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RESUME 

Le jumetage d'enregistrements est une inéthode d'appariement exacte. On peut 
appliquer la niéthode lorsqu'il n'est pas possible d'thdentifier uniquement 
l'entité associée a chaque enregistrernent dans un ou plusleurs fichiers. 
L'ensemble de paires d'enregistrements est foriné de concordances (paires dont 
les éléments représentent la méme entité) et de non-concordances (paires dont 
les éléments représentent des entités différentes). Le modèle de Fellegi et 
Sunter (1969) est souvent utilisé dans les applications. Ce modèle permet de 
classifier chaque paire d'enregistrements comme étant lien (concordance designee), 
non-lien ou cas indéterminé (paire pour laquelle on reporte une decision). Pour 
effectuer la classification, on utilise les poids. Le poid de concordance associé 
a un champ est une fonction de la probabilitd de concordance du champ pour les 
paires concordantes et de la probabilité de concordance du champ pour les paires 
non-concordantes. 	En appliquant le modèle de Fellegi et Sunter, on pose 
habituellement l'hypothese d'indépendance des champs. 	Etant donnée cette 
hypothèse, on peut considerer plusieurs estimateurs des probabilites de 
concordance. On peut calculer les estimations des taux d'erreur de classification 
a partir des estimations des probabilitds. On examine les propriétés des 
estimations des probabilités et des estimations correspondantes des taux d'erreur 
de classification obtenues en utilisant diverses methodes. On considère 
1 i rr.pc:'rtance de 1 ' hvpotbese d independance 

1. INTRODUCTION 

Microdata files containing information about individuals, businesses or dwellings 
are used in many statistical applications. Exact matching of microdata records 
that refer to the same entity is often required. In some cases the existence 
of a unique identifier renders such a matching operation trivial. Record linkage 
is a technique for exact matching of microdata records when a unique identifier 
is not available. Typically, each microdata record includes a number of data 
fields containing identifying information. Each of these fields may contain 
errors. Positive identification of the entity associated with a particular 
microdata record is generally not possible without considering all identifying 
data fields. 

Applications of record linkage include the unduplication of lists of dwellings 
or businesses obtained from various sources to create survey frames. The 
unduplication of dwelling address lists to obtain a single list intended for use 
as a census coverage improvement tool is described in Drew, Armstrong and Dibbs 
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(1987). 	Record linkage is widely used in applications related to health and 
epidemiology. Work in this area typically involves matching records containing 
information on individuals in industrial or occupational cohorts to records 
documenting the illness or death of individuals. For example, record linkage 
methodology for follow-up studies of persons exposed to radiation is discussed 
in Fair, Newcombe and Lalonde (1988). Fair and Lalonde (1988) examine the extent 
to which the presence or absence of various identifiers effects the accuracy of 
record linkage done as part of follow-up studies. 

Without loss of generality, the record linkage problem can be formulated using 
two data files. The file A contains NA records and the file B contains N e  
records. These two files are samples taken from the same population or different 
populations that contain some common entities. 

The starting point for record linkage is the set of record pairs formed as the 
cross-product of A and B, denoted by C-((a.b)IacA,b€B). The objective of 
record linkage is to partition the set C into two disjoint sets - - the set of 
true matches, denoted by M, and the set of true non-matches, U. 

7h 	ian of the papeo is as follows. 	In the second section, some details are 
provided concerning the mathematical model that is the basis of most applications. 
In section three, some methods of estimating the parameters of the model are 
described. The methods considered include an approach that is often used in 
practice, as well as alternatives that have a stronger theoretical basis. The 
results of some simulations, intended to provide some evidence concerning the 
possibility of improving current practice, are discussed in the fourth section. 
Section five contains some concluding remarks. 

2. FELLEGI - SUNTER MODEL 

This section contains a summary of aspects of the theory foc record linkage 
developed by Fellegi and Sunter (1969) that are relevant far subsequent discussion 
of weight estimators and their evaluation. Subsection 2.1 includes some 
information related to the definition of outcomes of comparisons of data fields. 
Subsection 2.2 contains a description of the optimality criterion that is the 
basis of the theory as well as a method of estimating classification error rates. 
An independence assumption that is a key component of most applications is noted 
in subsection 2.3. 

2.1 Comparisons and Outcomes 

In order to obtain information related to the classification of a record pair 
in the set C as a member of the set of true matches, H, or the set of true 
non-matches, U, data fields containing identifying information are compared. 
For example, in an application involving personal identifiers separate comparisons 
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of family names, given names, and dates of birth might be performed. Three types 
of outcomes from such comparisons can be distinguished. These are: (i) agreement 
and disagreement; (ii) partial agreement; and (iii) value-specific agreement. 
Agreement and disagreement outcomes must always be used. These outcomes are 
sometimes supplemented by partial agreement and value-specific agreement in 
applications. 

The use of partial agreement outcomes makes it possible to distinguish between 
cases in which the values of a data field for a record pair are similar, although 
not identical, and cases in which they are completely different. It is plausible 
to suppose that two records with family names "JOHNSTON" and "JOHNSTONE" are 
more likely to refer to the same individual than two records with family names 
"JOHNSTON" and "SMITH". If partial agreement outcomes are used in addition to 
agreement and disagreement, this idea can be incorporated in a record linkage 
application. For example, comparison of family names in an application might 
involve the following outcomes. The names are declared to agree if they match 
exactly. If they do not match exactly but they have the same NYSIIS representation, 
there are declared to partially agree. (NYSIIS is a phonetic encoding scheme 
designed to militate against the effects of common spelling errors.) If the 
NYSIIS representations of the names differ, they are declared to disagree. 
Multiple levels of partial agreement can be employed. For pairs of family names 
that are both longer than five characters, for example, the first level of partial 
agreement could be defined as agreement on the first five characters and the 
second level could be defined as agreement on the first three characters. 

when value-specific agreement outcomes are employed, agreement of a data field 
for two records on a relatively rare value can be considered to provide more 
evidence that the record pair is a true match than agreement on a more common 
value. For example, agreement of two records on family name "XHIGNESSE" can be 
considered to provide more evidence that the records refer to the same entity 
than agreement on family name "SMITH". Value-specific partial agreement outcomes 
can also be employed for some definitions of partial agreement. 

During the discussion of the Fellegi-Sunter model for record linkage in this 
section, it will be assumed that only agreement and disagreement outcomes are 
employed. For a situation involving K matching fields, we introduce the generic 
outcome vector x-(r l ,x Z , ... x k ). and the outcome vector for record pair 
j, j- 1.2 ..... N, denoted by We have xLl if record pair j agrees 
on data field k and xO if record pair j disagrees on data field k. 

Two types of classification error are associated with record linkage. 	In 
particular, practitioners might be concerned about the number of true non-matches 
incorrectly classified as matches and the number of true matches incorrectly 
classified as non-matches. Fellegi and Sunter pointed out that, in order to 
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control both these types of classification error at predetermined levels, it is 
necessary to employ a record linkage rule involving partition of the set C into 
three components, denoted here by A. C and Q. 

Record pairs in the set A3 are classified as matches and those in the set U are 
classified as non-matches. The link status of record pairs in the set Q cannot 
be determined using the record linkage rule. In order to ensure that classification 
errors are controlled at pre-deterinined levels, a manual procedure must be used 
to determine the true match status of record pairs in Q without error. 

Fellegi and Sunter suggested that an optimal record linkage rule is a rule that 
minimizes the size of Q and consequently the cost of a record linkage operation. 
The main result of their paper states that the best record linkage rule involves 
use of the ratio 

- P(x' I M)/P(x' IU), 	 (1) 

where P(x' I  M) is the probability that comparisons for a record pair will produce 
outcome vector r 1 , given that the record pair is a true match, and P(x'IU) is 
the probability of x 1 . given that the record pair is a true non-match. The weight 
associated with record pair j is 

w 1 - 101og 2 (R'). 	 (2) 

The problem of estimating w' is equivalent to that of estimating P(x'JM) and 
P(x U). 

The best record linkage rule involves classifying records pairs in .*i, C and Q 
according to 

JEM if 	w'>t, 

j€Q if t 2 <w'<t 1 , 	 ( 3) 

JEC if 	W 1 <t 2 , 

using appropriate values for the thresholds t and T2. For record pairs with 
weights equal to one of these thresholds, a random decision is necessary to 
ensure that classification errors are controlled exactly at the specified levels. 

Estimates 	of t I and 	can be 	calculated using estimates of 
P(x'IM), P(x 1 1(J), j-1.2,..N, as follows. There are 2  possible values of the 
outcome vectorx. To estimate -t 1  andt 2 , these vectors canbe arranged in descending 
order according to the weights associated with them. Let x" denote the I' 
outcome vector in this ordering and let denote the corresponding weight. 
Suppose that classification errors for true non-matches and true matches must 
be controlled at levels and X, respectively, and that the pair of error levels 
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(. k) is admissible, using the terminology of Fellegi and Sunter, (A pair of 
error levels is admissible provided that they are not both too large. More 
details are given at the end of subsection 2.2.) LetL 1  and L 2  denote, respectively, 

the smallest value of L for which P(x"IU) 2ti.t and the smallest value of L for 

which P(x"IM):5 X. Estimates of T 1 and r 2  are given, respectively, by wU)  and 

(A) (L
2 ) 

The random decision needed for record pairs with weights r 1  or t 2  can also be 
specified. Record pairs with weight 'v 1  are classified in Q with probability P.  
and those with weight t2 are classified in C with probability P s,, where 

P(x"IU) 

I u) 
	 (4) 

2' 

P(xM) 
P - 	

I M) 

Otherwise, record pairs with weights equal to one of the thresholds are classified 
in Q. 

Fellegi and Sunter note that a record linkage rule that controls rates of 
classification errors for true matches and true non-matches at levels .x  and 
can be constructed if L I  < L 2  or L 1 -L 2  and P+P!51. In this case the pair of 
error levels (1i,X) is admissible. If (ii. ?) is inadmissible, a record linkage 
rule with lower error rates that does not require classification of record pairs 
in Q can be constructed. 

Weight estimation requires estimation of P(xIM) and P(xJU) for each of the 2 '  

possible values of x. In order to reduce the number of parameters that must be 
estimated in applied work, it is typically assumed that the outcomes of comparisons 
for different data fields are independent. That is, is it assumed that 

P(xIM)= flP(xIM). 	 (5) 
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P(xlU) - flP(xIU). 

If independence is assumed, the number of parameters that must be estimated is 
reduced to 2 K. For reasonably large numbers of matching fields, this reduction 
can be substantial. 

3. ESTIMATION METHODS 

In this section, five methods of estimating weights for the Fellegi-Sunter model 
that have been described in the literature are reviewed. The methods examined 
include two methods suggested by Fellegi and Sunter (1969), a method of moments 
related to method II of Fellegi and Sunter, maximum likelihood using the EM 
algorithm (Jaro 1989) and an iterative approach advocated by Newcombe (1988). 
The review of Fellegi-Sunter method I in subsection 3.1 involves discussion of 
estimation of weights for value-specific agreement outcomes, as well as agreement 
and disagreement outcomes. Discussion of the other methods, in subsections 3.2 
through 3.4, is restricted to estimation of agreement and disagreement weights. 

Comments concerning estimation of value-specific agreement weights using all 
methods except Fellegi-Sunter method I are found in subsection 3.5. This 
subsection also includes discussion of estimation of weights for partial agreement 
outcomes. It is assumed that data fields for which weight estimates are required 
are never missing. Missing values can be incorporated without fundamental changes 
in any of the weight estimation methods. 

It is important to note that all the estimation methods considered here involve 
use of the independence assumption, (5). Given independence, new notation can 
be introduced. In particular, we denote the probabilities of agreement among 
record pairs that are true matches and true non-matches, respectively, by 

m,-P(x-1IM), k1,2,...K, 

u-P(x-1IU), k-1.2....K. 

and the corresponding K-vectors by in. U, 

3.1 Fellegi-Sunter Method I 

The weight estimation method described in this subsection is due to Fellegi and 
Sunter (1969). Suppose that there are J. different true values for data field 
k for entities represented on files A and B. Denote the frequencies of these 
true values for entities represented on file A by h Ak ,.h Akz..... h AkJ. Similarly, 

denote the frequencies for entities represented on file B by h,,,ha k 2 ..... 



Suppose that the set of true matches, M, contains NM record pairs and denote 
the frequencies of true values for the corresponding entities by 	..... 

It is important to note that these are frequencies for true values. In most 
applications the data on files A and B contain errors and these frequencies are 
unknown. 

Further, denote the rates of errors in information for data field k on files A 
and B by e, and e, respectively, and the probability of a change in the true 
value of the data field k by e r,. (In practice, a change in the true value of 
data field k is possible if files A and B refer to different time points.) The 
probability that a record pair will agree for data field k on the J  value in 
the list of the Jk possible true values is given by 

P(xk-1,resuU.jkIM)=(h k,/N N ) . ( l - Ak ) . ( l - .k ).(1-e Tk ) 

	

(hid/NM) (1 - A* e a*  elk) 	 (6) 

for record pairs that are true matches and by 

P(x = 1 .result = I I U) - (( hA*, h,,,  hk,)/(NA N 1 )) (1 eAk)' (1 	(1 -) 

''hAki, /N A ) (h.k , , / N $ ) . (1 - Ak 	- Tk) 	 (7) .  

for record pairs that are true non-matches. The approximations are reasonable 
if e. e ak  and e T ,, are small and, in the case of (7), hAk) h aki , is large relative 

to h kf ,. 

In order to apply these formulas to estimate agreement and disagreement weights, 
some assumptions about the way in which errors are introduced in files A and B 
are necessary. In particular, if it is assumed that the probability is zero 
that both records in a pair that is a member of M will have erroneous but identical 
information for data field k, we have 

m k (l eAkeBkTk). 	 (8) 

If one assumes that an erroneous value for data field k on file A, for example, 
will not appear on file B one can obtain 

Jr. 
u k  (1 - e jk  - e., - e) 	(h AkI /N A )' (h a& ,/N a ). 	 (9) 

A similar assumption concerning the uniqueness of each value of data field k on 
file A that differ from the file B value for the same entity due to a true change 
is also required. 



In applied work, it is often the case that all of the quantities involved in 
these formulas are unknown. If no information other than the data in files A 
and B is available, direct estimation of rn and u is simpler than separate 
estimation of the quantities involved in the formulas above. The four methods 
of weight estimation considered in sections 3.2 through 3.4 involve direct 
estimation of rn and u. The Fellegi-Sunter method I is not examined in the 
simulation experiments reported in section 4. In applications in which, for 
example, estimates of e lk  and e Bk  based on information not found on files A and 
B are available, use of (8) and (9) might be preferred to other weight estimation 
methods. 

If we denote by p the probability that a record pair chosen at random is a true 
match, the probability density function for the outcome vector x is 

f(x)-pP(xIM)+(1 -p)P(xIU) 	 (10) 

where 

K 
- 

P(xIM)- 	
(l x 

 flm"( 1- m) 
k-I 

P(x I  U) = FT a;'. (1- 
k. 

This density function is a mixture of distributions involving 2 K + 1 unknown 
parameters, namely (rn,u,p). The first term consists of the probability that a 
record pair is a true match multiplied by the probability of a particular vector 
of outcomes among record pairs that are true matches. The second term, referring 
to true non-matches, is analogous. 

Fellegi-Sunter method II is based on solution of a method of moments equation 
system. In general, the method requires definition of an outcome vector of 
length three, say z. Each component of x is associated with a component of this 
modified outcome vector. "Agreement" and "disagreement" for each component of 
z is defined as a combination of one or more outcome configurations for the 
associated components of x. For example, in the case K -4, the first two components 
of x might be associated with the first component of z. "Agreement" for the 
first component of z might be defined as agreement on at least one of the first 
two components of x. Let (n,it,p)denote the unknown parameters of the distribution 
of z which is a mixture analogous to (10). Estimates of these parameters can 
be obtained by equating estimates of seven functionally independent moments of 
z, obtained using data on files A and B, to expressions for the moment; in terms 
of the parameters. The equation system given by Fellegi and Sunter is 
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E(lJzk) - P . N .  fl n+(1-p)N  ff, 1-1,2.3. 
øI 

E(z 1 )-pNn+(1-p)Ni, 1-1,2.3. 	 (11) 

E(JJ z) - p N• fJ n +(j - p) N•  1 !T P. 

If 	k-1.2,3. and some mild conditions on the relative sizes of sample 

moments (details in Fellegi and Sunter) are satisfied, the solution of this 
equation system exists and can be obtained analytically. 

The probability of each configuration of x involved in "agreement" or 
"disagreement" for each of the components of z can also be estimated for true 
matches and true non-matches. Suppose that "agreement" for the first component 
of z includes L 1  configurations of agreement and disagreement involving two or 
more components of x. Further, suppose that z is one if the L  configuration 
occurs and is otherwise zero. Consistent estimates of P(z- 1 IM) and P(z= 1 IU) 
can be obtained using the equations 

(12) 

A similar approach can be used for configurations associated with other components 
of Z. Note that Fellegi-Sunter method II involves the assumption that the 
components of z are independent but does not require independence among the 
components of x. If K is large, many ways of associating components of x and z 
and defining "agreement" and "disagreement" for components of z are available. 

For K > 3 it is also possible, of course, to obtain estimates of (rn.up)by solving 
a general version of (11) based on independence of the components of x and 
incorporating 2 K + 1 equations. A closed form solution is not available but 
standard numerical methods can be employed. Subsequently, this approach will 
be called the method of moments. The method of moments and Fellegi-Sunter method 
II are equivalent when K-3. 

Some general comments concerning the use of the method of moments for small 
samples, based on the general discussion of the use of method of moments estimators 
for parameters of mixtures in Titterington, Smith and Makov (1985) are appropriate. 
These comments apply in situations in which the independence assumption is true. 
First, for K>3 it is possible that the solution to the equation system may not 
be a feasible solution (all probabilities may not lie in the interval [0, 1] ). 
Second, there may be more than one solution to the equation system for K>3. 
Consequently, the solution obtained using an iterative numerical method may be 
sensitive to starting values. (It should be noted that sensitivity to starting 
values can occur even when the solution is unique if, from a numerical point of 
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view, it is not clearly defined.) Finally, weight estimates obtained using the 
method of moments approach may have higher sampling variances than estimates 
obtained using alternative methods when files A and B are small. The final 
comment also applies to method II, as Fellegi and Sunter point out. Information 
related to the importance of these comments for the method of moments is provided 
in section 4. 

3.3 Maximum Likelihood 

Maximum likelihood using the EM algorithm is a method for estimating the parameters 
of mixtures that has been applied in many contexts. (Refer to Titterington, 
Smith and Makov (1985).) Work on use of maximum likelihood to estimate weights 
for record linkage has been done by Winkler (1988) and Jaro (1989). In order 
to use maximum likelihood it is necessary to introduce vectors of dummy variables 
z d, j-1.2,...N. where 

z'-(l.0) if JEM, 

z'-(O,l) if JEU. 

These dummy variables are unknown and are considered as missing data during 
estimation of the parameters (rn.u.p). Denote by X the N x K matrix with row j 
given by x' and by Z the N x 2 matrix with row j given by z'. The complete data 
log-likelihood is 

1(X,Z Irn.u.p)- 	z'(1n(P(x IM).P(x' IL'))' 	(13) 

+z'•(InpIn(1 - p)) 

Application of the EM algorithm involves starting with initial parameter estimates 
(ri.ii.p). At the E or expectation step of the algorithm, z )  is replaced by 

), where 

- P(x' I  M)/(P(x'  I  M)+ P(x' I  U)). 	 (14) 

- P(x' I  U)/(P(x'  I M)+ P(x' U)), 

and P(x'IM) and P(x'IU) are calculated using iand i. respectively. 

At the M or maximization step, parameter estimates that maximize the 
log-likelihood, conditional on the Z Y , are calculated. This maximization problem 
has a closed form solution. In particular, denote the 2 possible outcome vectors 
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by x 1 . 	1,2,..2,  and the corresponding values of if andtj by 	and ,_ ,,2...2. 
In iddicion, if one denotes the frequency of r' for record pairs in the set C 
(the set of all record pairs) by g(x'), we have 

 

The expression for 0, is similar. The probability that a record pair chosen at 
random is a true match is estimated by 

2 

 

More details are given in Jaro (1989). 

If the independence assumption, (5), is satisfied then maximum likelihood estimates 
obtained using the EM algorithm are statistically consistent. In large samples, 
maximum likelihood estimates are equivalent to those obtained by Fellegi-Sunter 
method II and the method of moments. For small samples, use of the EM algorithm 
could have certain advantages. In particular, the form of the equations used 
during iteration ensures that the algorithm will not converge to an infeasible 
solution. In addition, Titterington, Smith and Makov note that maximum likelihood 
estimates of the parameters of mixture distributions often have smaller variances 
than estimates obtained using a method of moments approach. On the other hand, 
the EM algorithm may be sensitive to starting values. Information concerning 
these issues will be provided in section 4. 

3.4 Iterative Method 

The iterative method was developed by record linkage practitioners. Its use is 
described by several authors, including Newcombe (1988). Statistics Canada's 
record linkage software, CANLINK, is set up to facilitate use of the iterative 
method. Initial guesses for the agreement probabilities for record pairs that 
are true matches, m, k- 1.2....K, are required. These starting values are 
typically obtained from previous related linkage studies. In order to estimate 
probabilities of agreement for various data items among record pairs that are 
true non-matches, it is assumed that these probabilities are equal to the 
probabilities of agreement among record pairs chosen at random, namely that, 

u k P(x k 1), k-1,2,..,K. 	 (17) 

Suppose that 1k  values appear on file A and/or file B for data field k. Denote 

the frequencies of these values on file A by qAk,.q2.•••qA*,,  and denote the file 

B frequencies by q8k, , qgk2.•qgftJ,•. 
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The estimate of u corresponding to (17) is 

(18) 

Given these probability estimates, initial sets of matches and non-matches, 
denoted by M °  and U °  respectively, are obtained using a decision rule 

JEM °  if w>t, 

j€U °  if w'<t. 

Next, frequency counts among record pairs in the sets M °  and U°  are used as new 
estimates of In k ,u k . k-1,2,.,K. These estimates are used to obtain new sets of 

matches and non-matches and the iterative process is continued until consecutive 
estimates of agreement probabilities are sufficiently close. 

In most applications, the assumption that the probability of agreement among 
record pairs that are true non-matches is equal to the probability of agreement 
among all record pairs is a good one and iteration does not lead to any important 
changes in the estimates of u, k- 1.2,...K. However, the first iteration often 
produces large changes in the estimates of m. k- 1,2,...K. Typically, there are 
no substantial changes at the second iteration. 

The properties of the iterative method depend on the choice of the initial 
thresholds t. -t. In practice, these thresholds are determined subjectively, 
incorporating information from similar linkage projects. The simulations reported 
in the next section provide information about the effects of various initial 
thresholds. 

Use of value-specific and partial agreement outcomes is an important part of 
some applications. Consequently, some comments concerning weight estimation for 
these outcomes are appropriate. Given auxiliary information about the 
probabilities of errors on files used in record linkage, Fellegi-Sunter method 
I can be used directly for the estimation of frequency weights. Formulas for 
estimation of weights for partial agreement outcomes using the approach of 
Fellegi-Sunter method I can be developed. For example, Eagen and Hill (1987) 
provide a formula for the case in which character strings are compared and partial 
agreement is defined as agreement on the first k characters. However, the fact 
that such formulas include a number of parameters that are usually unknown in 
practice militates against use of Fellegi-Sunter method I. 
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The iterative method allows for estimation of weights for partial and 
value-specific agreement using an initial definition for the set of true matches. 
The iterative approach is employed by users of record linkage methodology in the 
Canadian Center for Health Information at Statistics Canada to obtain weight 
estimates for partial agreement. Starting values for partial agreement weights 
are determined based on experiences in similar record linkage projects. When 
initial sets of matches and non-matches have been defined, frequencies of record 
pairs that do not agree exactly but agree partially are used to produce new 
estimates of probabilities of partial agreement among true matches and true 
non-matches. 

The value-specific weight for agreement of a record pair on the j  value in the 
list of the i 1  possible true values for data field k is 

(19) 

To estimate this weight in practice, the iterative approach is not used. Instead, 
recalling the notation of subsection 3.1 and assuming that file A is the larger 
of the two data files, P(x,,-l.result-j,JM) is approximated by mq4J, /N, and 

P(x k  - I. result - j IU) by P(x - 1 ,result - Jt). In addition, it is assumed that 

P(x k  - 1, result - j) - P(x - 1) 	 (20) 

where the adjustment factor F(j)  can be defined using frequencies of true values 
for data field k as 

F(j) - h,- h 8 ,,/ 	(h )  h 9j ). 	 (21) 
j-I 

In practice these true values are unknown and the adjustment factor is estimated 
by 

i i'  

(22) 

It should be noted that this approach to estimation of value-specific agreement 
weights for data field k can be employed using any method to obtain an estimate 
of m. Winkler (1989b) describes another approach that requires estimates of rn 
and u but does not depend on the method used to obtain these estimates. 

Generalization of weight estimation by maximum likelihood, Fellegi-Sunter method 
II or the method of moments to accommodate partial agreement outcomes is 
straightforward. In the case of one level of partial agreement for each matching 
field, the probability density function for the outcome data is 
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I 

f(x,)-pP(xIM)+(1-p)P(x,IU) 	(23) 

where 

K 

P(x,yIM)- JJmr 7 , 
(1-m&-11&) 

k-I 

K 

P(x, y I  U) - I I u 	Uk (1 - Uk - Uk) . 
k-I 

y is one if there is partial agreement and is otherwise zero, ii and u are 
probabilities of partial agreement among record pairs that are true matches and 
true non-matches respectively, and x, rn, u and p are defined as in (10). Using 
Fellegi-Sunter method II, estimates of probabilities of outcome configurations 
involving partial agreement can be obtained by appropriate definition of 
"agreement" and "disagreement" outcomes for the components of z. Definition of 
"disagreement" to include partial agreement and use of equations analogous to 
(12) to obtain estimates of partial agreement probabilities given method of 
moments estimates of agreement and "disagreement" probabilities is possible for 
K>3. The parameters of (23) can also be estimated using the EN algorithm. As 
Ju (1990) indicates, the expectation step of the algorithm has the same form as 
(14). (Probabilities for outcome vector x' are replaced by probabilities for 
the pair of outcome vectors x1. y),)  The solution to the maximization step has 
a closed form. 

In the simulations described in the next section, attention is restricted to 
estimation of weights for agreement and disagreement. Although the properties 
of weight estimates for partial and value-specific agreement obtained using 
various methods are of interest, estimation of these weights does not, in 
principle, pose a problem for any method. 

4. SIMUlATIONS 

In this section, the results of some simulation experiments involving three 
weight estimation methods - maximum likelihood using the EM algorithm, the method 
of moments and the iterative method - are presented. The objectives of the 
simulations and the simulation strategy is described in subsection 4.1. Results 
obtained when the independence asssumption, (5), is true are described in 
subsection 4.2. In subsection 4.3, simulations conducted using data sets that 
do not satisfy the independence assumption are discussed. The extent to which 
the independence assumption is violated can be varied by adjusting a parameter 
involved in data generation. In the fourth subsection, results obtained using 
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data sets with departures from independence based on those found in data used 
in record linkage applications in the Canadian Center for Health Information at 
Statistics Canada are presented. 

The simulations reported here were conducted in order to obtain information about 
the feasibility of improving current record linkage practice at Statistics Canada. 
Currently, the iterative method is used to estimate weights. In order to estimate 
thresholds required to control classification error rates at given levels, the 
true link status of a sample of record pairs is usually determined. Recall that, 
in the context of the Fellegi-Sunter model, threshold estimates can be calculated 
based on estimates of the probabilities rn, u, as described in section 2. Compared 
to use of Fellegi-Sunter threshold estimates, estimation of thresholds based on 
the true match status of a sample of record pairs is costly and difficult to 
implement properly for large applications. Consequently, the main objective of 
the simulations was to examine the properties of Fellegi-Sunter threshold 
estimates. Estimated rates of classification error corresponding to 
Fellegi-Sunter thresholds were compared to actual classification error rates for 
each weight estimation method. 

Given thresholds required to control classification error rates for true 
non-matches and true matches at specified levels, the match status of record 
pairs classified in the set Q (refer to (3)) must be determined manually. 
Subsequently, Q(.i, ))wil1 be used to denote the manual resolution set corresponding 
to classification error rates for true non-matches and true matches of i and X, 
respectively. The actual size of Q(.) based on (unknown) true thresholds, as 
well as the estimated size based on estimated thresholds, were examined for each 
weight estimation method. The actual size of Q(t.) provides some indication 
of how well true matches and true non-matches are separated. Comparison of 
actual and estimated sizes of Q(i.L.X)  provides evidence about the accuracy of 
classification error rate estimates. 

A number of issues related to the performance of various estimation methods were 
mentioned in section 2. In particular, the following questions can be posed: 

how do the estimation methods perform when the independence assumption, 
(5), is false? 
are the method of moments and/or maximum likelihood sensitive to 
starting values? 
does the method of moments often produce infeasible estimates? 
how do small sample properties of the method of moments and maximum 
likelihood estimates of in, u compare? 
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The discussion in subsections 4.3 and 4.4 is focused on issue (i). The other 
three questions are of less practical interest and the relevant information from 
the simulations will be summarized now. No evidence was found that the method 
of moments or maximum likelihood using EM were sensitive to starting values for 
the data sets involved in these simulations. In addition, there were no cases 
in which the method of moments produced infeasible estimates. The simulations 
reported here each involved 50,000 record pairs. No evidence to prefer the 
method of moments or the EM algorithm for data sets of this size was found. 
Given that both methods produce statistically consistent estimates and most 
applications involve considerably more than 50,000 record pairs, the methods 
appear to be equivalent with respect to (ii), (iii) and (iv) from a practical 
point of view. 

Synthetic data records containing four personal identifiers (family name, initial, 
given name, date of birth) were used in all simulations. The generation of 
synthetic records has the advantage that it is possible to control the extent 
to which the independence assumption, (5), is satisfied. Marginal distributions 
of identifiers were taken from the Canadian Mortality Database for 1988. Each 
record on this database documents an individual death and it is frequently used 
in Canadian record linkage applications related to health. Generation of each 
synthetic record involved selection of family name, initial, given name and date 
of birth from the appropriate marginal distribution. Only the 100 most common 
non-francophone family names and the 100 most common francophone family names 
were used. In addition, only the 50 most common francophone given names and the 
50 most common non-francophone given names were employed. 

Initially, the files A and B involved in each Monte Carlo trial for a particular 
set of simulation conditions were identical. Each record on file A was a true 
match with exactly one file B record. In order to create a situation requiring 
use of record linkage, changes were introduced in file B records. The changes 
were introduced independently for each identifier in data sets for which the 
independence assumption, (5), was true. For data sets used in subsections 4.3 
and 4.4, dependent changes were introduced. This data generation procedure 
creates violations of the independence assumption for record pairs that are true 
matches, but not for record pairs that are true non-matches. Dependence among 
true matches is a more important practical problem than dependence among true 
non-matches simply because sets of record pairs selected at random are dominated 
by non-matches. Consequently, testing for independence using record pairs chosen 
at random is effectively equivalent, in practice, to testing for independence 
among true non-matches. 

Each set of simulation results reported in subsequent subsections is based on 
50 Monte Carlo trials. Each trial involved generation of files A and B of size 
500 using the appropriate scheme to introduce errors, estimation of in and u, 
estimation of thresholds corresponding to various classification error rates and 
calculation of actual error rates corresponding to these thresholds. Note that 
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the set C containing all record pairs includes 249,500 true non-matches for each 
Monte Carlo trial. In order to reduce computing costs, only 49,500 true non-matches 
were used during estimation. 

The properties of the iterative method depend on the definitions of the initial 
sets of matches and non-matches, M °  and U ° . Recall that, given initial 
probabilities, record pairs are classified according to 

j€M °  if w'>t?, 

jEU °  if w'<T. 

When the iterative method was implemented for the simulations reported here, t 
was set equal to t?. For each Monte Carlo trial, TO was determined such that 

P(j €U I  w' > t?)+ - P(j EU 1W' - i?) - LI ° , 

for some y€[O. 1], where P(S) is based on the initial iterative estimates of u 
obtained using (17). Record pairs with weight t were classified in M °  with 
probability '. The initial set of matches used by the iterative method was 
consequently defined such that the corresponding estimated false match rate was 

Starting values for m. k- I.2,...X were set to 0.9. The importance of these 
starting values for the properties of the iterative method was not examined. 

Note that classification error rates for true non-matches are defined relative 
to the total number of non-matches in section 2. From a practitioner's point 
of view, it is more natural to think about these rates relative to the number 
of record pairs classified as matches by a record linkage procedure. For the 
simulation conditions, a classification error rate for true non-matches of 0.0002 
corresponds to an error rate of approximately 0.02 relative to the number of 
record pairs classified as matches. 

4.2 Independence Assumption True 

To generate data sets used in the simulations reported in this subsection, file 
B identifiers were changed independently at a rate of 8%. When an identifier 
was changed, it was re-selected from the corresponding marginal distribution. 
It was assumed that the probability that a re-selected identifier would correspond 
to the original identifier was zero. 

Results for classification error rates for the method of moments and maximum 
likelihood using EN are given in Tables 1 and 2. The results for these two 
methods are similar and, since the independence assumption is satisfied, it is 
not surprising that the biases in estimated classification error rates are small 
relative to their Monte Carlo standard errors. 

S 
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Results for classification error rates for the iterative method for three different 
values of g o  are given in Tables 3, 4 and 5. The value of 0.0025 for g o . for 
example, indicates that according to the initial iterative estimates of u obtained 
using (18), the initial set of matches contained 125 records that were true 
non-matches (since there are approximately 50,000 records in U). The results 
in the tables indicate that estimated classification error rates produced using 
the iterative method are biased. The biases for true non-matches are small 
relative to estimated error rates for all values of i. ° • Although some of the 
biases for true non-matches are greater than two times their Monte Carlo standard 
errors, biases and standard errors are of the same order of magnitude. Biases 
in classification error rates for true matches are larger, relative to both 
estimated error rates and Monte Carlo standard errors. The sizes of these biases 
depend on the definition of the initial set of matches. The smallest biases are 
obtained for 0025 

The three different values of i °  for which iterative method results are reported 
here were chosen arbitrarily. It is plausible to suggest that, for very small 
values of °, the set M °  would contain few record pairs that do not agree on all 
identifiers. Consequently, the estimates of probabilities of agreement among 
true matches used at the second iteration of the iterative method would overestimate 
the true probabilities and there would be a tendency to underestimate the number 
the number of true matches classified as non-matches. Conversely, one would 
expect a tendency to overestimate the number of true matches classified as 
non-matches for large values of i.t °  The biases in classification error rates for 
true matches in Tables 3, 4 and 5 are consistent with these suggestions. 

Information concerning actual and estimated sizes of Q(0.0001. 0.01) is given in 
Table 6. The pair of error rates (0.0001. 0.01) was feasible in all Monte Carlo 
trials. The results in Table 6 provide no evidence that weight estimation method 
has any importance for the actual size of the manual resolution set. Actual and 
estimated sizes are close for the method of moments, maximum likelihood and the 
iterative method with t ° 0.0025. There are large differences between actual and 
estimated sizes for the iterative method with ii ° 0.0003125 and the iterative 
method with i.m ° =0.005. These results are consistent with the observed biases in 
classification error rate estimates. 

4.3 Parametric Dependence 

To generate data for the simulations reported in this subsection, independent 
errors in identifiers were introduced for a fraction, 8. of records in file B at 
a rate of (.08)/6. Using this data generation procedure, we have P(.v' I I4t()0.08 
for k 1.2....K. In addition, outcomes of comparisons of different data fields 
for record pairs that are true matches are not independent. In particular, we 
have 

P(x k o I lx 	I)-P(x k  o 1)/6. ,ksk. 

Jhenb = 1 the independence assumption (15) is satisfied; violation of the assumption 
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hc-comes more extreme as o decreases. The smal.lest admissible value is 5-0.08. 

As noted for the simulations reported in subsection 4.1, the results obtained 
using the method of moments and maximum likelihood were similar. Only method 
of moments results are reported here. Information about estimated classification 
error rates for the method of moments is found in Table 7 for 6 - 0.667 and Table 
8 for 5-0.5. There are important biases in classification error rates for true 
matches for both values of 5. and the biases are larger for 6-0.5. Biases in 
classification error rates for true non-matches are small. 

Results obtained with the iterative method for data sets generated using 5-0.5 
are given in Tables 9, 10 and 11. These results illustrate two points. First, 
the biases in classification error rate estimates obtained using the iterative 
method depend on the definition of the initial set of matches. Second, these 
biases can be smaller or larger than those for the method of moments. Biases 
in classification error rates for true matches using the iterative method with 
i ° =0.0003125 are larger than those obtained using the method of moments. Using 
other values, particularly I.L ° 0.005, the iterative method produces smaller biases 
than the method of moments. 

Note that p 0 =0.0025. the value that produced the best estimates of classification 
error rates for data sets in which the independence assumption is true (section 
4.2), is not the best choice here. Biases for R ° = 0.005 are close to zero. For 
larger values of 11 ° . one would expect biases to be larger and positive. (See 
Tables 3, 4 and 5 and related discussion in section 4.2.) 

Actual sizes of Q(0.0001. 0.01) did not provide statistically significant evidence 
that any of the three estimation methods separated true matches and true non-matches 
more effectively than the others. Differences between actual and estimated sizes 
of Q(0.0001. 0.01) were consistent with results for biases in estimated 
classification error rates. Detailed results concerning Q(0.0001. 0.01) are not 
reported here. 

4.4 Dependence Based on Real Data 

In the data used for the simulations described in this subsection, dependence 
in the set of true matches followed the pattern found in 27,794 true matches 
obtained from various record linkage projects conducted by the Canadian Center 
for Health Information at Statistics Canada. Most of these projects involved 
matching a cohort file to the Canadian Mortality Database. The match status of 
each record pair had been manually verified during the linkage operation. The 
frequency of each outcome vector among these true matches is shown in Table 12. 
Given the large amount of data, one would expect to detect any lack of independence. 
Nevertheless, the \2  value corresponding to a test of the independence hypothesis 
is 6240 on only 3 degrees of freedom, indicating major departures from independence. 
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To generate data, identical A and B files were created using the marginal 
distributions of four identifiers from the Canadian Mortality Database. For 
each file B record, an outcome vector was drawn from the distribution given in 
Table 12. Identifiers corresponding to zeros in this outcome vector were 
re-selected using the appropriate marginal distribution. It was assumed that 
the probability that a re-selected identifier would correspond to the original 
identifier was zero. 

Information about classification error rates obtained using the method of moments 
is given in Table 13. (Maximum likelihood results were very similar.) Although 
the biases in estimated classification error rates for true non-matches are 
small, there are important biases in estimated rates for true matches. Results 
for the iterative method are given in Tables 14, 15 and 16 for 
t0=0 0003125 ,0.0025. and 0.005, respectively. These results are qualitatively 
similar to those for parametric dependence in the set of true matches. Biases 
in estimated classification error rates for true non-matches using the iterative 
method with p0=0.0003125  are larger than those obtained using the method of 
moments. However, biases for ° =0.0025 and i 0 =0.005 are smaller than those for 
the method of moments. Biases in classification error rates for both true matches 
and true non-matches are particularly small for i.00.005. 

5. CONCLUSIONS 

In this paper, methods of estimating weights required for record linkage using 
the Fellegi-Sunter model were reviewed. The Fellegi-Sunter model allows for the 
estimation of classification error rates based on weight estimates. These 
classification error rate estimates are not currently used by record linkage 
practitioners at Statistics Canada. Since their use would reduce the costs of 
record linkage applications, the properties of estimates obtained using different 
weight estimators are of interest. The results of some simulations conducted 
to examine these properties are reported. 

The simulation results indicate that two weight estimation methods, the method 
of moments and maximum likelihood, produce results that are equivalent for 
practical purposes. (The method of moments is equivalent to Fellegi-Sunter 
method II when there are three matching fields and only agreement and disagreement 
outcomes are employed.) When the independence assumption involved in the 
Fellegi-Sunter model is true, these methods yield better estimates of 
classification error rates than the iterative method, the approach currently 
used in practice. Biases in classification error rate estimates obtained using 
the iterative method depend on the definition of an initial set of matches. Some 
definitions of the initial set of matches lead to small biases - - others produce 
estimates with large biases. There is no evidence that weight estimation method 
has an effect on the size of the manual resolution region corresponding to given 
classification error rates. 
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The independence assumption is often violated in applied work. The simulation 
results indicate that, when the independence assumption is false, classification 
error rate estimates obtained using the method of moments or maximum likelihood 
are biased. Biases in estimates obtained using the iterative method can be 
smaller than those from the method of moments for certain definitions of the 
inital set of matches. However, inappropriate definitions of the initial set 
of matches produce estimates with large biases. As one would expect, the 
definition of the initial set of matches that yields the best estimates of 
classification error rates depends on the data. The definition that produced 
the best estimates for data sets in which the independence assumption was false 
differed from the definition that produced the best estimates when the independence 
assumption was true. 

Superficially, the simulation results presented here provide some evidence to 
support the use of the iterative method to estimate weights in practice. When 
the independence assumption is false, classification error rate estimates obtained 
using the iterative method to estimate weights often include smaller biases than 
error rate estimates obtained using other weight estimators. However, the biases 
are large enough to strongly militate against use of the estimates in practice. 
In addition, the performance of the iterative method is irregular, since it 
depends on the definition of an initial set of true matches. The simulation 
results indicate that the best definition of the initial set of matches for a 
particular application depends on the data. A mathematical solution to the 
problem of determining the best definition is not available. Consequently, use 
of classification error rate estimates obtained from the iterative method would 
require calibration using a sample of record pairs for which true match status 
is known. 

Rather than attempting to calibrate the iterative method, other methods of dealing 
with dependence can be considered. For example, Winkler (1989b) describes the 
use of a sample of record pairs for which true match status is known to improve 
weight estimates when the independence assumption used during estimation is 
false. Alternatively, a calibration sample could be used to identify a mixture 
model incorporating departures from independence that could be estimated using 
the full data set. Fellegi-Sunter method II does not require independence between 
outcomes of comparisons for all matching fields. Instead, it is assumed that 
it is possible to define "agreement" and "disagreement" such that outcomes for 
three composite matching fields are independent. The approach of combining 
matching fields and assuming independence only between outcomes for composite 
fields can also be used when weights are estimated by maximium likelihood or the 
method of moments. 
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Table 1: Classification Error Rates. Method of Moments 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	 of Bias 

0.0002 -0.000004 0.000012 0.02 -0.0013 0.0010 

0.0004 -0.000022 0.000015 0.04 0.0004 0.0013 

0.0006 -0.000024 0.000019 0.06 0.0009 0.0013 

0.0008 	1  -0.000019 0.000022 0.08 1 	0.0010  1 	0.0013 

0.001 	1 -0.000015 0.000024 0.10 1 	0.0011 1 	0.0013 

Table 2: Classification Error Rates, Maximum Likelihood 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	 of Bias 

0.0002 -0.000006 0.000012 0.02 -0.0012 0.0009 

0.0004 -0.000026 0.000016 0.04 0.0005 0.0012 

0.0006 -0.000031 0.000019 0.06 0.0010 0.0013 

0.0008 -0.000025 0.000023 1 	0.08 0.0011 0.0013 

0.001 -0.000016 	1  0.000025 	11  0.10 0.0012 0.0013 

Table 3: Classification Error Rates. Iterative Method 

IL °  = 0.0003125 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	 of Bias 

0.0002 -0.000009 0.000012 0.02 -0.0087 0.0012 

0.0004 -0.000034 0.000016 0.04 -0.0108 0.0011 
0.0006 -0.000054 0.000021 0.06 -0.0133 0.0011 

0.0008 -0,000065 1 	0.000025 	11  0.08 1 	-0.0161  1 	0.0011 

0.001 -0.000075 1 	0.000026 0.10 -0.0196 0.0011 
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Table 4: ClassificatLon Error Rates, Iterative Method 
p. °  0.0025 

True Non-matches 	True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	of Bias 	Rate 	of Bias 

0.0002 -0.000024 0.000013 	0.02 0.0006 0.0008 

0.0004 -0.000031 0.000016 	0.04 0.0081 0.0010 

0.0006 -0.000044 0.000020 	0.06 0.0076 0.0012 

0.0008 -0.000053 0.000023 	0.08 0.0051 0.0013 

0.001 -0.000067 	1  0.000025 	0.10 0.0045 0.0013 

Table 5: Classification Error Rates. Iterative Method 
0.005 

True Non-matches 	True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	of Bias 	Rate 	of Bias 

0.0002 -0.000021 0.000013 0.02 0.0079 0.0007 
0.0004 -0.000036 0.000016 0.04 0.0081 0.0008 
0.0006 -0.000071 0.000019 0.06 0.0174 0.0010 

0.0008 -0.000087 	1  0.000022 	11  0.08 1 	0.0283 0.0013 
0.001 -0.000078 	1 0.000025 0.10 0.0330 0.0014 

Table 6: Size of 0(0.0001, 0.01 

Method 	Actual 	Estimated 	Difference 
Mean 	Std. Error 	Mean 	Std. Error 	Mean 	Std. Error 

Method of 
Moments 

Maximum 
Likelihood 

Iterative Method 
11 0  = 0.0003125 

Iterative Method 
IA °  = 0.0025 

Iterative Method 
P O  = 0.005 

97.07 6.87 91.46 4.07 5.61 7.04 

95.95 6.84 90.74 4.28 5.21 7.03 

93.15 6.98 53.44 2.60 39.72 6.91 

96.11 7.02 99.69 3.81 -3.58 6.84 

94.28 6.84 159.9 3.73 -65.62 6.32 
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Table 7: Classification Error Rates. Method of Moments, 
Parametric Dependence. 6-0,667 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 0.000006 0.000010 0.02 -0.0170 0.0015 

0.0004 -0.000005 0.000014 0.04 -0.0188 0.0015 

0.0006 -0.000006 0.000018 0.06 -0.0182 0.0015 

0.0008 -0.000000 0.000020 0.08 -0.0176 0.0015 

0.001 0.000004 0.000022 0.10 -0.0172 0.0015 

True Non-matches 
	

True Matches 

Estimated 	Bias 	Std. Error 	Estimated 
	

Bias 	Std. Error 

Rate 	 of Bias 	Rate 
	

of Bias 

0.0002 0.000001 0.000011 0.02 -0.0387 0.0018 

0,0004 -0.000006 0.000015 0.04 -0.0390 0.0016 

0.0006 -0.000012 0.000018 0.06 -0.0380 0.0017 

0.0008 -0.000009 1 	0.000021 0.08 -0.0370 0.0017 

0.001 -0.000000 1 	0.000024 0.10 -0.0363 0.0016 
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Table 9: C1assifiction Error Rates, Iterative Method. Parametric Dependence, 
l 0 _0 0003125 6-0.5 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	 of Bias 

0.0002 -0.000009 0.000012 0.02 -0.0438 0.0016 
0.0004 -0.000035 0.000015 0.04 -0.0446 0.0016 

0.0006 -0.000060 0.000019 0.06 -0.0453 0.0016 

0.0008 -0.000075 0.000023 0.08 -0.0471 0.0016 

~tL0.001 	-0.000 0.000026 0.10 -0.0489 0.0015 

Table 10: Classification Error Rates, Iterative Method. Parametric Dependence, 
14 0 _0 0025 6-0.5 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 -0.000019 0.000012 0.02 -0.0213 0.0013 

0.0004 -0.000031 0.000014 0.04 -0.0241 0.0015 

0.0006 -0.000051 0.000018 0.06 -0.0244 0.0016 

0.0008 -0.000068 0.000022 	11  0.08 1 	-0.0224 0.0016 

0.001 -0.000086 0.000026 1 	0.10 1 	-0.0178 0.0014 

Table 11: Classifiatjon Error Rates. Iterative Method, Parametric Dependence, 
it ° 0,005 6-0.5 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 -0.000017 0.000011 0.02 -0.0069 0.0011 
0.0004 -0.000032 0.000015 0.04 -0.0053 0.0010 

0.0006 -0.000064 0.000019 0.06 -0.0010 0.0015 

0.0008 1 	-0.000081 0.000023 0.08 1 	0.0032 0.0014 

0.001 -0.000085 0.000026 0.10 1 	0.0074 0.0014 
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Outcome by Identifier 	Frequency 
Disagreement-O, Agreement-i 

Given Initial Family 	Birth 	Count 	Percentage 
Name 	Name 	Year 

O 0 0 0 7 0.03 

O 0 0 1 33 0.12 

0 0 1 0 125 0.45 

O 0 1 1 985 3.54 

O 1 0 0 1 	5 0.02 

O 1 0 1 39 0.14 

O 1 1 0 202 0.73 

O 1 1 1 1848 6.65 

1 0 0 0 1 	 0 0.0 

1 0 0 1 13 0.05 

1 0 1 0 50 0.18 

1 0 1 1 381 1.37 

1 1 0 0 44 0.16 

1 1 0 1 451 1.62 

1 1 1 0 1751 1 	6.30 

1 1 	1 1 1 21860 1 	78.65 

Table 13: Classification Error Rates. Method of Moments, 
Dependence Based on Real Data 

True Non-matches 
	True Matches 

Estimated 	Bias 	Std. Error 	Estimated 
	

Bias 	Std. Error 
Rate 	of Bias 	Rate 	of Bias 

0.0002 0.000009 0.000008 0.02 -0.0378 0.0013 

0.0004 0.000016 0.000010 0.04 -0.0372 0.0013 

0.0006 0,000026 0.000013 0.06 -0.0365 0.0013 

0.0008 0.000035 0.000016 0.08 -0.0359 0.0014 

0.001 0.000045 0.000020 	11 0.10 -0.0349 0.0014 
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Table 14: Classification Error Rates. Iterative Method, 

Dependence eased on Real Data, I 0 =0.0003125 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 -0.000008 0.000008 0.02 -0.0962 0.0042 

0.0004 -0.000008 0.000013 0.04 1 -0.0973 0.0040 

0.0006 -0.000026 0.000015 0.06 -0.0952 0.0039 

0.0008 -0.000055 0.000017 0.08 -0.0922 0.0036 

0.001 -0.000086 0.000021 1 	0.10 -0.0904 0.0035 

Table 15: Classification Error Rates. Iterative Method, 

Dependence Based on Real Data, i 0 =0.0025 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 -0.000009 0.000010 0.02 -0.0042 0.0014 

0.0004 -0.000010 0.000016 0.04 -0.0221 0.0011 

0.0006 -0.000013 0.000019 0.06 -0.0258 0.0011 

0.0008 -0.000023 1 	0.000021 	11  0.08 	1  -0.0291  1 	0.0012 

0.001 -0.000036 	1  0.000023 	11 0.10 	1 -0.0285 1 	0.0013 

Table 16: Classification Error Rates, Iterative Method, 

Dependence Based on Real Data. it ° 0.005 

True Non-matches 	 True Matches 

Estimated 	Bias 	Std. Error 	Estimated 	Bias 	Std. Error 
Rate 	 of Bias 	Rate 	of Bias 

0.0002 -0.000007 0.000010 0.02 0.0051 0.0008 

0.0004 -0.000000 0.000016 0.04 0.0041 0.0018 

0.0006 -0.000000 0.000019 0.06 -0.0060 0.0014 

0.0008 -0.000000 0.000022 0.08 -0.0066 0.0017 

0.001 -0.000001 1 	0.000026 0.10 -0.0025 0.0020 
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