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SAMPLE ALLOCATION FOR ESTIMATING MULTiPLE COMMODI1Y 
OUTPUTS OF MANUFACTURING INDUSTRIES 

M.A. Rahim and S. Currie 
Business Survey Methods DMsion 

RÉSUMÉ 

Le problème de estimation des valeurs de livraisons pour près de deux milles produits des industries 
manufacturières est abordé dans cet étude. Etant donné quun plan d'échantillonnage aléatoire stratifié sera 
utilisé pour l'enquête annuelle des établissements manufacturiers, une question fort importante qu'il faut se 
poser est celul-ci: Quelle est Ia meilleure façon de determiner Ia.taille de I'échantillon et de I'allouer a travers 
es strates? C'est un problème général d'optimisation de Ia taille et de l'allocation de l'échantillon dans le 
cas multivarié. Le problème eSt particulièrement difficile quand un très grand nombre de variables sont 
impliquées. Dans le cas oü les bornes supérieures d'erreur d'échantillonnage des estimés sont fixées 
d'avance, une procedure iterative utilisant Ia programmatlon convexe peut-etre utiUsée. Cette procedure est 
passablement compliquée et donc recommandable seulement pour des problèmes dont le nombre de 
variables est "Modèrement grand (Bethel, 1989). Cette procedure est néanmoins exposée pour le bénéfice 
du lecteur. Cependant, le but principal de I'étude reside plutôt dans Ia mise au point d'une méthode 
alternative, plus accessible et également satisfaisant pour tous les cas rencontrés en pratique. Cette 
alternative est illustrée grace a l'utilisation des donnés de 1986 de I'industrie du vétement. Méme si Ia 
procedure ne garantit pas obligatoirement que les erreurs d'échantillonnage de tous les estimés individuels 
soient inférieures a Ia borne supérleure fixée, l'Otude a démontré que Ia très grande majorité des estimés 
ont respecté Ia contrainte. Dans l'autre cas, c'est-à-dire celui o1j le coOt de I'enquete est fixé d'avance, on 
a egalement développé une formule exacte d'allocation. II a éte démontré que cette formule est une 
extension de l'allocation de Neyman au cas multivarié et peut donc être utilisé dans le cas de l'estimation 
des valeurs de Iivraisons. 

ABSTRACT 

This study deals with the problem of estimating the values of shipments of nearly two thousand commodities 
of the manufacturing industries. Given that a stratified random sampling design will be used for the annual 
survey of the manufacturing establishments, an important question is how best to determine the sample size 
and allocate to the different strata. This is a general problem of optimizing sample size determination and 
allocation in the multivariate case, specially made difficult when a very large number of variables are 
involved. In the case when upper bounds to the sampling errors of the estimates are preassigned, an 
iterative procedure using convex programming can be used. This procedure is quite complicated and 
therefore suitable only for 'moderately sized problems (Bethel, 1989). Although we have explained this 
procedure for the general reader, the main purpose of our study was to investigate an alternative method, 
easy and satisfactory for all practical purposes. Such an alternative is presented here and illustrated using 
Statistics Canada's 1986 census data on clothing industry. Although the procedure is not expected to 
ensure that the sampling errors of all the individual estimates will remain below their preassigned upper 
bounds, this study has shown that a large majority of them did not exceed such upper bounds. In the other 
situation when cost of the survey is preassigned we have also derived a closed form allocation formula. It 
has been shown that this formula is an extension of Neyman Allocation in the multivariate case and can be 
used for the purpose of commodity output estimation. 
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SAMPLE ALLOCATION FOR ESTIMATING MULTIPLE COMMODITY 
OUTPUTS OF MANUFACTURING INDUSTRIES 

M.A. Rahim and S. Currie 
Business Survey Methods Division 

Statistics Canada 

1. INTRODUCTION 

Under the Business Survey Redesign Project (BSRP) it is mandatory that all business surveys eventually use 

the Central Frame Data Base (CFDB) to extract their sampling frames and carry out functions related to the 

frame. For estimating commodity outputs of manufacturing industries, it is intended that all manufacturing 

establishments belonging to the integrated portion (IP) of the CFDB will be covered by a census and the 

establishments belonging to the non-Integrated portion (NIP) will be covered by annual sample survey. For 

the latter the required data will be captured through an "other characteristics questionnaire" (OCQ) and the 

sampled units will be a subsample of the tax master sample. This is all the more necessary since basic 

financial data are not captured by the 000 and therefore must be obtained from tax records. This 

subsample selection from the tax master sample will be based on a stratified random sampling design. 

However, in this sampling procedure a difficulty arises because we are interested in estimating a very large 

number of commodity outputs and not just one. The question is how to determine the total sample size and 

an allocation rule to different strata such that either for a given cost, or for given upper bounds to the 

sampling errors we can obtain acceptable estimates of the total value of shipments for each of these 

commodities. It is this specific Issue that has been addressed in this study. 

In the case when the total cost of the survey is preassigned a closed form formula has been derived which 

is shown to be an extension of the Neyman allocation in the multivariate case. In the other situation when 

upper bounds to the sampling errors are preassigned, an Iterative procedure using convex programming 

may be used. This procedure, however, Is quite complicated and Is therefore suitable for moderately sized 

problems only. We are confronted with the task of estimating about 2,000 commodity outputs (i.e. variables). 

Although we have explained and outlined the nature of the convex programming procedure for the general 

reader, the main purpose of our study was to investigate an alternative method which is easy and promising 

for estimating large number of commodities. Such an alternative is presented in this report and examined 

in the light of the 1986 census data relating to the clothing industry. 
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2. NATURE OF THE PROBLEM 

In this section we will explain, in a rather simple manner, the underlying nature of the problem. 

Suppose the population consists of N units, i.e. manufacturing establishments. Each unit manufactures one 

or more of the p distinct commodities represented by the variables x,, ......x.. Total values of shipments 

of these commodities will be denoted by X1 , X2  ,. . . , X. Estimates of these totals based on stratified random 

sampling design will be denoted by X 1 , X2 ..... 

With a stratified random sampling design these estimates can be obtained under two different situations. 

First: total cost of the survey may be fixed. In that case we can determine the sample sizes In different strata 

in such a way that the sampling error of the estimates Is minimum. Second: we decide to accept 

preassigned upper bounds to the sampling errors of the estimates. In that case we can determine the 

sample sizes in different strata in such a way that the cost is minimum and the sampling errors of the 

estimates do not exceed the preassigned upper bounds. 

2.1 WHEN COST IS PREASSIGNED: 

If the cost of surveying a unit is the same in each stratum, the total cost will depend on the total sample size 

n. In that case a preassigned cost implies a preassigned value of the total sample size n. 

For such a preassigned value of n the best allocation of sample size r h  to stratum h for estimating a 

specified commodity total ). Is given by Neyman allocation, 

Nh Sjh 
jh = L Nh  Sjh 

* (2.1.1) 

where N41  is the total number of units and S, denotes the population standard deviation of the variable 

in that stratum. However, this sample size r, although best for the purpose of estimating ), will not be the 

best for estimating other commodity totals X; lj = 1 ,2,...,p; because of variation in Sh for  different j. Hence, 

the question arises, how to determine a single allocation of sample sizes (n, ,r .....rj, to L strata, such that 

estimates of all the commodity totals (., X2 , . . . , 2) could be claimed as jointly "best', in some well-

defined manner. The solution of this problem is given in section 3. 
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2.2 WHEN UPPER BOUNDS TO THE SAMPLING ERRORS ARE PREASSIGNED: 

Alternatively, we may decide to accept preassigned upper bounds to the sampling error of the estimates 

and then look for the best allocation of sample sizes to strata by minimizing the cost. For a particular 

estimate of commodity total X.  the sampling error is usually expressed in terms of its coefficient of variation 

cv (2) . For a given upper bound to this coefficient of variation cv(2) where P , may 

represent, say, 3%, 5%, 10%, etc., the best sample size r h  in h-th stratum is obtained by the formula. 

Nb SjhNh Sib 
jh = h= 1,2..... L 	 (2.2.1) 

(X . 	 ) 2 +E Nh Sib 

But then again, this best allocation for estimating ) would not be the best for estimating other commodity 

totals X,,, l#j=1,2.....p. 

A point to be noted here is that we may decide to fix the same upper bound to the sampling error for 

estimating each of the p commodities. In other words, we may desire that 

cv(21 ) =cv(22 ) = . ..  =cv(2) = p ,, , orwe may decide to fix different upper bounds to the sampling 

errors i.e. cv(21) --` i. , cv() :~  11 2 , . . , 
cv(,) --' 

In any case the same question arises, namely, how to determine a single allocation of sample sizes 

(n fl2 .....n) such that the coefficients of variation of the estimates of the p commodIty totals do not exceed 

their upper bounds while keeping the cost at minimum. A solution to this problem Is also presented in 

section 3. 

3. PROPOSED SOLUTION 

In this section we will present a solution to the above problems that seems to be suitable, particularly in the 

context of manufacturing industries where we are confronted with the task of estimating values of shipments 

of about two thousand commodities. We will treat two different situations separately: 
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cost is preassigned and we want to minimize the sampling errors of the estimates 

upper bounds to the sampling errors of the estimates are preassigned and we want 

to minimize the cost 

3.1 BEST ALLOCATION WHEN COST IS PREASSIGNED: 

If we can assume that the cost of enumerating a unit is the same in each stratum, a preassigned cost is 

equivalent to a preassigned total sample size n, where n = n + r + ... + n. In the previous section we 

explained that given a preassigned n, there cannot be one single allocation (n 1  ,r ,..., r) such that each 

individual cv(.21 ) , cv(.22 ) , . . , cv(.R1,) Is minimum. Given this fact, the only other option is to 

seek and settle for some compromise solution. One approach is to define a suitable function of 

cv(.R1 ) , cv( 2 ) , . . •, cv(2,) ,whichgivesusameasureofjointvariabilityof21, 	2' 	. 

Let us consider such a function as 

y= W1 cv(.21 ) + W2 cv2  (22 )4.. .+ Wcv2 (2) 	 (3.1.1) 

where we assume that 2, x2 1 . . , .2,, are independently distributed and 	; j = 1,2.....p; are given 

weights reflecting the importance of the estimates 2, x2 , . 	
, 
2. Our problem would then reduce to 

minimizing Y subject to the condition that cost is fixed. 

This formulation would have certain implications that should be clearly understood. 

(I) 	Y is a measure of variability in an aggregate sense. In other words, we are 

assuming that when p is very large i.e. the number of commodity outputs to be 

estimated is very large, we would be more concerned with the joint variation of all 

the estimates rather than the variation of any individual estimate. Given this premise 

it makes sense to seek and settle for an allocation that will make Y minimum. 

(ii) 	If, however, there is some variable; which has high variability in the population, 

then CV(2k)  will be large. Hence, WkCV2  (2k) will be a dominant term in Y. 

Minimization of Y and the resulting allocation n 1 , n .....r,, will then be largely 
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determined by minimization of CV(k)  If; Is a rare or unimportant variable, this 

will result in an allocation that optimizes the estimate of an unimportant variable at 

the expense of other important variables. 

(iii) 	Nevertheless, this Is analogous to an extreme value situation and can be countered 

by assigning appropriate weights W,, j = 1, 2,..., p.  If; is that unimportant, one 

has the option of assigning a very small value to Wk . In the extreme case one can 

put Wk  = 0, I.e. one can ignore the variable; in determining the allocation. 

However, the overriding concern here Is that we have to estimate as many as two thousand commodity 

outputs. Therefore, we decide to settle for a concept of 'best allocation in an aggregate sense. In other 

words, we define an allocaiton n 1 , n2  ..., to be the best if it will make V minimum subject to the condition 

that cost is fixed. 

For a stratified random sample, 

cv2  (2) = 	N (Nh - 	] / Xj j=1, 2.....p 	 (3.1.2) 

Substituting these in 3.1.1 the full algebraical expression for V can be written. The cost function is 

C 	E Ci ,, n,, where Ci,, represents unit cost of the j-th variable in the h-th stratum. Minimizing Y 

subject to the condition that C is fixed the solution for ril, is obtained as 

nh 
= 	

*n ;  h= 1,2.....L 	 (3.1.3) 

h f{ (WjNSh) /41/f EJ cihl 

If we are willing to assume Wj = 1, j = 1,2.....p, I.e. all the variables are of equal importance, then the above 

formula reduces to 
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~F (Sjh) 
 1Xj}/{ l

EcJh} 
= 	*fl;h= 1,2,...,L 	 (3.1.4) 

j{E 2(sh) 1Xj2J lfECjhj 

If the unit cost qh  is constant, i.e. qh = C then 	CJh 
= 	

C PC. In that case the formula 3.1.4 further 

reduces to 

[{E (1JSh) /x} 
n. = 	______________  

EI{E (NSh) /x} 

Full derivation of the formula, using two different methods, is given in appendix 1. It is also shown that this 

formula is an extension of Neyman allocation in the multivariate case. 

3.1.1 CHOICE OF WEIGHTS: 

It is evident from 3.1.3 that the allocation r in the h-th stratum is dependent on the assigned values of 

weights W, j = 1, 2.....p. The question as to how best to assign these values Is beyond the scope of this 

study. However, the following remarks could be helpful in understanding the nature of the problem. 

(I) 	Values of W should be chosen in accordance with the relative importance of the 

estimators R.  - equivalently, relative importance of the variables ; j = 1, 2.....p. 

Note that under the situation when cost is preassigned we can choose any arbitrary 

set of values of W and obtain the optimum allocation r,; h= 1, 2.....L; by 

minimizing the aggregate measure of variability Y. But that minimum value of V may 

turn out to be large and may not be acceptable to us. In that case we can alter the 

values of W1  to bring the value of V down to an acceptable level. The problem is, 

in the absence of any objective rule or criterion, those altered values have to be 

intuitive or judgemental. 
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In certain cases one might postulate that the more the variability of a variable in 

the population, the less is its importance for the purpose of our estimation. In that 

case one may use the inverse of the estimate of the population variance as the 

weight i.e. W= 1/'T(x) ; j- 1, 2, 	, p. 

In a situation like estimation of nearly 2000 commodIty outputs, a common sense 

approach may be good enough for all practical purposes. For example, we can 

sort all the commodities into three groups such that the first group is of very little 

importance, the second group - a large majority - is of equal importance, while the 

third group - presumably a few - may be considered twice as important as the 

second group. In that case we can assign W= 0, 1, 2, to the commodities 

belonging to the first, second, and third group respectively. 

For the purpose of our study where the central theme is to develop some method of allocation that Is easy 

and good enough for all practical purposes, we assigned equal weights to all the commodities. 

3.2 BEST ALLOCATION WHEN UPPER BOUNDS TO THE SAMPLING ERRORS ARE PREASSIGNED: 

In this case we decide to preassign upper bounds to the sampling errors of the estimates X,j = 1, 2.....p; 

determined arbitrarily based on our perception of importance of the variables. In other words, we choose 

cv (2) .L;j= 1,2,,..,p (3.2.1) 

where lLj  is any given value and then try to determine an allocation (n 1 , n2 , r ,..., r) such that the 

coefficients of variation of the estimates X1 , X2 , .K3 , 
. . , , 

do not exceed the corresponding 

preassigned values (p., .L 21  . 	, 	, respectively, subject to the condition that the total cost is 

minimum. 

This is a complex mathematical problem and no exact theoretical solution has been obtained so far. 

However, a solution can be obtained resorting to iterative procedures using convex programming. A 

number of authors have dealt with this problem. Notable among the contributions are those of Dalenius 

(1957), Yates (1960). Kokan (1963), Hartley (1965), Kokan and Khan (1967), Chatterjee (1968, 1972), 

Huddleston, Claypool, and Hocking (1970), Chromy (1987), and Bethel (1985, 1989). Without going into the 
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mathematical details we will briefly explain here the motivation and theoretical basis of convex programming. 

We will also point out its limitations when we have to deal with large number of variables. 

3.2.1 CONVEX PROGRAMMING AND ITS IMPLICATIONS: 

In a recent paper, Bethel (1989) has given an improved version of the algorithm for convex programming. 

Following our notation let us write X. as the estimate of a population mean obtained through stratified 

random sampling. Then it is known that 

v(X)= 	
!Sjh 	NhS. h 

h-i N2nh t N2 
(3.2.2) 

where Sh is the population variance of the j-th variable In the h-th stratum, j=1, 2,...,p; h=1, 2.....L. N4, 

and n h  represents population and sample size respectively in the h-th stratum. 	= N and E nh  h 	 h 

are the total population size and sample size respectively. 

Taking the usual cost function C= E nh  Ch our problem is, we want to minimize 

	

L nh  Ch 	 (3.2.3) 

subject to the conditions 

V(X.) = ES _ 	SJh 
h N2nh  h N2  

EN.vj;j=i, 2,...,p 	 (3.2.4) 
-  

where v j  is some preassigned value depending on the importance of the variable x,. Writing 

N"2 	1 NhSjh We can write 3.2.3 and 3.2.4 as Yh= 	a= 	
+

h N2vjn. 
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Ch g(y) = 
h Yh 

(3.2.5) 

Ea,hYh--.k,; j- 1, 2, . . . ,p 	 (3.2.6) 

Mathematically this means finding a minimum of the function g(y) subject to the conditions 

i 1, 2, . . . ,p. 

Geometrically, one can visualize that a set (Yi. y2 .....YL) Is merely a point in a L dimensional space. The 

conditions 3.2.6 demarcates a region A within that space. The convex programming works on an iterative 

procedure such that only the points in R are successively chosen converging to a unique set say 

(yr, Y20  ..... y° ) for which the cost function g(y) is minimum. 

It is to be noted that Bethel has neglected the second term of the expression for v() . presumably, for 

subsequent computational ease, and has used the approximate expression 

- 	NhS  V(X) E 
h N2nh 

(3.2.7) 

In that case I = 1 and our problem reduces to finding a minimum of the function g(y) subject to the 

conditions E a2, Yb f. 1 ; j = 1,2.....p. Equivalently, this means finding the minimum of the function F(y) 

where 

	

F(y) = g(y) + E 	(E ah Yh1) 	 (3.2.8) 

	

j 	h 

and A; j = 1, 2.....p, are the Lagrange multipliers. Differentiating F(y) with respect to , h = 1, 2.....L and 

X,; j= 1, 2.....p and equating to zero we get 
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ÔF(y) = 	+ fl a,=O ; 	 h 1, 2, 
ôYh 	2  

(3.2.9) 

-Ea )yh -1=o ; 	j= 1, 2, . . 

Solving these equations, if one could get the values y1 =, y2 = 	, 	• , Y = y then the 

set of values (n1 = .., n2 = _2 , 	• ' L = 	would be the optimum allocations. 
Yi 	Y2 	 YL) 

Unfortunately, an exact closed form solution of these equations is not possible. Alternatively, using Kuhn-

Tucker theorem (1951) it is possible to write an expression for y  as 

Yh ______ ______ 

a ah) 
	

{caaj4 	
(3.2.10) 

if 

where c 	X/ 	) (see Bethel (1989) for details). Note that this is still not a solution for the value of Y 

because a is unknown. However, this expression helps us to find out an approximate value for a through 

an iterative process. Bethel has given the details of the steps involved. An initial value 	j = 1, 2.....p; 

is chosen. Following those steps one can arrive at a value 	, at the n-th iteration, such that 

- a' <e; j = 1, 2,...,p, where € is a preassigned convergence criterion. One can then substitute 

the value of 	 ; j= 1, 2.....p in 3.2.10 and get the optimum allocation n h  = 

h=1,2.....L. 
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Obviously, convex programming as outlined above, is theoretically attractive when we seek least cost 

allocation under the conditions that the sampling errors of the estimates of each individual variable do not 

exceed their preassigned upper bounds. However, it must be emphasized that it has certain difficulties when 

we have to deal with a very large number of variables as explained below. 

The number of iterations necessary depends on the number of strata (L) and the 

number of variables (p). The example used by Bethel for illustrative purposes 

consists of only 4 variables and 6 strata. He states "the algorithm converges quickly 

for most moderately sized problems" and the "run times vary considerably 

depending on the magnitude of the problem...". He also cautions that the "...labour 

involved in creating files and other preparatory tasks" Is of much greater concern 

than merely the run times. In the context of manufacturing industries we are 

concerned with the estimation of about 2000 commodity outputs (i.e. variables). 

Obviously, in that case the convex programming would be too cumbersome if not 

altogether impossible. 

Bethel also points out that "the convex programming approach gives the optimal 

solution to the defined problem but the resulting cost may not be acceptable so 

that a further search is usually required for an optimal solution...". This, however, 

can be done by "scaling down to the allowable budget directly and the effects of 

this on the precision of sample estimates can be directly determined". This means 

that in the case of large number of variables almost certainly we would run into a 

situation where we would have to increase the upper bounds of the allowable 

variance constraints for the estimates. In other words, the sampling errors of the 

estimates would have to exceed the levels that we had originally set. 

Note that the value of Vj depends on the importance of the variable - the more 

important it is, the smaller is the value of v 5  we want to assign. The problem of 

assigning suitable values to V j  is similar to that of assigning values to W which we 

discussed in section 3.1.1. For any arbitrary set of values of v 1 , v 2 .....v, 

convex programming will lead to the optimum allocation n.,; h= 1, 2.....L; by 

minimizing the cost C. But that minimum value of C may turn out to be large and 

may not be acceptable to us. In that case we can bring the value of C down to an 

acceptable level either by increasing all the values of Vj proportionately or by 
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altering them without maintaining the proportionality. Here again, the problem is, 

in the absence of any objective rule or criterion, those altered values have to be 

intuitive or judgemental. 

Presumably, these as well as some other theoretical considerations led Bethel to state that 'The problem of 

solving the convex optimization still remains". 

This is why we believe that some other simpler approach, particularly for the purpose of our commodity 

output estimation, Is worth investigating. One such approach will now be explained and illustrated in the 

subsequent sections of this report. 

3.2.2 AN ALTERNATIVE APPROACH: 

Let us assume that we agree on a preassigned coefficient of variation V o  (it may be 10%, 5%, 2%, etc.) 

such that the sampling errors of the estimates of the commodity totals 2, x2 , . . . , 
	

do not exceed 

In other words we want to ensure 

cv(.2):~ p. 0 ;forallj= 1,2.....p 	 (3.2.11) 

The corresponding optimum sample size for the single variable in h -th stratum would be given by 

NhSjhNSjh 
h 

(X lt 0 ) 2  + E Nh Sjh 
(3.2.12) 

For the p variables x1 , 	the optimum sample sizes in the h-th stratum would be (1h,  n ..... flh) From 

this set of p sample sizes let us choose the maximum one and denote it by 	We then take rl,(mx)  as 

the sample size allocated in h-th stratum. We will refer to this allocation procedure as the "maximum rule". 

Obviously, under this allocation procedure all the p constrains at 3.2.11 would be satisfied. But the total 

sample size n= E n 	 would be large and therefore the cost would be high. Nevertheless, it will be 

worth investigating empirically if the cost is really too high to offset the simplicity of the procedure. 
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Instead of choosing the maximum, we could have chosen, say, the median of the p sample sizes (nlh, 

rh) and take 	as the sample size allocated to h-th stratum, h= 1, 2.....L We refer to this 

allocation procedure as the median rule'. In fact, one could choose any percentile value 	and take the 

same approach, namely, choose the p-th percentile of the distribution of sample sizes in h-th stratum. 

Under any of these allocation procedures it would be worth investigating how far the constraints at 3.2.11 

are violated and to what extent the cost is affected. 

These investigations have been carried out based on 1986 clothing industry data. The results are presented 

in section 4. 

4. AN EMPIRICAL STUDY 

In this section we will present the results of an empirical study relating to the effects of the sample allocation 

procedures, explained earlier. 

For an Initial Investigation, the 1986 data on the clothing industry (SIC 24) were used. Under this industry 

sector there are 15 commodity groups that come under Import control. The miscellaneous class, namely, 

Other Controlled Commodities', was left out of the study. The remaining 14 commodity groups, included 

in this study are shown in the table below. 

Table 4.1 

COMMODITY GROUPS INCLUDED IN THE STUDY 

IMPORT 
CONTROL 
GROUPS CLOTHING COMMODITY 

32 Winter Outerwear 

37 Pants, shorts and overalls 

39 Blouses, shirts, t-shirts and 
sweatshirts 

40 Sleepwear, bathrobes and 
dressing gowns 

IMPORT 
CONTROL 
GROUPS CLOTHING COMMODITY 

44 Swimwear 

45 Underwear 

Outer jackets, coats and 
46 shopcoats 

47 Sportscoats, blazers and 
fine suits 
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Table 4.1 (continued) 

41 Rainwear 

42 Dresses, skirts, sets and co-
ordinates 

43 Foundation garments 

48 Leather coats and jackets 

49 Tailored collar shirts (Men's 
and Boy's) 

50 Sweaters, pull-overs and 
cardigans 

4.1 RESULTS WITH PREASSIGNED UPPER BOUNDS TO THE SAMPLING ERRORS: 

A total of 2256 manufacturing establishments i.e. units were covered in this study. For each unit, total value 

of shipments of one or more of the 14 commodity groups - represented as the variables x,, x 2  ,...,x1 , - were 

considered as our observations. A combination of Province and revenue class was defined as a stratum. 

Table 4.1.1 below shows population size N4,, and the allocated sample size r', in h-th stratum under the 

maximum, median, and 75th percentile rule. These allocations were obtained with an upper bound to the 

CVs equal to 10% and following the sample selection procedure, earlier described, under section 3.2.2. 

For those strata with population size equal to or less than 5, all units were Included in the sample. The 

largest revenue class in each province was defined as a take-all stratum for which also all units were 

included in the sample. 

Table 4.1,1 

SAMPLE SIZE UNDER DIFFERENT ALLOCATION PROCEDURE 

STRATA Nh TARGET 
CV 10% 

PROV REVENUE CLASS MAX. 75th Pct MED 

NFLD 25,000-99,999 1 1 1 1 

PEI 100,000-249,999 1 1 1 1 

25,000-99,999 1 1 1 1 

100,000-249,999 1 1 1 1 

NS 250,000-749,999 2 2 2 2 

750,000-3,099,999 3 3 3 3 
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Table 4.1.1 (continued) 

3,100,000 and over 2 2 2 2 

100,000-249,999 2 2 2 2 

NB 250,000-749,999 3 3 3 3 

750,000-1,699,999 3 3 3 3 

1,700,000 and over 1 1 1 1 

25,000-99,999 129 4 3 3 

100,000-249,999 243 12 5 5 

P0 250,000-749,999 357 33 11 9 

750,000-3,899,999 479 332 119 67 

3,900,000 and over 285 285 285 285 

25,000-99,999 52 3 2 2 

100,000-249,999 54 5 2 2 

ONT 250,000-749,999 116 16 6 3 

750,000-6,999,999 268 254 78 45 

7,000,000 and over 56 56 58 56 

25,000-99,999 5 5 5 5 

100,000-249,999 4 4 4 4 

MAN 250,000-749,999 20 3 2 1 

750,000-4,099,999 33 30 13 2 

4,100,000 and over 20 20 20 20 

SASK 25,000-99,999 1 1 1 1 

100,000-249,999 1 1 1 1 

750,000 and over 4 4 4 4 

25,000-99,999 8 1 1 1 

100,000-249,999 5 5 5 5 

ALTA 250,000-749,999 11 4 3 1 

750,000-3,499,999 12 7 5 1 

3,500,000 and over 4 4 4 4 

BC 25,000-99,999 10 1 1 1 

100,000-249,999 9 1 1 1 

250,000-749,999 16 2 2 2 

750,000-1,999,999 18 8 3 2 

2,000,000 and over 18 18 1 	1 18 

TOTAL 2256 1139 680 	1  570 

Note:aII fractions have been rounded up to the next higher integer. 
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We now have three different sample allocations corresponding to three different rules. For each allocation 

we can now compute the values of the coefficient of variations of the estimates of the commodity totals 

' 	 '14. using the formula 3.1.2. Table 4.1.2 below shows how much these coefficients of 

variations differ from one another due to three different allocation procedures. 

Table 4.1.2 

COEFFICIENT OF VARIATION OF ESTIMATES OF COMMODITY 

TOTALS UNDER DIFFERENT SAMPLE ALLOCATIONS 

Estimates of 

commodity totals 2 

CV(2) under different 
sample allocation procedure 

Maximum (Target 
CV=10%) 

75th Percentile 
(Target CV=10%) 

Median (Target 
CV=10%) 

0.038 0.103 0.193 

0.009 0.030 0.047 

X 0.020 0.060 0.085 

X 0.035 0.093 0.131 

0.025 0.068 0.150 

2 6 
0.015 0.046 0.065 

fr 0.020 0.051 0.069 

0.053 0.239 0.338 

0.030 0.073 0.101 

0.026 0.079 0.125 

0.027 2 11  
0.062 0.086 

0.061 0.151 0.257 

0.029 0.089 0.124 

0.031 2 14  
0.091 0.145 

AVERAGE CV 0.030 0.088 0.137 
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It is now easy to draw several conclusions from tables 4.1.1 and 4.1.2. 

FIRST: 	The maximum rule does ensure - as expected - that the CV of estimates of each commodity 

total are less than the preassigned value. For example, when the preassigned value was 

10% the CVs, on an average, were as low as 3%. However, the total sample size had to be 

as high as 1139 for a population of size 2256. In other words, the cost becomes prohibitive 

and such a sample selection procedure would not be desirable. Clearly, we would reach 

the same conclusion if we chose any other preassigned values of CV such as 5% or 2%, 

etc. 

SECOND: 	On the other hand, for a preassigned CV of 10%, if we had used the median rule, the total 

sample size would be reduced to 570 for a population of size 2256, but the Cv's of the 

estimates of commodity totals, on an average, would be as high as 14%. In other words, 

the cost would be quite acceptable but the sampling error would far exceed the 

preassigned value. It is also seen that the coefficients of variation of the estimated shipment 

totals of 9 commodities - out of 14 - exceed the preassigned value of 10%. Thus, adopting 

the median rule does not seem to be a desirable procedure either. 

THIRD: 	The above findings lead, naturally, to the next question, namely, what would happen if we 

selected sample size based on 75th percentile? Intuitively, one can think that this sample 

selection procedure might lead to a total sample size not too large (i.e. cost would not be 

prohibitive) and at the same time the CVs, on an average, would not be far off from the 

preassigned value. This is confirmed by the figures in table 4.1.1 and 4.1.2. Under this 

selection procedure total sample size comes out to be 680, which is not too large, and the 

average CV is 9%, close to the target CV of 10%. For two of the estimates, however 

(Z 212) , the CVs are much larger than 10%. 

It, therefore, appears that a sample selection procedure based on 75th percentile rule will most likely provide 

a solution that is simple, and acceptable for all practical purpose. This procedure will be particularly suitable 

when we have to deal with a large number of variables as in the case of estimation of the commodity totals 

in manufacturing industries. (NOTE: The formula 3.1.5 requires computation of the values of Sh, the 

stratum variances in the population. For the year 1986 we had the population data. For subsequent years - 

in the absence of population data - we would have to estimate the stratum variances by using the 

commodity output values from samples). 
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4.2 RESULTS WITH PREASSIGNED COST 

In many practical situations, as in the case of annual survey of manufacturing industries, the number of units 

to be surveyed is determined in advance based on cost considerations. In that case the formula 3.1.5 is 

appropriate. This formula, as we have shown (see appendix), is based on an extension of Neyman allocation 

to the multivariate case. Using this formula we computed the sample sizes in different strata for a given total 

sample size n=680, obtained earlier by using the 75th percentile rule. In other words, we preassigned the 

same cost as we would have if we used the 75th percentile rule. Tables 4.2.1 and 4.2.2 below shows the 

comparative results with regard to the allocation of sample sizes and the values of the coefficients of 

variation. 

Table 4.2.1 
COMPARATIVE RESULTS: ALLOCATION OF SAMPLE SIZES 

STRATA POPULATION 
SIZE 

Nh 

SAMPLE SIZE 
(75th Pct.rule) 

SAMPLE SIZE 
(Extended Neyman 
allocation formula)

nh  PROV REVENUE CLASS 

NFLD 25,000-99,999 1 1 1 

PEt 100,000-249,999 1 1 1 

NS 25,000-99,999 1 1 1 

100,000-249,999 1 1 1 

250,000-749,999 2 2 2 

750,000-3,099,999 3 3 3 

3,100,000 and over 2 2 2 

NB 100,000-249,999 2 2 2 

250,000-749,999 3 3 3 

750,000-1,699,999 3 3 3 

1,700,000 and over 1 1 1 

P0 25,000-99,999 129 3 2 

100,00-249,999 243 5 5 

250,000-749,999 357 11 13 

750,000-3,899,999 479 119 114 
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Table 4.2.1 (continued) 

3,900,000 and over 285 285 285 

ONT 25,000-99,999 52 2 2 

100,000-249,999 54 2 2 

250,000-749,999 116 6 6 

750,000-6,999,999 266 78 90 

7,000,000 and over 56 56 56 

MAN 25,000-99,999 5 5 5 

100,000-249,999 4 4 4 

250,000-749,999 20 2 2 

750,000-4,099,999 33 13 11 

4,100,000 and over 20 20 20 

SASK 25,000-99,999 1 1 1 

100,000-249,999 1 1 1 

750,000 and over 4 4 4 

ALTA 25,000-99,999 8 1 1 

100,000-249,999 5 5 5 

250,000-749,000 11 3 2 

750,000-3,499,999 12 5 3 

3,500,000 and over 4 4 4 

BC 25,000-99,999 10 1 1 

100,000-249,999 9 1 1 

250,000-749,999 16 2 2 

750,000-1,999,999 18 3 3 

2,000,000 and over 18 18 15 

TOTAL 2256 680 680 
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TABLE 4.2.2 
COMPARATIVE COEFFICIENTS OF VARIATION OF 

THE ESTIMATES OF COMMODITY TOTALS 

COMMODITY 

TOTALS 

CV OF THE ESTIMATES 

((Under allocation 

based on the 

75th Pct._rule)  

CV OF THE ESTIMATES 

(Under extended 

Neyman allocation) 

X 1  0.103 0.103 

X2  0.030 0.029 

0.060 0.058 

0.093 0.093 

X5  0.068 0.079 

X6  0.046 0.044 

X7  0.051 0.048 

X8  0.239 0.201 

X9  0.073 0.072 

X10  0.079 0,075 

X11  0.062 0.060 

X12  0.151 0.152 

X13  0.089 0.084 

X14  0.091 0.089 

AVERAGE CV 0.088 0.085 

An examination of the Tables (4.2.1) along with (4.2.2) reveals the following interesting fact. We had seen 

that if sampling error is preassigned, a sample allocation procedure based on 75th percentile rule may lead 

to the determination of sample sizes in each stratum such that, on an average, the sampling errors of 

multiple variables do not exceed a preassigned value. However, we did not know if the cost Incurred by that 

process - determined by the total sample size n = 680 - was too high and unreasonable. 

It has been found that by using an extension of the Neyman allocation formula for the same cost, the 

minimum sampling error attainable - on an average - is CV M , fl  = 0.085 which is almost identical with what 

we had obtained (CV75  = 0.088) by using the 75th percentile rule and that the CV for each estimate is either 

same or slightly smaller except for X5 . In other words, this investigation has shown that a sample allocation 

procedure based on the 75th percentile rule may give us, on an average, sampling errors of estimates in 

the multiple variables situation which do not exceed a preassigned value. And at the same time the cost 

incurred by the process is close to what we could have if we used the extended Neyman allocation formula. 
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5. CONCLUSION AND SUMMARY 

This study is concerned with the problem of estimation of the total values of shipments of specified 

commodities or commodity groups based on annual survey of manufacturing industries. Given that a 

stratified simple random sampling design will be adopted for selecting the manufacturing establishments (i.e. 

units) from the tax master sample, one important question is how to determine the total sample size and 

allocate it to the different strata defined by a combination of Provinces and revenue classes. 

We have pointed out that this is the well known general problem of optimizing sample size determination 

and allocation in the multivariate case. We have explained the exact nature of the difficulties that arise in the 

multivariate situation either under the constraint of preassigned upper bounds to the sampling errors of the 

estimates or under the constraint of preassigned cost. The problem, the related concepts, and the solutions 

proposed, have all been presented in a way expected to be helpful for survey planning purposes. 

In the case of preassigned upper bounds to the sampling errors, a number of computer algorithms were 

suggested as far back as in 1967 by Kokan and Khan (14) and recently in 1989 by Bethel (1). These 

algorithms are all based on a complicated, iterative process known as convex programming. We have 

explained the underlying concept as well as the mathematical reasonings related to such programming, 

particularly with reference to Bethel's recent work. This procedure, although theoretically attractive, appears 

to be suitable, according to Bethel 'for moderately sized problems" only. 

The main purpose of this study was to investigate an alternative method which is easy and promising for 

the purpose of estimating a very large number - maybe well over 2000 - of commodity outputs. Such an 

alternative is presented in this report. The applicability of this procedure has been examined in the light of 

actual Statistics Canada data on clothing industry sector (1986). What we have found is that a sample 

allocation procedure based on "75th percentile rule" works quite well from the point of view of simplicity and 

cost effectiveness. The procedure is flexible in the sense that it can be altered to any other "p-th percentile 

rule" to reduce the desired number of variables for which sampling errors of estimates exceed the 

preassigned upper bounds. It is also flexible in the sense that one can preassign different upper bounds to 

the sampling errors of the estimates depending on their importance (we used a target CV of 10% for all the 

variables for the sake of simplicity). It must be understood, however, that the procedure seems to be suitable 

based on this empirical study. It does not ensure, theoretically, that the sampling error of each individual 

estimate will not exceed its preassigned upper bound, although this study has shown that a large majority 

of them did not exceed. In fact only 2 out of 14 sampling errors of the estimates had significantly exceeded 

their preassigned upper bounds. 
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Quite often, as in the case of annual survey of manufacturing industries by Statistics Canada, we preassign 

the survey cost and therefore the total number of units that we want to survey is predetermined. In that case, 

for the purpose of estimating multiple commodity outputs, we have developed a closed form formula for 

allocation of sample sizes to different strata. We have shown that this formula is an extension of Neyman 

allocation in the multivariate case. This extended formula ensures a minimum value of an aggregate measure 

of the variability of all the estimates. We, therefore, suggest that this method of sample allocation can be 

conveniently used for the purpose of commodity output estimation. 
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APPENDIX 1 

DERIVATION OF FORMULA 3.1.5 (Method 1) 

For a stratified design let X, denote the estimate of the total value ) of a variable ; j = 1, 2,..., p. 

It is well known (see Cochran 3rd edition. p-93) that 

CV(2) = 	Nh(Nh-nh) 	 (1) 
Xj \Jh 	 nhj 

where N4, ri,, and Sjh are the population size, sample size, and variance of in the h-th stratum; h=1, 2, 

,,L We define a function V of cv (.R1 ) ; j= 1, 2.....p, as 

Y = wcy2(2) 	 (2) 
J 

we also write the usual cost function as 

c = EECjhnh 	 (3) 

where qh is  the per unit cost for the j-th variable in the h-th stratum. Our problem is to minimize V with 

respect to n1 , n .....ft, subject to the condition that C is fixed. Equivalently, we have to minimize a function 

F where we write 

F=EWcv2  () + (EECjh nh  - C) 

2 
= E 3 E Nh (Nh -nh) - 	+ A (E E C'jh 12h - C) 
ixj 	 12h 	jh 

=EE 	2  W1  Nh Sih EE WjNhSh 
+A (EECjh nh -C), 

j h 	x2rn 	j h 	 j h 



II 
I 

II 

1 	• - - 
.11 	

F 	 4 l 	• 'I '  

1 I 

- 	I 

I 
1l 

I 	 )4 	
_• 4r 

I 4 

I 	
I 	
I•; 

: ]l 	 . 

It•_ 0 • 	- _Li1 _t C _I 	•i I 	! 
I áJI 	 I 

I 	 Il 

i 4 

I 

._iI 

 

•I 
JIBE  

I[J 

r 	I 

-r 

 tl" T I 

I 	F 	I 	
• 	' 	1 11 	1 

II 
tI  

I 	 _I 
I 	II 

i • r 

I 	I• 
- 	 •r 	I 	I 

J 
L 

II 	I 
II 	I. 

I I 	I 

Lk 
k 	L 

a 

•• 	11II 

i -i 

ii 
I 

I- I 

I 

H 
II 

, 

'III 



-27- 

where A is the lagrange multiplier. Differentiating (4) with respect to r; h= 1, 2,...L, and putting it equal to 

zero we can write 

-E 
WNSh  +A (EC) =0 

i Xjn 

or nhV'X 
= '1{ (w I'J Sj) /x}/{EcJh}] 	 (5) 

Now summing over all h we can write 

h  4F IV SJh)/X. }/{E Cjh}] 	 (6) 
j ( Wj  

Then, dividing (5) by (6) we get 

= 'AI{ (W N Sih)/Xi}/{E Cih}] 

1IfE (W N Sib) /X3}/{E Cjh}] 

P (W N Sib)  /Xi}/{E Cjh} 
or 	 = 	

1 	
(7) 

 (W N Sib )  /X}/{E Cjh}1 hj 

This ri,, j = 1, 2.....L is the optimum allocation in h-th stratum for a fixed cost C. 

SPECIAL CASE 1 

If we assume W = 1; j= 1, 2.....p, i.e. weights are the same, then the formula (7) reduces to 

nh 	

(NSib) /Xi}/{E C'jh] 	
(8) 2 

4~j (1V SJb) /Xi}/{ CJh}]
h 
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Usually, we also assume that the unit cost q, is constant i.e. Ci,, = c. Then f2C h 
 =

c= pc. Hence, 

the formula further reduces to 

= 	f{Sih)/X2 } 	
(9) 

It1Sih)/X} 

This completes the derivation of our formulae 3.1.4 and 3.1.5. 

SPECIAL CASE 2 

In the case of a single variable i.e. j = 1 we can drop the subscript j and the formula (9) reduces to 

/fivs) /X2 
nh 	

Evf(s)/x2 

Ornh= 
NhENSh 

S 	
h1, 2, 	 (10) 

which is the well known Neyman allocation formula. Our formula 3.1.5 is thus an extension of the Neyman 

allocation in the multivariate case. 

DERIVATION OF FORMULA 3.1.5 (METHOD 2): 

Our objective is to minimize Y= EWCV2  (2) subject to the condition that the cost c= EChnh  is fixed. 

Writing the expression for CV() and assuming the weights to be equal i.e. W = 1. we get 
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Y= E  -ENh(Nh-nh) Sjh 
JXh 

= 
jh n hXJ2jh 

= 
hflhj X 	

h h. 

= Y1 -Y2  (suppose) 

where Sj2j, denotes the population variance of the variable in the h-th stratum. 	 (11) 

Note that '4 is independent of r; h = 1, 2,...,L Thus, minimizing V is equivalent to minimizing V 1  with respect 

ton1 ,n2 .....ft. 

Now suppose, the cost C is increased by a small amount ô'. Consequently, we may increase the sample 

size n, in the r-th stratum to C7  being the per unit cost of enumeration in the r-th stratum. 

Then the value of Y1  would decrease due to the reduction In the r- th term, equal to K, where 

N 
-;•; 	-;;- 	

K 	 (12) n1+6/C7 3d 	
=  

In order that the allocation n 1 , n ..... Is optimum this amount K must remain same i.e. constant irrespective 

of the stratum r that we might choose for increasing the sample size. If this were not the case, the 

allocation fl1 , fl2 , 	fl could be improved by shifting sample units between strata without increasing 

the overall cost C. 

From (12), for any stratum h, we can therefore write 
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f 1 	1 	

I= K; h 1, 2,Jv 	 q [nh+6/ch 

or 	6 
[nhnhch+6]= K 

or 61V EZ_'!= Knh(nhCh+6) 	(13) 

Assuming 6 to be small with respect to 	we can write (13) as 

ôN 	 KnCh 
jX 

or Th ~-k,

C
ESh 

JI I X 
 

Summing over h we get 

	

E n,= 12= 	 S.7h  
Chi 

Dividing (14) by (15) we get 

nh 	NSJh 

	

= 	 sX2 

-- 

L H1hjh 

h\hj X 
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IVh  jh 

or 
\jchE xj 

2 

hChjL.. ,,2 

(16) 

if q, is constant in every stratum i.e. C1, = C, then (16) reduces to 

(S)/X 

n. - 	 *n ;  h= 1, 2,.,.,L 	 (17) 

Sj  h Xi 

which is the same as the formula 3.1.5. 
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