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Abstract 

Statistical matching is a technique for combining 
information from two microdata sets that does not 
require the presence of unique identifiers. Validity of 
results obtained using statistical matching depends on 
assumptions about relationships between variables that 
are unique to each input file. Univariate and bivariate 
distributions on files created by statistical matching may 
be subject to additional distortions. Performances of a 
number of statistical matching methods are examined 
using synthetic data as well as a inicroeconomic data file 
created by exact matching of information from the 
Survey of Consumer Finance and Revenue Canada's tax 
file. Statistical matching results are compared to those 
obtained using imputation methods that require a small 
microdata set containing information about all variables. 

Résumé 

L'appariement statistique eat une méthode utilisée 
af In de combiner de l'information provenant de deux bases 
de micro-données. La qualité des résultats de 
I'appariement statistique depend des hypotheses 
concernant les rapports entre des variables provenant d'un 
seul fichier d'entrée. L'utilisation de l'appariement 
statistique peut causer d'autres deformations dans les 
distributions univariées et bivariées des variables. On 
examine la performance de plusieurs méthodes 
d'appariement statistique utilisant des données 
synthétiques ainsi qu'un fichier de micro-données 
économiques obtenu selon un appariement exact de 
l'information de l'Enquête sur lea finances des 
consommateurs et des dossiers d'impót de Revenu Canada. 
On compare les résultats de l'appariement statistique et 
ceux des méthodes d'imputation qui requièrent une petite 
base de micro-données renfermant de l'information pour 
toutes les variables. 



1. Introduction 

The Social Policy Simulation Database (SPSD) is a microdata base constructed using 

survey and administrative data from a variety of sources and intended for use in economic 

policy analysis. Construction of the database, described in Wolfson et. al. (1987), involves 

combination of information about individuals from a variety of sources. The basis of the 

SPSD is microdata from the Survey of Consumer Finance (SCF). During construction of the 

SPSD, information from the Family Expenditure Survey (FAMEX) and files containing 

unemployment insurance histories is added to the SCF microdata. In addition, certain 

income items are replaced, for high income earners, by information obtained from the 

Revenue Canada file of taxfiler data. The Revenue Canada file is also used to add various 

deductions, exemptions and tax credits needed to calculate income tax liability. 

The operations used in SPSD construction to combine information from various sources 

are all examples of the problem of file merging. A general formulation of this problem 

involves three sets of variables (X, V and Z) and two data files (A and B). File A contains 
values of X and V for each individual in a subset of the population P and file B contains 

values of X and Z for each individual in another subset of P. The objective is to create a 

merged file C, containing values of X, V and Z for each individual represented on the file A. 

The file merging problem can be addressed using exact matching if the X 	variables 
contain sufficient information to positively identify individuals and information for each 

individual on file A is also available on file B. Exact matching was not used during SPSD 

construction for a number of reasons. Information sufficient to identify individuals was not 

always available and in most cases there was no information on file B about many individuals 

represented on file A. In addition, exact matching was considered undesirable for 

confidentiality reasons. In situations in which exact matching is undesirable or not feasible, 

the general problem of completing file A records with Z values can be addresed by selecting, 

for each record on file A, Z values from a file B record that is close to the file A record, 

based on values of the X variables. This approach is called statistical matching. All the 

processes in SPSD construction involving the addition of information from other sources to 

SCF microdata used statistical matching. A report by the U.S. Department of Commerce 

(1980) includes a review of both exact matching and statistical matching methods. 
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There is an obvious relationship between statistical matching and imputation. 
Consider the file created by combining records from A and B. This file contains (X,Y,*) 

records from file A and (X,*Z)  records from file B. (The symbol * denotes missing 

information.) The problem of imputing Z values to complete (X,Y,*)  records in this 

combined file is the problem of statistical matching. 

In this paper we will use the term imputation to refer to methods that can be used 
when an additional file, 0, containing values of V and Z for a subset of individuals in P, is 
available. Two general classes of imputation methods can be distinguished - procedures 
that are appropriate when file D contains information about X, V and Z; and those than can 
be used when file D contains information on V and Z only. Thus far, information about 
joint distributions of V and Z variables has not been available during the SPSD construction 
process. A file recently created by Alter (1988) by exact matching of information from the 
SCF and the Revenue Canada tax file could be employed as a file D in the context of SPSD 
construction operations involving the combination of Revenue Canada information with SCF 
microdata. In addition, the possibility of administering both the SCF and the FAMEX to a 
common sample, creating a file that could be used during the combination of FAMEX and 

SCF information, remains open. 

In this paper, the results of an evaluation of a number of statistical matching and 
imputation strategies are presented. The purpose of this evaluation is to compare the 
statistical matching procedures currently used in construction of the SPSD to other 
approaches to statistical matching, as well as to provide some evidence concerning the 
advantages of imputation methods compared to statistical matching. Empirical results 
obtained using synthetic data, as well as results from use of data from the SCF/Revenue 
Canada exact match file, are reported here. 

The comparisons of statistical matching and imputation techniques were designed to 
yield some evidence about the benefits of the availability of files containing information 
about the joint distribution of V and Z. The comparisons reported in this paper could be used 
as input to decision processes concerning, for example, the creation of a more recent 
version of the SCF/Revenue Canada exact match file or the administration of both the SCF 

and the FAMEX to a common sample. 
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The plan of the paper is as follows. In section 2, literature related to a variety of 

statistical matching methods is reviewed. The third section contains a discussion of 

imputation methods that can be used when a file D is available. The fourth section includes 

results of an evaluation study involving simulations using synthetic data as well as 

information from the SCF/Revenue Canada exact match file. Conclusions are found in 
section 5. 

2. Statistical Matching 

2.1 Background 

The first reference to statistical matching that appears in the literature is Okner 

(1972). The author describes an approach to the combination of information from two 
different sources involving the use of "equivalence classes". Classes are defined using 
ranges of similar X values and the (X,Z) record from file B needed to complete a particular 

(X,Y) record on file A is selected by minimizing the value of a "closeness" score defined 
using X values, respecting class boundaries. 

Okner's approach was criticized by Sims (1972) on two grounds. First, it involves the 
implicit assumption that Y and Z are independent conditional on X. When the joint 

distribution of (X,Y,Z) is multivariate normal, this conditional independence assumption 
implies that the correlation between V and Z, conditional on X, is zero. Second, if the 

conditional distribution of Z given X in file B depends on X within "equivalence classes" 

Okner's approach can produce distortions in the joint distribution of (X,Z) in file C (the file 

created by matching). Sims points out two types of distortions. First, the conditional 

variance of Z given X in file C will be biased upwards. Second, in cases in which the density 
of (X,Z) records in file B varies systematically with X, the mean of the Z distribution in file 
B will also tend to be biased. 

In general, information on a file created by statistical matching may be subject to 
three types of distortion with potential impact on the analytical uses of the data. These 

are: (i) distortion in the marginal distributions of Z variables; (ii) distortion in the joint 

distribution of (X,Z) (equivalent to distortion in the conditional distribution f(Z1X)); and 

(iii) distortion in the joint distribution of (X,Y,Z) (equivalent to distortion in the conditional 
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distribution f(Y,Z I X)). In this context, distortion is measured relative to distributions 
involving the true (unknown) values of Z for file A records. When the records on files A and 
B are independent samples from a common distribution, distortions in marginal distributions 

of Z variables on file C can arise simply because particular records on file B may match with 
more than one file A record. Distortion in the conditional distribution f(Z I X) on file C can 
be created, as Sims pointed out, when the conditional distribution f(Z IX) depends on X 

within equivalence classes. Violations of the conditional independence assumption lead to 

the third type of distortion. 

In the context of SPSD, distortions in the marginal distributions of Z variables on 
file C are of obvious importance. In analytical work involving the analysis of income and 
expenditure data, measurement of univariate dispersion and characterization of the extreme 
portions of univariate distributions is important. Distortions in the joint (X,Z) 
distribution on file C imply distortions in the marginal distributions of Z variables within 
categories defined using X. If one of the X variables indicates province, for example, 
distortions in joint (X ,Z) distributions may imply distortions in the distributions of income 
variables within provinces. Distortions in the conditional distribution f (Y , Z I X) 	are 

important when some V variables are categorical and univariate analysis of Z distributions 
within V categories is needed. For continuous variables, the importance of distortion in 
f(Y,ZI X) depends on the analytical uses of the microdata. If regression equations involving 
V and Z variables are estimated, for example, such distortion is important. 

Use of the "equivalence class" statistical matching method employed by Okner is 
analogous, as Singh, Armstrong and LemaItre (1988) point out, to use of hot deck imputation 

in the file created by combining files A and B. 	Many statistical matching applications 
described in the literature have involved an "equivalence class" or "hot deck" approach with 
the use of distance functions (analogous to Okner's "closeness" score) defined using X 
variables. Hot deck statistical matching methods were, of course, included in the evaluation 

study. 

Under the assumption that the records on files A and B represent independent samples 

from a common distribution, distortions in the marginal distributions of Z variables can be 
eliminated through the use of the constrained matching techniques that are discussed in 
section 2.2. Two suggestions have appeared in the literature designed, in the absence of 
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information concerning the distribution of (Y,Z), to militate against violation of the 

conditional independence assumption. These are the use of multiple imputation ideas (Rubin 

1986) and the application to statistical matching of the log-linear imputation method 

proposed by Singh (1988), and are described in sections 2.3 and 2.4. 

2.2 Constrained Matching 

Use of constrained matching requires association of weights with records on file A and 

B. When the file contains data from two surveys of the same population, the survey weights 

can be employed. Suppose that files A and B include NA  and  NB  records, respectively. Let w 

and w denote, respectively, weights of record I on file A and record j on file B. Denote by w 

the weight of the file C record formed by combining Z information from record j on file B 
with file A record i. Finally, let d 1  denote distance. Following Rodgers (1984),constrained 

matching involves minimizing 

N 	N 

E 	d..w.. 
i=l j=1 	13 13 

subject to 

N 
= w 1 	, 1=192,... NA 

NA 
E l  W j  = W 	NB 

W j  > 0 , 	I=l,2,...NA 	j1,2,.. .N B 

Since a file C record is created for all w>0 , file C will generally contain more records 

than file A. 
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A discussion of constrained matching can be found in Barr and Turner (1980). The 
advantages of constrained matching are illustrated in simulation studies reported by Barr, 
Stewart and Turner (1982) and Rodgers and DeVol (1982). The disadvantage of constrained 
matching is its heavy computational requirement. In addition, the creation of a file C 
containing more records than file A may be undesirable in some practical applications. 

The current SPSD construction process involves a statistical matching procedure 
incorporating an approximate constraint on the marginal distribution of Z. Categories are 

formed on file A and file B using all the X variables except one, denoted by X 1. File A and 

file B records are sorted within each category using X 1 . Then the files are matched within 

each category according to sorted order - the file A record with the largest value of X is 

matched with the file B record with the largest value of X 1, etc. File B records are 

duplicated or skipped when numbers of file A and file B records within a particular category 
differ. Constrained matching methods were not included in the evaluation study reported in 
section 4 but the current SPSD approach (an "approximately constrained" method) was, of 

course, considered. 

2.3 Use of Multiple Imputation Ideas 

Rubin (1986) suggests the use of multiple imputations to incorporate uncertainty about 
the conditional correlation of V and Z given X. The application of multiple imputation ideas 
is suggested in the context of a statistical matching method involving linear regression. In 
the absence of information about the conditional correlation of V and Z given X, Z values are 
predicted for each file A record using a linear regression of Z on X, estimated using file B 
information. Let Z denote the predicted value of Z for a particular file A record. This 
record is matched to the file B record with observed Z closest to Z. Little (1986) calls this 
method predictive mean matching. In order to incorporate uncertainty about the conditional 

correlation of V and Z given X, predicted values of Z for file A records are calculated 
from linear regressions of Z on X and Y. Estimation of these regressions requires 
information about the correlation of V and Z conditional on X. The Rubin scheme involves 
calculating a number of imputations corresponding to various values for this unknown 
conditional correlation. Calculations can be facilitated using the sweep operator described 
in Dempster (1969). The application of Rubin's scheme leads to a number of complete data 
sets, each corresponding to one set of values for the unknown conditional correlation. 
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In the context of SPSD, the use of the Rubin methodology poses three practical 

problems. First of all, its effectiveness depends on reasonable choices for the unknown 

conditional correlation. Such choices require good auxiliary information. For example, it 

might be appropriate to apply information about correlations between consumer income and 

expenditure items in another country in the Canadian context. The availability of this type 

of information is problematic. The second problem concerns the need to supply appropriate 

documentation and software to SPSD users. Suppose that the SCF-FAMEX statistical 

match, for example, was conducted using Rubin's scheme with k different sets of conditional 
correlations. In this case, it would probably be necessary for SPSD users to: (1) conduct most 

model experiments k times, using k different values for variables added to the database by 

statistical matching; and (ii) generate a linear combination of results to obtain a point 

estimate of the most probable outcome. While such a procedure does not involve any 

difficulties in principle, effort would be required to ensure that users understand its 

motivation and find the software sufficiently easy to use. The regression method with 

predictive mean matching and zero conditional correlation was included in the evaluation 

study reported in section 4. Variations involving multiple imputation were not considered. 

It should be noted that the multiple imputation procedure proposed by Rubin (1978) for 

use in the context of item non-response in a sample survey can be applied to any non-

deterministic statistical matching scheme. Application of multiple imputation would 

involve assigning two or more values of Z to each file A record by varying the stochastic 

component of the model used for statistical matching. If, for example, a statistical 

matching scheme involving random selection of records within categories defined using X 

variables was employed, application of multiple imputation would result in selection of two 
or more file B records for each missing value on file A. 

Consequently, statistical matching could involve two levels of multiple imputation, 

one to incorporate uncertainty about the conditional correlation of Y and Z given X, and a 

second to reflect variation in the predicted values of Z for file A records, given a particular 

conditional correlation. (These predicted values would be calculated by adding random 

residuals to conditional expectations of Z obtained from fitted regressions.) 
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2.4 Application of Log-linear Imputation 

The idea of using multivariate histograms during combination of information from two 
data files was suggested by Sims (1978). He proposed that the multivariate density function 
of (X,Y,Z) be estimated in accordance with the distribution of (X,Y) from file A and the 
distribution of (Y,Z) from file B. This estimation problem involves the definition of 

categorical variables (X* * * ,Y ,Z ). Sims intended that the results of this estimation could 

provide an alternative to matching - population values of quantities of interest involving 
both Y and Z could be calculated by integrating the multivariate density. The method was 

not intended to produce a complete data file. 

An imputation method involving the use of categorical variables that can be readily 
applied to the statistical matching problem is suggested by Singh (1988). This method is one 
of the alternatives considered in the evaluation study described in section 4. Its theoretical 
development involves two major elements. First, some criteria for selection of a partition * * * 
for use in the formation of the categorical variables (X ,Y ,Z ) are introduced. The 
partition selection criteria are motivated by the idea that a suitable choice of partition is * 	* 	 * 
one for which the categorical variables V and Z are conditionally independent given X . It 
is stated that appropriate application of these criteria will lead to the selection of an * * 
optimal partition. Second, it is suggested that the conditional distribution f(Z I X ) can be 
estimated using the empirical distribution from file B or a version of this distribution that 

has been smoothed using a log-linear model. 

* 	* 	* * 
Given an estimate for the conditional distribution of Z given X , denoted by f(Z I X ), 

the process of determining Z values to complete file A records involves two parts. First, * 
the value of Z needed to complete a particular file A records is determined up to a Z 
category using this conditional distribution. The second step involves determining a value for * 
Z within the Z category. 

Depending on the details of the methodology used for each of these parts, variations of 
log-linear statistical matching can be distinguished. Suppose that these are k file A records 

in a particular X class, say X3 . The Z class associated with each of these records can be 

determined independently by prediction using the estimated conditional distribution. In this 
evaluation study, this method is called unconstrained prediction. Let k 4  denote the number 

of file A records assigned class Z
* I  
. and let [x I denote the integer part of x. Instead of using 

unconstrained prediction, the process of imputing a Z class can be constrained so that k 1  /k 
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is close tof(ZiX = X). If k.f(ZiX = X)is an integer for all values of 1, exact 

constraints can be imposed. Otherwise, [k f( L I X. = X .) I file A records can be assigned 

class Z for each value of I and an alternative method used to determine Z classes for the 

remaining file A records. We call this type of approach constrained prediction. In the * 
context of constrained prediction, various methods can be used to determine Z classes for 

the remaining file A records. One alternative is unconstrained prediction. This method is 

used In the simulations reported in sections 4.2 and 4.3. Other possibilities include using 

weighted averages of file B records and creating file C records with fractional weights. 

More details are given in Singh (1988). 

Once a Z category, say Z 1 , has been associated with a file A record in class X i , 

alternative methods of determing the Z value needed to complete the record can be 

considered. The use of a Z value taken from a file B record chosen at random from among 

those file B records in class (X, Z) is called random assignment. Alternatively, the file B 

record can be chosen using a distance measure defined as a function of X. 

The Singh partition selection criteria could lead to the selection of partitions that 

produce files with relatively low levels of distortion in the conditional distribution f(Y,Zi X). 

The criteria involve use of a non-parametric association measure and an upper bound on the 
chi-squared distance corresponding to the hypothesis of conditional independence. The 

results of some limited simulation experiments involving these quantitites (not reported 

here) suggest that the upper bound on the chi-squared distance is very weak. 

Singh suggests a criterion for log-linear model selection based on a non-parametric 

measure of association. Computer software incorporating this criterion is not readily 

available. In addition, the problem of determining critical values for the criterion has not 

been addressed. In the evaluation study, log-linear models used to smooth the conditional * * 
distribution f(Z IX ) were chosen using the stepwise deletion procedure described in 

Benedetti and Brown (1978) and implemented in the BMDP package (Dixon et al. 1983). A 

modification of the Singh approach involving the use of Bayesian methods for estimation of 

log-linear models has been proposed by Stroud (1989). 
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3. Imputation 

Procedures that can be used to complete (X,Y) records from file A when information 
about the joint distribution of (V , Z) is available can be divided into two classes - methods 
that require records with (X,Y,Z) information and those that need (Y,Z) information only. 
Given that the RCT-SCF exact match file provides a sample of records with (X,Y,Z) 
information, the procedures in the former group are the most important in the context of 
this paper. AU of the methods involving information about the joint distribution of (Y,Z) 

included in the evaluation study reported in section 4 require (X,Y,Z) records. For 
completeness, methods that can be used with a sample of (Y,Z) records are also reviewed in 

this section. 

31 AuxilIary Information about Distribution of (XY,Z) 

When a file, say D, containing records with (X ,Y ,Z) information is available, any 
imputation method designed for the standard problem of item non-response in a single file 

can be used to complete file A records using information from file D. Kalton and Kasprzyk 
(1986) review a number of imputation methods. One can object to the use of imputation 
methods on the grounds that information on file B is not used. In most statistical matching 
applications, one would expect file A and file B samples to be much larger than the file D 
sample. Obviously, the implications of ignoring file B information will be greater in such 
situations. In addition, in cases in which the file A sample is much larger than the file D 
sample, each file D record may be used as a donor for a number of file A records and the 

distribution of Z values on file C may not be as smooth as is desirable. 

Section four does not include an extensive evaluation of the use of conventional 
imputation methods. Attention is restricted to three alternatives: 

(1) 	distance function matching using Euclidean distance; 
distance function matching modified to reduce multiple use of donors; 
regression imputation using stochastic residuals. 
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These methods are briefly described below. 

The modified distance function matching method examined involves ideas from non-

parametric regression similar to those incorporated in a method proposed by Paass (1986) for 

use when (Y,Z) information is available. An estimate of the conditional distribution of Z 

given X and V is obtained from file D using the equation 

k 	 (1) 
E(g(Z)iX°,Y0) = 

	
b(X0,Y°)g(Z'), 

where g(Z) is a measurable function. The weight b 1  (X ,Y ) 	usually decreases as the 
distance between (X0 ,Y0 ) and (X 1  ,Y 1 ) increases. Two approaches to obtaining weights --

the kernel method and the nearest neighbour method - can be considered. The kernel 

method involves the assumption that the distribution of the population can be represented by 

a mixture of functions that integrate to unity and satisfy certain regularity conditions. The 

nearest neighbour method involves ranking observations according to their distance from 

(X ,Y ). The values of Z for the k points closest to (X 0.V ) are used (possibly after 
weighting) as a non-parametric estimate of the conditional distribution of Z. 

The nearest neighbour method, using Euclidean distance and k = .02N/1o(M), 

was included in the study reported in section 4. To construct a non-parametric Z value, each 

of the k points closest to (X0 ,Y0 ) is assigned a weight inversely proportional to its distance 

from (X0 ,Y0 ). Estimates of the conditional distribution obtained using this weighting 

scheme are asymptotically unbiased with respect to an integral norm (Stone 1977). Apart 

from the need to satisfy the asymptotic unbiasedness criterion, the weighting scheme was 
chosen arbitrarily. 

The regressions imputation method involves estimation of the linear equation(s) 
* 	* 

Z = A X + B Y + e 	 (2) 

using file D information. Note that when there is more than one Z variable each regression 

can be estimated separately to produce maximum likelihood estimates for the system, even 

if the variance-covariance matrix for the disturbances, V (e), is non-diagonal. This property 

holds because the same regressors appear in every equation (Zeliner 1962). To determine 

imputed values, residuals that were random drawings from a multivariate normal 
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distribution with mean and variance-covariance matrix equal to their regression estimates 
were added to the regression estimates of the conditional expectation of Z given X and Y. 

Imputation methods incorporating all available information (files A, B and D) that can 
be applied to the present problem are described in the literature. These methods require the 
assumption that the information on each of the three files represents a random sample from 
the same distribution. In addition it must be assumed that this distribution is completely 

specified except for certain unknown parameters, say A. The general idea involves * 
computing the maximum likelihood estimate of , denoted by a . Given these estimates, the * 
conditional distribution f(ZIX,Y,a ) can be used for imputation. Two alternatives are 
possible - each missing value of Z can be replaced by its conditional mean, or by a random 

draw from the conditional distribution. 

Regardless of the form of the joint distribution of (X,Y,Z), the problem of maximum 

likelihood estimation of a can always be addressed using one of a number of algorithms for 

multivariate nonlinear optimization (see, for example, Goldfeld and Quandt 1972). Little 
(1982) mentions two ideas designed to simplify the computations involved -- factorization 
of the likelihood and use of the expectation-maximization (EM) algorithm described by 
Dempster, Laird and Rubin (1977). Pactorization can be used only when the data pattern is 
monotone. A data pattern is monotone if all records that are missing a particular number of 
data items, say n, are missing the same n items, for any value of n. In the present problem, 
factorization techniques could be used if information on either file A or file B was ignored 
during estimation. The computations used in the evaluation reported in section 4 did not 

involve factorization techniques. 

The EM algorithm can be used to compute maximum likelihood estimates for general 
data patterns. In the context of imputation, the EM algorithm has an additional 
computational appeal. Implementation of the algorithm involves repeated application of 
two steps - an expectation step and a maximization step. Missing Z values are replaced by 
their conditional expectations (given X and Y) during the expectation step. Initially, the 
programming required for maximum likelihood estimation methods included in the 
evaluation study was done using the EM algorithm. However, the convergence of this 
algorithm for some preliminary test cases was very slow. As a result, direct maximization 
of the likelihood using a combination of the Newton-Raphson method and the method of 
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steepest ascent was employed. In the simulations using synthetic data, analytic first and 

second derivatives of the likelihood function corresponding to the assumption of a 

multivariate normal distribution for (X,Y,Z) were employed. Expressions for the 

derivatives are given in Srivastava and Carter (1986). Maximum likelihood methods were 

not evaluated in the simulations using real data. 

It is interesting to note the relationship between the regression method proposed by 

Rubin (1986) and methods involving missing data maximum likelihood techniques. In 

particular, when file D is used to obtain an estimate of the conditional covariance of Y and Z 

given X, the predicted value of Z for a file A record produced using the Rubin procedure 

corresponds to the conditional expectation of Z computed using the distribution * 
f (Z I X ,Y,a ). 	One other approach designed to incorporate a file D sample has been 

suggested in the literature. Singh (1988) proposed a modification of log-linear imputation to 

incorporate information available from file D. This modification was not evaluated. 

3.2 Auxiliary Information about Distribution of (Y,Z) 

In order to complete the review portion of this paper, methods available for use when 

the file D contains (Y,Z) information should be mentioned. In the SPSD context such 

methods might be considered if, for example, it was decided that more information about 

the conditional correlations of variables from the SCF with variables from the FAMEX was 

desirable and that joint administration of the SCF and the FAMEX would impose an 

unacceptably heavy burden on survey respondents. In this case, one option would involve 

splitting the SCF into two parts. Let X denote the set of variables collected by FAMEX. 

Half of the respondents to the FAMEX would be asked only those SCF questions 

corresponding to V variables and the other half would be asked only SCF questions 

corresponding to Z variables. 

Two alternative approaches to use of a file D containing (Y,Z) information are 

suggested in the literature. If one is willing to specify the distribution of (X I,Y,Z) except 

for certain unknown parameters, imputation methods involving maximum likelihood 

estimation with missing data can be employed. Maximum likelihood estimates can be 

computed using a multivariate nonlinear optimization procedure or the EM algorithm. If it 

is not possible to specify the functional form of the (X,Y,Z) distribution, a non-parametric 
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procedure proposed by Puss (1986) can be employed. This method involves the use of non-

parametric techniques to obtain estimates of conditional distributions. The idea is 
illustrated in section 3.1 in the context of imputation using a file with (X,Y,Z) information. 
Methods using a file D containing (Y,Z) information were not considered in the evaluation 

study reported in section 4. 

4. Empirical Evaluation 

An evaluation study involving the comparison of a number of statistical matching 
methods is described in this section. The results of three separate components of the study, 
conducted using Monte Carlo simulation techniques, are reported. In section 4.1, traditional 
statistical matching techniques and imputation methods requiring a file containing (X, Y , Z) 
information are examined using simulations with synthetic data. Maximum likelihood 
methods involving normality assumptions are included in this component of the evaluation 
study. A variety of evaluation measures, directed at measuring all types of distortions in 
the distributions of variables on files created by statistical matching, are reported. 

Section 4.2 also contains the results of simulations using synthetic data. A variety of 
statistical matching methods involving the use of log-linear imputation ideas are considered. 
Maximum likelihood methods are not included. The main evaluation measure used in this 
component of the study is a measure of distortion in the (X,Z) distribution on the file 
created by matching. Section 4.3 includes the results of simulations using the same set of 
methods as in section 4.2 and data from a file created by exact matching of information 
from the Revenue Canada tax file and the Survey of Consumer Finance (Alter 1988). The 
evaluation measures reported are directed at distortion in the (X,Z) distribution. Eleven 
alternative statistical matching and imputation methods are considered in each of sections 

4.1, 4.2 and 4.3. 

Before providing detailed results of the simulations, some discussion of the overall 
objectives and limitations of the study is appropriate. The specificity of the results of 
Monte Carlo experiments - the difficulty involved in the application of Monte Carlo results 
to situations not directly considered in the original study - is an important limitation. The 
econometrics literature includes references to techniques that can be used to militate 
against the importance of specificity. For example, Hendry and Harrison (1974) consider a 
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situation in which the conditions determined by the experimentor for each set of 

simulations, involving alternative methods of estimation, can be summarized in terms of a 

reasonable number of known parameters. In this case, experimental design techniques can 

be used to choose appropriate parameter values as well as to model the behaviour of 

alternative methods at parameter points for which simulation results are not available. 

Such techniques have not been used in the statistical matching context, neither in 

evaluations of statistical matching that have appeared in the literature, nor in the current 

study. Statistical matching can be employed, from the operational point of view, to 

combine information from any pair of data files. Consequently, the parametric 

characterization of experimental conditions is very difficult. As a result, the generality of 

any conclusions that can be drawn from the results reported here is not clear. 

4.1 SynthetIc Data - Part I 

The synthetic data simulations reported in this section are similar to other 

experiments mentioned in the literature and are intended to serve as a benchmark for the 

discussion in sections 4.2 and 4.3. Four variables, denoted by X 19  X2 , V and Z are involved. 

At the beginning of each simulation three files - A, B and D - were available. Each file 

contained an independent sample of size 250 (files A and B) or 100 (file D) from the 

distribution f(X 1 , X 2 , V, Z). Values of Z on file A and values of V on file B were 

suppressed. 

Four sets of 25 simulations were conducted using two distributions for (X 1 , X2 , V, Z) 
and two schemes for definition of (X, Z) classes corresponding to categorical variables 
( X* ,  Z*). To generate data, the starting point was sets of independent observations (X 1 , 

X 21  Y. Z ) from a multivariate normal distribution with mean zero and variance-covariance 

matrix 

1.0 0.4 0.3 0.3 

0.4 1.0 0.3 0.3 
v i  = 

0.3 0.3 1.0 -0.35 

0.3 0.3 -0.35 1.0 

Z was transformed to produce Z. For two sets of simulations, Z was set equal to Z with 

probability 0.9 and equal to I1OZ' with probability 0.1. 	In these cases the marginal 
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distribution of Z is a mixture of normal distributions. For the other simulations, Z was set 

equal to Z with probability 0.5 and equal to eV  with probability 0.5. The marginal 

distribution of Z for these simulations is a mixture of a normal distribution and a lognormal 

distribution. 

The conditional distribution of (Y,Z) given (X 1 , X2 ) 	corresponding to the 

multivariate normal joint distribution Is bivariate normal with mean zero and covariance 

matrix 

.871 -.479 
V., = 
' 	 -.479 .871 

Consequently, the assumption that Y and Z are conditionally independent given (X 1 , X 2 ) 

is violated in the data sets used in the simulations reported here. 

It should be noted that the choice of variance-covariance matrix and the 
transformations used to generate data for these simulations were largely arbitrary. Paass 
(1986) reports results of simulations using data from a multivariate normal distribution with 

mean zero and variance-covariance matrix 

1.0 0.8 0.3 0.3 

0.8 1.0 0.3 0.3 
V 3  = 

0.3 0.3 1.0 -0.7 

0.3 0.3 -0.7 1.0 

Some experiments were conducted using this variance-covariance matrix. V 1  was used 

for more extensive simulations because, with files A and B of size 250 and file D of size 100, 
implementation of matching methods involving classes was difficult due to relatively large 

numbers of classes with zero counts. 

In the four sets of simulations conducted, each data generating procedure was used 
with two different schemes for defining classes. In the first scheme, three classes were used 

for X 1 , X 2 , Y and Z (in the context of those matching methods requiring classes for these 

variables). Class boundaries for X 1  were determined to make the number of file A records in 
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each class as equal as possible. The same method was used to choose class boundaries for X 2  

and V. Class boundaries for Z were determined analogously using file B information. 

Eleven methods of determining Z values needed to complete file A records were 

considered. The methods are described below. Methods (1) - (vi) are imputation methods 

that use file U information. Methods (vii) - (xi) are matching methods. 

(1) 	Hot deck imputation using distance (HDE-D). The Z value needed to complete a file A 

record is taken from the file D record that is "closest" according to the Euclidean 

distance measure defined using values of X 1 , X 2  and V. Estimated standard deviations 

are computed using file A information. 

Hot deck imputation using non-parametric smoothing (HDI-NPS). For each file A 

record, a set of file D records that are nearest neighbours according to Euclidean 

distance defined using values of X 1 , X 2  and V is determined. The record from file D 

that is matched to the file A record is chosen from the set of nearest neighbours using 

selection probabilities inversely proportional to distance. More details are given in 

section 3.1. 

Regression imputation with stochastic residuals (Rl-SR). The regression of Z on (X 1 , 

X 2 , V) is estimated using file D information. The Z value needed for a particular 

file A record is computed as the sum of the estimated conditional mean of Z 	given 

X 19  X2  and Y plus a residual drawn from the normal distribution with mean zero and 

variance equal to the estimated residual variance from the regression. 

Maximum likelihood assuming multivariate normality with zero residuals (ML-ZR). 

Assuming multivariate normality, maximum likelihood estimates of the mean vector 

and variance-covariance matrix of the joint distribution of (X 1 , X 2 , Y, Z) are 

computed using information from files A, B and D. The Z value used to complete each 

file A record is the conditional mean of 1 given X 1 , X 2  and V, based on the estimated 

joint distribution. 

Maximum likelihood assuming multivariate normality with stochastic residuals (ML-

SR). This method is similar to (v) except that a residual drawn from the normal 
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distribution with mean zero and variance equal to the estimated conditional variance 

of Z given (X 1 , X2 , Y) is added to the estimated conditional mean. 

Maximum likelihood using predictive mean matching (ML-PM). This method is similar 

to (v). After the estimated conditional mean of Z given X 1 . X 2  and V is computed for 

a file A record, nearest neighbour matching is used to determine the value from file B 

that should be used to complete the record. 

Hot deck matching using distance (HDM-D). Let x and 41 denote values of X 1  and 

for a particular file A record. Similarly, let 	and 	denote values of 

and X for file B record j. Let S 1  and S 2  denote estimated standard deviations of, 

respectively, X 1  and X 2, computed using file A information. The Z value used to 

complete record 1 on file A is taken from the file B record for which 

01j = 	- 4)is1) 2  + ((4 - xj)/s2)2 	 (3)ii 

is minimized. 

Hot deck matching using random assignment within classes (HDM-RWC). Each file A 

record is matched with a file B record chosen at random from among those records 

with the same value for (X, 4). 
(lx) Hot deck matching using distance within classes (HDM-DWC). This method is similar 

to (i) except that only records with the same values for (4 4) are matched. 

Hot deck matching using ranks within classes (HDM-RANKWC). This method is similar 
to the statistical matching method currently used during construction of the SPSD that 

is described in section 2.2. Within each X 2  category, file A and file B records are 

ranked according to X 1 . Records are matched in rank order, duplicating or skipping 

file B records as required. 

Regression using predictive mean matching (R-PM). The regression of Z on (X 1 , X 2 ) 

is estimated using file B information. For each file A record, the estimated 

- 18 - 



conditional mean of Z given (X 1 , X2 ) is calculated. The Z value from file B that is 
closest to this estimate is used to complete the file A record. More details are given 
in section 23. 

To evaluate the performance of the matching methods, various measures of distortions 
in the distribution of Z and distortions in bivariate distributions involving Z on the file 
created by matching were calculated. 

Let R and r denote, respectively, empirical rank correlation and empirical Pearson 
correlation coefficients between variables i and j  (using index 1 to refer to X 1 , 2 for X 2  
and 4 for Z), calculated using information on the file created by statistical matching. 
Similarly let and denote empirical correlation coefficients calculated using file A 
information (before the suppression of Z values). For each set of simulations and each 
matching or imputation method examined, Monte Carlo means and standard errors of the 
quantities 

B 4  = R 14  - R 14 , I = 1, 2, 3,. 

b 14  = r j4  - 	I = 1, 2, 3, 4, 

were calculated. These quantities give information about the distortions in the univariate 
distribution of Z on files created by matching for 1=4 and information about distortions in 
bivariate distributions involving Z for other values of 1. 

The two-sided Kolmogorov-Smirnov test statistic was calculated, using the original 
file A values of Z and the values of Z on the file created by matching, for each simulation 
and all methods examined. Since the file A sample size is 250, we will subsequently denote 
empirical values of this statistic by 0250.  Let Z and z denote the empirical means of Z 
values on the original file A and the file created by matching respectively. Monte Carlo 
means and standard deviations of 

M =  

were computed. 
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Runs tests were also used to assess distortions on files created by matching. The well-
known univariate runs test was used to assess distortion in the univariate distribution of Z. 
For bivariate distributions involving Z, the multivariate runs test proposed by Friedman and 
Rafsky was employed. To calculate the multivariate runs test statistic for (x 1 , Z), for 

example, the 250 values of (X 1 , Z) on the file created by matching was combined with an 

independent sample of 250 (X 1 , Z) values from the distribution used to generate data on the 
original file A. A minimal spanning tree was constructed for the two-dimensional graphic 

representation of the set of 500 (X 1 , Z) values using the algorithm described by Whitney 
(1972). The multivariate runs test statistic was computed as one plus the number of nodes in 
the spanning tree connecting points corresponding to different samples. Subsequently, 

univariate runs test statistics will be denoted by U 4  and bivariate runs test statistics by 

6 i4 , 1=1, 2, 3. Since file A is of size 250, these statistics have expected value 250 under 
the hypothesis of zero distortion in the corresponding distribution. 

The final evaluation measure was suggested by Stroud (1989). The distributions of 
variables involved in applications like SPSD are often highly skewed and quantile estimates 
are particularly important in analytical work using income and expenditure data. Let 

Z( r ) j denote the empirical estimate of quantile r of the distribution of Z within decile 
of the one of the matching variables, say X , obtained from the file created by matching. 

Let Z(r) 	denote the empirical estimate of the same quantity using original file A values. 

Monte Carlo means and standard errors of 

10 IjA0.9),j  
Q(09) = 	 - Z (0 g)  

j=
z 

 1 

were computed for both X variables, each set of simulations and each method examined. 

References to statistically significant results in subsequent discussion in this section 
and in sections 4.2 and 4.3 are based on the assumption that Monte Carlo means of 
evaluation statistics have normal distributions with standard deviations given by the 

corresponding Monte Carlo standard errors. 

Monte Carlo means for differences in the values of Spearman correlation coefficients 
before and after matching are given in Table 1. These values were computed using 25 
simulations. The marginal distribution of Z was a mixture of normals. The numbers of 
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classes used by methods involving classes are given in parentheses. From an implementation 

point of view, a set of simulations including HDM-RWC(3), HDM-DWC(3), HDM-RANKWC(3) 

and the eight methods not involving classes was conducted. Then a second set of simulations 

involving HDM-RWC(4), HDM-DWC(4), HDM-RANKWC(4) and the eight methods that do not 

use classes was calculated using the same data. Monte Carlo standard errors for pairwise 

comparisons of the Monte Carlo means reported in Table 1 (as well as means of other 

evaluation statistics) are available except for comparisons involving a hot deck method with 

three categories and a hot deck method with four categories. 

Table 1: Normal Mixture 
Monte Carlo Means of B and their Monte Carlo Standard Errors 

Method 1 2 3 

HDI-D - .014 (.026) .012 (.022) .050 (.025) 
HDE-NPS -.053 (.027) -.012 (.019) .075 (.026) 
RI-SR -.041 (.025) .009 (.022) .032 (.024) 
ML-ZR .159 (.044) .228 (.054) -.164 (.044) 
ML-SR -.061 (.024) -.027 (.019) .069 (.026) 
ML-PM .158 (.044) .227 (.054) - .164 (.044) 
HDM-D - .015 (.015) -.002 (.023) .454 (.093) 
HDM-RWC(3) - .033 (.016) - .015 (.022) .419 (.086) 
HDM-RWC(4) -.023 (.017) -.011 (.019) .461 (.094) 
HDM-DWC(3) - .011 (.015) - .010 (.026) .458 (.093) 
HDM-DWC(4) -.013 (.014) -.005 (.026) .466 (.095) 
HDM-RANKWC(3) - .005 (.013) -.022 (.019) .452 (.092) 
HDM-RANKWC(4) -.013 (.013) .001 (.017) .460 (.094) 
R-PM .553 (.113) .513 (.106) .678 (.136) 

Methods using estimation based on normality assumptions that do not involve adding a 

residual to the estimated conditional mean of Z (ML-ZR; ML-PM; R-PM) produced 

relatively large values for the Monte Carlo means of B 14  and 824.  The values for B 14  and 

824 obtained for these three methods are larger (at the 1% level of statistical significance) 

than those produced by the other eleven methods. Note that the Table 1 results suggest that 

maximum likelihood imputation with zero residuals performs very much like maximum 

likelihood using predictive mean matching. The Monte Carlo standard error for the 

comparison of Monte Carlo means of B 14  for these two methods is less than .001. Monte 

Carlo standard errors for comparisons involving methods other than ML-ZR, ML-PM and R- 
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PM are between .01 and .03. Consequently, except for the poor performance of Mb-ZR, 

ML-PM and R-PM, the Monte Carlo means of 614  and B24  do not provide much evidence 

about the relative merits of the methods considered. 

As one would expect, the Monte Carlo means of B 34  for imputation methods that 

incorporate information about the (Y,Z) distribution are closer to zero in absolute 

magnitude than the Monte Carlo means for matching methods that do not use (Y,Z) 

information. Observed differences between Monte Carlo means for pairs of methods 

including one matching method and one imputation procedure are all statistically significant 

at the 5% level. Analogous to the results for B 14  and 824,  ML-ZR and ML-PM performed 

poorly compared to other methods using (Y,Z) information and the Monte Carlo mean of 

6 34  for R-PM does not compare well with the means obtained for other matching methods 

(not incorporating (V ,Z) information). 

The Monte Carlo means of b 14 , b24  and b 34  reported in Table 2 are qualitatively 

consistent with the Monte Carlo means of 8 14 ,  824 and 8 34. The poor performances of 

ML-ZR, Mb-PM and R-PM are evident. The Monte Carlo means of b44  indicate that these 

methods also lead to more distortion than other alternatives in the marginal distribution of Z 

on files created by matching. 

Table 2: Normal Mixture 

Monte Carlo Means of b14  and their Monte Carlo Standard Errors 

Method 	1 	 2 	 3 	 4 

HDI-D 
HDI-NPS 
RI-SR 
Mb-ZR 
ML-SR 
ML-PM 
HDM-D 
HDM-RWC(3) 
HDM-RWC(4) 
HDM-DWC(3) 
HDM-DWC(4) 
HDM-RANKWC(3) 
HDM-RANKWC(4) 
R-PM 

- .009 
-.052 
-.018 

.184 
- .038 

.184 
- .015 
-.052 
-.017 
- .009 
- .016 
- .004 
-.012 

.579 

.022) 

.024) 
 

.048) 
 

.048) 

.017) 

.017) 
 
 

.016) 
 
 

.117)  

.002 (.022) 
-.010 (.021) 

.027 (.022) 

.258 (.058) 
-.007 (.018) 

.258 (.058) 

.007 (.022) 
-.033 (.02) 
-.000 (.015) 
-.011 (.025) 
.005 (.023) 

-.041 (.021) 
-.010 (.016) 

.537 (.111) 

.051 (.026) 

.087 (.027) 
-.007 (.023) 
- .205 (.050) 
.037 (.023) 

-.206 (.05) 
.426 (.087) 
.395 (.081) 
.447 (.091) 
.425 (.087) 
.437 (.089) 
.419 (.086) 
.429 (.088) 
.668 (.134) 

	

-.062 	(.14) 
-.226 (.154) 
-.020 (.135) 
-1.45 (.301) 
- .035 (.109) 
- 1.45 (.301) 
- .116 (.13) 
.005 (.118) 

- .058 (.104) 
- .126 (.133) 
-.101 (.130) 
- .087 (.097) 
- .089 (.098) 
-1.76 (.359) 
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Monte Carlo means of M and their Monte Carlo standard errors are reported in Table 3. 

These numbers provide evidence of bias in the mean of Z on files created by matching that 

is statistically significant at the 5% level for six methods - HDI-D, HDI-NPS, RI-SR, ML-

ZR, ML-SR and ML-PM - when the marginal distribution of Z is a mixture of normals. The 

fact that the simulations involving a symmetric Z distribution provide more evidence of 

bias in the mean of Z on files created by matching than the simulation with a skewed Z 

distribution is not easy to interpret. 

More evidence about distortions in the marginal distribution of Z on files created by 

matching is provided in Table 4. Using the Smirnov approximation to the mean of the 

Kolmogorov-Smirnov two-sample test statistic for large samples discussed in Kim (1969), 
the mean of 0250  under the null hypothesis of no distortion is .0777. Consequently, the 

Table 4 results provide evidence of distortions in the marginal distribution of Z on files 

created by matching for all methods except the hot deck matching methods using ranks. 

Table 3: Monte Carlo Means of M 
and their Monte Carlo Standard Errors 

Method 
Marginal Distribution of Z 
Normal 	Normal- 
Mixture 	Lognormal 

HDI-D .141 (.046) .003 (.039) 
HD(-NPS .115 (.041) .020 (.039) 
RI-SR .120 (.042) .002 (.045) 
ML-ZR .063 (.030) -.041 (.042) 
Mb-SR .053 (.029) - .062 (.050) 
ML-PM .063 (.030) -.046 (.046) 
HDM-D .008 (.036) -.025 (.051) 
HDM-RWC(3) .046 (.038) - .042 (.045) 
HDM-RWC(4) .026 (.037) -.043 (.046) 
HDM-DWC(3) .015 (.035) - .032 (.053) 
HDM-DWC(4) - .005 (.039) -.005 (.047) 
HDM-RANKWC(3) .035 (.032) - .044 (.041) 
HDM-RANKWC(4) .031 (.033) - .035 (.043) 
R-PM .028 (.031) - .035 (.038) 

The poor performances of the methods using modelling based on normality assumptions 

(RI-SR, ML-ZR, ML-SR, R-PM, ML-PM), particularly when the marginal distribution of Z 

is a mixture of a normal distribution and a lognormal, are clearly indicated by the Table 4 

results and are expected. 
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Monte Carlo means of runs test statistics are reported in Table 5. Under the null 

hypothesis of no distortion in the corresponding univariate or bivariate distribution, the 

expected values of these statistics are 250. The Monte Carlo means provide evidence of 

distortion in almost all cases. 

Some of the Table 5 results may appear to contradict information reported earlier. 

Note, for example, the small values of the Monte Carlo means of U 4  (indicating large 

distortion in the univariate Z distribution) for the hot deck imputation methods (HDI-D and 

HDI-NPS). In addition, these methods produce lower Monte Carlo means of U 34  than hot 

deck matching methods. One would expect, of course, that imputation methods involving 

Table 4: Monte Carlo Means of 0250 
and their Monte Carlo Standard Errors 

Method 
Marginal Distribution of Z 

Normal 	Normal- 
Mixture 	Lognormal 

HDL-D .114 (.006) .117 (.007) 
HDI-NPS .114 (.006) .112 (.007) 
RI-SR .124 (.009) .177 (.013) 
ML-ZR .158 (.011) .181 (.014) 
ML-SR .110 (.005) .191 (.011) 
ML-PM .159 (.011) .182 (.014) 
HDM-D .099 (.006) .100 (.005) 
HDM-RWC(3) .096 (.004) .090 (.006) 
HDM-RWC(4) .096 (.006) .095 (.006) 
HDM-DWC(3) .097 (.007) .097 (.005) 
HDM-DWC(4) .100 (.006) .100 (.005) 
HDM-RANKWC(3) .082 (.004) .080 (.005) 
HDM-RANKWC(4) .084 (.004) .081 (.005) 
R-PM .254 (.009) .256 (.015) 

use of information about the (Y,Z) distribution would produce less distortion in the (Y,Z) 

distribution on file C than matching methods that do not involve such information. The 

relatively low values of Monte Carlo means of runs test statistics for HDI-D and HDI-NPS 

can be attributed to the fact that the file D used as a source of Z values included only 100 
observations, compared to 250 observations on the file A. Repetition of Z values on file C 

obviously leads to smaller values for runs test statistics. Note that the best results for 

(Y,Z) distortion are produced by two imputation methods (RI-SR and ML-SR). Among 
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matching methods the hot deck method using ranks within categories gives the best results 

with respect to (Y,Z) distortion as well as distortion in other univariate and bivariate 

distributions involving Z. 

Monte Carlo means of Q 	 statistics, calculated for simulations involving Z 	data 

from a mixture of normal distributions, are reported in Table 6. Mean values for these 

statistics under the null hypothesis of no distortion in the (X,Z) distribution are not known. 

These means are, of course, non-zero since the number of observations in file A is finite. 

(Estimates could be obtained by simulation although, since the distribution of Q (r)  depends 

on the (X,Z) distribution, a separate estimate would be needed for each set of Monte Carlo 

conditions.) Based on previous results it is plausible to assume that the Monte Carlo means 

reported in Table 6 are larger than the mean of (r)  under the null hypothesis of no 

distortion. Standard errors for pairwise comparisons of methods are smaller than the 

standard errors shown in the table, ranging in general between 0.1 and 0.3. Consequently, 

the Table 6 results suggest that the hot deck method using ranks produces less (X, Z) 

distortion than alternative methods and many of the observed differences are statisticaily 

significant. 

Table 5: Normal Mixture 

Monte Carlo Means of Runs Test Statistics and their Monte Carlo Standard Errors 

Statistic 

Method 	U 14 	U24 	U34 	U4  

HD1-D 205.2 (2.58) 203.7 (2.05) 
HDL-NPS 219.0 (1.81) 219.8 (2.25) 
RI-SR 242.6 (2.12) 242.9 (3.29) 
ML-ZR 223.3 (5.75) 214.8 (5.77) 
ML-SR 241.4 (2.8) 245.0 (1.69) 
ML-PM 224.0 (5.9) 214.7 (5.54) 
11DM-fl 205.7 (2.23) 204.8 (2.56) 
HDM-RWC(3) 242.0 (2.18) 235.8 (1.96) 
HDM-RWC(4) 235.0 (2.69) 228.3 (2.1) 
HDM-DWC(3) 210.0 (1.79) 206.4 (2.00) 
HDM-DWC(4) 206.7 (2.12) 202.3 (2.03) 
HDM-RANKWC(3) 248.0 (2.26) 247.2 (1.72) 
HDM-RANKWC(4) 245.7 (2.48) 248.0 (2.43) 
R-PM 134.4 (7.63) 146.6 (4.39) 

204.4 (2.82) 
221.0 (2.53) 
243.6 (2.3) 
216.0 (5.19) 
243.3 (2.38) 
216.0 (5.01) 
229.3 (2.27) 

	

234.3 	(2.0) 

	

231.7 	(2.0) 
228.6 (2.32) 
230.6 (2.26) 
234.1 (1.9) 
237.8 (2.37) 
176.0 (3.68) 

128.9 (1.09) 
131.7 (1.33) 
241.0 (3.1) 
224.6 (5.35) 
243.3 (2.36) 
176.3 (4.49) 
183.8 (1.43) 
191.2 (2.31) 
191.0 (1.89) 
180.6 (1.88) 
182.1 (1.41) 
243.8 (1.99) 
240.3 (2.21) 
142.2 (3.75) 
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Table 6: Normal Mixture 
Monte Carlo Means of Q (r) and their Monte Carlo Standard Errors 

Method X 1  
r = 0.9 

HDI-D 6.25 (0.65) 6.47 (0.59) 
HDI-NPS 5.59 (0.41) 6.21 (0.45) 
RI-SR 5.60 (0.42) 5.72 (0.36) 
ML-ZR 5.42 (0.40) 5.61 (0.45) 
ML-SR 5.24 (0.22) 5.18 (0.32) 
ML-PM 5.42 (0.41) 5.62 (0.45) 
HDM-D 5.12 (0.38) 5.77 (0.37) 
HDM-RWC(3) 5.56 (0.36) 4.91 (0.24) 
HDM-RWC(4) 5.38 (0.27) 5.33 (0.37) 
HDM-DWC(3) 6.40 (0.46) 5.98 (0.36) 
HDM-DWC(4) 5.48 (0.38) 6.35 (0.58) 
HDM-RANKWC(3) 4.55 (0.18) 4.43 (0.28) 
HDM-RANKWC(4) 4.92 (0.30) 4.77 (0.30) 
R-PM 9.2 (0.32) 9.9 (0.37) 

Monte Carlo means of B 34  and b 34, computed for simulations in which the marginal 

distribution of Z is a normal-lognormal mixture, are given in Table 7. These results are 

qualitatively similar to the values reported in Tables 1 and 2 for the normal mixture case. 

Imputation methods involving (Y,Z) information produce less distortion than matching 

methods. Methods involving modelling based on normality assumptions without the use of 

stochastic residuals perform relatively poorly. Otherwise, most differences in Monte Carlo 

means reported in Table 7 are not statistically significant. 
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Table 7: Normal-Lognornial Mixture 

Monte Carlo Means of B34  and b34  and their Monte Carlo Standard Errors 

Statistic 
Method 	 B34 	 b34  

HDI-D .007 (.033) .032 (.027) 
HDI-NPS .071 (.033) .071 (.03) 
RI-SR .053 (.03) .038 (.027) 
ML-ZR -.224 (.06) - .253 (.063) 
ML-SR .042 (.036) .026 (.033) 
ML-PM -.223 (.06) -.251 (.063) 
HDM-D .384 (.079) .371 (.076) 
HDM-RWC(3) .366 (.076) .340 (.069) 
HDM-RWC(4) .363 (.076) .346 (.072) 
HDM-DWC(3) .376  .366 (.075) 
HDM-DWC(4) .378  .363 (.075) 
HDM-RANKWC(3) .385 (.079) .371 (.075) 
HDM-RANKWC(4) .385 (.079) .364 (.075) 
R-PM .601 (.121) .608 (.122) 

Monte Carlo means of runs test statistics for the norm al-lognorm al mixture case are 

reported in Table 8. Comparing this table to the normal mixture results in Table 5, one 
notes the relatively poor performance of methods involving modelling using normality 

assumptions when the marginal distribution of Z is asymmetric. According to the runs 

tests results, the hot deck method using ranks produces the lowest distortion for all 

univariate and bivariate distributions involving Z. It is interesting to note that the runs test 

results suggest that the hot deck matching methods using ranks outperforms imputation 

methods with respect to (Y,Z) distortion. Some imputation methods involve distributional 

assumptions not consistent with the Z data - others rely on the use of a relatively small 

number of Z values from file D to complete all file A records. 

Monte Carlo means of Q(r)  statistics reported in Table 9 provide more evidence of 

the poor performances of modelling methods compared to hot deck methods for the 

simulations involving Z data from a normal-lognormal mixture. 
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Table 8: Normal-Lognormal Mixture 
Monte Carlo Means of Runs Test Statistics and their Monte Carlo Standard Errors 

Method U 14  

Statistic 

U24  U34  U 4  

HDI-D 202.8 (1.88) 199.8 (2.74) 199.0 (2.56) 123.1 (1.88) 
HDI-NPS 219.3 (1.84) 220.3 (2.15) 219.1 (1.92) 125.1 (1.98) 
RI-SR 221.6 (3.27) 220.9 (3.79) 224.9 (4.68) 220.2 (4.14) 
ML-ZR 216.6 (4.46) 214.1 (4.33) 216.7 (4.8) 218.8 (3.95) 
ML-SR 220.3 (4.06) 218.7 (3.87) 220.4 (4.33) 218.9 (4.09) 
ML-PM 216.1 (4,4) 214.1 (4.42) 215.4 (4.73) 169,4 (3.92) 
HDM-D 206.8 (1.87) 207.4 (2.22) 235.2 (2.21) 185.0 (1.51) 
HDM-RWC(3) 236.1 (1.76) 237.9 (1.95) 239.9 (2.08) 194.6 (1.79) 
HDM-RWC(4) 232.4 (1.77) 233.0 (2.3) 237.9 (2.09) 192.7 (2.08) 
HDM-DWC(3) 206.2 (1.88) 206.8 (1.97) 236.8 (2.29) 185.3 (1.57) 
HDM-DWC(4) 204.8 (2.26) 206.2 (1.92) 236.0 (2.47) 182.0 (1.74) 
HDM-RANKWC(3) 246.7 (2.1) 248,2 (2.58) 246.8 (1.87) 244.7 (2.22) 
HDM-RANKWC(4) 244.1 (1.99) 249.7 (2.07) 243.3 (2.17) 243.0 (1.83) 
R-PM 139.3 (9.67) 154.7 (7.22) 188.8 (4.8) 146.8 (5.23) 

Table 9: Normal-Lognormal Mixture 

Monte Carlo Means of Q()  and their Monte Carlo Standard Errors 

Method 

r=0.1 
x 1 x 2 

r = 
x 1 

0.9 
x 2 

HDI-D 4.92 (0.30) 4.67 (0.26) 8.56 (0.36) 8.15 (0.41) 
HDI-NPS 4.71 (0.27) 4.56 (0.27) 8.50 (0.46) 8.36 (0.31) 
RI-SR 8.60 (1.59) 9.01 (1.94) 13.0 (1.89) 13.1 (2.25) 
ML-ZR 7.69 (0.54) 7.47 (0.54) 10.6 (0.60) 10.2 (0.58) 
ML-SR 9.29 (1.28) 9.49 (1.45) 13.7 (1.48) 14.0 (1.64) 
ML-PM 7.57 (0.52) 7.33 (0.50) 10.4 (0.55) 10.1 (0.52) 
HDM-D 5.37 (0.32) 5.22 (0.23) 9.43 (0.50) 8.76 (0.41) 
HDM-RWC(3) 4.41 (0.22) 4.30 (0.23) 8.60 (0.46) 7.91 (0.35) 
HDM-RWC(4) 4.40 (0.23) 4.30 (0.23) 8.91 (0.53) 8.42 (0.40) 
HDM-DWC(3) 5.23 (0.31) 5.20 (0.25) 9.32 (0.50) 8.74 (0.47) 
HDM-DWC(4) 5.09 (0.33) 5.41 (0.25) 8.91 (0.46) 8.87 (0.36) 
HDM-RANKWC(3) 4.34 (0.24) 4.31 (0.18) 8.64 (0.43) 8.51 (0.36) 
HDM-RANKWC(4) 4.76 (0.27) 4.24 (0.24) 8.72 (0.36) 8.52 (0.30) 
R-PM 11.3 (0.52) 11.4 (0.50) 13.5 (0.53) 13.6 (0.51) 
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4.2 Synthetic Data - Part 11 

In this section, the results of the second component of the evaluation study involving 

the use of synthetic data are described. Eleven methods were considered. Traditional 

matching methods as well as various log-linear statistical matching methods were examined. 

Regression methods and maximum likelihood methods involving normality assumptions were 

excluded. The methods included are listed below. Some of the methods were also included 

in the first component of the evaluation study. For those that were not included in the first 

component, a brief description is given. Methods (i) and (ii) are imputation methods that use 

file 0 information. The others are matching methods. 

(1) 	Hot deck imputation using distance (HDI-D). 

Hot deck imputation using non-parametric smoothing (HDI-NPS). 

Hot deck matching using distance (HDM-D). 

Hot deck matching using random assignment within classes (HDM-RWC). 

Hot deck matching using distance within classes (HDM-DWC). 

Hot deck matching using ranks within classes (HDM-RANKWC). 

Log-linear matching, no smoothing, constrained prediction, distance assignment (LLM-

CPD). The empirical distribution from file B is used as an estimate of the conditional * * 
distribution f(Z IX ). Suppose that there are J classes for Z, equivalent to J levels * 	 * 
for the categorical variable Z . If there are k file A records in class X., 
(k.f(ZIX*=4)] records are assigned class Z , , for j=1, 2, ..., J, using the 

following procedure. Determine the pair of records (a,b) that are closest according * 
to Euclidean distance where a is a file A record that has not yet been assigned a Z * 
class, b is a file B record in class Z. and the number of file A records that have 

* 	J 	* * 	* 
already been assigned class Z. is less than [k . f(Z. X = X.) 1. Record a is assigned 

class Z 3 . . This process is repeated until there are no more record pairs (a,b) 	that 

are eligible (satisfy the conditions mentioned above). At this point, if any file A 

	

* 	 * 
records have not been assigned a Z class, they are assigned class Z. with probability 

roortionaltokf(ZiXX 1 )-[kf(ZIXX1)1. 

The Z value needed to complete a particular file A record that has been assigned 

class Z is taken from the file B record in class Z that is closest according to 

Euclidean distance. 
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Log-linear matching, no smoothing, constrained prediction, random assignment * 
(LLM-CPR). This method is similar to (vii). During assignment of Z 	classes, the 

"closest" record pair is chosen randomly from among eligible pairs. The Z 	value * 	 * 
needed to complete a file A record in class X. that has been assigned class Z 	is 

taken from a randomly chosen file B record in class (X, Z). 

Log-linear matching, smoothing, constrained prediction, distance assignment (LLMS-

CPD). This method is identical to (vii) except that an estimate of the conditional * * 
distribution f(Z IX ) is obtained by smoothing the empirical joint distribution of * * 
(X , Z ) from file B using a log-linear model. 

Log-linear matching, smoothing, constrained prediction, random assignment (LLMS-

CPR). This method is identical to (viii) except that an estimate of the conditional * * 
distribution f(Z IX ) is obtained by smoothing the empirical joint distribution of * * 
(X , Z ) from file B using a log-linear model. 

Log-linear matching, smoothing, unconstrained prediction, random assignment (LLMS- * * 
UPR). As in methods (ix) and (x), an estimate of the conditional distribution f(Z I X ) * 
is obtained by smoothing using a log-linear model. The Z class associated with each * 	 * * * 
file A record in class X. is determined by independent prediction using f(Z IXX 4 ). 

1 	 * 	 I  
The Z value needed to complete a file A record in class X. that has been assigned 

class Z is taken from a randomly chosen file B record in class (X, Z). 

Six sets of 50 simulations were conducted. Four of these sets involved the same 

conditions (distribution of (X 1 , X2 , V, Z) and criteria for determining numbers of classes 

and their boundaries) as the simulations reported in section 4.1. The starting values used for 
the random number generators and, consequently, the actual data sets were different from 

those used earlier. 

In the fifth set of simulations, data from the multivariate normal distribution with 

mean zero and variance V 1  was employed. Four classes for X 19  X2 , Y and Z were used 

(when classes were required). Class boundaries were determined using the method described 

in section 4.1. The hot deck matching method using ranks requires the assumption that files 

A and B contain random samples from a common distribution. The other methods considered 
here involve a weaker assumption, namely that the conditional distribution f(Z I X) or, for * * 
some methods, f(Z I X ), is the same for both files. The sixth set of simulations was 

intended to provide some evidence about the robustness of the hot deck matching method 

using ranks to departures from the assumption of random samples from a common 
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distribution. Data from the multivariate normal distribution was used but file B was 

restricted to observations with iX 2 i < 1.28. Four classes for X 1 , X 2 , Y and Z, 	with 

boundaries determined using the method of section 4.1, were employed when classes were 

needed. 

With the exception of the runs test statistics, the evaluation measures used in the 

simulations reported in Section 4.1 were calculated. Monte Carlo means and standard errors 

of Q (r)  statistics were computed for both X, and X2 and  r = 0.1, 0.5, 0.9. Most of 

the detailed results that are reported here involve Q statistics. Before (r) results 

are discussed, a summary of results for other evaluation measures will be provided. Results 

for B 14  and b 14  (1=1, 2, 3) are generally similar to those obtained in the first 

component of the evaluation study. As expected, the imputation methods (HDI-D and HDI-

NPS) produced less distortion in B 34  and b 34  than matching methods that do not involve use 

of information about the (V ,Z) distribution. Otherwise, most differences between 

alternative methods are not statistically significant. The results for B 14  obtained from the 

set of simulations involving a mixture of a normal distribution and a lognormal for the 

marginal distribution of Z (using three categories when categories were necessary), given in 

Table 10, are typical. Standard errors for most pairwise comparisons of means in this table 

are between 0.1 and 0.2. 

One interesting result not found in the first component of the evaluation study is 

evident in Table 10. Monte Carlo means of B 34  are smaller for the log-linear matching 

methods involving smoothing (LLMS-TJPR, LLMS-CPR, LLMS-CPD) than for other matching 

methods. In addition these three methods produce Monte Carlo means for B 14  and B 24  that 

are larger (in absolute terms) than the corresponding means for other matching methods. 

Many pairwise comparisons are statistically significant. This result appeared in all six sets 

of simulations included in the second component of the evaluation study and was also 

present for Pearson correlations. It has an interpretation in the context of log-linear * 	* 
modelling. Some of the correlation between the categorical variables Y and Z 	may be * 
captured in the coefficients of the X variables in the equations used to predict proportions * 
of observations in various Z 	categories. Better understanding of this result is needed 

before one can recommend use of log-linear matching methods with smoothing in practice. 

Results for this component of the evaluation study related to Monte Carlo means of 

0250 are similar to those reported in section 4.1. Monte Carlo means of 0250 	for 

simulations involving a normal-lognormal mixture for the marginal distribution of Z 	are 
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given in Table 11. The Monte Carlo mean for the hot deck method using ranks is closest to 

0.777, the mean of the distribution of the Kolmogorov-Smirnov test statistic according to 

the Smirnov approximation. There is statistically significant evidence (at the 0.05% level) 

of distortion in the marginal distribution of Z for most of the other methods. 

Monte Carlo means of Q 	 statistics and their Monte Carlo standard errors obtained 

from simulations involving a mixture of normal distributions for the marginal distribution of 

Z are given in Table 12. Note that the medians of the Z distribution within deciles of 

are reproduced more closely than quantile 0.9 for all methods. Results for X 	 were 

computed by the simulation program but are not included in the table since the distribution 

used to generate the data for these simulations is symmetric with respect to X, and X 2 . 

Monte Carlo standard errors for pairwise comparisons are comparable to the standard errors 

of the Monte Carlo means shown in the table - approximately 0.1 for 	and between 

0.2 and 0.3 for Q(0g). 

Most of the comments that can be made about alternative methods based on results 

involving Q statistics obtained from this component of the evaluation study are 

apparent from Table 12. The hot deck method using ranks appears to be the best method 

with respect to distortions in the marginal distribution of Z within X deciles. Hot deck 

distance imputation produces less distortion than the hot deck matching method involving 

distance. This result is expected given that the imputation method involves the use of Y, as 

well as the X variables used by the matching method, in the calculation of distances. There 

is statistically significant evidence that non-parametric smoothing reduces the distortion 

involved in hot deck distance imputation. 

The log-linear methods using a saturated model (LLM-CPR and LLM-CPD) produce 

less (X,Z) distortion, according to Q (r)'  than the corresponding hot deck matching 

methods (HDM-RWC and HDM-DWC). Intuitively, this result is plausible since the log-linear 

methods impose constraints on the (X,Z) distribution that are not involved in hot deck 

matching. The results in Table 12 do not clearly suggest that smoothing leads to a reduction 

of (X,Z) distortion in the context of log-linear methods. For example, values of Q( 05) 

for the log-linear matching methods involving smoothing are all higher than those for log-

linear methods without smoothing, although none of the differences are statistically 

significant. 
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Results in Table 13 are similar to those in Table 12. Since the simulation for methods 

involving four categories were conducted separately from the simulations with three 

categories, using different data sets, standard errors for pairwise comparisons involving, for 

example, a Q (05)  statistic from Table 12 and a Q statistic from Table 13 can be 

computed using the standard errors in the tables (covariance terms are zero). There is no 

clear evidence to prefer use of four categories rather than three. This situation is not 

unexpected given the somewhat arbitrary way in which categories were determined for both 

sets of simulations. 

Tables 14 and 15 provide Monte Carlo means of Q 	 statistics for percentiles of Z 

within deciles of X 1 , computed for simulations with a mixture of a normal distribution and a 

log-normal distribution for the marginal distribution of Z. Note that Monte Carlo means of 

are much larger than those for Q(01) due to the skewness of the marginal 

distribution of Z. Some Monte Carlo means for Q (r)  statistics for simulations using data 

from a multivariate normal distribution for (X 1 , X 2 , Y, Z) are reported in Table 16. The 

results in these three tables are similar to those summarized above. Note, in particular, the 

good relative performance of the hot deck matching methods using ranks. 

The hot deck matching method using ranks depends on the assumption that information 

on files used for statistical matching represent independent samples from a common 

distribution. Alternative methods involve weaker assumptions, namely that the conditional * 	* 
distribution of Z given X (and the conditional distribution of Z given X 	for log-linear 

methods) does not differ between the two files. The final set of simulations conducted as 

part of this component of the evaluation study was motivated by an interest in the 

robustness of the hot deck method using ranks to departures from this independent sample 

assumption. File B was restricted to observations with I X 2 1 <1 .28. 	This corresponds to 

truncation of 10% in both tails of the X 2  distribution. Monte Carlo means of 

statistics for these simulations are reported in Table 17. Note that the hot deck method 

using ranks appears to give the best overall performance despite the violation of the 

independent samples assumption. The conditions for this set of simulations were chosen 

arbitrarily. The specificity of Monte Carlo results must be emphasized. 
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Table 10: Normal-Lognormal Mixture, Part II, Three Categories 

Monte Carlo Means of B and their Monte Carlo Standard Errors 

Method 1 2 3 

HDI-D -.038 (.018) -.037 (.016) .021 (.019) 
HDL-NPS - .058 (.018) -.056 (.016) .068 (.019) 
HDM-D .001 (.011) .001 (.016) .381 (.056) 
HDM-RWC -.015 (.013) -.025 (.015) .354 (.052) 
HDM-DWC -.006 (.012) -.005 (.017) .377 (.055) 
HDM-RANKWC .013 (.011) -.025  .375 (.055) 
LLM-CPD -.006 (.010) -.014  .364 (.053) 
LLM-CPR -.018 (.010) -.029 (.015) .354 (.051) 
LLMS-CPD - .087 (.020) -.084 (.019) .341 (.050) 
LLMS-CPR -.091 (.019) - .098 (.020) .325 (.047) 
LLMS-UPR - .111 (.023) - .088 (.022) .322 (.047) 

Table 11: Normal-Lognormal Mixture, Part II, Three Categories 
Monte Carlo Means of 6 	 and their Monte Carlo Standard Errors 

Method Mean (Standard
Error) 

HDI-D .115  
HDI-NPS .109 (.004) 
HDM -D .095 (.004) 
HDM-RWC .092 (.004) 
HDM-DWC .094 (.004) 
HDM-RANKWC .078  
LLM -CPD .088  
LLM-CPR .082  
LLMS-CPD .088  
LLMS-CPR .081 (.003) 
LLMS-UPR .091 (.003) 
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Table 12: Normal Mixture, Part II, Three Categories 
Monte Carlo Means of Q 	 and their Monte Carlo Standard Errors 

Method 
x l  

r = 0.5 r = 0.9 

HDL-D 2.94 (0.11) 5.70 (0.30) 
HDI-NPS 2.54 (0.11) 5.27 (0.27) 
HDM -D 3.21 (0.13) 5.98 (0.27) 
HDM -RWC 3.10 (0.11) 5.14 (0.22) 
HDM-DWC 3.20 (0.13) 5.96 (0.28) 
HDM-RANKWC 2.86 (0.09) 4.66 (0.14) 
LLM-CPD 2.84 (0.10) 5.51 (0.22) 
LLM-CPR 2.91 (0.10) 5.20 (0.24) 
LLMS-CPD 3.00 (0.10) 5.39 (0.21) 
LLMS-CPR 3.01 (0.10) 5.21 (0.25) 
LLMS-UPR 3.08 (0.11) 4.92 (0.19) 

Table 13: Normal Mixture, Part II, Four Categories 
Monte Carlo Means of Q 	 and their Monte Carlo Standard Errors 

Method 
x l  

r = 0.5 r = 0.9 

HDI-D 2.98 (0.11) 5.82 (0.27) 
HDI-NPS 2.96 (0.12) 5.08 (0.23) 
HDM-D 3.26 (0.14) 6.35 (0.30) 
HDM-RWC 3.06 (0.10) 5.37 (0.23) 
HDM-DWC 3.21 (0.13) 6.60 (0.32) 
HDM-RANKWC 2.86 (0.09) 4.79 (0.23) 
LLM-CPD 2.95 (0.11) 5.77 (0.26) 
LLM-CPR 2.85 (0.09) 4.88 (0.18) 
LLMS-CPD 2.98 (0.12) 5.61 (0.26) 
LLMS-CPR 2.75 (0.09) 5.08 (0.18) 
LLMS-IJPR 2.94 (0.11) 5.54 (0.29) 
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Table 14: Norinal-lognormal Mixture, Part II, Three Categories 

Monte Carlo Means of Q 	 and their Monte Carlo Standard Errors 

xl  
Method p = 0.1 r = 0.5 r = 0.9 

HDI-D 4.81 (0.17) 2.71 (0.13) 11.0 (0.53) 
HDI-NPS 4.77 (0.16) 2.55 (0.10) 10.0 (0.52) 
HDM-D 5.12 (0.18) 2.76 (0.10) 10.9 (0.53) 
HDM-RWC 4.81 (0.17) 2.38 (0.08) 9.89 (0.44) 
HDM-DWC 5.15 (0.18) 2.62 (0.10) 10.8 (0.46) 
HDM-RANKWC 4.34 (0.14) 2.2 (0.06) 8.36 (0.32) 
LLM-CPD 4,81 (0.17) 2.37 (0.10) 10.3 (0.44) 
LLM-CPR 4.6 (0.15) 2.15 (0.08) 8.99 (0.47) 
LLMS-CPD 5.0 (0.21) 2.35 (0.07) 10.8 (0.51) 
LLMS-CPR 4.65 (0.17) 2.28 (0.10) 10.3 (0.99) 
LLMS-UPR 4.67 (0.19) 2.36 (0.08) 9.75 (0.40) 

Table 15: Normal-lognormal Mixture, Part II, Four Categories 

Method r = 0.1 

xl  
r = 0.5 r = 0.9 

HDI-D 4.69 (0.17) 2.78 (0.12) 9.09 (0.41) 
HDI-NPS 4.50 (0.15) 2.37 (0.09) 9.31 (0.49) 
HDM-D 5.08 (0.18) 2.81 (0.11) 10.4 (0.47) 
HDM-RWC 4.53 (0.17) 2.24 (0.07) 9.80 (0.42) 
HDM-DWC 5.13 (0.19) 2.81 (0.10) 11.2 (0.47) 
HDM-RANKWC 4.44 (0.19) 2.20 (0.08) 8.63 (0.33) 
LLM-CPD 4.70 (0.16) 2.33 (0.07) 10.1 (0.65) 
LLM-CPR 4.32 (0.16) 2.20 (0.08) 9.06 (0.50) 
LLMS-CPD 4.78 (0.15) 2.47 (0.08) 9.72 (0.42) 
LLMS-CPR 4.27 (0.17) 2.28 (0.08) 9.67 (0.41) 
LLMS-TJPR 4.48 (0.16) 2.41 (0.07) 10.7 (0.49) 
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Table 16: Normal, Four Categories 

Monte Carlo Means of Q (r)  and their Monte Carlo Standard Errors 

Method 

xl  
r = 0.5 r = 0.9 

HDI-D 2.64 (0.16) 3.71 (0.17) 
HDI-NPS 2.70 (0.15) 3.52 (0.14) 
HDM-D 2.87 (0.12) 3.82 (0.14) 
HDM-RWC 2.56 (0.12) 3.54 (0.12) 
HDM-DWC 3.05 (0.12) 3.74 (0.14) 
HDM-RANKWC 2.52 (0.10) 3.33 (0.13) 
LLM-CPD 2.74 (0.11) 3.59 (0.12) 
LLM-CPR 2.55 (0.12) 3.34 (0.14) 
LLMS-CPD 2.76 (0.12) 3.69 (0.14) 
LLMS-CPR 2.84 (0.13) 3.54 (0.13) 
LLMS-UPR 2.93 (0.14) 3.67 (0.15) 

Table 17: Normal with X2  Truncation, Four Categories 

Monte Carlo Means of (r) and their Monte Carlo Standard Errors 

xl  
Method r = 0.5 r = 0.9 

HDE-D 2.83 (0.10) 3.73 (0.13) 
HDI-NPS 2.57 (0.09) 3.54 (0.12) 
HDM-D 3.04 (0.10) 3.77 (0.12) 
HDM-RWC 2.74 (0.11) 3.51 (0.14) 
HDM-DWC 2.96 (0.11) 3.80 (0.14) 
HDM-RANKWC 2.51 (0.09) 3.47 (0.13) 
LLM-CPD 2.70 (0.09) 3.61 (0.12) 
LLM-CPR 2.54 (0.09) 3.43 (0.15) 
LLMS-CPD 2.72 (0.09) 3.64 (0.16) 
LLMS-CPR 2.60 (0.09) 3.49 (0.14) 
LLMS-UPR 2.91 (0.09) 3.44 (0.15) 

x 2  
Method r = 0.5 r = 0.9 

HDI-D 2.71 (0.11) 3.71 (0.15) 
HDI-NPS 2.59 (0.11) 3.42 (0.15) 
HDM-D 3.08 (0.11) 4.12 (0.15) 
HDM-RWC 2.53 (0.10) 3.43 (0.13) 
HDM-DWC 3.01 (0.11) 3.88 (0.15) 
HDM-RANKWC 2.47 (0.08) 3.00 (0.11) 
LLM-CPD 2.60 (0.08) 3.53 (0.13) 
LLM-CPR 2.64 (0.07) 3.51 (0.12) 
LLMS-CPD 2.83 (0.10) 3.60 (0.16) 
LLMS-CPR 2.58 (0.09) 3.41 (0.14) 
LLMS-UPR 2.92 (0.09) 3.33 (0.11) 
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4.3 Real Data 

In this section the results of simulations conducted in order to evaluate the eleven 

methods considered in section 4.2 using real data are reported. Five sets of 50 simulations 

were performed. The data was obtained from a file created by exact matching (using record 

linkage techniques) of information from the 1984 Survey of Consumer Finance (reference 

year 1983) and the Revenue Canada file of taxfiler information for 1983. The procedures 

used to create this file are described in Alter (1988). Revenue Canada tax data and 

information from the Survey of Consumer Finance is used during construction of the Social 

Policy Simulation Database. Consequently, the distributions of variables used in these 

simulations should be similar to distributions of variables involved in statistical matching 

needed to build the SPSD. 

The variables used were: 

DIVS - dividend income; 

EMP - earnings from employment; 

AGE - age in years; 

PENS - pension income (excluding CPP, QPP); 

DUES - union dues; 

CHAR - charitable donations; 
TOTH - reported on "other deductions" line of personal tax return. 

Not all variables were involved in all sets of simulations. When DIVS, EMP and PENS 

were used, there were considered X variables. DUES, CHAR and TOTH, part of the Revenue 

Canada component of exact match file records, were 7 variables. PENS, part of the SCF 

component, was the V variable in all simulations. 

The general strategy for data generation involved determining which exact match file 

records satisfied an eligibility criterion based on earnings from employment. The set of 

records satisfying the criterion provided a finite population of (X,Y , Z) observations. Data 

for each Monte Carlo trial was generated by selecting random samples with replacement 
from this finite population. There were 250 observations in Files A and B and 100 File C 

observations in all simulations. 



The evaluation statistics computed for the real data simulations are measures of 

distortion in the (X,Z) distribution. Monte Carlo means and standard errors of Q (09)  were 
calculated for each matching variable. An analogous statistic, intended to assess the 

performance of the alternative methods in the prediction of zero and non-zero values was 

also used. Let N . denote the number of zero values of Z within decile j of one of the 

matching variables, say X 1 , on the file C created by matching. Let N A 0  denote the 
number of zero Z values within decile j of X 1  for the original file A data. Monte Carlo 

means and standard errors of 

10 IA 
0 	j=1 N

0,  - N0  

were computed for each matching variable. Runs test statistics and correlations were not 

computed for the real data simulations based on the thinking that, due to the large 

proportion of zero values in the data, they would provide relatively little discrimination. 

Four sets of simulations involved the use of exact match file records with positive 
values for earnings from employment. There were 14,521 such records. Univariate 

description statistics for the variables involved, computed based on the population of 14,521 

observations, are given in Table 18. One notes that, except for AGE, the variables all have 

highly skewed distributions. In addition, PENS, DUES, CHAR and TOTH are often zero. 

Spearman and Pearson correlations between (X,Y) and Z are given in Table 19. Real data 

correlations are generally lower than those for the synthetic data used earlier in this 

evaluation study. Simulations performed using records with EMP>0 each involved use of two 

X variables, one Y variable and one Z variable. 

The final set of simulations with real data involved use of all exact match file 

observations with EMP>20000. DIYS, EMP and AGE were X variables and DUES was the Z 

variable. The finite population used to generate data for these simulations involved 5,035 

observations. Descriptive statistics related to this finite population are shown in Tables 20 

and 21. Note that correlations between DUES and the X and V variables are weak. The 

use of DIVS as an X variable was motivated by the fact that it is used as a matching 

variable (with EMP and AGE) in the statistical matching of information for high income 

earners from the Survey of Consumer Finance and Revenue Canada's tax file conducted 

during construction of the Social Policy Simulation Database. It was necessary to restrict 
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observations included in the finite population used in data generation to records with 
EMP20000 in order to obtain a reasonable proportion of cases with positive values for DIVS. 

For most variables two categories, corresponding to zero and non-zero values, were 

used when categories were needed. Subsequent references to methods involving use of more 
than two categories refer to the number of categories used for EMP and AGE. For these 
variables the method described earlier for synthetic data was used to determine category 

boundaries. 

Table 18: Univarlate Descriptive Statistics for Exact Match File Variables 

(based on 14,521 records with positive EMP) 

Variable Std. 
Dev. Skewness Kurtosis Proportion 

Non-Zero 

EMP 17,130 12.4 434 1.0 
AGE 13.2 0.52 -0.67 1.0 
PENS 1,551 12.4 200 0.03 
DUES 146 2.3 9.9 0.39 
CHAR 927 75.7 7,593 0.13 
TOTH 1,665 17 472 0.15 

Table 19: Correlation Coefficients for Exact Match File Variables 

(based on 14,521 records with positive EMP) 

DUES CHAR TOTH 

EMP 	Pearson .339 .097 .032 
Spearman .447 .232 .050 

AGE 	Pearson .116 .091 .081 
Spearman .145 .242 .103 

PENS 	Pearson -.033 .041 .135 
Spearman -.023 .108 .140 
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Table 20: Univariate Descriptive Statistics for Exact Match File Variables 
(based on 5,035 records with EMP>20,000) 

Variable 	Std. 	Skewness 	Kurtosis 	Proportion 
Dev. 	 Non-Zero 

DIVS 12,736 47 2,562 0.11 
EMP 20,436 18.6 559 1.0 
AGE 11.1 0.35 -0.83 1.0 
PENS 1,285 17.6 435 0.02 
DUES 191 1.34 5.37 0.59 

Table 21: CorrelatIon Coefficients for Exact Match File Variables 
(based on 5,035 records with EMP>20,000) 

DUES 

DIVS Pearson - .038 
Spearman -.012 

EMP Pearson - .005 
Spearrnan .10 

AGE Pearson - .001 
Spearman .006 

PENS Pearson -.034 
Spearrnan -. 040 

Table 22: Charitable Donations, Three Categories 
Monte Carlo Means of Q(0 .

9).P40 

X 1 (EMP) X2 (AGE) 

Method Q (09)  N0  Q(09)  N0  

HDI-D 2,536 19.2 5,134 20.2 
HDI-NPS 2,375 17.7 2,602 17.4 
HDM-D 2,422 16.6 2,709 17.1 
HDM- RWC 2,374 17.1 2,165 15.9 
HDM-DWC 2,375 16.7 2,727 17.4 
HDM- RANKWC 	1,943 15.0 2,287 14.8 
LLM-CPD 2,323 15.0 2,636 15.9 
LLM-CPR 2,162 14.9 2,327 14.7 
LLMS- CPD 2,357 16.1 2,786 16.6 
LLMS-CPR 1,909 15.0 2,296 15.2 
LLMS- UPR 2,601 17.5 2,527 17.6 
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Table 23: Other Deductions, Three Categories 

Monte Carlo Means of Q(09)  N0  

X 1 (EMP) 	X2 (AGE) 

Method 	Q(09) 	N0 	Q(09) 	N0  

HDI-D 10,171 23.2 12,281 22.7 
HDI-NPS 8,880 21.3 9,017 20.3 
HDM-D 9,936 21.0 8,365 20.8 
HDM-RWC 7,695 17.2 8,446 18.7 
HDM-DWC 9,705 21.4 8,466 20.9 
HDM-RANKWC 6,738 17.2 7,588 17.0 
LLM-CPD 8,403 18.9 8,168 18.6 
LLM-CPR 6,622 18.3 7,432 18.7 
LLMS-CPD 7,934 18,4 8,274 17.9 
LLMS-CPR 6,569 18.6 6,789 19.1 
LLMS-UPR 7,617 17.6 7,688 18.3 

Table 24: Union Dues, Two Matching Variables 
Monte Carlo Means of Q (r)'  N0  (for Dediles of EM?) 

Method 
Three Categories 
Q(09)  N 0  

Four Categories 
Q(09 ) N 0  

HDI-D 622 32.3 588 32.5 
HDI-NPS 589 29.3 558 28.6 
HDM-D 553 28.7 509 28.9 
HDM-RWC 629 26.4 544 24.9 
HDM-DWC 559 29.0 511 28.6 
HDM-RANKWC 422 24.0 470 23.4 
LLM-CPD 533 26.6 505 25.6 
LLM-CPR. 639 24.4 486 25.4 
LLMS-CPD 537 26.9 503 26.5 
LLMS-CPR 579 25.2 485 24.8 
LLMS-UPR 645 24.2 557 25.8 
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Table 25: Union Dues: Three Matching Variables 
Monte Carlo Means of Q(09)  N0  

X2 (EMP) 	X3 (AGE) 

Method 	Q(09) 	N0 	Q(09) 	N 0  

HDI-D 781 31.9 866 37.0 
HDI-NPS 642 29.5 778 33.1 
HDM-RWC 744 26.2 662 27.3 
HDM-DWC 645 27.2 730 29.1 
HDM-RANKWC 525 25.7 704 25.5 
LLM-CPD 604 25.0 728 26.8 
LLM-CPR 657 25.4 745 25.9 
LLMS-CPD 614 26.1 734 27.6 
LLMS-CPR 614 25.2 728 25.1 
LLMS-UPR 773 27.3 769 27.4 

Results from simulations with real data are reported in Tables 22-25. Earnings from 

employment was used as the ranking variable by the hot deck matching method using ranks 
for all simulations. In deference to the reader's fatigue, not to mention that of the author, 

these results will be discussed very briefly. For Table 22, the Z variable is charitable 

donations. Monte Carlo standard errors for pairwise comparisons (detailed results available 

from the author) are generally between 150 and 200 for Q(09)  and between 0.5 and 1.0 for 

N 0  when these measures are calculated using deciles of EMP. They are slightly lower for 

distortion measures calculated with respect to AGE. 

The large value of Q(Q 9) with respect to AGE for hot deck distance imputation may 

be related to the fact that Euclidean distance is not a good metric for the multivariate 

distribution of AGE, EMP and PENS. It is particularly bad for PENS, which is used to 

calculate distances in hot deck distance imputation but is not employed in the analogous 

matching method. HDI-D often produces large distortion measures in the real data 

simulations. Otherwise, the important elements of the simulation results for real data are 

identical to those for the synthetic data simulations. Non-parametric smoothing reduces 

distortion in hot deck distance imputation. The hot deck matching method using ranks 

performs well. Log-linear matching methods without smoothing produce less distortion than 

the analogous hot deck methods but the benefits of smoothing are not clear. Results for 

both distortion measures, N 0  and Q( 0 9) support these conclusions. 
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The Z variable for Table 23 is other deductions. Monte Carlo standard errors for 

pairwise comparisons are generally between 600 and 1100 for Q(09)  with respect to EMP 

and are slightly lower for the same measure computed with respect to AGE. Standard errors 

for pairwise comparisons of N 0  values are generally between 0.5 and 1.0. 

In Table 24, results from two set of simulations with dues as Z variable are reported. 

The first two columns contain results obtained when three categories were used in methods 

requiring categories. The other two columns give results based on use of four categories. 

Monte Carlo standard errors for pairwise comparisons are usually between 20 and 40 for 

Q(09) and 0.8 and 1.4 for N 0 . 

Dues is the Z variable for simulations summarized in Table 25. The X variables used 

were DIVS, EMP and AGE. The large proportion of zero values for DIVS prevented 

calculation of a distortion measure involving deciles of this matching variable. Monte Carlo 

standard errors for pairwise comparisons are similar in magnitude to those for Table 24. 

5. Conclusions 

Distributions of variables on data files created by statistical matching may be subject 

to various types of distortions. Many statistical matching methods involve the use of 

categories for the variables (X) common to both input data files. Notwithstanding the 

specificity of the results of Monte Carlo simulations, the evaluation study reported here 

provides strong evidence that the use of categories for variables found on only one input 

data file (Y and Z) as well as for the common variables leads to reduced distortion in the 

joint distribution of (X,Z) on files created by matching. The study also suggests, as one 

would expect, that auxiliary information about the distribution of (Y,Z) (obtained, for 

example, from a sample of (X,Y,Z) observations) is necessary to reduce distortion in the 

eonditional distribution of (Y,Z )  given X. 

The use of categories for all variables is an idea that is incorporated in log-1ine 

statistical matching, a method that involves application of ideas from the log-lines 

imputation method proposed by Singh (1988). Various log-linear statistical matchin 

methods involving smoothing estimates of the distribution of the categorical variables 
* 

(X ,Z
* 
 ) were evaluated here. The evidence concerning the benefits of smoothing in terms 

of reduced distortion in the joint distribution of (X,Z) is mixed. 
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The hot deck matching method involving the use of ranks that is currently employed 

during construction of the Social Policy Simulation Database (SPSD) performed well in the 

evaluation study. In most simulation experiments this method lead to the lowest 

distortion in the distribution of (X,Z) on the file created by matching. The performance of 

this method probably depends on the strength of correlations between the variable used to 

determine ranks and variables unique to one input file. During statistical matching 

applications involved in the construction of the SPSD, a total income variable is usually used 

to determine ranks. Consequently the real data simulations, in which the hot deck matching 

method using ranks determined by earnings from employent performed well, are of 

particular relevance for the SPSD applications of statistical matching. 

The hot deck matching method using ranks relies on the assumption that the input files 

used for statistical matching contain random samples from a common distribution. 

Alternative methods involve weaker assumptions, namely that the conditional distribution of * 	* 	 * 
Z given X (and the conditional distribution Z given X for methods involving Z 

categories) does not differ between input files. The limited simulation experiment reported 

here suggests that the hot deck method using ranks is relatively robust to departures from 

the independent sample assumption. 

Although the result is somewhat tangential to the main objectives of the evaluation 

study, it is interesting to note the strong evidence of the benefits of non-parametric 

smoothing in the context of hot deck imputation. This type of smoothing is apparently not 

widely used in practice. For example, it is not mentioned in the review of imputation 

methods by Kalton and Kasprzyk (1986). Non-parametric smoothing should also reduce 

(X,Z) distortion for hot deck statistical matching methods. 

It is appropriate to conclude with some discussion of issues that were not addressed in 

this study and could serve as a focus for further work. First, the criteria for category 

definition and log-linear model choice proposed by Singh (1988) as part of the log-linear 

imputation method were not extensively examined here. In addition, only a few choices for 

correlations of (X,Y,Z) were considered. Consequently, the possibility that the 
performance of the log-linear statistical matching methods (particularly those involving 

smoothing) could be improved by different choices of categories and/or models remains 

open. The log-linear statistical matching methods might perform better, in relative terms, 

for correlation structures that differ from those considered here. 
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Finally, there is evidence that log-linear statistical matching methods involving 
assignment of Z values using a distance measure or random matching with X classes 
produce less (X,Z) distortion than the corresponding hot deck methods. The hot deck 
matching method using ranks produced less (X,Z) distortion than random or distance hot 
deck matching methods in the evaluation study. Consequently, the use of a log-linear 
matching method involving assignment based on ranks should be investigated. 
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