
11-61 7E
no 0 89-014

I 	Statistics 	Stalistique c.2 	
Canada 	Canada

rVlethociok)gy Branch
	

Direction de lii methodologie 	
10

E3uincs 	ur\ev Ntcth&'J' I i'. 	 1iviii JL 	I1ii 'dy'
cntrcprI

Vb

'II., uanaua

F

WORKING PAPER NO. BSMD-89-OOIE
	

CAL-HER DE TRAVAIL NO. BSMD-89-OOIE

METHODOLOGY BRANCH 	 DIRECTION DE LA M.THODOLOGIE

USE OF CHERNIKOVA'S ALGORITHM IN TUE
GENERALIZED EDIT AND IMPUTATION SYSTEM

by

I. Schiopu-Kratina and J.G. Kovar
January 1989

I 	 u,3TIUE

JL' 	(

LI t3 Fe.. R Y
BIBLIOTHEQUE

I

L

41
1'

Use of Chernikova's algorithm in the
Generalized Edit and Imputation System

I. Schiopu-Kratina, J.G. Kovar

eTWMM

IL

Résumé

Ce document décrit une partie de La méthodologie du t'Système généralisé de
verification et d'imputationt' de Statistique Canada. Cette méthodologie est

basée sur un algorithme, développé par Chernikova et généralisé par Rubin, qui
trouve les solutions d'un système d'inégalités linéaires dont Ia cardinalité est
minimale. L'application de ces résultats I La verification et l'imputation des
données est due a G. Sande.

:

0. 	Introduction 	 . 	1

Description of Chernikova's algorithm and Rubin's cardinality constrained vertex
generation...4

1.0 	Overview 	...4
1.1 	Description of Chernikova's algorithm 6

1.1.1 The homogeneous case. An example6
1.1.2 	The general ease 	...9
1.1.3 General comments on Chernikova's algorithm10

Application to edit and imputation (G. Sande)13

2.0 	Overview ..13
2.1 	The implied edits ...15

2.1.1 	Definition 	...15
2.1.2 The minimum set of implied edits 16

2.2 	Error localization 	..19

2.2.1 	The problem ...19
2.2.2 The complementary condition22
2.2.3 	The cardinality function23
2.2.4 	The solution 	...24

2.3 	Matching fields 	..25

Implementation 	...30

3.0 	Storage considerations ...30
3.1 	The extremal points 	..31
3.2 	The implied edits ...34
3.3 	Error localization 	..36

Appendix...40

References...41

Use of Chernikova's algorithm in GETS

0. 	Introduction

The purpose of this report is to present that part of the methodology of the
Generalized Edit and Imputation System (GElS) presently being developed at Statistics

Canada which uses Chernikova's algorithm. This system will be used by several

surveys, thus saving on development costs. It uses methods from linear programming
to perform edit and imputation for numerical data. The applicability of such methods

to edit and imputation in statistical business surveys was revealed by G. Sande (see

[181, [191). Based on his work, a system was built to deal with numerical edit and
imputation (NEIS).

Chernikova's algorithim finds the extremal points associated with a system of linear
inequalities with nonegative variables (see [2], [3] and [18]). The algorithm is used
in GELS for part of edit analysis (extremal points and implied edits) and in error

localization. The methodology of the edit analysis is essentially based on the use of
the simplex algorithm and will be described elsewhere (see [15j). The search for the
closest donor to a record requiring partial imputation is done using k-d tree and is
presented in [51.

For the sake of completeness, a brief overview of the entire system is given here. A
numerical set of edits can often be represented as a linear system of inequalities,
where the values of the variables are generally reported by the respondents. The

general form of edits is specified by the sub5ect matter specialists. Since the values
reported in business surveys are non negative, it is assumed that all edits are in the
form of linear inequalities and that all variables to be reported are nonegative.
Various techniques employed in linear programming can be used to analyse the system
of edits to check for inconsistencies, redundancies and hidden equalities. Bounds on all
variables can be obtained at this stage. Details regarding the edit analysis can be
found in [13]. The linear system of inequalities representing the edits defines the
acceptance region associated with this system. If bounded, the acceptance region can
be described with the help of the extremal points. These can be obtained using
Chernikov&s algorithm as presented in 1.1. For the purpose of edit analysis, new
(implied) edits are generated by taking linear combinations with positive coefficients
of subsets of the original set of edits. These edits contain fewer variables than the
original edits and are thus easier to handle.

- 2 -

A major component of NEIS and GELS is error localization, the module which

identifies, for each record, the minimum number of fields that should be changed so

that the corrected record passes the edits. This module, (see [10]) is placed in GELS

after the edit analysis modules and before the donor imputation modules.

Conceptually, it provides the link between edit and imputation, as it flags for

imputation the blank fields as well as the invalid values. Ideally, on each record the

values for all fields should be reported and the record should pass all edits. Often the

record is incomplete; that is, some of the fields on the record are blank. Even for a

complete record, some of the values could be erroneously reported so that the record

does not pass the edits. These values should then be removed and the corresponding

fields, as well as the blank fields, should be flagged for imputation. Performing these

tasks manually for each record is time consuming. It can also lead to errors, as the

system of edits can be very complex and the number of fields very large. Corrections
to some of the reported values, when based solely on the experience and the intuition

of the editor may turn out to be wrong as the corrected record may not pass the edits.

This is due to the fact that all variables are related through a complex system which is

difficult to keep track of intuitively. A systematic way of error localization is
provided by NEIS and GElS.

Once the fields which require correction have been identified, the record, now labelled
a recipient or candidate record, is ready for imputation. For the purpose of donor
imputation, the values on each field on all records are resealed so that they all belong
to the interval (0,1). A k-d tree is constructed using a class of accepted records (see

[51). The m closest records to the recipient record are found in the space of matching
variables using the L distance. From these potential donors, the closest suitable

donor for the recipient record is selected and all values on the fields to be imputed are
transfered from this donor record to the recipient record. A potential donor is a

suitable donor for a recipient record if the recipient record passes the edits once the
pertinent fields have been imputed from the donor record. The concept of matching
fields, described in section 2.3 of this report, is intimately related to the concept of a
suitable donor.

This report presents the methodology and gives a brief description of the following
modules used in GELS: the module for finding the extremal points, the module for
generating the implied edits and the module used for error localization. Potential uses

-3-

of Chernikova's algorithm in finding the matching fields are also presented (see section
2.3).

The report is organized as follows. Chapter 1 gives an overall presentation of

Chernikova's algorithm. The actual algorithm, as presented by Rubin [171, can be

found in the Appendix. In Chapter 2, the more theoretical aspects regarding the

application of Chernikova's algorithm to edit and imputation are discussed. Chapter 3

gives a general description of the algorithms used in the modules mentioned above.

This report is addressed to methodologists who wish to gain some familiarity with the
application of Chernikova's work in GElS. The reader who aims for a general
understanding of the methodology need not read Chapter 3 whIch contains
implementation details. On the other hand, the reader who is more interested in the
implementation, may start by reading Chapter 3 and use Chapters 1 and 2 for
references. For this reason, we attempted to render each section of Chapter 3 self-

contained. Even so, not all details which were used in programming have been
included in Chapter 3. The interested reader should consult [8-141 in the references
for this purpose.

-4-

1. 	Description of the algorithm 	and Rubin's cardinality constrained vertex generation.

1.0 Overview

In [2-31, Cherriikova described an algorithm for finding all nonegative solutions

of a system of linear inequalities. The general form of such a system is:

1.la) 	A x < b

1.lb) 	x>O

where A is the matrix of coefficients with m rows and n columns, x is a vector in

R,x = (x 19 ... X and b is a column matrix with m rows. The notation x > 0

means that all coordinates of x are nonegative, i.e. x i > 0 1 = 1, ... n. The

system (1.1) may have no solution. It may also have one solution or infinitely

many solutions. In the latter case, all points x which satisfy (1.1) belong to a

polyhedron in R'. Conversely, all points inside or on the facets of the polyhedron

are solutions of the system (1.1). The region enclosed by the polyhedron is called

the acceptance region. This region can be described by its extremal points, and
extremal directions. Chernikova's algorithm produces all this information.

In [171, Rubin showed that Chernikova's algorithm can be adapted so as to find

all the solutions of a cardinality constrained linear program (see 2.2.3). In his
problem, a linear function of x is maximized, subject to (1.1) and a cardinality
constraint. The cardinality constraint requires that the number of nonzero
coordinates of the solution be less than or equal to a prespecif led value. Notice

that the cardinality function defined in 2.2.3 is not linear. Therefore the
classical simplex method could not be applied to solve a cardinality constrained

linear program.

In what follows, we are only concerned with solutions to (1.1) subject to the
cardinality constraint. Rubin's application of Chernikova's algorithm relies

mainly on two facts:

1) as the algorithm proceeds, the cardinality of the points which generate the

extremal points does not decrease (see Lemma 2 of [17]).

2) if a solution to (1.1) with the cardinality constraint exists, then at least one

vertex will satisfy the same constraints.

We will prove 2) in the case the polyhedron defined by the system (1.1) is

bounded. The general case can be obtained by "regularization" (see p. 556 of
[17]).

Firstly, if f(x) represents the cardinality of x then:

k 	 k
Z 	. f(x 4), (1.2) 	f(1 a. x1)

- 	
a

i=1

k
where a i > 0, 14, ... k and 	E Cl i = 1

The proof of (1.2) uses the fact that x. > 0, 1 = 1, ... k.

Secondly, since the polyhedron described by (1.1) is a convex body, every interior

point x can be written as a convex combination of vertices,

x = Z a. x.. If f(x) 	< 	f(x.1) 	1<i<k, i.e. if f(x) 	attains 	a 1=11 1 	--

k 	 k 	 k
minimum at x, 	then 	• Z a. f(x.) 	a. f(x) = f(x) = f(z a. x.)

•i=1 1 	1 	i=1 1 	 i=1 	1 	1

which contradicts (1.2).

Consequently, it suffices to find the extremal points which satisfy the

cardinality restriction for a global solution to Rubin's cardinality constrained
linear program.

A drawback of Chernikova's method for finding extremal points is the large

number of transformations that have to be performed at times to arrive at the

final matrix. This may require extended space for storing intermediate

matrices. However, as Rubin has shown (see [171), the performance of the

method can be considerably improved when solving a cardinality constrained

linear program, due to properties 1) - 2) stated above.

The importance of property 1) is that it allows the reduction of the number of

transformations in Chernikova's algorithm. As we shall see in 2.2, many of the

columns containing vectors which exceed the bound on cardinality can be

discarded, as they will never produce the desired solution. The growth of the

-6-

matrix used in Chernikova's algorithm can therefore be curtailed. Consequently,

there is less danger that the space required for storing intermediate matrices

will be exceeded.

The reader is cautioned that in the original work of Chernikova (see [2-3 1) 	the

algorithm uses the transpose of the matrix of coefficients and the processing is

done columnwise. In other papers ([17-19 1) the algorithm proceeds rowwise. In

this report we follow the latter procedure.

1.1 Description of Chernikova's algorithm

1.1.1 The homogeneous case. An example.

The algorithm was initially developed for finding extremal rays (i.e. the

edges) of a cone defined by the system of homogeneous inequalities:

A (1.3) 	 x >0
x

Generally speaking, the algorithm consists of transforming an augmented

matrix which contains all the coefficients of the system (1.1) until all

entries of the augmented matrix are non-negative. The rows

corresponding to the matrix of coefficients in the augmented matrix are

processed one at a time, resulting each time in a transformation of the

augmented matrix. In the transformed matrix, all rows that have

already been processed have non-negative entries. A transformation

consists of copying columns which have the desired entries on the row

being processed (non-negative entries for rows corresponding to

inequalities and zero entries for rows corresponding to equalities) and

linearly combining other columns. The coefficients of these linear

combinations are always positive.

A complete description of the algorithm can be found in [171. 	For

convenience, a copy of Rubin's description can be found in the Appendix.

We present here a simple example which can also be visualized in the

three dimensional space. Some steps of the algorithm are illustrated by

means of this example. Further examples can be found in [21, [31 and

[17].

an

In what follows, the words tableau and matrix are synonymous.

Example 1 Find the extremal rays of the cone defined by the linear

inequalities (1.3):

x+y -z

2x-y 	>0
x - 2y - z >0

x

y >0

z

The vector of unknowns is (x,y,z). The matrix of coefficients for the

system 1.3a) is

11 	1 -1-1

1-2-1J

A =12 -1 	0 1
L

An augmented matrix (tableau) V corresponding to the system (1.3) is

formed by placing the 3 x 3 identity matrix L at the bottom of the

matrix A.

2 -1 0
1 -2 -1

V - 	
0 0 1

0 10
001

The first row is first processed to produce the extremal vectors

associated with 1.3b) and the first inequality in 1.3a).

The first two columns are copied, sir:ce the corresponding entries are

positive and the first row corresponds to an inequality. This is a

consequence of the fact that the unit vectors (1,0,0) and (0,1,0), placed

on the corresponding columns in the lower submatrix, are already

extremal vectors of the cone represented by 1.3b) and the fIrst

inequality in 1.3a). Then the first and the second column are each added

to the third in order to create zeroes on the third and fourth column of

the new tableau. The new tableau is:

1100
2 -1 2 -1
1 -2 0 -3

Y 1 =----------

0101
0011

The first row has now been processed and all the vectors in the lower

matrix L 1 are extremal vectors associated with the extremal rays of the

cone: x + y - z > 0 and 1.3b). Indeed, the first two vectors are along

two coordinate axes, whereas (1,0,1) and (0,1,1) are on the plane x + y -

z = 0. The knowledge of the extremal rays of the cone is sufficient to

define the acceptance region. Notice that the zero entries on the first

row of Y indicate the fact that the corresponding column vectors in L 1
are actually on the plane x + y -z = 0. Notice also that the vectors in

L 1 are either unit vectors which satisfy the first inequality in 1.3a) or

linear combinations of unit vectors which satisfy the first inequality in

1.3a). In this first step, all combinations of columns which have opposite

signs on the first row V are calculated. When combining such columns,

zeroes are created in the first row of the tableau V 1 . Geometrically,

this means that two of the unit vectors are combined if they are on

different sides of the plane x + y - z = 0. The coefficients are chosen

so that the resulting vector is actually on that plane. Notice that the
constraints imposed by the second and third inequality in 1.3a) have not

been used so far.

Now we process the second row of the tableau V 1 . The new tableau

is:

1030
2200
1 0 -3 -6

L 	1111
0022
0103

-9-

Now all vectors in L 2 are extremal vectors of the cone corresponding to

1.3b) and the first two equations in 1.3a). The first and third columns of

'(1 which were copied to '(2 correspond to extremal vectors obtained at

step 1 which also satisfy the second inequality in 1.3a) (see Rule 1 of

[21). This can be seen in V, since the first and the third columns have

positive entries on the second row so they are on the "positive" side of

the plane 2x - y = 0. The first and second, and the third and fourth

columns of Y are combined to produce the last two columns of

Other combinations were not performed as required by step 3a of the

Appendix. Notice that the constraint imposed by the last inequality in

1.3a) has not been used so far.

We now process the third row. The first two columns are copied. The

first column of '(2 is multiplied by 3 and added to the third column to

produce the third column of '(3. The last column and the first column of

'(2 are not combined, again by 3a of the Appendix. The algorithm

terminates with this step and '(3 is:

106
226
100

1 1
002
010

The top matrix - has non-negative entries. The system (1.3) has therefore

a nontrivial solution (i.e. different from (0,0,0) which is always a solution

of (1.3)). The three extremal rays all start at the origin and pass through

the following points in R 3 : (1,0,0) (1,0,1) and (2,1,0). The region enclosed

by these vectors is the acceptance region associated with the system

(1.3).

1.1.2 	The general case

The general form of the system of linear inequalities is (1.1). The

system (1.1), when consistent, represents a polyhedron in R. 	If the

polyhedron is bounded, its vertices, or extremal points, define the

acceptance region associated with the system (1.1). In order to solve

- 10 -

this system using Chernikova's algorithm, the system (1.1) is transformed

into a system of type (1.3) as follows. An equivalent form of (1.1) is:

-A x + b >• 0

x>0

This can be reduced to a homogeneous system in n + 1 variables

(x 1 , ... x 1 ,), 	> 0:

-A x + b E >• 0

(1.4)

[XJ -
, 0

Now (1.4) represents a cone with the vertex at the origin. Every solution

of (1.4) with = 1 gives a solution of (1.1) and vice versa. It is easy to

see that the extremal points of (1.1) are the extremal vectors of (1.4) for

which the last coordinate & = 1. All the extremal points of (1.1) are

found by using Chernikova's algorithm applied to the system (1.4) and

retaining those extremal vectors for which the last coordinate is non-

zero. This is so because, if (x,), 0 is a solution to (1.4), then

(xE 1, 1) is also a solution. When the polyhedron defined by (1.1) is

unbounded, some of the extremal rays of (1.4) are of the form (x,0) (see

(181, p. 12). Then the coordinates of x represent the extremal

directions associated with the polyhedron.

1.1.3 General comments on Chernikova's algorithm

With Example 1 in mind we now make some general comments on

Chernikova's algorithm.

The original tableau contains the matrix of coefficients A on the top and

the identity matrix on the bottom. The role of the lower matrix is two-

fold; it keeps track of the transformations successively applied to the

matrix of coefficients A and it represents the inequalities x 1 > 0,

= 1, ... n in the search for the extremal vectors of the cone (1.3).

- 11 -

The idea is to transform the tableau Y in an optimum way until all the

entries in the upper part are non-negative. If this cannot be done, then

either the cone is degenerate at the origin, when dealing with system

(1.3) or there is no solution, when dealing with the system (1.1) (the two

differ when at least one of the components of b is nonzero). We consider

now the system (1.1). The successive transformations applied to it can

be represented as matrices which multiply Y on the right hand side. Let

I be the multiplication of all matrices involved in applying Chernikova's

algorithm to its completion. Assume there is a solution of the system

(1.1). Then A T > 0, 1 > 0. Since the same transformations are applied

to the bottom matrix, we have t T = I, where I is the identity

matrix, so the matrix I appears at the end of the algorithm in the

bottom part of V. Therefore, T provides a solution to the system (1.1).

The rules of combining and discarding columns of the original matrix are

such that I gives only the extremal solutions which define the

acceptance region in (1.1).

This procedure brings to mind classical algorithms for finding inverses of

matrices. For details, see Section 3 of [71. Example 1 in 1.1.1 allows

for a geometric interpretation of the algorithm. In [1-31 as well as in
[7], algebraic methods are used. To make the connection between the

two, the following observation may be helpful. Consider the second

inequality in 1.3 a). In the upper matrix of Y, it is represented by the

second row, which also represents the plane whose equation in R 3 is:
2x-y=0. A vector (x 0 ,y09 z 0) is on this plane if its coordinate satisfy

this equation or, equivalently, if the scalar product of (2,-1,0) and
(x0 ,y0 ,z0) is zero. All intermediate tableaux in Chernikova's algorithm

have the property that the entry on ith row and jth column of the upper

matrix is, in fact, the scalar product of the corresponding column vector

in the lower matrix and the corresponding row vector in the original

tableau. Indeed, the zero entry on the second row and third column of

the tableau V is the scalar product of (2,-1,0) and (0,0,1). The fact

that it is zero corresponds to the fact that (0,0,1) is on the plane

2x-y=0. This property is preserved as the algorithm proceeds due to

properties of the scalar product as well as the nature of the

transformations performed in algorithm (p. 155 of [2]). For example,

- 12 -

the entry 1 in the last row of the upper matrix of V 2 	is 	the scalar

product of (1,0,0) and (1,-2,-1); the latter vector represents the third

inequality of 1.3 a). Therefore, when zero entries are created in the

upper tableaux, the corresponding column vectors are on the planes

defining the original inequalities represented by the corresponding rows.

Positive entries correspond to column vectors which are on the positive
side of the plane represented by the corresponding rows.

We proceed now to a brief overview of the mathematical foundation of

Chernikova's algorithm. This can be essentially found in [11 and consists
of a general recursive procedure of finding extremal rays of a cone

defined by several inequalities. When all variables are nonegative

(i.e. 1.1 b) holds), the vectors corresponding to the coordinate axes are
extremal vectors associated with 1.3 b). When the first row of V is

processed, the recursive procedure is applied to construct, from these

vectors, the extremal vectors associated with the cone 1.3 b) and the

first inequality of 1.3 a). According to Rule 1 of [21, the vectors
(1,0,0) and (0,1,0) are retained because their scalar product with

(1,1,-i) is positive (indeed, it is equal to 1 in both cases). Then the
first and the third as well and the second and the third columns are

combined to create two extremal rays of the new cone, namely (1,0,1)
and (0,1,1). At the first step, all columns with opposite signs are
combined as described, since 3 of the algorithm (see Appendix) allows for
it. Rule 3 of the algorithm, as described by Rubin (see Appendix) is a
device used for checking the dimensionality of a linear subspace

associated with rows already processed (see Satz (Proposition) 3 of [11).
Note that the maximal linear subspace (see (1]) associated with 1.lb) is

the vector 0 of

So far we have not discussed the case of equalities in (1.1). An equality
in the system (1.1) can be represented by two inequalities, and they can
be treated as such. However, the algorithm can be simplified in the
presence of equalities. Firstly, when each row representing an equality
is processed, only the columns which contain zeroes on that row will be
copied. This corresponds to the fact that all the extremal points of the
polyhedron will have to lie on the plane described by the equality. In

- 13 -

deciding which columns should be combined, the rows containing

processed equalities need not be checked, as they contain only zeroes. If

equalities are stored at the top of the upper matrix and are processed

first, or if all rows in the upper part of the matrix A correspond to

equalities, the algorithm can be simplified even further. However, it has

to be emphasized that the general description of the algorithm covers all

particular situations.

2. 	Application to edit and imputation (G. Sande)

2.0 Overview

Chernikov&s algorithm is used in GElS in three places: to produce the extremal

points of the acceptance region of the system (1.1) (see [81), to generate

the implied edits (see [111) and for error localization (see [10]). We also

present in section 2.3 a possible use of this algorithm for finding the matching

variables. This procedure was not implemented because it involves finding the

extremal points of a potentially large system.

The concept of implied edits was introduced in [6]. 	Essentially, variables are

eliminated from the original set of edits, to generate new edits containing fewer

variables than the original ones. The implied edits may be easier to understand

than the original set of edits. For example, bounds for each of the variables may

be provided by the new set of edits. The implied edits can provide, to some

degree, a check of the consistency of the original system of edits. Inconsistency

might be easier to detect in the new edits which involve fewer fields. Technical

details concerning implied edits are given in section 2.1.

A uniform and systematic method for error localization is provided by NETS and

GElS. Records with missing values and complete records which have not passed

the edits are treated alike. The blank fields are assigned a value which ensures

that the record, unless corrected, will fail the edits (say, a negative value so that

1.1 b) fails). To each value of the now completed record a positive and a

negative correction is attached. The corrections now become the new variables,

subject to constraints imposed by the system (1.1). In other words, the condition

is that the corrected record passes the edits. We now have a system of linear

- 14 -

inequalities and we wish to find correction vectors for which the number of

nonzero corrections is a minimum. This places the problem within the scope of

Rubin's cardinality constrained program with a twist. The cardinality constraint

is not given ahead of time; rather it is defined along the way, as extremal points

are generated. The cardinality of the first extremal point found using

Chernikova's algorithm serves as a first constraint and so forth. Indeed, the

minimum cardinality attained at a vertex cannot exceed this constraint. The
technical details regarding error localization can be found in 2.2.

Let us consider a record x of which I fields require imputation, 1<1 <n, whereas
the remaining n-i fields are accepted as reported by the respondent. The

requirement that the record passes the edits leads, upon replacement of the n-i

values of fields into the original system of edits, to a new system of linear

inequalities in i variables. We call this system the reduced system. It is

important then to choose a donor record in such a way as to ensure that the

imputed values fall within the acceptance region of the reduced system. The
imputed record will then pass the edits. If the donor record is chosen at random,

there is no guarantee that the transferred values fall within the reduced

acceptance region. On the other hand, if all reported fields are indiscriminately
used for matching, variables which do not actually determine the reduced
acceptance region may prevail in the calculation of the L distance and exclude

suitable donors from the list of potential donors. It follows that only the
variables that actually determine the acceptance region should be considered.
These are called the matching variables and should be used in the search for a
suitable donor from the set of all accepted records. It has to be noted that, in
some instances, according to this approach no variable is required for matching.
In such a situation the donor record may be chosen at random from the list of
potential donors. The technical details regarding the matching variables can be
found in 2.3.

- 15 -

2.1 The implied edits

2.1.1 	Definition

As mentioned earlier, the concept of implied edits was introduced by

Fellegi and Holt in [6]. Their article deals mostly with qualitative data

but it also touches upon numerical edits. Essentially, a new implied edit

is an edit which is obtained from the original or the previously implied

edits by eliminating one or more variables. Successive applications of

this procedure leads to the creation of all implied edits. The original as

well as the newly created edits form a complete set of edits. The

complete set of edits is used in error localization (see p.2). Fellegi and

Holt also propose the use of implied edits for detecting inconsistencies in

the original set of edits. The use of implied edits for error localization

or detecting inconsistencies for numerical data is inefficient, especially

when a large number of edits or a large number of variables is involved.

In NEtS as well as GELS, error localization is based instead on

Chernikova's algorithm as used by Rubin in [171, which leads to a more

efficient algorithm (see 2.2). Inconsistencies are detected in the analysis

of edits using the revised simplex algorithm as described in [131.

For numerical edits given in the form of linear inequalities, the

definition amounts to successively combining pairs of inequalities so that

at least one variable is eliminated at each stage. The coefficients

(weights) used for these combinations are always positive. The problem

with this definition for numerical edits is that several applications of the

procedure may lead to the creation of an edit which is not new. For this

reason, the definition adopted for numerical edits which is given below is

more restrictive.

Definition 	A linear inequality associated with a system of edits

expressed as ni linear inequalities with n variables is an implied edit for

that system if it is a linear combination with positive coefficients of

k > 1 such edits and contains at most n - k + 1 variables with nonzero

coefficients.

- 16 -

The new edits contain fewer variables than the original ones and so

provide the user with some idea about the form of the acceptance region

associated with the original system of edits (1.1). The implied edits

provide an additional diagnostic tool for the user. Even if the analysis of

the original edits indicates that all is well, examination of the implied

edits may identify problems with the edit specifications. This is the main

purpose for deriving them in GElS.

2.1.2 	The minimum set of implied edits.

The definition of the implied edits has led to an algorithm which will be

explained by means of an example.

Example 1 Assume that in the system of edits 1.1a) we combine the first

three edits to eliminate two variables, x and x 5 . Consider the vector of

weightsw = (w 1 ,w2 ,w3 ,O,...,O), where the first three components are

nonzero. If we look at the transpose of the matrix of coefficients, AT ,

then combining the first three edits amounts to multiplying this matrix

on the right by the column vector of weights w. Notice that the columns

of the matrix AT are the original edits. We now group constant terms to

find the coefficients of the variables to be eliminated. The coefficient

of x 1 is a 11w 1 + a21w2 + a 31w 3. Likewise, the coefficient of x 5 is

a w + a w + a w and the condition is that both expressions are
equal to zero. Let us denote the first row of the matrix A by r 1 and its

fifth row by r 5. Then, with the column of weights w as above, we are led

to a homogeneous system of equations which is, in matrix form:

r 1w = 0

(2.0) 	r 5w = 0
w

Notice that no condition is imposed on r 1 w, 1<i<n, i 1,5.

We are interested in the vectors of weights which satisfy this system and
have at most three nonzero components. When the system (2.0) admits

infinitely many such solutions, the extremal vectors of weights could be

- 17 -

obtained using Chernikova's algorithm for such systems (see [2]). Notice

that the implied edits are obtained by multiplying the transpose of the

matrix of coefficients on the right by the appropriate vector of weights.

They appear as newly created columns in the tableau used in the

algorithm.

When producing all implied edits we are, in fact, looking at all possible

systems of type (2.0) involving edits in 1.1) a) and 1.1 b). There could be

infinitely many vectors of weights with k nonzero components which

generate edits with at most n - k + 1 variables, k > 1. Many of these

edits are redundant. In some cases, it is easy to eliminate redundant

edits or identify identical implied edits. Other cases are more subtle

(see [161, Appendix 1). We would like to produce a minimum set of such

weights that generate implied edits which, in some sense, represent all

implied edits. We are therefore led to considering the entire transposed

matrix associated with the system (1.1) and applying a modified version

of Chernikova's algorithm to it. Only the vectors of weights which

produce implied edits (new columns in the course of processing the

matrix) as defined above will be retained in the lower matrix used in

Chernikova's algorithm.

The initial matrix is then the transpose of the matrix of coefficients

associated with the system of inequalities (1.1). For consistency, the

original system is written in the form:

1.1a) 1 	A 1 x - b 1 <0

1.lb) 1 	-x

An edit represented by an equality in (1.1) appears in 1.1 a) 1 as two

inequalities. If there are m edits in (1.1) of which e are equalities,

o < e < m, then there are m + e + n edits altogether in the system

above since there are n variables and therefore n edits in 1.1 b) 1 . These

edits form the columns of the upper work matrix at the onset of

Cherrtikova's algorithm. Since there are n variables and the system is

non-homogeneous, the upper matrix has ii + 1 rows. An additional row

will be used to indicate, for each column, whether the edit corresponds

- 18 -

to an equality or not. The lower matrix contains at the onset the unit

vectors in Rm±e+t. It will eventually contain all the "extremal" weights

generating implied edits as defined above.

The problem of finding the implied edits is somewhat dual to the problem

of finding the extremal points described in 1.1.2. The actual weights,

which appear in the lower subrnatrix of the work matrix, are irrelevant.

It is the implied edits, which appear in the upper submatrix, that are of

interest. In this setting, no column is discarded, as each newly created

column is an implied edit. The purpose of the lower matrix is two-fold:

Firstly, each vector of weights keeps track of the number of

combinations that led to the creation of the edit represented by the

column above. If f(w) is the cardinality of the vector w as defined in

1.0, then f(w) = k represents the number of edits that were combined to

generate the edit on the column above. For example, at the onset of the

algorithm, the cardinality of each unit vector is 1 and the number of

edits that "generated" the original edits is 1. If two different columns

are combined while processing the first row, the cardinality of the new

weight is 2 and so forth. When two columns are combined in the course

of processing the rth row, the number z of zero coefficients created in

the first r rows of the new edit is counted and compared to k. Only if

z> k - 1, is the new edit retained. Note that the row containing the

coefficients b 1 (see 1.1 a) 1 above) is combined as it is used in the

calculation of the new edits. It is, however, not used in the calculation

of z as we are only interested in eliminating variables.

Secondly, the lower submatrix represents the last constraint in the

system (2.0) above and is therefore used in Chernikova's algorithm in

restricting the number of possible combinations that generate the

"extremal" weights and therefore the number of "representative" implied

edits.

On the other hand, the upper matrix could be viewed as an augmented

matrix in which all systems of type (2.0) are embedded and so it imposes

no restrictions on the combinations of columns generating the implied

edits (see [2 J).

- 19 -

In summary, the purpose of this algorithm is to generate, edits applicable

to subsets of variables, by linearly combining a minimum number of

edits. The coefficients of these linear combinations (weights) are

positive. The implied edits are stored in the upper submatrix of the

matrix used in Chernikova's algorithm.

2.2 Error Localization

2.2.1 	The problem

As mentioned in 2.0., the purpose of error localization is to identify, for

each record, the minimum number of fields which should be modified so

that the corrected record passes the original set of edits. Records with

missing values also fall into this category, as the missing fields could be

given a negative value, say -1, to ensure that the record will not pass

1.1b) of the original system.

Let x represent the n values of the n fields of a record (missing values

have been set equal to -1). Since we do not know which field is correct,

every field is corrected and the modified record must now satisfy the

system (1.1). More precisely, let y = (y1, ..., y,,) be the vector of

positive corrections andz = ..., z,), the vector of negative

corrections, each with non-negative components. We can look at a

vector of corrections C as a vector having 2n components, C = 01,
., y r,; z 19 ... z r). The corrected record is x + Y - z. The reason

for using positive and negative corrections is that we want to place

ourselves in the context of chapter 1 which requires that all variables be

positive; yet for some fields of the record the reported values are too

large and a negative correction is required.

Example I Consider the record x = (x 1 , x 2). Assume that x 	 is

correct and that the value of x has to be decreased by 2 units. Then

C 1 = (1, 0; 3, 0) will provide the necessary corrections as x, + I -

=I -2. On the other hand, so does C 2 = (0, 0; 2, 0). There are,

therefore, infinitely many correction vectors that can be successfully

used.

- 20 -

Definition 2.1 A vector of corrections c = (y19 ..., y; z 11 ..., z,)

is in reduced form if y i z 1 = 0, for all i=1, ... n. In other words, for

each coordinate i, either y1 = 0 or z = 0. This is equivalent to the

complementary condition of [181, <y, z> = 0 where < > is the scalar

product in R.

For details concerning the complementary condition see [181.

Example 2 In Example 1, C 1 is not in the reduced form, whereas C 2 is.

The requirement that the corrected record passes the edits yields:

A (x + y - z) < b

(2.1) 	x + y - z > 0

I] 0

We also require that the number of actual corrections to the record be a

minimum. If f(x) is the cardinality of x as defined in 1.0, then we wish

f(y-z) to be a minimum.

As noted in example 1, there are infinitely many correction vectors

which provide the same actual correction of the record x. We would like
to consider only vectors in reduced form, that is, which satisfy the
complementary condition introduced in Definition 2.1.

Using (2.1), the problem can now be stated as follows: Find all possible
correction vectors c = (y;z) such that f(y- z)is a minimum, subject to:

A(y - z)< b - Ax

(2.2)
	

I Z]> 0

y,z > = 0

Notice that here x is known and the variables are y and 2. 	We can

therefore restate the problem in R2 , with appropriate matrices A 1 and

b 1 (see 2.2.4):

- 21 -

Find min f(y-z), where (y;z) satisfies:

A1 []
	

b1

(2.3) 	rZ1 > 0
 -

< Y,z ,= 0

The complementary condition is not linear in y and z and so it is not
obvious that the system (2.3) can be solved as a cardinality constrained
linear program. Neither are we dealing with the cardinality of the
vector (y,z) in R 2°. We will show in 2.2.2 that, in the presence of the
complementary condition, we minimize the cardinality of the vector
(y,z) in R 2 . We also show that, solving (2.3) without the
complementary condition leads to solutions which, in fact, satisfy it. As
we shall see, exploiting the properties of the correction vectors which
are in reduced form leads to the design of a more efficient algorithm.

If the original system of edits is consistent, there is always a solution to
the system (2.2). In fact, in most cases, we encounter more than one
solution, even in the presence of the complementary condition. We are
interested in the patterns of corrections.

Example 3 Let c 1 be a vector of corrections in R 2 such that y1 	0,
z 2 	0 and all other coordinates are equal to zero. Consider another
vector of corrections C 2 , with y3 	0, z 4 	0 and all other coordinates
zero. These two vectors have different patterns and the same
cardinality in R 2 , f(c 1) = f(c 2) =2. If the first solution is retained,
we decide to impute the first and the second field; if C 2 is retained, we
impute the third and the fourth. The decision taken at this point will
determine the path that the record will follow from here on in the GETS.

It has to be noted that the actual coordinates of the correction vectors
given by this method are ignored. Using these values would amount to
making the minimum change in the corresponding variables in order for
the record to pass the edits. The records so imputed will then always be
placed on some facet of the polyhedron defining the acceptance region
and that will change the distributions or the data variables in the

- 22 -

imputed dataset. We would therefore like to use more appropriate

imputation techniques.

2.2.2 The complementary condition

Let f denote the cardinality function in R, n=1, 2... . 	To each

vector (y1, ••• y; z 1 , ..., z) in R2 	we associate a "reduced"

vector(y1 - a, ... y, -a r ; z 1 -a1, ••• Zn -a 11) 9 where a 1 = mm
z 1), 1=1, ... n.

Example 4 The reduced vector corresponding to the vector (2, 5; 3, 1) is

(0,4 ; 1,0).

Proposition 1 The cardrn 	 2nality of a vector in R 	exceeds the cardinality

of the associated reduced vector. Equality takes place if and only if the
vector is in reduced form.

To justify this property, we look at Example 4. There f(2, 5 ; 3, 1) = 4

2 = f(O, 4; 1, 0).

Notice also that, if c is in reduced form, then f(c) = f(y - z), where y
- z c R".

Proposition 2 If C satisfies (2.3) without the complementary condition,
then the reduced vector associated to C also satisfies (2.3) and, of

course, the complementary condition. This follows from the form of
(2.2) which is equivalent to (2.3).

From these properties, it follows that it is possible to solve (2.3) as a
cardinality constrained linear program in R2 (see chapter 1). Indeed,
(2.3) is equivalent to solving the problem:

- 23 -

Find min f(y ; z) subject to:

(2.4) 	
A 1 FZ]
	

b

ryl
LzJ

In 2.2.4 we show how to adapt Rubinrs cardinality constrained vertex
generation to solve this problem.

2.2.3 	The cardinality function

In 2.2.1 we considered the problem of correcting a record by altering a
minimum number of fields. The cardinality function used was defined,
for eachx = (x 1 , ... xr,) by f(x) = 2 5(x)

if x. = 0 where (x 1) = 	1 	n.
11 otherwise

This function was applied to the correction vector C = (y1, ..., y ;
..., z) in R2 . There are various types of "cardinality" functions

which could be used, depending on the problem at hand. As long as such
a function possesses the basic properties required in Rubin's cardinality
constrained linear program (see 1.0 of this report, as well as p. 13 of
[181), its minimum, subject to the constraints imposed by a system of
linear inequalities is attained at a vertex. If follows that one can solve
eardinality constrained linear programs as described in 2.2.2 where the
function to be minimized represents a generalized cardinality function.

Examples of generalized cardinality functions can be found on p. 14 of
[18]. In GELS we are concerned with generalized cardinality functions
of the type f(x)

= • w
1 cs(x 1), where w. is a positive coefficient 1=1

(weight) associated with the I th field. If c = (x 1 ,. . . x v,; y1,. . .y,)
is a correction vector, then the same weight w is associated to both
X. and y1 , I < n. Note that f is now applied to a vector C in R2 . The
use of this kind of generalized function in GELS reflects the fact that the
values reported for certain fields are considered more reliable than
others. For various patterns with the same number of fields, the
patterns which require corrections to the least reliably reported fields
are selected for imputation.

- 24 -

It is also possible to solve a eardinality constrained linear program

applying the generalized cardinality function to the reduced vector of

corrections in Rtl, i.e. to y-z. The value of f(y-z) does not exceed

the value of f(c). Equality occurs if and only if C is in reduced form and

the global minimum is attained on such correction vectors. By

Proposition 1, the algorithm as described in Chapter 3 is more efficient

when f(c) is used, as more columns can be purged.

2.2.4 	The solution

As mentioned in the previous sections, we are looking for min f(y ; z)

subject to the constraints imposed by the system (2.4). As explained in

2.2.2 the complementary condition can be removed from the constraints

of (2.3). The matrix A 1 is constructed using the matrix of coefficients A
and b 1 is constructed using b and the uncorrected values of x. 	More

precisely, 	 -

IA 	 IbAx
(2.5) 	A1 =

	 fl 	
In] b1 = [
	j

In (2.5), 1 is the nxn identity matrix. The matrix A 1 has 2n

columns and in + n rows. The column vector b 1 has in + n rows.

Chernikova's algorithm is applied to the system:

'yl
< b1 AlL]

[Y] 0. .

For simplicity, from here on we will use the term "cardinality" for

"generalized cardinality". When the first extremal point is found, the

cardinality of each of the points of the lower matrix of Chernikova's

tableau is calculated (see 1.1) and compared to the cardinality of the

extremal point. All the columns containing points with cardinality

greater than the cardinality of the extremal point are deleted. These

columns will never generate, upon subsequent applications of

Chernikova's algorithm an extremal point of a lower cardinality then the

- 25 -

one just found. The cardinality of the first extremal point becomes thus
the first constraint on the eardinality of all extremal points to be
generated subsequently. This way, the growth of the tableau is curtailed
and all solutions to the problem of finding the extremal point of
minimum cardinality are still produced. Then, the next extremal point is
found, and its cardinality is calculated. Now the minimum of the first
constraint and the new cardinality becomes the new constraint etc. The
process continues until all rows of the upper matrix in Chernikova's
tableau are processed. Upon completion, the lower matrix contains all
extremal points of minimum cardinality.

2.3 Matching fields

As mentioned in 2.0, the concept of matching variables is related to the concept
of a suitable donor. The use of matching variables increases the chance of
finding a suitable donor. If variables that are not matching are used in the
search for a suitable donor for a recipient record or if some of the matching
variables are omitted in this search, the selected donor may not be a suitable
donor and the imputed record may not pass the edits.

It has to be noted that, for quantitative data, one might not find a suitable donor
even if the search is done using the matching variables alone. If the matching
variables of the recipient record and the potential donor coincide, then the
potential donor is a suitable donor.

Consider a recipient record x = (x 1 , ..., x) for which the fields to be
imputed have been appropriately identified. Let us assume that i fields,
o < 1 < n, were identified for imputation by the error localization procedure
described in 2.2. The remaining n - I reported fields are potentially matching
fields. We denote by X the vector whose components are the fields to be
imputed and by x the vector formed with the remaining n - i components. The
values of the components of are the components of a known vector x °. Let
us consider the original system of edits (1.1) with the additional information
about the values of x for the recipient record, that is:

- 26 -

Ax < b

(2.6) 	x >• 0

R 	0 x 	= x

Since x is a concatenation of x' and x R, the system (2.6) has X I as a vector of

unknowns with I coordinates. For this reason we call (2.6) the reduced system

associated with the recipient record x.

The reduced system can be written in the standard form with all known values on

the right hand side and the unknowns on the left hand side. This leads to the

system (2.7):

(2.7a) 	A' x t < b 1

(2.7b) 	X I > 0

The reduced system defines a polyhedron in R' which is embedded in the original

polyhedron defined by the system of edits (1.1) in R T" . In (2.7), the components of

x° are used to calculate the entries of the column matrix b 1 . Each inequality in

(2..7a) represents a "reduced" edit. There are at most m such inequalities

because some of the inequalities of the system (2.6) may have been eliminated

had they contained none of the variables to be imputed. Thus, we consider in

(2.7) only the "active" edits as defined by P. Giles in [11].

It follows from the systems (1.1), (2.6) and (2.7) that a recipient record will pass

the postimputation edits (system (1.1)) if and only if the components imputed

for x t satisfy the system (2.7). Any potential donor (i.e. in the acceptance

region of (1.1)) is therefore a suitable donor (the recipient record passes the

post imputation edits) if its corresponding components satisfy (2.7).

Definition 	The matching variables for the recipient record x are those

components of x that are effectively involved in defining the acceptance region

of the system (2.7).

We show now that, if the distance calculated on the matching variables alone

between a recipient record and a potential donor is zero, then the potential

donor is a suitable donor. Let us write a potential donor as d = (d ; x 0 ; d),

where x is the vector of matching components. Since d is a potential donor and

the components ofx alone determine the acceptance region of the reduced

system (2.7), it follows that d' is in the acceptance region of the reduced
I 	M 	NM system. Then the partially imputed record (d ; x 0 ; x 0) belongs to the

acceptance region of the original system (1.1), so d is, in fact, a suitable donor.

This reasoning breaks down if nonmatching variables are used. A zero distance

between a potential donor d and the recipient, calculated on the nonmatching

variables alone does not guarantee that d 1 satisfies (2.7). In fact, d 1 	could
belong to a larger acceptance region. If all variables x are indiscriminately

used in matching, the nonmatehing variables may prevail in the calculation of

the distance and donors which are not suitable might be chosen.

It may happen that all the components of x are required for matching or none of

them is. Each of these situations (as well as any intermediate situation) is a

consequence of the overall shape and position with respect to the coordinate

axes of the larger polyhedron determined by the original system of edits.

There are various ways of establishing the functional dependency of the

acceptance region of the system (2.7) on (some) of the coordinates of x R. One
way is to "fit" the "reduced" polyhedron into the original, larger polyhedron

deteriined by the system (1.1). Theoretically, this amounts to considering the

systems (1.1) and (2.7) together. Then the coordinates of x ° which prevent a

"perfect fit" are those on which the acceptance region effectively depends.

These coordinates will appear at the vertices of the "fitted" polyhedron. The

main disadvantage of this method if Chernikova's algorithm is used is that there
is a real possibility that the storage space will be exceeded before the algorithm

terminates. The vertices which are not produced could contain matching

variables which do not appear in other vertices and would therefore be lost.

A simpler way, used by NEtS and GElS, consists of deriving the Information

needed for determining the matching variables from the reduced system alone.

The redundant edits should be removed from the (2.7) form of the system. The
coordinates of X which are used in calculating the b's 	in 	the 	remaining
constraints of the reduced system correspond to the matching fields. Notice

that, according to this procedure, a matching field may or may not appear in a

- 28 -

redundant edit but it has to appear in a nonredundant edit belonging to group 2 or

3 below. On the other hand, a nonmatching field appears only in redundant edits

(group 1).

Whatever procedure for removing redundancies is used, one should keep track of

the coordates of x ° involved in the nonredundant edits.

Any hyperplane corresponding to an inequality of the system (2.7), which is

assumed consistent, belongs to only one of the three groups defined below:

The redundant hyperplanes lie entirely outside the acceptance region.

The nonredundant unrestrictive hyperplanes do not lie entirely outside the

acceptance region but their removal would not change this region.

The nonredundant restrictive hyperplanes "tightly" define the acceptance

region. If any such hyperplane is removed, the acceptance region will
change.

It should be noted that equality edits are nonredundant, according to this

classification.

It is clear that the nonredundant hyperplanes contain all the variables which
determine how the reduced polyhedron fits into the original one. It is not clear,

just by examining the reduced system, that the nonreduridant unrestrictive
hyperplanes could be safely deleted without loss of matching variable. For this
reason, we retain all nonredundant hyperplanes (see [121). The disadvantage of
this method is that one may use more variables for matching than are really
necessary.

Example 1: The original system of edits is:

X i < 	0, 	1=1, ... 7.

	

10 5 x 1 - 	< 0

	

- 	x 1 + 	10 5 x 3 < 0

	

-x 4 + 	x 5 + 	x 6 	0

x 2 - 	x 4 + 	x 7 	0

- 29 -

For a particular record, the values of x 2 and x 4 must be imputed. 	Therefore
x 1 =(x 2 , x 4) and xR=(x1,x3,x5,x6,x7). The reported values are: x 1 =200,000,

x 3=10 5 , x 5=0.1, x5=0.2, x 7 =0.5. The components of x 	 are all potentially
matching variables. Upon substitution in the original system, we obtain the
standard form of the reduced system:

Components of x involved:

-x 1 	< 0 	i=2,4 	 none
-x 2 	<-2 	 x 1
-X 2 < -1 	 x 3
-x 4 	< -0.3 	 x 5 , x 6
x 2 - x 4 <-0.5 	 x 7

Just by looking at the system, we can see that the third line above corresponds
to a redundant inequality. Indeed, -x 2 < -2 is a more restrictive inequality than

< -1. Since x 3 only appears in the latter inequality, it follows that x 3 is not
a matching variable. From the last inequality it follows that -x 4 	- 0.5 -
and because x > 0, -x 4 < -0.5. This is a more restrictive inequality than
-x 4 	-0.3, obtained for)c 5 = 0.1, x 6 = 0.2. Since x 5 , x6 only appear in this
inequality, they, too, are not matching. The matching variables in this example
are x 1 and x 7 .

If the system (2.7) is of small dimension (the number i of fields requiring
imputation is small), Chernikova's algorithm could be applied to find the
redundant inequalities in (2.7). As remarked in [4], the redundant rows can be
read off the last matrix used in determining the extremal points of the reduced
system. A row corresponding to an inequality with no zero entries corresponds
to a redundant edit. In Example 1 of 1.1, the second inequality in 1.3 a) is
redundant, as apparent in the tableau Y 3. If only one zero appears on such a row
than the edit defines a hyperplane which contains only one of the vertices
defining the acceptance region (see section 1.1).

As mentioned before, for the purpose of defining the matching variables all
nonredundant edits would be retained. A method for removing redundancies was
described in [13]. It is based on the use of the simplex algorithm. It is this

- 30 -

method that is recommended for use in GElS. The advantage here is that no

assumption needs to be made on the number of fields to be imputed.

3. 	Implementation

3.0 Storage considerations

The main problem encountered in implementing modules which require the use of

Chernikova's algorithm is the extensive use of storage space. The final matrix

which contains the extremal points has a determined number of columns. The

intermediate matrices, however, may have a larger number of columns and the

space required for their storage may exceed the available space. When a row

corresponding to an inequality is processed, as many as p + z + pq columns can

be created in the new tableau, where p, z, q represent the positive, zero,

respectively negative entries on that row. When equalities are processed, the

maximum number of columns of the new tableau is z + pq. The minimum

number of columns, corresponding to an inequality is p + z; to an equality it is z.

Thus, processing some rows may lead to a decrease of the number of columns

from the previous tableau. It follows that a judicious choice of the order of

processing the rows can curtail the growth of the successive tableaux. Ideally, if

the matrix containing the extremal points has more columns than the original

matrix, than the number of columns of the intermediate tableaux should not

exceed the final value. Since the number of columns of the final tableau is not

known in advance, it is difficult to devise a strategy which minimizes the number

of columns of the intermediate tableaux. We adopted a strategy which, at each

step, controls the growth of the newly created tableau. More precisely, the

selection of the row to be processed is done according to the following criterion.

Let ni = z + pq be the maximum number of columns of the newly created matrix

when the row being processed is an equality. This number is, for an

inequality, m = z + p + pq. These values are calculated after each iteration (a

selected row has been processed) for the rows to be processed. Then the

minimum value of m is calculated, over all rows described above. One of the

rows that has a minimum value for iii is then processed. This strategy is used in

some modules that make use of Chernikova's algorithm and it is based on

remarks found in [171 and [18]. Although this strategy does not ensure an

optimum overall order of processing the rows, it has proved quite effective, in

several tests, not only in preventing the intermediate tableaux from exceeding

the available space but also in considerably reducing the execution time.

- 31 -

In spite of the use of the strategy described above, we felt that the possibility of

exceeding the available space still existed. This is true especially of the module

which determines the extremal points (see [81). A strategy was devised which,

when space limitations are about to be exceeded, saves some of the extremal

vectors providing thus a solution, albeit incomplete, to the problem. The

vertices of higher cardinality (or generalized cardinality) are sacrificed. The

user is advised that vertices with cardinality larger than a certain value have not

been produced. The justification for the claim that all vertices of cardinality

smaller than the specified value are produced can be found in the works of Rubin

and G. Sande (see [17], [181). Essentially, we are using the fact that the

cardinality of the generated columns cannot decrease as the algorithm proceeds.

3.1 The extremal points

The input for this module is the matrix of edits as described in step 1 below. As

mentioned in sections 2.0 and 3.0, Chernikova!s algorithm is used to find the
extremal points of the acceptance region associated with the system (1.1). The

output is the set of extremal points (or a subset of it, if space limitations have

been exceeded). It can be read of f the columns of the final matrix (see step 8

below). A complete description of the algorithm can be found in [17] or in the

Appendix. We give here the main steps of the algorithm.

The input file of edits is of the form:

Ax < b

where A is an mxn matrix of coefficients, x is an nxl column of variables and

b is an nixi column of constraints. That is, m is the number of edits and n is

the number of fields which appear in this group of edits. The edits are

assumed to be in the form produced by the module ED-ANAL(1) (see [13]).

A matrix V contains the matrix -A followed by the column matrix b. The

lower matrix contains, at the onset, the identity matrix in R 1 . 	Upon

termination of the algorithm, it will contain the extremal points.

- 32 -

At the onset of the algorithm, an integer value Cmax may be specified. This

represents the maximum cardinality (number of nonzero components) of the

extremal points to be produced by the algorithm. The initial value is

specified by the user. A value greater than or equal to n corresponds to the

case when all extremal points are required. A value for cmax strictly smaller

than n corresponds to the situation when only extremal points of cardinality

smaller than or equal to Cmax could be generated. The value of Cmax can be

updated. This happens if, while processing a row, the required number of

columns of the matrix V being created exceeds the space limitations.

The row of the matrix V are processed, one at a time. The efficiency of the

algorithm increases if the choice of the row to be processed (the pivotal row)

is done according to the following rule:

Consider a particular row and let p represent the number of positive entries,

I I the number of negative entries and z the number of zero entries on that
row. If the row corresponds to an equality edit, define m = z + pq. Other-

wise define m = z + p + pq. The value of in is calculated at the onset of the
algorithm as well as after each iteration, for all rows that need processing.

That is, the value of in is calculated for rows corresponding to inequalities

which contain at least one negative entry and for rows corresponding to

equalities which contain at least one nonzero entry. The minimum value of rn
is calculated over all rows described below. We denote this value by n. The

new pivotal row is selected among the rows for which m = m 0. Notice that,
according to this rule, rows corresponding to equalities tend to be processed

earlier.

At the end of each iteration, all columns for which the last entry is nonzero

are scaled so that this last entry becomes 1. These columns will contain the
extremal points defining the acceptance region associated with the system of
edits (1.1). The components of these vertices can be found on the first n rows

of the lower matrix L used in the algorithm. The last entry on columns
corresponding to vertices is then 1. If C inax < n, the cardinality of every
vector in the lower matrix is calculated. This cardinality is at most equal to
n, since the last entry is not used in counting the number of nonzero
components of the vectors. All columns containing vectors with cardinality

- 33 -

greater than Cmax are deleted. Since the cardinality of the vectors increases

as the algorithm proceeds, these columns cound not produce vertices of

cardinality lower than Cmax•

When processing a row, a new matrix'(is created. If, while creating this

matrix, the number of columns is about to exceed the space limitations, the

value of Cmax is updated for the purpose of purging some of the columns of

the newly created matrix while retaining all columns that may produce

extremal points of cardinality smaller than or equal tomax*This is done as
follows:

The previously created matrix Y is recalled. The cardinality of each of the

vectors with the last coordinate equal to 1 is calculated. The maximum *
cardinality is taken over all such vectors and is denoted 	c . 	Then

Cmax = C - 1. Note that the partially created matrix is not used and that

the algorithm can return to this step repeatedly without creating a new *
matrix. However, since C 	is an integer, the process will terminate

eventually. A message will be printed to the effect that no extrernal points *
of cardinality larger than or equal to C will be produced.

The algorithm terminates unsuccessfully if, at any stage, a row containing

only nonpositive elements is found. In this situation, no solution to the

original system of edits exists, when at least one component of the vector b

is non-zero. When all components of b are zero, then the only solution is the

zero solution. In either case, no extremal point is generated by the algorithm

and a message to that effect is printed. This situation should not occur after

the application of the module ED-ANAL(1).

The algorithm terminates successfully when all the rows have been processed

and the situation described in step 7 above has not occurred. The extremal

points are read off the columns of the final matrix that have the last entry

equal to 1. Even when the algorithm terminates successfully, there may be

no extremal points of the specified cardinality, if cmax < n.

- 34 -

3.2 The implied edits

In this module, the input is the transpose of the matrix of coefficients A 	along

with a submatrix corresponding to equalities in the original system of edits. Part

of Chernikova's algorithm is used in producing the implied edits associated with

the system (1.1). The output is a set of implied edits. A complete description of

the algorithm can be found in [ill. We give here the main steps of the

algorithm.

The input file is of the form:

Ax < b

where A is an mxn matrix of coefficients, x is an nxl column of variables and

b is an mxl column of constants. That is, m is the number of edits and n is the

number of fields which appear in this group of edits. The edits are assumed

to be in the form produced by the module ED-ANAL(1) (see [131). Each row
of the matrix A corresponds to an equality or an inequality and should be

labeled as such. In this module, equalities are treated as double inequalities
and so a submatrix E of A containing all rows that correspond to equalities is

created. Let e be the number of equalities corresponding to the system (1.1).

Notice that O<e<rn.

A matrix Y is created to be used in the algorithm. In this modification of
Chernikova's algorithm, no column is deleted as the algorithm progresses,
unless it corresponds to an existing edit (original or previously accepted as
implied). The upper part of the matrix is formed by adjoining to the
transpose of the matrix A the negative of the identity matrix in R 1' 	followed
by the negative of the transpose of the matrix E. The lower part is formed
with the identity matrix in R 	in the first m + Tn + e rows, followed by a
row containing the coefficients b and then by an indicator row. There are
thus m + n + e columns in the matrix V and 2n + m + e + 2 rows. The second
last row of the matrix V contains the transpose of the vector of coefficients b

followed by a string of n zeroes and then by the negative of the transpose of
b corresponding to equalities in the original system.

- 35 -

Notice that in this set-up the original edits are placed columnwise and the

use of the Chernikova's algorithm amounts to combining edits in which at

least one of the variables has opposite signs. The identity matrix which

appears in the upper part of the matrix Y as well as the string of zeroes in the

lower part represent the "positivity" edits; that is, the edits which require

that all variables be positive. Edits corresponding to equalities are

represented as double inequalities; they are represented in the matrix A once

and then by the matrix E with an opposite sign. The last row contains, at the

onset, indicators for the original edits. A zero entry in this row indicates

that the column above represents an equality edit whereas a nonzero entry

corresponds to an inequalitiy. This holds true throughout the processing of

the matrix V.

At the onset of the algorithm, the user may specify cmax 	the 	maximum
number of new edits that he or she may want to see. The default value for

cmax should be set high enough to ensure that all implied edits are produced.

Chernikova's algorithm is modified so as to produce all implied edits (see

section 1.1 as well as 3.1 for comparison). All rows of the upper matrix are

processed, one at the time and in their natural order. Neither the original

edits nor the accepted new edits are deleted from the matrix V 	as 	the
algorithm proceeds. Therefore the number of columns of the original matrix

V cannot decrease. Also, the entries of the final matrix V 	need 	not 	be
nonegative.

While processing rows, new columns are being created. Not all are, however,

retained. A newly created edit may be accepted only if it effectively

eliminates variables. This is accomplished by comparing the number of zero

coefficients created on the column representing the new edit and the number

of combinations that generated the edit. It is then checked if the created

edit is essentially new.

Edits representing the same equality with opposite signs are unduplicated. At

the end of the algorithm, all original and new edits will have been generated

and they are stored in the final matrix V. If, at any time during processing

the number of columns of the intermediate matrices exceeds the available

- 36 -

space or the value of Cmax is exceeded, the processing stops. A message to

this effect is then printed.

3.3 Error localization

The input consists of the system of linear inequalities 1.1, a record x 	requiring

partial imputation and a vector of weights. A positive and negative correction is

attached to each field of this record. Rubin's cardinality constrained linear

program is applied to an augmented matrix with a generalized eardinality

function (see 2.2.4 and step 2 below) in order to minimize the weighted number

of corrections. The output is the set of all solutions to this problem with unique

patterns (step 8 below). A complete description of the algorithm can be found in

[101. We give here the main steps of the algorithm.

The input file is of the form:

Ax < b

where A is an rnxn matrix of coefficients, x is an nxl column vector of data

and b is an mxl column of constants. That is, m is the number of edits and n is

the number of fields which appear in this group of edits. The edits are

assumed to be in the form used by the module ED-ANAL(1) (see [131).

A matrix is created to be used by the algorithm. At the onset, the top part

of the upper matrix U contains the negative of the matrix of coefficients, - A,

followed by A and then by the column vector b - Ax. The lower part of the

matrix U contains the identity matrix in R followed by its negative and then

by the column vector x. The upper matrix U has then 2n + 1 columns and

m + n rows. The lower part L of the matrix Y contains the identity matrix in

Thus the work matrix Y has iii +3n + 1 rows and 2n + 1 columns at

the onset of the algorithm. The number of columns changes as the algorithm

proceeds. Upon the completion of the algorithm, the lower matrix L contains

the solution to the cardinality constrained linear program. As explained in

2.2.2, all solutions satisfy the complementary condition.

- 37 -

At the onset of the algorithm the value of Cmax may be specified. 	This
represents the maximum generalized cardinality of the extremal points to be

generated by the algorithm. Notice that this value need not be an integer, as

weights could be used in the definition of the generalized cardiriality (see
2.2.3). The value of Cmax could be updated in the course of finding the

extremal points if, in the course of processing one row, the number of

columns exceeded the available space.

The rows of the matrix Y are processed, one at the time, using Chernikova's

algorithm. Although a strategy for curtailing the growth of the matrix is

built in the algorithm for solving a cardinality constrained linear program, it

is still important to render the algorithm as efficient as possible. For that

reason and following suggestions found in [181, the following overall strategy
was adopted for the order of processing the rows:

The rows for which the corresponding entry of the vector b - Ax or x is

negative are processed first. These rows correspond to edits which the

record x has failed (see step 1 for the matrix form of the edits). We call
them failed edits.

Within each group of rows (failed edits, edits corresponding to equalities,

etc.), the strategy for choosing the row to be processed next as described
in step 4 of 3.1 is used.

In order to use the purge of columns built in this algorithm, it is essential

that the algorithm quickly produces an extremal point. When processing

failed edits, due to the form of the matrix Y, the column with a nonzero

last entry is combined with other columns generating more columns with

a nonzero last entry. It is only such columns that eventually contain

extrernal points (see 1.1.2). Rows corresponding to equalities are also

processed early within the group of passed edits (that is edits that are

not failed edits). This is justified by the fact that an equality edit is

more restrictive than an inequality edit and all extremal points are

placed on all the hyperplanes representing equality edits.

- 38 -

5. At the end of each iteration, all columns for which the last entry is nonzero

are scaled so that this entry becomes 1. These columns will contain the
patterns of corrections which are solutions to the eardinality constrained

linear program. They are stored in the lower submatrix of the matrix Y as

vectors of corrections (y;z;1), where y stores the n components of positive

corrections and z represents the n components of the negative correction.

The generalized cardinality of each vector y - z is calculated, for each

column of Y. Notice that this generalized cardinality is applied to a vector in
R and that the last entry is not used in calculating it. It is then checked if

an extrernal point has been generated. An extremal point corresponds to a
vector of corrections for which the last entry is 1 and all entries on the

corresponding column are nonegative. Furthermore, there should be zero
entries on the rows corresponding to equality edits. If no extremal point is

found, all columns with generalized cardinality larger than cmax are deleted.

At the onset of the algorithm, c is assigned a "large" value (e.g.min
Cmi i, = Cmax)• If an extremal point is found, the value of C 	is calculated. min
The minimum of all generalized cardinalities associated to extremal vectors
is found. Then the minimum of this value and Cmax is calculated and that

defines the new value of Cmi ,,• All columns with cardinality strictly larger

than Cm.it, are deleted. Columns with cardinality equal to C are treated asmin
follows:

If they do not correspond to extremal vectors, they are retained. This is
so because their corresponding columns may eventually contain extremal

points of minimum cardinality.

If they correspond to extremal points, they are retained only if they

represent a pattern that has not been retained so far.

6. A new matrix A is created each time a row is processed. If, while creating
this matrix, the number of columns is about to exceed the space limitations,

the value of Cmax is updated for the purpose of purging some of the columns
of the newly created matrix while retaining all columns that may produce
extremal points of generalized cardinality smaller than or equal to Cmax.
This is done as follows: The previously created matrix is recalled. The
maximum generalized cardinality is calculated over all columns and is

MVZ

denoted c. All columns with generalized eardinality equal to C are deleted.
Then Cmax = c -eps, where eps is sufficiently small, i.e. less than the

smallest weight specified. A message is printed to the effect that only

solutions with generalized cardinality less than will be found. Note that

the partly created matrix is not used and that the algorithm can return to

this step repeatedly without creating a new matrix. However, since c can

only take a finite number of values, the process will eventually end.

7. The algorithm terminates unsuccessfully if, at any stage, a row containing

only negative entries is found. No solution exists or the only possible solution

is the zero solution. In either case, the likely cause of termination can be

traced to the original system of edits.

S. The algorithm terminates successfully if all rows have been processed and

step 7 above has not been taken. The solutions are read off the columns of

the final matrix which have the last entry equal to 1. Each solution

represents a unique pattern of possible corrections, all requiring a minimum

change in the record x in the sense given by the generalized cardinality.

Each pattern indicates which fields should be corrected. These fields are

represented by nonzero entries in the lower part of the matrix V correspond-

ing to the solution. Recall that the very last entry does not represent a field;

it is used, in fact, to identify the solutions. It has to be pointed out that,

even when the algorithm terminates successfully, there may be no solution

provided to the user. This happens when, due to space limitations, step 6
above is taken.

- 40 -

Appendix

Chernikova's algorithm as described by Rubin in [171.

The algorithm is as follows:

0.0 If any row of U has all components negative, then w = 0 is the only point in C.

0.1 If all the elements of U are nonnegative, then the columns of L are the edges of C, i.e.

the ray (2.) = 	= xz, x > 01 is an edge of C; here I denotes the jth c,olumn of L.

1. Choose the first row of U, say row r, with at least one negative element.

2. Let R = { JlYrj > 0}. Let V = I Ri, i.e., the number of elements of R. Then the first

v columns of the new matrix, Y are all the y for jER, where y denotes the jth column

of Y.

2' If Y has only two columns and y r1'r2 <;adjoin the column lyr2 ly l + 	r12 to the

matrix. Go to step 4.

3. LetS = { (s, t)IYrsYrt < 0, s zt}, i.e., the set of all (unordered) pairs of

columns of V whose elements in row r have opposite signs. Let 10 be the index set of

all nonnegative rows of V. For each (s, t)cS, find all iI 0 such that Y iS =Yi t = 0.
Call this set 1 1 (s,t). We now use some of the elements of S to create additional

columns for 7:
If I(s t) 	(the empty set), then y and y do not contribute another column to

the new matrix.

If 1 1 (s, t) = p, check to see if there is a U not equal to either S or t such that y iU
= 0 for all i EI 1 (S, t). If such a u exists, then y and y t do not contribute

another column to the new matrix. If no such U exists, then choose c, 2 > 0 to

satisfy alyrs + 2'rs = 0. (One such choice is a, = 	rt ' i 	'rs'
Adjoin the column a ly s + 2t to the new matrix.

4. When all pairs in S have been examined, and the additional columns (if any) have been

added, we say that row r has been "processed". Now let Y denote the matrix Y

produced in processing row r and return to step 0.0.

- 41 -

References

Burger, E.: Uber homogene lineare Ungleichungssysteme. Z. angew. Math. Mech. 36,
135-159 (1956).

Chernikova, N.V.: Algorithm for finding a general formula for the non-negative
solutions of a system of linear equations. USSR Computational Mathematics and
Mathematical Physics, 4, 151-158 (1964).

Chernikova, N.V.: Algorithm for finding a general formula for the non-negative
solutions of a system of linear inequalities. USSR Computational Mathematics
and Mathematical Physics 5, 228-233 (1965).

Dixon, D.: Memoranda to N. Cox. ISDD, Statistics Canada, 1987.

Estevao, V.: Donor imputation specifications. RGS, Statistics Canada, September
1988.

Fellegi, I.P. and Holt, D.: A systematic approach to edit and imputation. Journal of
the American Statistical Association 71, 17-35 (1976).

Galperin, A.M.: 	The general solution of a finite system of linear inequalities.
Mathematics of Operations Research 1, 185-196 (1976).

GElS: Specifications for extremal points generation, Module ED-ANAL(2), BSMD,
Statistics Canada, December 1987.

GElS: Specifications for donor imputation. BSMD, Statistics Canada, March 1988.

GElS: Specifications for error localization, Module ERROR_LOC(1). BSMD, Statistics
Canada, updated April 1988.

GElS: 	Specifications for implied edits, Module ED-ANAL(3). 	BSMD, Statistics
Canada, updated April 1988.

GElS: Specifications for matching fields, Module MATCH_FIELDS. BSMD, Statistics
Canada, May 1988.

Giles, P.: Module specifications - GElS, Module ED_ANAL(1). BSMD, Statistics
Canada, January 1987.

Giles, P: Module specifications - GElS, Module [MPUTE(1). BSMD, Statistics Canada,
January 1987.

Giles, P.: Analysis of edits in a generalized edit and imputation system. Statistics
Canada technical report, Draft, November 1988.

Giles, P.: A model for generalized edit and imputation of survey data. Can. J.
Statist., to appear.

Rubin, D.S.: 	Vertex generation and cardinality constrained linear programs.
Operations Research 23, 555-565 (1975).

Sande, G.: An algorithm for the fields to impute problems of numerical and coded
data. Statistics Canada technical report, 1978.

Sande, G.: Numerical edit and imputation. Proceedings of the 42nd Session of the
International Statistical Institute, Manila, Phillipines, 1979.

slstcs C It D 	BP

BIBUOTHEQUE Sl AiTUE

1010180924

