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1 INTRODUCTION 
The outlier problem is well known in almost all branches of statistics and is 
probably as old as statistics. It was indicated in Bernoulli (1777) that omitting 
discordant observations was quite common in his time (see Barnett and Lewis, 
1984, p.  20). In survey sampling, the problem not only persists but can also 
be more difficult to deal with, especially in a design-based framework. Chambers 
(1986) called it a "perennial problem for applied survey statisticians." 

What is an outlier? It has been well recognized that the notion of an outlier 
is vague (Beckman and Cook, 1983) and that defining it is part of the problem 
(Srinath, 1987). Its meaning is subjective and dependent on the statistical 
task at hand. Kendall and Buckland (1957) define outliers as observations which 
are "so far separated in value from the remainder that they give rise to the 
question whether they are from a different population, or that the sampling 
technique is at fault". In the Encyclopedia of Statistical Science, Hawkins 
(1983) states that "the intuitive de,finition of an outlier, ... , is some observation 
whose discordance from the majority of the sample is excessive in relation to 
the assumed distributional model for the sample, thereby leading to the suspicion 
that it is not generated by the model". 

In these definitions, they assume a model or a population that follows a certain 
parametric distribution from which the sample is selected. Outliers are thought 
to be coming from a different source which is foreign to the presumed model or 
population. This notion is also reflected in different names used for outliers 
such as discordant observations, rogue values, contaminants, etc. 

However, in sample surveys, samples are selected from finite populations and the 
meaning of outliers is different from the definitions given above. Outliers are 
legitimate values for the units selected from the population under study if their 
values are correctly reported and captured. Some reported values in sample 
surveys are not extreme but may have a great influence on the estimate. For 
instance, if units with moderate values have a large sampling weight (inverse 
of inclusion probability) for estimation of the population total, they could be 
influential. In this case, they are not outliers in the sense that outliers are 
values situated far away from the bulk of the data, but are influential 
observations. Extreme values are not necessarily influential when they have 
small weights. The distinction between extrem values and influential values 
is very useful in sample surveys. This view is shared by some other authors 
(Cambino, 1987; Srinath, 1987). However, both extreme and influential values 
are outliers in one sense or another. Here, we use the term "influential" in 
a different sense than in the concept of infinitesimal "influence" used in the 
robust statistics literature (for the latter see Hampel et al., 1986). 

Influence of an observation varies depending on what estimator is used. When 
the expansion estimator or the Horvitz-Thompson estimator is used, an influential 
observation is an outlier based on its weighted value. An influential observation 
in the case of the ratio estimator is an observation which influences the 
estimation of the ratio greatly. An influential observation with respect to the 
ratio estimator may not be influential at all with respect to the expansion 
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estimator and vice versa. The term "outlier" will be used to mean either an 
outlying (extreme) observation or an influential observation with respect to the 
particular estimator used. 

In survey sampling, it is quite common that the survey population is highly 
skewed. That is, a small number of units account for a large portion of the 
population total. For example, in the Survey of Employment, Payroll and Hours, 
about 80% of the total employment is accounted for by approximately 20% of large 
employers. The income distribution of individuals is another well known example 
of this type. In such situations, inclusion or exclusion of large units influences 
the usual unbiased estimators so much that they may become unreliable. The 
problem is aggravated when large or medium-sized observations have large sampling 
weights. For this reason, sample surveys for skewed populations are usually 
designed in such a way that large units are selected with certainty or with a 
large probability so that they may have small sampling weights. Stratification 
or Probability Proportional to Size (PPS) sampling is often employed for this 
purpose. However, the success of this method in avoiding the outlier problem 
depends on the quality of size data on the sampling frame. 

We emphasize prevention of outliers rather than their detection and treatment. 
However, we cannot completely avoid the outlier problem. Outliers almost always 
occur no matter how much care is taken at the design stage to prevent them. For 
instance, most surveys are multivariate and only key variables are used for 
stratification or for obtaining the size measures for PPS sampling. Therefore, 
if the stratification or PPS sampling is not efficient with respect to other 
non-key variables, outliers inevitably occur in the estimates for these other 
variables. 

The presence of outliers with large values causes overestimation. When there 
are large units in the population which are not represented in the sample, the 
problem of under-estimation may also occur. Small values can also be outliers 
in some cases since outliers can occur in both tails. For instance, when an 
estimate of level change from one period to another is required in a repeated 
survey, the differences or ratios of the values of common units are often used 
and outliers could occur on either the right or left tails. 

Outliers can also occur due to errors such as response error or keying error. 
These errors should be identified for correction during the editing process. 
Outlier procedures in editing systems usually identify only extreme values for 
a review because errors with non-extreme values are difficult to detect unless 
every value is checked. Outliers identified at the editing stage are, therefore, 
extreme values by a certain criterion and they could be genuine outliers (i.e., 
legitimate values) or gross errors. For this reason, they are sometimes called 
suspicious or questionable observations. 

There is a vast amount of literature on outliers for parametric cases or infinite 
populations. For instance, recent developments in outlier detection and treatment 
for samples from populations with parametric distributions can be found in Hawkins 
(1980) and Barnett and Lewis (1984). In the case of outliers in regression 
analysis, methods of detection and treatment are reviewed in Beisley, Kub and 
Welsch (1980) and Cook and Weisberg (1982). For a historical review of outliers 
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in statistics including Bayesian and robust regression methods see Beckman and 
Cook (1983). Robust estimation theory was treated in Huber (1981), Hampel et 
al. (1986) and Rousseeuw and Leroy (1987). 

However, not much has been written on the topic of outliers in survey sampling. 
In some situations, methods available in other branches of statistics can be 
used in sample surveys. These include surveys where the population can be 
reasonably well approximated by a parametric model or distribution and the 
sampling method is simple random sampling with a small sampling fraction. The 
second condition is required so that the sample observations can be assumed to 
be independent and identically distributed (often abbreviated by iid). 

Since outliers are usually dealt with in two steps, identification and treatment, 
some discussion on the identification and treatment of outliers in sample surveys 
will be given in Sections 2 and 3, respectively, along with a literature review 
in these areas. The paper will also review some of the methods used in the case 
of infinite skewed populations. 

Recognizing that the outlier problem in estimation is essentially a problem of 
robust estimation (i.e., an estimation procedure insensitive to the presence of 
outliers), robust estimation in sample surveys has recently drawn some attention 
(Chambers, 1986; Ghangurde, 1989a, 1989b, 1990; Cwet and Rivest, 1990; Lee, 
1990a, 1991). In a wide sense of the term, all methods which can be used to 
deal with outliers to obtain more efficient estimators can be regarded as robust 
estimation techniques. However, in the present context, we use the term in a 
narrow sense, that is, an estimation procedure which is robust to outliers and 
which can be used without detecting outliers explicitly. It has an automatic 
mechanism built-in to reduce the influence of outliers in estimation which makes 
identification of outliers unnecessary. In Section 4, recent developments in 
this area will be discussed. 

In Section 5, we will look at the current practices at Statistics Canada in 
dealing with the outlier problem. In the last section, summary and recommendations 
for dealing with outliers in sample surveys are given as well as possible topics 
for future research. 

2 OUTLIER DETECTION 
In this section we will review some outlier detection methods which can be used 
in sample surveys. There are several factors which affect the outlier methodology 
in sample surveys. These are: (1) No distributional assumption is usually made 
(An exception would be a super-population frame-work with some parametric model. 
This will be discussed later); (2) Sample units are usually dependent and often 
selected with unequal probabilities resulting in unequal sampling weights; (3) 
In many cases, survey populations are skewed. 

Even though most surveys collect multivariate data, only univariate methods have 
been used to detect outliers. However, some multivariate techniques for detecting 
multivariate outliers have been recently studied mainly for editing purposes. 
Also, there have been some research activities in the area of ratio and regression 
estimation in the presence of outliers. We will discuss these new developments 
after discussing the univariate case, which is widely used and better developed. 
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Hence, this section consists of three subsections: 2.1 Outlier Detection for the 
Univariate Case; 2.2 Outlier Detection for the Ratio and Regression Estimators; 
2.3 Multivariate Outlier Detection. 

In large scale surveys, outliers are often detected at a sub-population level. 
We will use the term "outlier detection (or treatment) domain" to mean the 
sub-population where outlier detection (or treatment, depending on the 
application) is performed. 

2.1 Univarlate Case 
Traditionally, outliers are detected using their relative distances from the 
centre of the data. Let YI1Y2 ..... y, be ordered observations in an outlier 
detection domain and let in and s be estimates of the location and scale, 
respectively. Then the relative distance of y 1  is defined by 

Iy,-mI 
S 
	 (2.1) 

If this measure exceeds a predetermined cutoff value c, then the observation 
is considered as an outlier. Alternatively, an interval given by 

(rn—cLs.m+cUs) 	- 	 (2.2) 

is used where CL and c, are predetermined values. If the population is skewed, 
unequal values of CL and c u  are used. Observations falling outside of this 
interval are declared as outliers. This interval will be referred to as the 
tolerance interval. 

The sample mean and variance are the statistics most frequently used to estimate 
the location and scale. Hence, it is natural to use them in calculating d,. 
This statistic based on the sample mean and variance is quite efficient for 
detecting a single outlier. In this case, the single outlier will be the 
observation with the largest d-value. However, it is not efficient in the 
presence of multiple outliers because the sample mean and variance are very 
sensitive to outliers, that is, not robust to outliers. The sample mean is 
shifted towards the outliers if they are clustered on one side, and the sample 
variance is greatly inflated. Therefore, the d-values of some outliers may 
appear rather small and the procedure fails to detect them. This problem is 
called the masking effect. 

To avoid this problem, robust estimates should be used for the location and 
scale. In the robust estimation literature, the ability of an estimator to 
be resistant to outliers is measured by the breakdown point which indicates 
the smallest fraction of outliers in the sample that can cause the estimator 
to "break down." In order to give the definition of the breakdown point of 
an estimator G, consider a sample Z-.{y ...... y} and a contaminated sample Z' 
which is obtained by replacing m values of Z with m arbitrary values (m < n). 
Let b(n;G.Z) be the maximum bias caused by such contamination. That is, 
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b(m:G,Z) -  suplG(Z') - G(Z)I. 	 (2.2a) 

The (finite-sample) breakdown point of G defined in Donoho and Huber (1983) 
is then given by 

€(G, Z)- min{;b(m;G. Z) 

(See also Rousseeuw and Leroy (1987), pp. 9-10.) For instance, the sample 
mean and variance have a breakdown point of 1/n. The same is true for outlier 
detection procedures based on them. 

On the other hand, the sample median has the maximum breakdown point of 0.5 
or 50%. For a high breakdown point scale estimate, the median absolute deviation 
(MAD) is frequently used in the robust statistics literature (Andrews et al., 
1972; Huber, 1981; Hampel et a1., 1986). The MAD is defined as 

MAD- median (1y 1 -median(y 1 )I}. 	 (2.3) 

The sample median and MAD could be good candidates for in and s in the definition 
(2.1). However, MAD is not popular in sample surveys. Instead, the lower and 
upper interquartile ranges (the definitions are given in (2.7)) are commonly 
used for their robustness, simplicity and nonparametric character. The breakdown 
point of the interquartile ranges is 0.25 which is much smaller than that of 
MAD (0.5). However, we normally expect only a small fraction of outliers. 

Now let w 1 , i-I.2,..., n. denote the sampling weights and u 1 be defined by 

WI 
U- 	 (2.4) 

If the sample is selected by simple random sampling (SRS), then u 1 -1/n. The 
0 -th sample quantile is defined by 

q• - 
1 

 (Yk + yt) 
	

(2.5) 

where 

and 	u 1 ~ O<u 1 . 	 (2.6) 

(Other definitions are possible but this definition has been used most often 
at Statistics Canada.) The median, the first and third quartiles are defined 
as above by taking 0-0.5.0.25 and 0.75, respectively. The sample quantiles 
may not be unique when there are sample units with the same y-value but different 
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w-values. To obtain unique sample quantiles, we suggest arranging the units 
with the same y-values by the descending order of their weights if the survey 
population is skewed to the right. 

As scale measures, the lower and upper quartile ranges are defined by 

dL - q 0 , 5  - q 0•25  

d-q 075 -q 0 . 	
( 2.7) 

Using these scale measures, the tolerance interval is constructed as 

(q05 - cLdL. q 05  + cd) 	 (2.8) 

with some predetermined values for CL and c, which can be chosen by examining 
past data or based on past experience. Any observation falling outside of 
this interval is identified as an outlier. This method will be referred to 
as the quartile method in this paper. Note that, in general, the interval is 
not symmetric. That is, dLødu which reflects the skewness in the data. Also 
the interval can be virtually made one-sided by choosing one of the c-values 
arbitrarily large or replacing one of the limits by the smallest or the largest 
possible value. In fact, a one-sided interval is often used because many 
survey data are bounded at one side. 

When this method is applied to real data, it happens that either dL or du are 
too small. This could result in observations with rather small deviations 
from the median being identified as outliers. This problem occurs when the 
data points are clustered together. To avoid this problem the definitions of 
dL and d u  are modified as follows: 

d-rnax(q 05 -q 025 . IAq05 1), 

d - max(q 075 - q 0•5 . I Aq05  I) 	 (2.9) 

for 05A51. The value of 0.05 for A seems adequate in most applications. 
However, the impact of a particular choice of the value for A should be examined 
before choosing the value. 

For trend data, several surveys use the method proposed by Hidiroglou and 
Berthelot (1986). The method is basically the same as the quartile method but 
is applied to transformed data. Outlier detection of trend data is usually 
done using period-to-period change ratios. These change ratios are usually 
skewed and more variable for the units with small y-values. Therefore, if the 
quartile method is directly applied to the ratios, then the ratios with small 
y-values are more likely to be identified as outliers. However, the units 
with large y-values have larger contribution to the trend and thus, they should 
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be more important. This is called the size masking effect. In order to 
neutralize this size masking effect, Hidiroglou and Berthelot (1986) used a 
two-step transformation. First, the ratios are transformed as follows: 

	

(1-. if 

0<r,<q0 	
(2.10) 

- 	 -1, if r g ~ q 05 , 
q 0•5  

where r 1 -y 1 (t+1)1y(t) and y 1 (t) is the y-value of unit i at time t. 	This 
transformation helps to reduce the skewne'ss of r 1 1 s. 	The second step 
transformation incorporates the magnitude of the data and is defined as follows: 

- s g [max{y(t), y 4 (t + 1 ))]V  (2.11) 

for 0:5V:51. The E 1  is referred to as the effect of unit i. The exponent V 
provides a control on the importance of the magnitude of the data. A large 
value of V increases the importance of large y-values and thus, reduces the 
size masking effect more. With V-C, the size masking effect is not reduced. 
A good illustration of this point is given in Cotton (1991). The quartile 
method is applied to E"s  to detect trend outliers. 

In order to detect influential observations for estimating the total, the 
quartile method is often applied to the weighted data with u 1 - 1/n, regardless 
of the sampling weights of the original data. The method will effectively 
detect outliers in weighted data. 	Besides the quartile method, informal 
procedures are sometimes used. 	For example, percentage contributions of 
weighted values to the estimate of the population total are compared with a 
predetermined allowable percentage to screen out the influential observations. 
On some occasions, more informal procedures are used such as inspection of a 
certain number of the largest weighted values by subject-matter experts 
(Earwaker, 1987; Maranda, 1989). 

The quartile method has been widely used at Statistics Canada for univariate 
outlier detection. Particular applications of this method will be discussed 
in detail in Section 5. 

There are many statistical tests available to detect univariate outliers for 
the cases of infinite populations (mostly with an assumption of normality). 
These include: Thompson's Studentized residual test (1935), Grubbs test (1950), 
Murphy's block test (1951), Dixon's gap test (1962) and Cook and Beckman's 
proposal based on an M-estimator (1980) to name a few. 

Lacking a distributional assumption in sample surveys, however, it is not 
usually possible to set up a test to detect outliers. However, if it is known 
that the survey population follows a certain parametric distribution 
approximately, it might be possible to derive a statistical test for detecting 
outliers. A testing procedure is given in Fuller (1991) to test whether the 
tail follows the Weibull or the exponential distribution and to decide whether 
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the Winsorized mean or the sample mean should be used. This method will be 
discussed in more detail in Section 3. A procedure such as this, which chooses 
a method depending on the observed sample, is called an adaptive procedure. 
(For more about this topic in infinite population cases, see Hogg (1974)). 
Seeing the results of Fuller, it seems worthwhile to try to model the population 
by a parametric distribution and use a more suitable or optimal procedure. 
Speaking from our experience, it seems that economic survey data often follow 
the lognormal or the gamma distributions quite closely. However, the task of 
developing a test for outliers would not be trivial when the sample design is 
complex. Further research is required in this area. 

2.2 Outliers In the Ratio and Regression Estimators 
In recent years, some authors have investigated procedures for making the ratio 
and regression estimators robust to outliers (Chambers, 1986; Ghangurde, 1989a, 
1989b; Gwet and Rivest, 1990; Lee, 1990a, 1991). There are basically two 
approaches to this. One approach is to employ the robust M-estiniation technique 
(Huber, 1981; Hanipel et al., 1986). In this approach, outlier detection is 
not necessary. This procedure will be discussed in more detail in Section 4. 
The other approach is to down-weight the outliers optimally. This will be 
also discussed in more detail in Section 3. Unlike the M-estimation approach, 
the second approach requires the detection of outliers. 

In the literature on regression analysis for infinite populations, there are 
many methods proposed for detection of regression outliers (for reviews of 
these methods see Beisley, Kuh and Welsch (1980), Cook and Weisberg (1982) and 
Beckman and Cook (1983)). Ghangurde (1989a) studied Cook's distance (Cook, 
1979) in the context of ratio estimation assuming simple random sampling. Let 
the ratio model be given by 

y, - f3x + 	 (2.12) 

where E(e)-O.V(e 4)-a 2va 2 x?. Then, Cook's statistic for the model is given 
by 

- rl 

where 

(y - ,) 
- 	r1i 1 - h,, 

h 
and 	

11 
 

(2.13) 

Here, y, - I(,)x, is the predicted value where 1 	is computed excluding unit i, 
h, - V(9,) - (x/u,)/>(x/u 1 ) is a measure of the leverage of unit i and S) is an 
estimator of a 2  based on (n- 1) observations excluding unit I. Note that r 4  is 
the Studentized residual. Cook's statistic is a normalized measure of the 
difference between 0 and . Cook's statistic will be large if either the 
point has a large Studentized residual or it is a leverage point. A leverage 
point is an outlier in the x-value. The statistic can be used to detect a 
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single outlier and can be extended for the case of multiple outliers. However, 
the problem of masking in the case of multiple outliers exists in sample surveys 
as in regression analysis of data from an infinite population. 

To avoid the masking effect problem, a robust regression equation can be used 
to detect regression outliers. The robust regression equation obtained by an 
M-estimator (Huber, 1981; Hampel et al., 1986) serves this purpose well. (More 
discussion about M-estimators will be given in Section 4.) Koenker and Bassett 
(1978) proposed to use the L i-regression equation, which minimizes the sum of 
absolute deviations, for the robust regression and outlier detection. However, 
these methods are not very good in detecting leverage points (outliers in the 
factor space) and some authors advocate using a generalized M-estimator (in 
short, GM-estimator) to estimate a robust regression equation (Hampel et al. 
1986; see also Section 4 in this paper). 

For the multiple regression estimator, we also have to consider the breakdown 
point aspect of the method because the regression M-estimators have a breakdown 
point of at most lip, where p is the dimension of 13.  Rousseeuw (1984) proposed 
a procedure with a very high breakdown point of ([n/2]-p+2)/n. It is called 
the least median of squares (US) estimator which minimizes the median of 
squared deviations. Rousseeuw and van Zomeren (1989) suggest using the U1S 
estimator along with a robust Mahalanobis distance (see the following subsection) 
to detect both ordinary regression outliers and leverage points. The normalized 
residuals calculated from the robust regression equation and robust scale 
estimate are then examined to detect regression outliers. This can be done 
simultaneously while the robust estimates are calculated. 

Detection of regression outliers for ratio and regression estimators is a new 
area which requires further research. 

2.3 Multivariate Case 

Detection of outliers in data which come from a multivariate distribution can 
be much more complex than in the univariate case. Unlike univariate outliers 
which must "stick out on the ends" of the distribution, multivariate outliers 
can "stick out" anywhere from the point cloud. While visual perception can 
aid in the univariate case, multidimensional data can not always be graphed. 
Further, univariate methods, such as those based on order statistics, are not 
easily extended to multidimensional data. 

As already mentioned, even though most survey data are multivariate, only 
univariate methods are currently being used to detect outliers in survey 
samples. This is probably sufficient for detecting influential observations 
since the objective there is to identify outliers with a great effect on an 
individual estimate of one population parameter. However the univariate methods 
are not sufficient when detecting suspicious observations during the editing 
process since values that are not extreme but are suspicious with respect to 
the values of other variables would not be detected. 
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One approach to overcome the problem would be to apply the Hidiroglou and 
Berthelot method discussed in Section 2.1 to the ratios of two variables for 
every pair of variables. This may however create a need to follow-up the same 
respondent several times to question the same field, to re-impute already 
imputed fields, to establish a hierarchy of priorities among bivariate 
relationships etc. Thus such an approach is too costly and complicated and 
should be replaced by a multivariate method that is suitable for multivariate 
survey data. 

Again, there exists a number of statistical tests to detect multivariate 
outliers in random samples from infinite populations, usually assuming the 
multivariate normal distribution, in the literature. In this section, a short 
review of several methods is presented. Some of the methods could be used in 
sample surveys provided that an SRS with a relatively small sampling fraction 
was selected from a relatively large finite population. A suitable 
transformation can be used to approximately meet the normal distribution 
assumption. 

A classical method of detecting outliers is to compute, for each observation 
YJ 	 ... y,), the Mahalanobis distance 

MD-(y,-y) T '(-y) 	 (2.14) 

where y is the sample mean vector and t is the sample covariance matrix. Once 
calculated, these distances are compared to a cutoff, usually a percentile of 
the F-distribution assuming normality, and if the distance exceeds the cutoff, 
the observation is deemed an outlier. If one believes that there is a single 
outlier, the observation with the largest distance would be identified as this 
outlier. 

To test for a specified number of outliers, say k, Wilks (1963) proposed the 
use of the ratio of the determinant of the sample scatter matrix with the k 
observations deleted, to the determinant of the full sample scatter matrix. 
The full sample scatter matrix, S, is defined by 

s- 	(y 1 y)(yy) T
. 

Let S(k) be the sample scatter matrix calculated in the same way as S after 
deleting the k observations. 

The Wilks Statistic is the minimum of the (n) scatter ratios, 

W- minI15(1C 
(a\ 	1S1 	 (2.16) 

Tables of the critical values for k-1,2 are given in Wilks (1963). 

- 10 - 



Rohif (1975) extended the univariate gap test (Dixon, 1950) to multivariate 
data to identify an unspecified number of outliers. Rohlf's method is based 
on the lengths of the edges of the minimum spanning trees (MST), or shortest 
simply connected graphs, defined by the data. This method is summarized as 
follows: 

Perform a univariate test for outliers in order to obtain a "good" estimate 
of the standard deviation for each variable. Let s 1  denote the good 
estimate of the standard deviation of the 1-th variable, 1-1.2 ..... p. 

Standardize each observation by dividing each variable by its standard 
deviation, that is, zT - ( y1/s1.y,2/s2 ..... y1/s)., 1-1,2 .....n. 

Calculate the MST using 

d,, — (z, - z,) T (z, - 	- 	( y,/s 1  - y11/s) 2 	(2.17) V P1.1 

as the measure of proximity between any pair of points i and j. 	(An 
algorithm is given by Rohif (1973) among others.) Let d 1 , i-i .....n-i, be 
the lengths of the (n-I) edges in the MST. 

To detect outliers, 2 methods were proposed: 

Since the d's follow approximately a gamma distribution, a quantile 
plot (often called QQ plot) against the gamma distribution can reveal 
possible outliers; 

Use the ratio (max{d))/d 2  to test whether outliers are present in 
the data where d 2  is the mean of dr's. Critical values for the test are 
given in Rohlf (1975). 

Graphical methods have been proposed by Andrews (1972) and more recently by 
Racon-Shone and Fung (1987). Andrews proposed mapping each multivariate 
observation into a function of a single variable. This function, f(t), is a 
linear combination of orthonormal functions with the coefficients being the 
observed vector. For instance, consider the p-vector YT=(YII.Y2 ..... YE,,), J(t) 
would be the function defined as 

f(t)- f(O-
Yii 
 y, 2 sin(t)+ y, 3 cos(t)+ y, 4 sin(2t)+ y15cos(2t)+ ... 	 (2.18) 

These a functions, one for each observation, are then plotted simultaneously 
against t in the range (-n.a). Thus the multidimensional data has been reduced 
to a two dimensional plot. Andrews has shown that the squared distance between 
the pair of functions f 1 (t) and J,(t) is proportional to the squared Euclidean 
distance between points I and j in the original space. That is, close curves 
correspond to close points in the original data. Outliers would then be 
identified as points whose curves are different from the other curves. 
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Bacon-Shone and Fung (1987) have developed a graphical method which is based 
on the Wilks statistic which was introduced earlier in this section. Their 
method is to calculate the ratios 

R(k)-IS(k) 1/ISI 

These ratios are plotted against x to produce a QQ plot which is used as an 
approximation to Wilk's A distribution for k (> 2) outliers. The QQ plot must 
be produced for each value of k, where k is the number of outliers thought to 
be present in the data set. 

While these approaches are based on the usual estimates of location and 
dispersion, work has been done on robust location and dispersion estimators. 
Devlin et al. (1975) investigated several robust estimators of dispersion and 
the effect of robust estimation on the principal components (see Devlin et al. 
(1981)). By using a robust estimator of dispersion, they are effectively 
"treating" the outliers by reducing their influence. These robust estimators 
are either formed on an element-by-element basis from separate bivariate 
analysis or by manipulating all of the variables at the same time. An example 
of the element -by -element approach is to estimate each of the off-diagonal 
elements of R, the correlation matrix, by some robust correlation coefficients. 
Unfortunately, the correlation matrix defined in this manner may not be positive 
definite, so the estimator may have to be "shrunk" (Devlin et al., 1975). 

Multivariate methods, ones which manipulate all the variables simultaneously, 
will produce a positive definite correlation matrix. An example of the 
multivariate approach is the use of multivariate trimming (Gnanadesikan and 
Kettenring, 1972). This method is an iterative procedure and is described as 
follows: 

Calculate, for each observation, 

d(f,-m')(y,-m'), 1-1.2. .... ii 	 (2.19) 

where m and £ are current estimators of location and dispersion 
respectively. 

Set aside the top a% from the data ordered by d i2  and recalculate m and 
in the usual manner. 

If the stopping rule (usually specified by the change in successive 5') 
is satisfied, then go to step 4, otherwise repeat steps 1 and 2. 

The final estimate of location and dispersion are the current estimates 
obtained by excluding the a% of the observations with the largest d. 

The robust methods described in the preceding paragraphs are only two of many 
which exist. In Devlin et al. (1981), the effects of 5 different estimators 
on the principal components are compared. 
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A more recent paper on using robust estimation to detect outliers is Rousseeuw 
and van Zomeren (1989). In this paper, the authors propose the use of the 
minimum volume ellipsoid estimator (MVE) introduced in Rousseeuw (1984). As 
an estimate of location, they use the center of the ellipsoid which covers 
half of the observations and the estimate of dispersion is determined from the 
same ellipsoid. These ellipsoids are obtained by a resampling algorithm where 
subsamples of (p+ 1) different observations are drawn, and the mean vector, 
rn 1 , and covariance matrix, £,, are calculated. The ellipsoid defined by these 
estimates are then inflated or deflated to contain h (-[n/2]+1) observations. 
The volume of this ellipsoid is proportional to the determinant of ,. The 
ellipsoid corresponding to the smallest volume is used to define the estimates 
of location and dispersion. Using these estimates, the authors then use the 
Mahalanobis distance to detect any outliers. 

Recent developments in detection of multivariate outliers at Statistics Canada 
will be discussed in Section 5. 

3 OUTLIER TREATMENT 

3.1 For the Univariate Case and the Ratio and Regression Estimators 
Outliers detected at the editing stage of the survey process are treated in 
various ways. In a manual editing system, the values of outliers are examined 
or followed-up and corrected if they have occurred- due to errors. In an 
automated editing system, detected outliers are often imputed. In some cases, 
nothing is done for the treatment of outliers if it is believed that they are 
not important. In this type of treatment, a subjective judgement plays a vital 
role. 

In the estimation stage, the treatment procedures are more formal and some of 
them were derived using an objective criterion such as MSE-efficiency. Of 
course, it is not difficult to find informal practices; some examples will be 
given in Section 5. 

It is important to point out that an outlier treatment in estimation normally 
introduces some bias. The main objective, in this case, is to reduce the 
variance of an unreliable unbiased estimator in the presence of outliers at 
the expense of a small bias. 

There are basically three approaches in formal treatments of outliers in 
estimation of finite population quantities: (1) changing the values of outliers 
by Winsorization; (2) reducing the weights of outliers (in many cases, the 
sampling weights); (3) using robust estimation techniques such as M-estimation. 

Trimming is a special case of (2) with the weights of outliers reduced to zero. 
However, trimming is seldom used because of its dramatic effect in estimation 
for skewed populations except in the case of ratio or regression estimation 
(see Section 5 for some examples which use trimming). On the other hand, 
Winsorization is frequently used for treating outliers. Winsorization has 
been used mostly in the case of simple random sampling due to the difficulty 
of extending the concept of order statistics in the case of unequal probability 
sampling. Weight reduction methods are also a preferred treatment in sample 
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surveys and there has been important research done in this area. In the 
following we will review the first two types of outlier treatment. The use 
of M-estimation will be discussed in Section 4. 

In the following discussion, the population will be the outlier treatment 
domain where outlier treatment is to be applied. 

In simple random sampling the unbiased estimator of the population total Y is 
given by ?-(N/n) (,y. Assume that y,, 1-1,2 .....a, are order statistics in a 
sample of size n from a population of size N. If the k largest order statistics 
are considered as outliers, the one-sided k- times -Winsorized estimator is 
defined by replacing these outlier values by y,,. That is, 

N( 
(3.1) 

A variant of the above Winsorized estimator is obtained by replacing the k 
outliers by a cut-off point, t which is Y,,..k<t:5yk.I. The cutoff point t is 
the threshold for identifying the outliers. The estimator obtained this way 
is given by 

W2(Y 4 kt). 	 (3.2) 

Instead of altering y-values, an estimator can be obtained by reducing the 
weights of k outliers to r(< N/n) and adjusting the weights of (a - k) non-outliers 
in an appropriate manner. Several estimators with reduced weights for outliers 
have been proposed. An earlier version of this method given by Bershad (1960) 
is defined as: 

Nk 

4*-i' I 
yl. 	 (3.3) 

In this form, only the weights for outliers were reduced to u keeping the 
weights for non-outliers intact. A general form of the estimator obtained 
from the weight reduction method is as follows: 

N rk* 
n-k 	 y. 	 (3.4) 

If we divide the above estimators by N, we obtain estimators for the population 
mean. The estimator given in (3.2), with N replaced by 1, was proposed and 
studied by Searis (1966) in the case of infinite populations with uniniodal, 
nonnegative and positively skewed distributions. Searis proved that there 
always exists an optimal cutoff point such that the estimator with Winsorization 
at the cutoff point is more efficient in terms of mean squared error (MSE) 
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than the sample mean. As an example, he studied the estimator assuming the 
exponential distribution and showed that large gains for small to moderate 
samples (5:~ n:550) could be achieved. 

Ernst (1980) investigated efficiencies of seven estimators for the mean of an 
infinite population. These include: Winsorization at an order statistic, 
Winsorization at a cutoff point, weight reduction and trimming. He studied 
the performance of the seven estimators under the eKponential distribution and 
showed that the estimator given in (3.2) with the optimal choice of t performed 
the best. The estimator given in (3.4) with the optimal value for the weight 
reduction factor r came out the second but their MSE-efficiencies were very 
close to each other. 

The optimality results in both of these papers (Searls, 1966; Ernst, 1980) 
were obtained by assuming sampling from an infinite population with a continuous 
distribution. However, we can expect similar results for simple random sampling 
from a finite population whose distribution can be approximated by such a 
continuous distribution. 

Fuller (1970, 1991) proposed the Winsorized mean and proved that the 
once-Winsorized mean is superior to the sample mean in terms of MSE when the 
right tail of the underlying distribution behaves like the Weibull with the 
shape parameter greater than one. He also proposed the "test-and-estimate" 
procedure in which the sample data determine whether the sample mean or the 
Winsorized mean should be used. Let the Weibull density be denoted by 

f(y;a.A)_YexP(XY) if y>O 
0. otherwise 	 (3.5) 

where k>Oanda>0. Let y- 1/abe the shape parameter of the Weibull distribution. 
Then, in terms of MSE, the once-Winsorized mean is more efficient than the 
sample mean if y>l, the same if v - i, and less efficient if y<1. Note that 
if y - 1, the density becomes the exponential. 

To use the test-and-estimate method, a preliminary test is first performed 
with the null hypothesis that y - l against the alternative y > 1 using only large 
observations because we are interested in the tail behavior only. If the test 
accepts the null hypothesis, then the sample mean is used. Otherwise, a special 
form of Winsorized mean similar to the one given by (3.2) is used. A Monte 
Carlo simulation using two real populations and a Weibull distribution showed 
dramatic gains achieved by the once- and twice-Winsorized means and the 
test-and-estimate procedure over the sample mean, especially for small samples. 
Fuller recommends the use of the test-and-estimate procedure for skewed 
populations to detect and treat outliers. 

In the case of a finite population, assuming a super-population model, Fuller 
(1991) proposed the following estimator for the total: 

?f 	y+(N-n), 	 (3.5a) 
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where j  is the minimum MSE estimator for the super-population mean. Fuller 
proved that this estimator has the minimum MSE for estimation of the total. 
In the case that the super-population follows the Weibull distribution, i may 
be replaced by the Winsorized mean or the estimate obtained by the 
test-and-estimate procedure. The estimator is a model-based estimator in the 
sense that the estimator is the sum of observed values and predicted values 
for (N-n) unobserved units. 

Now we turn to the weight reduction method. To use the estimator given by 
(3.4), we have to determine the reduced weight r for k outliers. Assuming 
that outliers are self-representative (that is, there is no unsainpled outlier 
in the population), Rao (1970) and Chinnappa (1976) assigned a weight of one 
to the k outliers. Then, r-1 in (3.4). This estimator will be referred to 
as 2R2• If K, the number of outliers in the population is known, then we can 
use the post-stratified estimator: 

N - K t  K 
n-k 	L_ 	 (3.6) 

It is noted that rRZ is a special case of the post-stratified estimator with 
k-K. Hidiroglou and Srinath (1981) determined the optimal weight of r by 
minimizing the MSE of the estimator given in (3.4) unconditional or conditional 
on the number of outliers in the sample, k. The optimal weight, conditional 
or unconditional, is a function of several population quantities: the number 
of outliers in the population, the population means and variances of outliers 
and non-outliers. These quantities are usually unknown but approximate values 
could be obtained from previous surveys or a census. The reweighted estimator 
with the optimal weight will be referred to as 3714.  They also studied another 
variant of the reweighted estimator (3.4) which is defined by 

N( 
 k gkyj NIn_k

- 1++— I 1-- y. (3.7) 2n n 2n 

The weight reduction for this estimator depends only on the number of outliers 
in the sample. From an extensive numerical study of the above four estimators 
(i.e., ?R2, 7 R3, ?R4 and ?R5) under various conditions which affect the 
performances of these estimators, they gave the following conclusions based 
on unconditional MSE-efficiencies of the estimators: (1) The use of the estimator 
?12 would result in substantial gains in efficiency over ?, (the expansion 
estimator) when the sampling fraction and the number of outliers in the 
population is small; (2) if the sampling fraction and K are moderately large, 
use of is recommended; (3) ?R4 can be used to advantage if the optimal 
weight reduction factor can be determined; (4) if K is known and large, ?R3 

should be used. It is quite interesting to observe that ?RZwas almost as good 
as ?R4when K was small. 
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Ghangurde (1989a, 1989b) proposed a ratio estimator which was obtained by 
optimally reducing the weight for outliers. He used the variance-inflation 
model to derive the form of the estimator using a model-based approach and 
then the weight reduction factor was computed by minimizing the design-based 
MSE. The variance-inflation model is given by 

y1 - 1x 1  + e 1 , 	 (3.8) 

where-(O,ax?), for 1-1,2,..., n-k, and e-(0,ox), for z-n-k+1 .....n. In the 

following discussion, we will assume that g- 1. The model parameters, f3, o 

and a are unknown. We assume that the first (n-k) units are non-outliers and 
the remaining k units are outliers for the ratio estimator 7 1 -(y/)X. Let 
V-a/o, where 0<W51 and the subscripts 1 and 2 designate the domains of 
non-outliers and outliers, respectively. 	Then, the best linear unbiased 
estimator .of f3 under the model (3.8) is given by 

y 
fri l-rs-k 	I 

This expression implies that if the variance inflation factor for the outliers 
is 11W, then the outliers should be down-weighted by the reciprocal of the 
variance inflation factor, i.e., by W. Ghangurde derived the design-based MSE 
formula for 0, conditional on k considering W as a weight reduction factor to 
be determined and then obtained the optimal weight reduction factor W O  by 
minimizing the conditional MSE. Then an outlier robust ratio estimator is 
given by 

RRI - O LOX I 

	 (3.10) 

where lo is obtained from (3.9) with W replaced by V 0 . If we take x-1 for 
all i, then (3.10) becomes: 

N(y 1 ~ W 
l-n-•I 	) 

n-k+Wk 	 (3.11) 

For this special case, the optimal W is given as 

[1 - (n - k)/(N( 1 - P))Jo + (n - k)P(o- 1 )2?2 
VO_

(1 -k/(NP))a+k(l -P)(o- )2y 	 (3.12) 

where P-K/k, 6-Y 1 /Y 2 , and Y andY 2  are the population means of non-outliers 
and outliers, respectively. Changurde (1989b) showed that the estimator in 
(3.11) with W o  is exactly the same as 'R4 obtained by Hidiroglou and Srinath 

(3.9) 
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(1981). In the general case of (3.10), he could not obtain an analytical 
solution. Instead, the optimal W was obtained by minimizing the model variance 
of OL  (Changurde, 1989b) and is given by 

a2X.LY+oZY1X2(12XY1X$.LY 	
(3.13) ° 

where the parameters used in the expression are super-population model quantities 
a -a). 

From the point of view that YR4  is a special case of lLOX in (3.10) with the 
optimal weight reduction factor W 0 , Ghangurde argued that the variance-inflation 
model provides a theoretical basis to the method of weight reduction often 
used in survey practice. 

This type of estimator, however, cannot be used unless the population quantities 
are known. Estimates of these quantities may be used to compute the optimal 
weight reduction factor. However, since k, the number of outliers in the 
sample, is often small, the usual unbiased estimator of unit variance based 
on the sample is unstable. Furthermore, the usual unbiased estimator of unit 
variance of outliers does not exist if k-i. To overcome this difficulty, 
Changurde (1989a) proposed the use of Minimum Norm Quadratic Unbiased Estimation 
(MINQUE), which was developed by Rao (1970), to estimate the variances a, and 

ut,. The performance of the estimator using estimated optimal weight reduction 
factors has not been studied. 

Note that all the methods discussed above can be used for estimation based on 
simple random samples. 

Departing from the rather restrictive assumption of SRS, Dalén (1987) and 
Tambay (1988) studied a very interesting method to treat influential 
observations, that is, outliers in weighted data. It is a hybrid of Winsorization 
by a cutoff and the weight reduction method. Let w 4  be the weight for unit .i. 
Now define 

(w t y I 	if wy<T 
Zj 	

T+(y,- Tiw,), otherwise  

where T is the threshold for detecting influential observations. When the 
weighted value, w, y , exceeds T, the modified value is the sum of the cutoff 
value T and the excess over T divided by the weight. Therefore, the excess 
over the cutoff (wy - T) gets a reduced weight of one. An estimate of the 
total is given by the sum of z L's. The resulting estimator reduces to Fuller's 
in (3.5a) in the case of SRS if i is estimated by the Winsorized mean with 
Winsorization at the cutoff (nT/N). Therefore, this method has a theoretical 
justification in the case of SRS from a finite population which follows 
approximately the Weibull at the right tail. 
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Dalén (1987) evaluated the performance of the estimator using samples from the 
lognormal distribution and real data comparing it with two other estimators: 
(1) the estimator obtained by reducing the weights of influential observations 
to one and keeping the weights for non-influential observations intact; (2) 
the Winsorized estimator obtained by Winsorizing the weighted values at the 
cutoff T. His estimator performed the best but the Winsorized estimator was 
very close to his. Tambay (1988) applied the method to a survey conducted at 
Statistics Canada and this will be discussed in Section 5. 

Conceptually, the weight reduction method is preferred to Winsorization or 
other changing value methods for treating outliers assuming that the detected 
outliers represent the outlier stratum in the population. However, this method 
poses a serious problem for surveys which collect multivariate data. In this 
case, each variable will have its own weight and this is not desirable in 
practice. Therefore, outlier detection and treatment is carried out by using 
only one key variable. Alternatively, the values of outliers can be changed 
even in the case of the weight reduction method. The resulting estimates would 
be the same no matter what method is used and one weight could be used for all 
variables. Variance estimation could be done in the usual manner. The bias 
of an outlier treated estimator can be estimated by the difference of this 
estimator and an unbiased estimator. Since this bias estimate will be inefficient 
for the same reason as the unbiased estimator, the bias estimate can be used 
merely as an indicator of the bias or an estimate averaged over time may be 
used for the computation of MSE. Further research is needed in this area. 

Whether the weight reduction method or the change-the-value method is used, 
it is desirable to keep the original weights or values on the data base and 
to make weight reduction or changes in values in the estimation procedures 
after outliers are detected. 

3.2 Multivariate Case 
There are two different objectives for the treatment of multivariate outliers. 
The first is to verify or correct suspicious data, the second is to decrease 
the impact of outlying, but correct, observations on the estimates. 

The first type of treatment is applied at the data capture and editing stage 
of a survey. A respondent is contacted if any of his reported values are not 
consistent with other values reported by the respondent, or with characteristics 
known for the respondent and/or with values reported by other respondents. If 
the follow-up is not successful or the respondent's values have an insignificant 
impact on the estimates, then the inconsistent values can be imputed, i.e., 
overwritten with values that are consistent. The treatment of follow-up and 
imputation is discussed in the literature, for example in Fellegi and Holt 
(1976), Hidiroglou and Berthelot (1986), and Kovar, MacMillan and Whitridge 
(1988). 

The second type of treatment is applied at the estimation stage of a survey. 
Its purpose is to decrease the impact of outliers (influential observations) 
on the estimates. Most surveys provide estimates of means or totals for several 
variables. However, since each estimate is usually based on one variable only, 
the influential observations are currently being detected and treated using 
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univariate techniques separately for each variable. Thus the methods of 
treatment discussed in Section 3.1 are applicable for multivariate data as 
well. 

Even though multivariate methods are currently not being used for the detection 
and treatment of influential observations, a need for them may exist in the 
future. For example, if multiple regression models are to be used to analyze 
data from complex surveys, multivariate methods would be needed to efficiently 
estimate the variance-covariance matrix using the survey data. 

4 ROBUST ESTIMATION 
The ultimate goal of outlier detection and treatment is to get a robust estimator. 
In classical estimation theory, the estimation of a population parameter is based 
on an assumption of some distribution, typically the normal distribution. The 
usual sample mean and variance estimators are optimal under normality. However, 
as mentioned earlier, these estimators are extremely sensitive to outliers. This 
point has been well recognized by statisticians for centuries and extreme values 
were often simply discarded from the calculation of the estimates. New techniques 
emerged to obtain estimators that are less sensitive to distributional assumption. 
Nonparametric or distribution-free techniques sprang up from the realization of 
nonrobustness of classical methods optimal under a certain parametric model. 
In fact, the sample mean is a nonparametric estimate of the population mean but 
it is nonrobust. On the other hand, the median is robust. Other techniques 
based on order statistics or ranks also belong to this category. Some nonparametric 
techniques are robust like the median for the location parameter but their 
efficiency under normality, which still plays the major role as a base model, 
is sometimes quite low. 

In the 1960s, people started investigating robust estimation from a different 
perspective as estimation from contaminated or long-tailed distributions. 
Realizing that a data set supposedly selected from a normal distribution may be 
contaminated with some rionnormal elements, new techniques of robust estimation 
were evolved. This approach, instead of abandoning a parametric model completely 
as in the case of nonparainetric techniques, tries to safeguard against a small 
deviation from the base model. In other words, it requires that the estimators 
must be robust when the data do not follow the base model exactly (for example 
when outliers are present in the data) but still good at the base model. It is 
like an insurance policy. A small premium is paid to get protection when an 
accident occurs. The premium in using a robust estimator is a small loss of 
efficiency as compared to the optimal estimator for the base model. The accident 
is the occurrence of outliers. 

The pioneer in this approach isHuber. In his landmark paper (Huber, 1964) he 
introduced an M-estimator (M stands for the maximum-likelihood) for the 
distribution which follows a normal in the middle and an exponential at the 
tails. Since the publication of this paper, many M-estimators were proposed and 
extensively studied and also applied. In the famous Princeton study (Andrews 
et al., 1972), the M-estimators for the population location parameter performed 
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very well among other alternatives to the sample mean. In general, an M-estimator 
for the location parameter 0 is defined as a solution to the following minimization 
problem: 

	

p(y 1 -O)-mtn 	 (4.1) 

or by an implicit equation, 

i v(y, - e) -  0  . 	. 	 (4.2) 

where p is an arbitrary function and y-O)-(/O)p(y-O). This definition 
includes a class of estimators one of which is the ordinary maximum likelihood 
estimator obtained by taking p(y-O)--logf(y-O), where f  is the probability 
density fucntion. Some examples for the choice of p-function or ip-function are 
given below: 

Least Squares 

ip(t) - t 	 (4.3) 

Huber (1964) 

( - C.

c. 	if t>c 
p(t) 

-
t. 	if 	I Sc 	 (4.4) 
 if 1<-c 

Andrews' Sine-Wave (Andrews et al., 1972) 

(t) t.',
if -nc ~ t 15  ,tc 

	

0. 	otherwise 	 (4.5) 

Tukey's Biweight (Beaton and Tukey, 1974) 

VM - 
( 

t ( C l _ t2)" if ItI:5c 
(4.6) 

	

0. 	if ItI>c 

The constant c in the above formulae is called the tuning factor which decides 
what extent the outliers are treated. For instance, in Huber's estimator, if 
c is very large, the estimator is the same as the least squares estimator (i.e. 
the sample mean) which means no treatment of outliers. Since M-estimators are 
not usually invariant with respect to scale (a), which is often a nuisance 
parameter, a robust scale estimator such as MAD should be used in solving (4.2) 
to get M-estimators. 

Now, let a regression model be given by 
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y - 13T x+e. e 1 -(O,a 2 v 1 ), 	 (4.7) 

where 13 and x 1  are p-column vectors. An M-estimator for the regression model is 
then given as a solution to the following vector equation: 

(y_(3Tx

)
L-0 . 

 

a[ 
	 (4.8) 

Since an explicit solution is not usually available, an iterative procedure is 
used to solve, the equation. These well publicized and extensively studied robust 
estimation techniques have been almost completely ignored by survey statisticians 
until recently when Chambers (1986) adopted the M-estimation technique to ratio 
estimation (p-i). His approach was model-based. The model-based ratio estimator 
for the population total Y is given by 

Yl ts — 	y+ 	 (4.9) 

where s denotes the sample, U-s is the non-sampled part of the population and 
is the BLU estimator for (3. Being the least-squares 

estimator, Is is vulnerable to outliers. To robustify the estimator Chambers 
used a robust estimator for 13,  say  OR.  However, the use of It introduces a bias 
in general and a bias correction is incorporated in the estimator. Hence, 
Chambers' estimator is defined as 

?c- 	Y+I3RX,+ Y z1(r) 	 (4.10) 

where 

— (I 
u-s 

S 

Y& -  
I- 

'1 vi 

and 4(r) is a bounded odd function. If, however, 4(r)-r, then F, becomes P., 
which is model-unbiased but not robust. On the other hand, if 4(r)-0, then there 
is no bias correction and the estimator has some bias but is variance efficient. 
Thus, using a non-zero bounded $-function gives a compromise which results in 
a more MSE-efficient estimator than ?L5. The estimator performed very well 
compared to other model-based and design-based estimators in a numerical experiment 
with real data (see Chambers (1986)) under various sampling designs. Cwet and 
Rivest (1990) observed that the Chambers estimator can be written as 

rc — 	 y4 + 
	

(4.11) 
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where 0, is an M-estimator for p which can be obtained using the modified residual 
procedure of Huber (1981). 

Gwet and Rivest (1990) also studied a robust ratio estimator using a generalized 
M-estimator (in short, GM-estimator). Their approach is design-based under 
simple random sampling. Assuming v-x 1 , their estimator is defined as 

(4.12) 
U 

where a o  is a solution to the following equation: 

w' ( '\  

- 	
Lf

1-0 	 (4.13) 
} 

for some bounded odd functions ip, and P2. K and L are scaling constants. The 
role of V, is to control the influence (Hampel's sense, see Hampel et al. (1986)) 
of the leverage points (i.e., outliers in the factor space) in estimation of 3 . 
If ip, is the identity function, then O c  becomes an ordinary M-estirnator. The 
robust estimator is biased but its conditional bias (on the proportion of outliers 
in the sample) behaves better than that of the ordinary ratio estimator. The 
numerical results in the paper showed superior performances of the robust estimator 
over the ordinary ratio estimator with several data sets which contained outliers. 
An estimator for the unconditional bias of the Gwet and Rivest estimator is given 
by 

N 
S 

(4.14) 

Therefore, a fully bias-corrected estimator can be oDtained by 

(4.15) 

Obviously, this estimator is not efficient but useful for comparisons of the 
proposed robust ratio estimators. For instance, Gwet and Rivest (1990) noticed 
that the Chambers estimator can be expressed as 

?-(1 - f)?GR + f?U 
	 (4.16) 

where f - n/N, which means that the Chambers model based-estimator is a compromise 
between the Gwet-Rivest biased but variance-efficient estimator and the unbiased 
but inefficient estimator given in (4.15). 

More recently, Lee (1990a, 1991) also used an M-estimator to define a robust 
regression M-estimator for estimation of the population total. Lee (1990a) 
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studied the robust regression M-estimator in the context of the PD-7 project 
(see Subsection 5.8.2). The estimator is defined in the same form as the 
Gwet-Rivest estimator and given by: 

- 	iLx1. 	 (4.17) 

where M  is anM-estimator for the regressioncoefficient3 T -( 1 ,3 2)andx-(x g1 .x, 2 ) 

with x 1  - 1. Note that generalization to multiple regression is straightforward. 
The superiority of this estimator over the usual regression estimator in terms 
of MSE was clearly demonstrated in a numerical study using the data from the 
Survey of Employment, Payroll and Hours (Lee, 1990a). Lee also tried to improve 
the regression estimator by using a robust estimator for the slope only, that 
is, in the form of ?E+ Mz (X2-Ez) where 1E  and t Ez  are the usual unbiased 
estimators for Y and X 2 x, 2 . This estimator is consistent in the sense of 
Cochran (1977) but only moderately robust and was substantially less efficient 
in terms of MSE in the numerical study mentioned above. 

In a model-based framework, Lee (1991) proposed a robust (multiple) regression 
estimator using the GM-estimation technique which is defined as follows: 

(4.18) 

where a c, is implicitly defined as a solution of the vector equation 
(x\ (y_TX\ x 

._. 	)=--O. 	 (4.19) 

for appropriately chosen real-valued vector functions w and V. The estimator 
was compared with the usual regression estimators and various versions of robust 
regression estimators using real and artificially generated data under two 
sampling designs, simple random sampling and stratified simple random sampling. 
It performed the best and its MSE was sometimes only half that of the usual 
regression estimator. Note that all numerical results mentioned in this section 
are based on repeated sampling experiment. 

There are a few issues to be addressed before the robust ratio and regression 
estimators can be used in sample surveys. Firstly, reasonable variance or MSE 
estimators should be derived. Secondly, there should be more research done into 
the bias problem. Thirdly, survey practitioners are used to attaching estimation 
weights to sampled units and produce various domain estimates. Since the 
M-estimators are nonlinear, this seems to be impossible. However, the problem 
can be avoided using a one-step procedure starting with a reasonable initial 
value which produces estimates as good as or sometimes even better than the 
fully-iterated estimates (see Lee (1991)). 
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These robust estimators are usually biased and not consistent (in the sense of 
Isaki and Fuller, 1982). If we require the consistency of such estimators, as 
suggested in Lee (1991), we may study the following: 

?RREG 	+ 0 	- Ix 1 ) 	 (4.20) 

with 0 ,5 0 ~5 1 and n, is the inclusion probability of unit I. The value for 0 should 
be chosen by some optimality criterion. To obtain consistency, we need that 
0-*1 as n -'. Note that this estimator includes all other robust estimators 
discussed here as special cases. 

5 CURRENT PRACTICES IN STATISTICS CANADA 
Many surveys conducted at Statistic Canada have no formal procedure to deal with 
outliers. However, both subject-matter experts and survey methodologists realize 
that the outlier problem cannot be ignored in most economic surveys and some 
social surveys. In many cases, the subject-matter experts have some idea from 
their experience or from other sources about what their estimates should look 
like. When they encounter an estimate which deviates markedly from what they 
expect, they investigate to find the causes. During this investigation they 
often find that a few large observations have caused the unusual estimate. 
Lacking formal and objective procedures, they often treat these observations 
subjectively. 

However, starting with Chinnappa (1976) and Hidiroglou and Srinath (1977), there 
has been considerable research in this area at Statistics Canada. It is interesting 
to note that almost all documents about the subject produced at Statistics Canada 
were written in the 1980's and 90's. Based on these documents, a survey of 
current practices in dealing with outlier problems at Statistics Canada will be 
presented. Gambino (1987), which discussed some methods used at Statistics 
Canada to detect and treat outliers, is the starting point of this survey. 

All the methods currently used or proposed at Statistics Canada are basically 
univariate techniques even though survey data are mostly multivariate in nature. 
Only recently have there been some attempts to use multivariate techniques to 
detect outliers at the data editing phase of the survey process. Some discussion 
will be given on the detection of multivariate outliers at the end of the section. 

5.1 Outlier Detection in the Generalized Edit and Imputation System (GElS) 
GElS has a module for the detection of outliers mainly for imputation purposes 
and in some cases for exploratory data analysis. Here outliers are detected 
for two reasons: (i) to identify values which are considered erroneous and 
thus, have to be imputed; (ii) to identify observations which should not be 
used as donors for the nearest neighbor imputation or for the calculation of 
imputed values in an estimator imputation. In Cotton (1991), the first kind 
is referred to as Outlier Detection Imputation (ODI) and the second kind as 
Outlier Detection Exclusion (ODE). Both types of outliers are detected using 
two intervals which are constructed by the quartile method described in Section 
2. Let the interval L, for ODIs be formed with C-C, and the interval L if  for 
ODEs with C - C,. Then C, must be less than or equal to C 1  so that L, includes 
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LE. Observations outside of L, are declared as ODIs and those inside of L, but 
outside of L E  are ODEs. The module can be used for both current period data 
and historical (monthly or yearly) trend data. For the historical trend data, 
the method by Hidiroglou and Berthelot (1986) is used. The user has to supply 
the values of C 1  and/or C E  otherwise no outliers are detected. If only one 
number is specified, then only one type of outlier will be detected. For 
instance, if only C, is specified, then only ODIs will be detected but not ODEs 
and vice versa. The value of A for the quartile method is set to 0.05 but can 
be overwritten. For a detailed description see Cotton (1991). 

5.2 Monthly Manufacturers Survey 
The Hidiroglou-Berthelot method is applied for the survey's editing system 
used in the regional offices. It is used to point suspicious values for further 
checking. Two consecutive month data for common units are used and the units 
with unusually large month-to-month change will be detected. The boundaries 
of the tolerance intervals are modified from time to time (roughly in six month 
intervals) to reflect the distributional changes of the data over time. 

5.3 Industrial Product Price indexes (IPPI) 
IPPI was formerly called Industrial Selling Price Indexes. It is a monthly 
sample survey of about 12,000 price quotes from the manufacturing sector of 
the economy. It produces 600 elementary indexes based on Principal Commodity 
Groups. The index is calculated as a weighted sum of price relatives. A price 
relative is defined as a ratio of the current price to the corresponding price 
in the base month. Let r 1 .r 2 .....r be the price relatives. Sande (1981) proposed 
to use the quartile method applied to the price relatives and Cotton (1982) 
studied and recommended its use with A - O.OS, C - 4 for small establishments and 
C-6 for large establishments. However, it has not been implemented. 

5.4 Monthly Wholesale Retail Trade Survey (MWRTS) 
The survey is conducted monthly with a large sample overlap between two 
consecutive months. Take-all units stay in the sample permanently while a 
small fraction of take-some units is rotated out of the sample each month 
(rotation has not been implemented yet). Two different kinds of outliers are 
to be detected: one kind is an influential observation for monthly level 
estimates and the other is such an observation for month-to-month or year-to-year 
change estimates. The current philosophy is to list -  observations that are 
influential. This is to supplement various listings such as edit reports and 
units' contribution to domain estimates that the subject matter personnel 
routinely examine. 

5.4.1 OutlIers in Current Month Data for MWRTS 
Giroux (1987) proposed different methods for detection and treatment of 
outliers depending on the number of outliers in the working stratum. The 
working stratum is a group of sample units to which outlier detection and 
treatment is applied. That is, it is equivalent to the outlier detection 
and treatment domain defined in this paper. Let the number of units in the 
stratum be a. When n - i, the value of the only unit is inspected manually 
by the subject-matter staff to determine whether the value is influential 
or not. When 1 <n:59, the so-called market share method is used. The method 
is applied to weighted data. Let z,wy, and let T-.,z,. We assume that 
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Z 41 S are in ascending order. The contribution of the unit i to T of the 
working stratum is defined by P z/T. If this number exceeds the predetermined 
maximum allowable contribution, say b A , depending on n, the unit is declared 
as an influential observation. The identified influential observations are 
deflated in such a way that the new values are equal to bT where T is the 
new total after deflation of the influential observations. If there are n o  
influential observations, the new total T' should satisfy the following 
equation: 

- 	
Zd+flobAT 
	

(5.1) 

where Z is the deflated value and equal to 	From this equation, we 
obtain 

1 

	

T_lbzj. 	 (5.2)JZ 
The deflated values are obtained by a form of Winsorization, that is, the 
influential observations are replaced by the maximum allowable value 
The method ensures that the treated values pass the outlier detection rule, 
that is, the contribution of the deflated values does not exceed b,,. However, 
the deflated values are not allowed to be smaller than the unweighted values. 
Therefore, when this situation arises, such influential values are replaced 
by their unweighted values, which is equivalent to reducing their weights 
to 1. 

When n ~t1O, the quartile method is used with the weighted data, ZSW I Y d . 
However, since monthly data consist of positive values and only large positive 
values are to be identified as outliers, only the upper bound is used to 
detect outliers. The weighted values of the identified outliers are replaced 
by the upper bound. Again, if a deflated value is smaller than its unweighted 
value, then it is replaced by its unweighted value. 

In either case, the treated values can be written as z- wywith 1:5w'<w,. 
Therefore, the treatment method can be viewed as a weight reduction method. 

The parameters, b in the case of the market-share method, C in the case of 
the quartile method, are to be modified depending on the percentage of units 
that are detected as outliers (for details, see Giroux (1987)). 

The methods described here have not been implemented. Most outliers are 
detected by edit procedures and it is felt preferable to merely detect (for 
investigation) influential observations for the major statistics. In 
addition, the survey is now using a variation of the test-and-estimate 
procedure given by Fuller (1991), An advantage of this method is that 
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outliers are detected by a statistical test and are treated by a simple 
Winsorization. However, there is a major hurdle to be overcome concerning 
its use in the survey, that is, the method is based on an SRS assumption 
which is not true in this case since the weights in the working stratum are 
not the same. To overcome this problem, the method has been tested by 
grouping observations with similar weights into weight classes and performing 
the test separately in each weight class using weighted data. There are 
several hundred outlier detection and treatment domains and in about half 
of such domains the test accepted the hypothesis that the tail distribution 
of the data follows the Weibull with the shape parameter greater than one. 
Encouragingly, the method has also been successfully used with weighted data 
in other organizations (see Porter (1980)). Another problem is that when 
the sample size is small, the test procedure may have very small power so 
that the alternative hypothesis which will lead to treatment of outliers may 
not be accepted often enough. 

5.4.2 Outliers In Trend Data for MWRTS 
In this case, a variant of the Hidiroglou and Berthelot method is used. The 
effect E is now defined as follows: 

- s1[max{w(t)y(t). w,(t + 1 )y 1 (t + 1 )}]", 	 (5.3) 

where w(I) is the weight attached to unit .1 at time C. Another difference 
is the way to determine the bounds of the tolerance interval which is 
constructed using the gap. The gap is defined by 

E -E11 	
if E, > E 05  

E 075 - E 05  

-(_  E-Efr1 	 (5.4) 
otherwise E 0 ,- E 025  

assuming E s's are arranged in ascending order. Let I be the first i such 
that G 1 >D for a given constant D from the upper half of E's and let lbe 
the first i such that G 4 >D from the lower half of E 1 s. Then the tolerance 
interval is (E,.. E,) and the observations corresponding to E 1  ..... E, 1  and 
E,. 1  ..... E are detected as outliers. These observations are flagged for 
inspection. A detailed description of the method is given in Giroux (1986). 

5.5 The Annual Tax Data Program for Small Area and Administrative Data (SAAD) 
The tax data consists of about 14 million Ti tax records. The values of data 
are mostly positive but can be negative in the case of financial loss. Outliers 
are detected using the extreme value limits separately determined for positive 
and negative values. The limits are established by the Tukey Fence Method 
(Tukey, 1977) using a 2% sample by SRS from the 14 million tax records. Tukey 
defined two fences as follows: 

Inner Fence (IF)- q 07,+ 1.5(q 075 -q 025 ), 

	

Outer Fence (OF) - q 07  + 3(q0 - 	 (5.5) 
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where q025  and  q075  are the first and third quartiles. Using these fences, the 
extreme value limit for positive data is determined as follows: 

Stepi: From the 100 largest values of the 2% sample, determine OF. 

Step2: If the number of values > OF in the 2% sample is less than or equal 
to 7, than LIMIT1 - OF. Otherwise, using the values > OF, new OF is 
calculated. Repeat this step with the new OF until there is 7 or fewer 
values > the new OF. 

Step3: Determine LIMIT2 using the same procedure for LIMIT1 after replacing 
OF with IF. 

Step4: Set the extreme value limit equal to the average of LIMIT1 and LIMIT2. 

The extreme value limit for negative data is determined in the same way as 
above using absolute values. The values lying outside of these limits are 
identified as outliers (up to 150 such values) and examined by subject matter 
experts. Their judgement determines whether outlying values should be modified 
or deleted. A detailed description can be found in Auger (1983). 

A method based on the Chebychev inequality was studied and found to produce 
similar results compared to the fence method (see Ambroise (1986)). 

5.6 Monthly Traveller Accommodation Survey 
The survey was designed but never implemented. In its unimplemented design 
another variant of the Hidiroglou and Berthelot method was proposed (Parson, 
1985). The change ratios are defined differently using the weighted values, 
that is, r,-z,(t)/z 1 (t+1) where z(1)-w(t)y,(t). The effect is also defined 
differently as 

E 
- J(r 1 _ 1 )[max{z((), z,(t + 1 ))]V 	if1 	

5 6 1- 1 /r,)[max{z(t). z(t + 1 ))]V,  otherwise 	 ( 	) 

But the tolerance interval is constructed in the same way as described in 
Section 2. In fact, this is an earlier version of the Hidiroglou and Berthelot 
method (see Hidiroglou and Berthelot (1982)). 

5.7 Monthly Shipment, Inventories and Orders Survey (MSIOS) 
Tambay (1988) studied outlier detection and treatment methods for the survey 
taking an integrated approach in the sense that both level and trend estimates 
were considered simultaneously. A change in the population totals in two 
different periods is usually estimated by the difference of two estimated 
totals. If 7(t) and 7(t+ 1) are the two estimated totals, It can be written as 

- 29 - 



?(t)- 7(t - 1)-
s(t)

w(t)y(t) 
- 	

1) w(t 1 	- 1) 

- 	- w(t){y(t)- y(t - 1 )}+ 	- {w(t)- w(t- 1)}y(t) I) L 	I) 

- 
c(f. I-I)

{w(t)- w(t - 1)}{y(t) - y(t - 1 )} 

+
aU)  w(t)y(t)- 4 1 _ 1) W(t - 1 )y(t - 1). 	(5.7) 

where s(t)is the sample at time t, c(t,t-1)is the common part ofs(t)ands(t-1), 
a(t)denotes additions to s(t) and d(t - 1 ) is the set of units deleted from s(t-1). 
What matters in estimation of totals is the weighted values z(t)-w(t)y(t). Thus, 
outlier detection and treatment is applied to the weighted values, z(t). In 
the above expression, the second and third terms are usually insignificant 
relative to the first and nothing is done to the units deleted from the sample. 
Hence, it is necessary to perform outlier detection and treatment to 
w(t){y(t)-y(t-1)}to obtain a more stable change estimate. Both level and trend 
outliers are detected by using the quartile method. For the level outliers, 
however, only the upper limit is used because the y-values are positive and 
small values do not cause the outlier problem. 

For the treatment, Tambay (1988) studied basically two methods, Winsorization 
and a hybrid of Winsorization and a weight reduction method (Dalén, 1987) which 
was discussed in Section 3. The methods were applied in various ways, i.e., 
to level only, trend only, to both level and trend, and in an integrated 
fashion. Such applications were evaluated by comparing untreated estimates 
with treated estimates for both level and trend. The approach is markedly 
different from the traditional way of detecting and treating outliers for level 
and trend data separately. Tambay (1988) concluded that this approach had 
some potential. 

5.8 Survey of Employment, Payroll and Hours (SEPH) 

5.8.1 Current Outlier Methodology for SEPH 
SEPH is a monthly survey of establishments to estimate totals and ratios of 
employment related variables. It is stratified by Standard Industrial 
Classification (SIC), geography and employment size. Large employers form 
a separate stratum called take-all (size group 4) and are selected with 
certainty. Smaller units are put in the three take-some strata (size groups 
1, 2 and 3) according to their estimated employment size. The strata with 
smallest units are usually large in number of units and sampled with small 
sampling fractions. Therefore, the sampled units in these strata have large 
weights. If a unit in such a stratum grows rapidly in employment size or 
if its employment size was greatly underestimated, the unit becomes influential 
in estimation. 

The survey has a formal outlier procedure. Outliers are detected using 
predetermined limits called outlier boundaries for the number of employment 
for each size stratum except the take-all strata. The limits are determined 
by considering sampling weights and the distribution within size stratum. 
Based on the logic that these kinds of outliers are self-representative 
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(Chinnappa, 1976), that is, there is no such unit unsampled in the stratum, 
identified outliers get their weights reduced to one and the weights for the 
remaining units are recalculated using reduced stratum population and sample 
sizes. For instance, if N, n and n o  are the stratum population and sample 
sizes and the number of outliers, respectively, then the new weight for the 
stratum is (N-n 0 )/(n-n 0 ). 

The bias and the MSE of the estimator based on this procedure have been 
worked out by Hidiroglou and Srinath (1981) and it was shown that the estimator 
is very efficient when the number of outliers in the population is small. 
Such treatment of outliers is viewed as too drastic by some authors (see 
Gainbino (1985)) and could cause a serious negative bias. Therefore, outlier 
boundaries are set to be much larger than the stratum boundaries. For 
instance, the stratum boundary of the size group 3 is 199 but the outlier 
boundary for that size group is 435. The details of the methodology are 
given in Schiopu-Kratina and Srinath (1986). 

5.8.2 The Methods Used In the P0-7 Project 
The PD-7 project is designed to study the use of administrative data called 
PD-7 data for estimation of population totals for SEPH as auxiliary 
information. The PD-7 data are monthly data on remittances made by employers 
which have fairly strong correlations with the employment data of SEPH. 
Cotton (1987) studied the feasibility of using the PD-7 data as auxiliary 
information. Irregular remittances, bulk payments, etc., create the 
occurrence of outliers in the PD-7 data. Cotton used the moving average of 
2 or 3 month remittances to dampen the effect of outliers and showed a 
possibility of getting a considerable gain over the current expansion estimator 
by using the separate regression estimator. 

Lee and Croal (1989, 1991) conducted a large scale simulation study to compare 
various ratio and regression estimators using SEPH data. They used the 
moving median of 3 month remittances instead of the moving average. They 
concluded that the combined regression estimator performed the best among 
the estimators studied. They also noticed that outliers in terms of linear 
relation adversely affected the performance of the ratio and regression 
estimators. Realizing the masking effect problem in the ordinary residual 
procedure based on the least squares estimator for detection of outliers, 
they used the regression quantile technique proposed for robust regression 
estimation (the resulting regression equation could be called the median 
regression) by Koenker and Bassett (1978). The technique is based on the 
least absolute deviation criterion, which is a generalization of the median. 
Detected outliers were deleted from the computation of regression coefficients 
(i.e., trimming was used) and the regression estimator was formed in the 
usual way by using these regression coefficients. This procedure showed 
considerable improvement over the untreated regression estimator. The use 
of the robust estimates of the regression coefficients directly to form the 
regression estimator was less satisfactory. 
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Lee (1990a, 1991) studied robust regression M-estimators discussed in Section 
4 in the same context to obtain a more MSE-efficient regression estimator 
in the presence of outliers. His estimator was far more superior to the 
ordinary regression estimator. Currently, the generalized regression 
estimator is being studied. This estimator is slightly more robust than the 
combined regression estimator (see Lee (1990b)). However, it is not robust 
enough and can be improved by treating outliers. 

Armstrong and St-Martin (1991) studied an iterating procedure using the 
residuals obtained from the regression equation used in the generalized 
regression estimator. An observation is flagged as an outlier if its residual 
lies beyond 3 standard deviations. The regression equation and residuals 
are recalculated after omitting the detected outliers and a search for more 
outliers using the same criterion is conducted. This procedure is repeated 
until no more outliers are detected. Then the generalized regression estimator 
is formed in the usual way using only the slope estimate of the last regression 
equation obtained from the iterative procedure. The outliers in this estimator 
exert the full sampling weight but do not contribute to the regression 
correction. This kind of estimator may be said to be partially robustified, 
that is, only a robust estimate of the slope and not the intercept is used. 
The estimator is less efficient with respect to MSE than a fully robustified 
estimator such as 7L2  discussed in Section 4. Also the estimator could suffer 
from the masking effect since it uses a non-robust regression equation to 
detect outliers. The estimator, however, is consistent in the sense of 
Cochran (1977), that is, the estimator is exactly the same as the population 
total when the whole population is sampled. 

5.9 Agricultural Surveys 
Several methods are used in agricultural surveys. Those methods are subjective 
and somewhat less formal than the ones described above. However, for the 
larger surveys such as the National Farm Survey (NFS), a formal method was 
proposed (Maranda 1989) and is being used. Some details are given in the 
following: 

5.9.1 National Farm Survey (NFS) 
NFS is the largest agricultural survey conducted by Statistics Canada. It 
is an annual survey with a complex sample design. The survey is based on a 
multiple frame: an area frame of relatively small farms and a list frame of 
larger farms. The largest farms in the list frame are specified to be 
selected with certainty. Two independent replicate samples are selected 
from each stratum. Sampling fractions of the area frame are sometimes very 
small and the weights of sampled units are very large. If a unit belonging 
to such a stratum grows rapidly, then it may make a unusually large contribution 
to the total estimate. 

Outliers are detected by.subject matter specialists by inspecting the largest 
25 contributors for each province to the provincial estimate. (The total 
sample size is about 45,000.) Each of them is checked first to determine 
if it has been imputed. If so, the imputation is redone to get a more 
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reasonable value. Otherwise, subject-matter specialists decide whether it 
should be treated. Usually 10-15 observations are treated by the following 
method: 

The outlier detection and treatment domain is the list or area sample within 
a replicate. Identified outliers are given a predetermined weight, say w, 
which is smaller than the sampling weight and often equal to one. Then the 
weight of the remaining units is computed by (N-aw)/(n-a) where a is the 
number of identified outliers in the outlier detection and treatment domain. 

5.9.2 Crop Reporting Panel 
Each sampled unit receives a series of nine questionnaires every year. These 
contain questions that are relevant for the time of the year when the 
questionnaires are sent. The panel is more or less the same every year. 
Thus outliers are detected using the year-to-year change. All records with 
a change of 35% or more for a key item are identified, and also records with 
item values exceeding historically derived limits are detected. Treatment 
of identified outliers is dependent on the estimation procedure applied to 
the item. If an average is desired, then outlier values are simply dropped 
from the calculation. For the ratio estimate of a total, outliers are 
excluded from the computation of the slope of the ratio model and then their 
values are added to the ratio estimate calculated without the outliers. 

5.10 Other Examples 
There are numerous surveys which use informal outlier procedures whenever a 
problem occurs. When preliminary estimates are produced and analyzed by subject 
matter experts, they often encounter some unexpected estimates. Then they try 
to find some causes. If causes are correctable data capture errors, those 
errors are corrected. If the problem was caused by genuine outliers or 
influential observations, then some form of outlier treatment is used. Sometimes 
methodologists are called for help. Normally extreme values, too large or too 
small, with large weights cause the trouble and a weight reduction method is 
often used to treat such observations. The following is one such example. 

5.10.1 Survey of Consumer Finances 
Ghangurde (1986) described an outlier problem the Survey of Consumer Finance 
had for income estimates for Edmonton in 1983 and 1985. In 1983, a unit 
with an extremely large income and large subweight blew up the estimate too 
much. The subweight is a factor which is used to adjust the design sampling 
weight to make the sample taken at the time of the sample design represent 
the much grown area so that the adjusted weight is much larger than the 
original sampling weight. Had it not been for the subweight, the estimate 
would have been acceptable. To treat the unit, the subweight of the unit 
was reduced to one and the sampling weights of all other units in the city 
were inflated to compensate for the weight reduction. 

The problem encountered in 1985 was quite different from the above. In this 
case, the estimate decreased substantially from the previous year's estimate. 
The reason was that units with small income had large subweights and contributed 
to the substantial decrease in the estimate. For this problem, a weight 
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reduction method was used, that is, the subweights of those units were reduced 
to one. But only the weights of the units in the stratum where the outliers 
were found were inflated. 

5.11 Multivariate Outlier Detection for Editing Survey Data 
Editing survey data is a fairly expensive part of the whole survey operation. 
The cost increases as the sample size and the number of variables increase. 
Outlier detection methodology has been used to identify "suspicious" 
observations to correct errors or confirm their values. Only univariate 
techniques have been used for each variable separately even though most survey 
data collected at Statistics Canada are multivariate. Detection of outliers 
in this way is not only costly but also not appropriate since it fails to 
detect structural outliers. By "structural outliers" we mean those observations 
which markedly deviate from the correlation structure of the bulk of the data. 
Therefore, there is a need to develop a suitable multivariate outlier detection 
methodology. 

In economic surveys, some variables are more closely related than others. When 
the number of variables is large, it would be a good idea to group the variables 
into sets of highly correlated variables first. Then multivariate outlier 
detection methods are applied to the groups of variables independently. If 
it is done this way, not only detection of outliers but also checking and 
correcting of any erroneous values will be easier. Biloq and Berthelot (1990) 
studied a grouping method for this purpose using factor analysis. The method 
was shown to work quite well. 

They also studied two outlier detection methods for bivariate data. One was 
the Hidiroglou-Berthelot method applied to the ratios of two current variables. 
The results were encouraging but the method can not be easily generalized for 
more than two-dimensional data. The other method studied was to use a regression 
analysis technique. One variable was picked arbitrarily as the response 
variable and the other variable as the concomitant variable. Then the confidence 
band was used to detect outliers. A problem was the insensitivity of the 
method to bad leverage points due to very wide confidence bands for those 
points. Another problem was that the results were not the same when the roles 
of the variables were switched. This difficulty can be overcome by using 
orthogonal regression given in Fuller (1987). The problem of insensitivity 
to bad leverage points can also be solved by using robust regression (Rousseeuw 
and van Zomeren, 1989). However, the method cannot be generalized for a more 
than two-dimensional case. 

Yung (1990) explored a method using principal component analysis for the 
multivariate outlier detection problem. Yung was particularly interested in 
identifying observations which deviate significantly from the multiple linear 
trends (relations) which may exist in the data. The first step was to calculate 
a robust dispersion estimate 

= 	 (y 1 -i)' 	 (5.8) 
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where 1i is the vector of coordinate-wise medians and the weight w is defined 
by 

1 
wl - I ya —I + II , 	 (5.9) 

where II is the Euclidean norm. 

Using the t, robust principal components were calculated. The first principal 
component, which corresponds to the largest eigenvalue, represents the first 
major trend in the data and the second principal component represents the 
second major trend and so on. If an observation is far away from all of the 
principal components, then it is an outlier. The distance from a data point 
to a principal component is measured by the principal component residual which 
is defined by 

- (y, - ti)" (y - 1i) - (P(y - 1i)} 2 , 	 ( 5.10) 

which is the Euclidean distance from the point to the principal component P, 
Then the statistic to be used is 

MR,- min(R, 1 ). 	 (5.11) 

A large value of the statistic indicates that the point is an outlier in terms 
of all the linear trends present in the data. Yung suggested to use the 
statistic with a univariate technique to detect outliers. A main problem of 
the method is that some obvious outliers may not be detected. For instance, 
if an observation is situated far away from all the principal components except 
the last and least important trend, and is very close to the last trend, then 
it will not be detected as an outlier. Therefore, it would be better to use 
MR,- rnin(R,,) where k is small and the first k principal components explain 

a large portion of the total variability in the data. 

Very recently White (1991) also studied multivariate outlier detection. His 
approach was to use a robust Mahalanobis distance; that is, the Mahalanobis 
distance calculated using robust location and dispersion estimates. The robust 
location estimate he used was a multivariate generalization of the median since 
it was defined by the least absolute deviation (L 1 -norm) criterion and is 
different from the coordinate-wise median that Yung used. The robust dispersion 
estimate was calculated using the projection pursuit algorithm. The method 
has a very high breakdown point, that is, it is able to resist against a high 
portion of outliers. The method was applied to the 1987 Retail Trade Survey 
data with a logarithmic transformation to induce symmetry. 

The results were quite encouraging. However, some observations whose values 
are small and not usually considered outliers were detected as outliers mainly 
because of the log- trans formation. Another problem was that observations lying 
on the trend line very closely but far away from the centre were detected as 

- 35 - 



outliers. This is correct according to the way the method works; however, for 
our purpose it is not desirable. For the first problem, we can use the sum 
of all variable values. If the sum of a detected outlier is small, we do not 
declare the observation as an outlier. More research is needed here as well. 

6 SUMMARY AND RECOMMENDATiONS 
In preceding chapters several methods of detection and treatment of outliers as 
well as a number of robust estimation techniques applicable for use in sample 
surveys were discussed. In this concluding chapter we want to summarize briefly 
problems related to the occurrence of outliers in samples from surveys, highlight 
methods suitable for surveys and identify topics for future research in this 
field. 

6.1 Summary 
The definition of an outlier in sample surveys is different from the outlier 
definitions found in the literature on samples from infinite populations 
possessing some parametric distribution. An observed value which is quite 
different from the majority of values in the sample is considered as an outlier 
in sample surveys as well as in infinite population theories. However the 
reasons for their occurrence are different. The outlying value in a sample 
from a surveyed finite population could either be in error or could be a 
legitimate value selected from the tails of the finite population, thus it is 
usually not considered as a contaminant coming from a different population. 

Errors can be introduced in the data at different stages of survey processing 
- by the respondent reporting incorrect data, during coding or data capture. 
Outliers with correct values are also inevitable in sample surveys due to the 
skewness of the surveyed populations and existence of a few extreme value in 
most of the finite populations. Although stratified sampling designs and PPS 
sampling try to eliminate the problem these methods cannot succeed totally 
mainly because of the discrepancies between the size measures on the frame and 
at the time of the survey. 

Outlying but legitimate values that reside on the clean survey file can become 
influential observations. An influential observation is an observation that 
contributes greatly to the estimate. For instance, if one of the most extreme 
values is selected by an SRS procedure it would still be assumed that this 
extreme value represents N/n of the population unless an outlier treatment or 
a robust estimator is applied. It should be noted that an outlying legitimate 
value is not necessarily an influential observation, for example, an extreme 
value in a take-all stratum that represents only itself. On the other hand, 
a non-extreme observation can also become influential under certain 
circumstances. 

Even though we make a clear distinction between an outlying value in error and 
an outlier that carries a correct value, this is usually not known with certainty 
in practice. However, we assume that the editing procedures are successful 
in detecting errors and that the clean survey file contains only correct or 
reasonably well imputed values. 
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Many outlier detection methods were developed under the assumption of selecting 
a random sample from an infinite population with a parametric distribution. 
These methods could be used to detect outliers in sample surveys if a large 
SRS sample is selected with a relatively small sampling fraction from a large 
finite population which follows approximately a parametric distribution. 

Two basic approaches exist for detection of univariate outliers: i) using 
relative distances from the center of the data, or ii) using a tolerance 
interval. As discussed in Section 2.1, both approaches suffer from masking 
effect when nonrobust estimates of scale and location are used and thus estimates 
with a high breakdown point should be used instead. 

The quantile method described in Section 2.1 is commonly used to detect 
univariate (or sometimes bivariate) outliers in sample surveys. This method 
is not based on any parametric assumption and uses robust estimates of scale 
and location. It can either be applied to the variable y itself or to the 
ratios of two variables in the case of bivariate data or to trends. Often the 
data is transformed before the method is applied. Several examples of the 
quantile method applications in Statistics Canada were given in Chapter 5. 

For ratio and regression estimation, detection methods that identify both 
outliers for the slope estimation as well as outliers in the auxiliary variable 
(leverage points) are needed. Cook's squared distance measures the difference 
between an estimate obtained using all data and an estimate using the slope 
estimated with the point deleted. Its use in the case of SRS and ratio 
estimation is discussed in Section 2.2. 

Since most surveys collect data on several variables, we also recognize a 
multivariate outlier. A multivariate outlier is a survey unit showing 
relationships among variables that are different from relationships followed 
by most of the survey units or carrying extreme values. Again, such an outlier 
can either be in error or correct. Multivariate outlier detection methods are 
mainly needed to detect records suspected to be in error at the editing stage. 
Even though survey data are multivariate, the current editing systems usually 
use only univariate or bivariate techniques to detect outliers. The use of 
suitable multivariate techniques for detection of outliers would result in 
reducing costs of editing, follow-up and data quality improvement. The GElS 
system discussed in Chapter 5 looks at the relationships among different 
variables only within a record to detect inconsistencies within a record. It 
does not detect multivariate outliers. Methods discussed in Section 2.3 of 
this paper assume samples from multivariate normal distributions. However, 
some could be adopted for sample surveys. Two examples of successful applications 
of multivariate detection techniques were given in Section 5.1. 

The outlier treatment depends on the outlier type. Outlying observations 
suspected to be in error are usually reviewed and corrected if necessary for 
large sample units, and imputed for small sample units. Three formal types 
of treatments exist for outliers that are influential: i) weight reduction, 
ii) change of the outlying value (trimming, Winsorization), and iii) robust 
estimation. The first two were discussed in Section 3.1 and the last in Chapter 
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4. The untreated estimates are unbiased but have a very large variance. The 
treatment methods attempt to reduce the variance at the expense of introducing 
bias in order to reduce the MSE. 

Although either of the first two methods has basically the same effect on the 
estimates, the weight reduction seems to be more appropriate for surveys than 
changing reported values. Given that the data are usually multivariate and 
that outliers detected for different variables are not necessarily the same 
units, a different weight reduction may be needed for outliers in every survey 
variable. Also, for a given variable, estimates for different domains may be 
required and that may result in different weight reductions or changes in 
values for every domain of interest. It should be noted that these weight 
reductions or changes in values are done in the estimation procedures after 
outliers have been detected but not on the data base. A combination of the 
two methods is suggested in Section 3.1. The problem to be solved is to select 
a weight reduction factor or a cutoff point for Winsorization that are optimal, 
i.e., to minimize the MSE of a given estimator. 

The right choice of a treatment will depend on a particular survey and also 
on the data observed. The test- and- estimate procedure suggested by Fuller 
selects a treatment method depending on the result of a test of hypotheses 
about the tail distribution and is also discussed in Section 3.1. 

Estimators that employ a robust estimation technique such as M-estimation do 
not require detection of outliers. Since the presence of outliers in sample 
surveys is almost guaranteed, robust estimation techniques should be applied 
as much as possible. A discussion of the use of robust regression in surveys 
was given in Chapter 4. 

6.2 TopIcs for Further Research 
Research should be done into the use of univariate outlier detection techniques 
based on distributional assumptions for survey data. Since often past data 
are available and can be approximated by some known infinite distributions 
(e.g., economic data often follow a log-normal or a Gamma distribution), optimal 
cut-off points (e.g., in minimum MSE sense) could be determined instead of 
using arbitrarily chosen points. 

More research is also required into the detection of ratio and regression 
estimation outliers in complex surveys. Methods based on estimators with a 
high breakdown point should be studied to avoid the masking effect in detection 
of multiple outliers. Methods that detect both the outliers in the linear 
relationship as well as leverage points (the outliers in the factor space) are 
needed. 

Since implementation of multivariate techniques for detection of suspicious 
data points would make editing and corrective procedures more efficient and 
improve the quality of the data, investigation of suitable niultivariate 
techniques should continue. Such techniques would also be useful for 
multivariate analysis of survey data. 
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Fuller's test-and-estimate procedure, which chooses an outlier treatment method 
after the tail distribution has been tested using the observed data, should 
be extended so that distributional assumptions different from Fuller's but 
more suitable for survey populations could be made. Such an extension would 
require theoretical work as well as numerical studies with real finite 
populations. 

The choice of the optimal weight when using the weight reduction method for 
treatment as well as determination of the optimal value for treatment by 
winsorization should be researched more. Since the existing formulas for 
determining the optimal weight reduction factors are functions of unknown 
population parameters, numerical studies should be conducted to investigate 
the MSE performance of the weight reduction factors when they are estimated. 
There is also a need to study how to obtain the weight reduction factors or 
winsorization values for samples selected with unequal probability sampling. 

More research is needed before robust estimation techniques can effectively 
be used in surveys and replace traditional nonrobust estimators that require 
outlier detection and treatment. Bias and MSE estimation and domain estimation 
especially should be addressed. A numerical study of the estimator 9RREG given 
in (4.20) should be performed to determine whether some optimal value for 0 
exists to achieve robust and consistent estimation. 
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