrix Y contains the identity matrix in 

Thus the work matrix Y has iii +3n + 1 rows and 2n + 1 columns at 

the onset of the algorithm. The number of columns changes as the algorithm 

proceeds. Upon the completion of the algorithm, the lower matrix L contains 

the solution to the cardinality constrained linear program. As explained in 

2.2.2, all solutions satisfy the complementary condition. 



- 37 - 

At the onset of the algorithm the value of Cmax  may be specified. 	This 
represents the maximum generalized cardinality of the extremal points to be 

generated by the algorithm. Notice that this value need not be an integer, as 

weights could be used in the definition of the generalized cardiriality (see 
2.2.3). The value of Cmax  could be updated in the course of finding the 

extremal points if, in the course of processing one row, the number of 

columns exceeded the available space. 

The rows of the matrix Y are processed, one at the time, using Chernikova's 

algorithm. Although a strategy for curtailing the growth of the matrix is 

built in the algorithm for solving a cardinality constrained linear program, it 

is still important to render the algorithm as efficient as possible. For that 

reason and following suggestions found in [181,  the following overall strategy 
was adopted for the order of processing the rows: 

The rows for which the corresponding entry of the vector b - Ax or x is 

negative are processed first. These rows correspond to edits which the 

record x has failed (see step 1 for the matrix form of the edits). We call 
them failed edits. 

Within each group of rows (failed edits, edits corresponding to equalities, 

etc.), the strategy for choosing the row to be processed next as described 
in step 4 of 3.1 is used. 

In order to use the purge of columns built in this algorithm, it is essential 

that the algorithm quickly produces an extremal point. When processing 

failed edits, due to the form of the matrix Y, the column with a nonzero 

last entry is combined with other columns generating more columns with 

a nonzero last entry. It is only such columns that eventually contain 

extrernal points (see 1.1.2). Rows corresponding to equalities are also 

processed early within the group of passed edits (that is edits that are 

not failed edits). This is justified by the fact that an equality edit is 

more restrictive than an inequality edit and all extremal points are 

placed on all the hyperplanes representing equality edits. 
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5. At the end of each iteration, all columns for which the last entry is nonzero 

are scaled so that this entry becomes 1. These columns will contain the 
patterns of corrections which are solutions to the eardinality constrained 

linear program. They are stored in the lower submatrix of the matrix Y as 

vectors of corrections (y;z;1), where y stores the n components of positive 

corrections and z represents the n components of the negative correction. 

The generalized cardinality of each vector y - z is calculated, for each 

column of Y. Notice that this generalized cardinality is applied to a vector in 
R and that the last entry is not used in calculating it. It is then checked if 

an extrernal point has been generated. An extremal point corresponds to a 
vector of corrections for which the last entry is 1 and all entries on the 

corresponding column are nonegative. Furthermore, there should be zero 
entries on the rows corresponding to equality edits. If no extremal point is 

found, all columns with generalized cardinality larger than cmax  are deleted. 

At the onset of the algorithm, c is assigned a "large" value (e.g.min 
Cmi i, = Cmax)• If an extremal point is found, the value of C 	is calculated. min 
The minimum of all generalized cardinalities associated to extremal vectors 
is found. Then the minimum of this value and Cmax  is calculated and that 

defines the new value of Cmi ,,• All columns with cardinality strictly larger 

than Cm.it,  are deleted. Columns with cardinality equal to C are treated asmin 
follows: 

If they do not correspond to extremal vectors, they are retained. This is 
so because their corresponding columns may eventually contain extremal 

points of minimum cardinality. 

If they correspond to extremal points, they are retained only if they 

represent a pattern that has not been retained so far. 

6. A new matrix A is created each time a row is processed. If, while creating 
this matrix, the number of columns is about to exceed the space limitations, 

the value of Cmax  is updated for the purpose of purging some of the columns 
of the newly created matrix while retaining all columns that may produce 
extremal points of generalized cardinality smaller than or equal to Cmax. 
This is done as follows: The previously created matrix is recalled. The 
maximum generalized cardinality is calculated over all columns and is 
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denoted c. All columns with generalized eardinality equal to C are deleted. 
Then Cmax = c -eps, where eps is sufficiently small, i.e. less than the 

smallest weight specified. A message is printed to the effect that only 

solutions with generalized cardinality less than will be found. Note that 

the partly created matrix is not used and that the algorithm can return to 

this step repeatedly without creating a new matrix. However, since c can 

only take a finite number of values, the process will eventually end. 

7. The algorithm terminates unsuccessfully if, at any stage, a row containing 

only negative entries is found. No solution exists or the only possible solution 

is the zero solution. In either case, the likely cause of termination can be 

traced to the original system of edits. 

S. The algorithm terminates successfully if all rows have been processed and 

step 7 above has not been taken. The solutions are read off the columns of 

the final matrix which have the last entry equal to 1. Each solution 

represents a unique pattern of possible corrections, all requiring a minimum 

change in the record x in the sense given by the generalized cardinality. 

Each pattern indicates which fields should be corrected. These fields are 

represented by nonzero entries in the lower part of the matrix V correspond-

ing to the solution. Recall that the very last entry does not represent a field; 

it is used, in fact, to identify the solutions. It has to be pointed out that, 

even when the algorithm terminates successfully, there may be no solution 

provided to the user. This happens when, due to space limitations, step 6 
above is taken. 
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Appendix 

Chernikova's algorithm as described by Rubin in [171. 

The algorithm is as follows: 

0.0 If any row of U has all components negative, then w = 0 is the only point in C. 

0.1 If all the elements of U are nonnegative, then the columns of L are the edges of C, i.e. 

the ray (2.) = 	= xz, x > 01 is an edge of C; here I denotes the jth c,olumn of L. 

1. Choose the first row of U, say row r, with at least one negative element. 

2. Let R = { JlYrj > 0}. Let V = I Ri, i.e., the number of elements of R. Then the first 

v columns of the new matrix, Y are all the y for jER, where y  denotes the jth column 

of Y. 

2' If Y has only two columns and y r1'r2  <;adjoin the column lyr2 ly l + 	r12 to the 

matrix. Go to step 4. 

3. LetS = { ( s, t)IYrsYrt < 0, s zt}, i.e., the set of all (unordered) pairs of 

columns of V whose elements in row r have opposite signs. Let 10  be the index set of 

all nonnegative rows of V. For each (s, t)cS, find all iI 0  such that Y iS  =Yi t = 0. 
Call this set 1 1 (s,t). We now use some of the elements of S to create additional 

columns for 7: 
If I(s t) 	(the empty set), then y  and y do not contribute another column to 

the new matrix. 

If 1 1 (s, t) = p, check to see if there is a U not equal to either S or t such that y iU  
= 0 for all i EI 1 (S, t). If such a u exists, then y  and y t  do not contribute 

another column to the new matrix. If no such U exists, then choose c, 2 > 0 to 

satisfy alyrs + 2'rs = 0. (One such choice is a, = 	rt ' i 	'rs' 
Adjoin the column a ly s +  2t to the new matrix. 

4. When all pairs in S have been examined, and the additional columns (if any) have been 

added, we say that row r has been "processed". Now let Y denote the matrix Y 

produced in processing row r and return to step 0.0. 
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