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ABSTRACT 

The linear properties of the seasonal adjustment and trend-cycle filters of Xli ARIMA applied to central 

observations have been studied by several authors for a "standard combination of seasonal and trend-

cycle filters (see e.g. Young, 1968; Wallis, 1974 and 1982; Dagum, 1982 and 1983). For current 

observations, the corresponding combination of asymmetric filters have been discussed, among others, 

by Dagum, 0982 and 1983); Wallis, (1982); Burridge and Wallis (1984); Dagum and Laniel (1987). 

This study extends previous analyses by including all the possible combinations of trend-cycle and 

seasonal filters available in the Xl 1ARIMA program. The corresponding "cascade"f filters for historical 

and current observations are discussed, including the combined filters for the residuals. 

It is shown that the variance amplification and phase shift of the standard concurrent filters fall 

between those corresponding to the convolution of the longest and shortest trend-cycle and seasonal 

moving averages. The variance amplification of the shortest filters is the largest whereas the 

corresponding phase shifts are near zero at low frequencies. The contrary is observed for the longest 

concurrent filters. 

The use of ARIMA extrapolations produces gain functions closer to those of the symmetric filters if 

the ARIMA parameter values are consistent with the filters' implicit assumptions of trend-cycle and 

seasonality. The presence of inconsistency highly affects the linear properties of the trend-cycle filters. 

Key Words: seasonality, trend-cycle, irregular variations, symmetric cascade linear filters, asymmetric 

cascade linear filters. 
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RESUME 

Les propriétés linéaires des filtres saisonniers et de tendance-cycle symétriques du X-1 1-ARM Ml 

qui sont appliqués aux observations centrales ainsi que les propriétés de Ia combinaison standard de 

ces mOmes filtres ont éte étudiées par plusieurs auteurs (par exemple Young. 1 968; Wallis, 1974 and 

1982; Dagum, 1982 and 1983). Les propriétés de Ia combinaison standard des filtres non 

symetriques appliqués aux observations courantes ont été examinées entre autre dans Dagum, (1982 

et 1983); Wallis, (1982); Burridge and Wallis, (1984); Dagum et Laniel (1987). 

Cette analyse va plus loin que toutes celles réalisées jusqu'â present parce qu'elIe inclue toutes 

les combinaisons possibles de filtres saisonniers et de tendance-cycle disponibles dans le programme 

X.1 1-ARMMI. L'analyse englobe les combinaisons de filtres pour les données historiques et courantes 

ainsi que celles servant a l'estimation des résidus. 

Le dephasage et l'amplification de Ia variance correspondant a Ia combinaison standard des 

filtres non symétriques se situent entre le déphasage et l'amplification de Ia variance de Ia combinaison 

des filtres saisonnier et de tendance-cycle les plus longs et de Ia combinaison des plus courts. Ce sont 

les filtres les plus courts qui génèrent Ia plus grande amplification do Ia variance alors que leur 

dephasage est près de zero dans le voisinage des basses fréquences. II en va inversement pour les 

filtres les plus longs. 

L'utilisation d'extrapolations ARMMI produit des fonctions de gain gui se rapprochent de coDes 

des filtres symétriques a Ia condition les valeurs des paramétres ARMMI soient compatibles avec Ies 

hypotheses implicites de Ia tendance-cycle et de Ia saisonnalité. L'incompatibilitO affecte grandement 

les propriétés linéaires des filtres de tendance-cycle. 

Mots des: saisonnalité, tendance-cycle, aléa, combinaison de filtres linéaires symétriques, combinaison 

de filtres linéaires non symetriques. 
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1. 	Introduction 

The Xli ARIMA seasonal adjustment method, with or without ARIMA extrapolations, is widely applied 

by statistical agencies. This method developed by Dagum (1980 and 1988) is an extension of the 

Census Method ll-X1 1 variant developed by Shiskin, Young and Musgrave (1967). Both methods apply 

moving averages or linear something filters to estimate the trend-cycle and the seasonal variations of 

a time series. 

It is inherent in any moving average procedure that the first and last points of a time series cannot be 

smoothed with the same symmetric filters applied to middle (central) values. The current and most 

recent observations are smoothed by asymmetric filters which have different properties concerning the 

type of functions they reproduce or eliminate. 

The linear properties of the seasonal adjustment and trend-cycle symmetric filters applied to middle 

observations have been already studied for a fixed combination of moving averages which is the 

standard (default) option of the Xli variant and the 1980 version of Xl 1ARIMA (see e.g. Young, 

1968; Wallis, 1974 and 1982; Dagum 1982 and 1983). The same combination of moving averages 

has been analysed for the asymmetric filters applied to the last and most recent observations, by 

Dagum (1982 and 1983); Wallis (1982); Burridge and Wallis (1984) and Dagum and Laniel (1987). 

Besides the standard (default) moving averages option the Xl 1ARIMA and Census Xli variant have 

a broad range of seasonal and trend-cycle filters the properties of which have not yet been studied. 

These non-standard filters are also used by statistical agencies to seasonally adjust real data. 

Furthermore, the default option of the last version Xi 1ARIMA/88 no longer applies a fixed filter 

combination but a variable combination of seasonal and trend-cycle moving averages based on given 

values of the signal to noise ratio for each component. 
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This study extends previous works by discussing the linear properties of all possible combinations of 

seasonal and trend-cycle moving averages available in the Xl 1ARIMA/88 method. The resulting 
P. 

"cascade filters for the estimation of the seasonal component, the trend-cycle and the irregulars are 

analysed by means of their gain and phase-shift functions. 	 m 

Section 2 introduces the definitions of symmetric and asymmetric smoothing linear filters. Section 3 

provides the formulas for the central and end-weights trend-cycle moving averages available in the 

Xl 1ARIMA/88. Section 4 gives the various formulas for the calculations of the central and end-

weights of the seasonal moving averages. Section 5 introduces the cascade filters resulting from 

the convolutions of the different trend-cycle and seasonal linear filters. Section 6 discusses the linear 

properties of the 'cascade filters for seasonal adjustment, trend-cycle and irregulars. It analyses 

several combinations of symmetric and asymmetric filters, with and without ARIMA extrapolations. 

Finally, section 7 gives the conclusions of this study .  

2. 	$mpothinQ Linear Filters 

Given an input series x, t = 1, . . . , T, for t sufficiently far removed from the end of the series 

(m+1 ~ t :r. T— rn) the output value Y by Xl 1ARIMA is obtained by application of a symmetric filter 

hm (B). 

= h,(B) x =h,,i x 	(2.1) 

where B is the backshift operator defined as B x = Xt_m (B ° =1) and  hm,j = hm, 
. 

The length 

of the filter is 2m-f 1. 
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For current and recent data (T-rn < t :5. 21 a symmetric filter cannot be applied and truncated 

asymmetric filters h (B) are used. For example, 

rn 
(0) 

YT = ho(B)xT = E h0 j  XT..j 
mo 

m 
(k) 

YT-k = hk (B) XTk = i--k hkj XT_k.j 

m 
(rn) 

YT-m = hrn(B)XT = E hrn,i Xr rn .i 
i--rn 

(2.2) 

---- 
T- 	i-k -r 

For the filter hk  (B); k = 0, 1, . . . , In the subscript k indicates the number of values of x entering 

the filter after the observation XT  or the negative of the lower limit of summation in the expression 

E hk,j Xj. 

At different points in time different outputs corresponding to a given input can be calculated and the 

superscript on y keeps track of this. Thus 

rn 
(k) = hk  (B) x 

= jk 
hk j X.j 
	 (2.3) 

is the output value of X. calculated from observations t-m, t-m+1, . . . , 	. . . , t-i-k. 

The filters are time varying in the sense that on running Xli ARIMA at time t with original data 

X, . . , XT each of the first and last m+ 1 adjusted values results from m+ 1 different filters applied 

to the input. 

When ARIMA extrapolations are used, the asymmetric filters result from the combination of the Xli 

smoothing filters with the ARIMA extrapolation filters (see Dagum 1983). 
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The ARIMA forecasts, XT.k,  can be written as a linear combination of past values that is, 

p 
X;+k = E Ick,j XT.j 	k = 1, 2, 	., 	

(2.4) 
j- 0 

where 7ck,j  denotes the forecast coefficients to be applied to past values of XT  to generate the k-th 

step ahead forecast and n denotes the number of step-ahead forecasts, usually equal to 4 or 12 for 

quarterly and monthly series, respectively. Therefore, the asymmetric combined filter applied to the 

last observation of a series which has been extended with 12 forecasts is, 

max(m,p) 	 12 
h(B) XT = 	(h0 , + E 	ho k,j 	,_k) XT_j 	 (2.5) 

	

k-i 	 - - 

The outputs from the Xli ARIMA method result from the sequential application of several linear filters 

to estimate the trend-cycle and seasonal components. These linear filters are discussed in the next 

two sections with reference to monthly data only. The extension to quarterly series is straightforward. 

3. 	Trend-cycle Filters 

The estimation of the trend-cycle component by the Xl 1ARIMA method is made by the application of 

two different linear filters, namely, the centred 12-term moving average and the Henderson trend-cycle 

filters. 

The centred 1 2-term m.a. is applied in the first iteration for a preliminary estimation of the trend. This 

filter reproduces exactly the central point of a linear trend and annihilates a stable seasonality over a 

1 2-month period if the decomposition models is additive. If the relationship among the components 

is multiplicative, then only a constant trend multiplied by a stable seasonality will be perfectly 

reproduced. 

4 



The centred-term moving average D is defined by, 

D(B) = (1/24) B 6 (1+B) (1+B+B 2 +. . .+B') 	 (3.1) 

The Xli ARIMA method generates the six missing estimates of the trend-cycle at either end of the 

series by repeating the first (last) available estimate six times. 

The final estimate of the trend-cycle is made by the application of one of the three different Henderson 

filters available in the computer package, namely the 9-, 13- and 23-term. These filters were 

developed by Henderson (1916) based on summation formulae mainly used by actuaries. The basic 

principle for the summation formulae is the combination of operations of differencing and summation 

in such a manner that when differencing above a certain order is ignored, they will reproduce the 

functions operated on. The merit of this procedure is that the smoothed values thus obtained are 

functions of a large number of observed values whose errors, to a considerable extent, cancel out. 

These filters have the properties that, when fitted to eecQr third degree parabolas, their output will 

fall exactly on those parabolas and, when fitted to stochastic data, they will give smoother results than 

can be obtained from the weights which give the middle point of a second degree parabola fitted by 

least squares. Recognition of the fact that the smoothness of the resulting filtering depends on the 

smoothness of the weight diagram led Robert Henderson (1916) to develop a formula which makes 

the sum of squares of the third differences of the smoothed series a minimum for any number of terms. 

In other words, the E (3y) 2 is minimized (where A = 1—B is the difference operator, and y  is 

the output or smoothed series) if and only if E (A3hk) 2 (where the hk 's are the weights) is minimized 

(Dagum 1978 and 1985). 
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If the span of the average is 2m-3, Henderson showed that the general expression for the n-th term 

of the filter that minimizes E (A3hk) 2  is: 

315{(m-1) 2_2} {m2_n2) {(m+1) 2_2} ((3m 2 -16) — 1n 2 ) (3.2) 
8m(m 2 -1) (4m 2 -1) (4m 2 -9) (4m 2 -25) 

To derive a set of 13 weights from this formula, 7 is substituted for m and the values are obtained for 

each fl from -6 to 6. 
.( t 	u1 	,Y(V.CJL 

The Henderson 13-term trend-cycle filter follows, 

H13 (B) = - .019W6  — . 028W 5  + . 00W 4  + . 065W3  + 147W 2  

• .214W' + .24B °  + .214B + .147B 2  + . 065B3 	(3.3) 

• .00.B 4  - . 028B 5  - . 019 B 6  

The calculation of the weights of the asymmetric Henderson filter in the Xl 1ARIMA method is based 

on the minimization of the mean squared revision (MSR) between the final estimates (obtained by the 

application of the symmetric filter) and the preliminary estimate (obtained by the application of an 

asymmetric filter) subject to the constraint that the sum of the weights is equal to one (Laniel 1985,   

Dagum 1988). The assumption made is that at the end of the series the seasonally adjusted values 

are equal to a linear trend-cycle plus a purely random irregular NID (0, a) . The equation used 

in Xl 1ARIMA is, 

In 	 In 

E[rO]2 = c,2 (t-  E h1 (t—j) 2  + o E (hj—h1j)2) 	(3.4) 

where h j  and hij  are the weights of the symmetric (central) filter and the asymmetric filters, 

respectively; h1  = 0 for j = -in, . . . , -.1-1 1  C1  is the slope of the line and ci denotes the 

noise variance. 
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There is a relation between C. and a such that the noise to signal ratio, I/C is given by, 

I/C= (4q2/)1/2 / 1c11 (3.5) 

The I/C noise to signal ratio (3.5) determines the length of the Henderson trend-cycle filter to be 

applied. Thus, setting t = 0 and m = 6 for the end weights of the 13-term Henderson, we have, 

E[ri6)J2 = 	
6 	 6 

,t(I/C)2 (Eh
1 ) 2  + E(h6-h)2 	(3.6) 

Making I/C = 3.5 (the most noisy situation where the 13-term Henderson is applied), equation (3.6) 

gives the same set of end weights of Census X-1 1 variant (Shiskin, Young and Musgrave, 1967). The 

end weights for the remaining monthly Henderson filters are calculated using, I/C = .99 for the 

9-term filter and I/C = 7 for the 23-term filter. 

4. 	Seasonal Filters 

The seasonal filters are applied to the seasonal-irregular ratios (differences) of each month separately 

over a period ranging from 3 to 11 years in order to estimate the seasonal component. The weights 

are all positive and, consequently, they reproduce exactly the middle value of a straight line within their 

spans. This property enables the Xl 1ARIMA program to estimate a linearly moving seasonality within 

three and eleven years spans. Therefore, these filters can approximate quite adequately gradual 

seasonal changes that follow non-linear patterns over the whole range of the series. 

The seasonal filters of Xli ARIMA enable the estimation of different seasonal patterns, the shorter the 

filter the higher the variance of the seasonal component is assumed to be. If the seasonal component 

appears very stable, then it can be best estimated by an unweighted average of the seasonal-irregular 

ratios over the whole span of the series. 

a 

7 



The seasonal filters available are: (1) a weighted 3-term m,a. (3x1); (2) a weighted 5-term m.a. (3x3); 

(3) a weighted 7-term m.a. (3x5); (4) a weighted 11-term ma. (3x9); and (5) Stable. 

The seasonal linear filters applied to central values are symmetric and calculated as follows: 

S3 (B)=(1/3)B 12  (1+B 12 +B 24 ) 	 ( 3x1 m.a.) 	(4.1) 

S5 (B)=(1/9)B 24 (i+B'2 +B 24 )(1+B 12 +B 24 ) 	( 3x3 m.a.) 	(4.2) 

S7  (B) = ( i/is) s -3 ' ( a.+B 12 +B 24 ) ( 1+B 12 +B 24 	
(3x5 in.a.) 	(4.3) 

+B 36 +B' 8 ) 

S11 (B)=(1/27)B 60  (1+B' 2 +B 24 ) x (1+B 12 +B 24 	
(3x9 in.a.) 	(4.4) 

i-B 36  +B 48 +B 60 +B 72 +B 84  +B 96 ) 

SN(B) = (11N) (1+B 12 +B 24 +B 36 +. . . 

	 (4.5) 

(unweighted average; N = number of years) 

The Xl 1ARIMA also enables the application of different seasonal filters for each month, e.g., a 

30 m.a, for the months of June, July. August and a 3x5 m.a. for the remaining months. 

The asymmetric filters applied to non-central values are obtained as follows, 

Asymmetric Filter of the 30 m.a. 

S30 (B)= (.61+.39 B 12 ) 
	

(4.6) 
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Asymmetric Filters of the 30 m.a. 

S(B)=[(11/27) (1+B12) + (5/27)B 24] 
(4.7) 

S(B)=[(7/27) (B' 2 +B'2 ) + (10/27) + (3/27)B 24] 

Asymmetric Filters of the 3x5 m.a. 

s4(B)=[( 17 /60 ) (1+B 12 +B 24 ) + (9/60) B 36] 

s.(B)=[(15/60) (B_12+1+B12) + (11/60) B 24  + (4/60) B36] 	(48) 

S.?(B)=[(9/60)B 24  + (13/60) (B 2 +1+B 12 ) + (8/60) B 24  
+ (4/60) B 36 ] 

Asymmetric Filters of the 3x9 m,a. 

5,°1  (B) = .246+. 221.812+.  197B24 + . 173B 36 + .112.8 48 +. 0513 60  

S,', (B) = .208+. 192B' 2 + .176 B 24 +. 160B 36 + . 144B 48 +.092B60  
+ .028 B72  

(B) =. 17 3+ . 163 B' 2 +. 154 B 24 +. 143 B 36 +. 133 348•  123 B 60  
+.0793 72 +.032B 84 	 (4.9) 

(B) =. 141+ . 137B 1.2 +. 132B 24 +. 128B 36 -f . 123B48 +. 117 B 60  
+.113372+. 075B84+.034B96 

S 	(B) =.084+. 120 B'2 -i-. 118 B24+.117 336k .1163 48 +. 114 B 6°  
+ .113 B72 +. 111B 84 + . 073B96 + .034 B 108  

5. 	Cascade Linear Filters 

The estimated trend-cycle and seasonal components from Xli ARIMA are obtained by cascade filtering 

that results from the convolution of the various linear filters discussed in previous sections. In fact, 

- 	 if the output from the filtering operation H is the input to the filtering operation Q, the coefficients of 

the cascade filter C result from the convolution of H * Q. For symmetric  filters H * Q = Q * H 

but this is not valid for asymmetric filters. 



Assuming an input series X ( t)  , t=1, 2, . . . , T, we can define a matrix H(k, j) • k 1, . 	, 

j=1, 2, . . ,2mh+l where each row is a filter and m is the half length of the symmetric filter. 

K U 

If 

H(1, . ) denotes an asymmetric filter where the first mh  coefficients are zeroes and H(mh+1, .) 
0 

denotes the symmetric filter. 

Given data up to time T, the mh+l  most recent values of the output (filtered series) are given by 

-, 	- 	- 

Yh(T+1) -  E H(k,j) x(T-k+mh+2-j) 	 (5.1) 
j-mh -k+2 

k=1,2,...,mh+l 

D 

For example, the 13-term Henderson filter can be put in matrix form as follows, 

o 0 0 0 0 0 -.092 -.058 .012 .120 .244 .353 .421 

o 0 0 0 0 -.043 -.038 .002 .080 .174 .254 .292 .279 

o 0 0 0 -.016 -.025 .003 .068 .149 .216 .241 .216 148 

o 0 0 -.009 -.022 .004 .066 .145 .208 .230 .201 .131 .046 

o 0 -.011 -.022 .003 .067 .145 .210 .235 .205 .136 .050 -.018 

o -.017 -.025 .001 .066 .147 .213 .238 .212 .144 .061 -.006 -.034 

-.019 -.028 0 .066 .147 .214 .240 .214 .147 .066 0 -.028 -.019 

To calculate the coefficients of the cascade filter C in 

2n1+1 

y(T+1 -k)= E C(k,j) x(T-k+m+2-j) 

k=1, 

where C = Q * H, 

Y(T+10,jh(T'ctmQ+2j) k=1,...,m0 i-1 
3 

(5.2) 

(5.3) 

.0 
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and m = 	+ rn0 . Since the asymmetric filters are represented by a complete row of the relevant 

• 

	

	 matrix, with initial entries being zero, the lower limit in the above summation can always be taken as 

i= 1,  

The Xli ARIMA Seasonal Cascade Filter most often applied results from the convolution of: (i) 12-term 

centred m.a.; (ii) 3x3 m.a.; (iii) 3x5 m.a.; and (iv) 13-term Henderson m.a. 	
IO  

In symbols,  

S(B)=Dc(B)*S7 (B)*[H13 (B)*(Dc(B)*S5 (B)*Da(B))c]c 	(5.4) 

For central observations, D, H131  S5  and S7  are defined by equations (3.1), (3.3), (4.2), (4.3) 

respectively and by 'C' we denote the complement of the corresponding filter. For end-values, D, 

H13 , S5  and S7  are defined by equations (3.1), (3.6), (4.7) and (4.8) respectively. 

The complement of (5.4) defines the corresponding Seasonal Adjustment Cascade Filter. 

The Trend-Cycle Cascade Filter most often applied is, 

TC(B)=H13 (B){I_Dc(B)*S7 (B) * [H13 (B) * (D'(B) *S5 (B) *Da(B) )C]C} (55) 

Where I denotes the identity filter and D, H131  S. and 57  are defined by equations (3.1), (3.3), 

(4.2), (4.3) respectively. For end-values, D, H131  S5  and S7  are defined by equations (3.1), (3.6), 

(4,7) and (4.8), respectively. 

Finally, the Irregular Component Cascade Filter is given by the complement of the Trend-Cycle Cascade 

Filter. 

11 



6. 	ProDerties of the Xl 1ARIMA Cascade Linear Filters 

The properties of the cascade filters can be studied by analyzing their corresponding frequency 

response functions. 

The frequency response function is defined by 

H() 
= 	

e 3 ; 0 :5 W < ½ 	 ( 6.1) 
j=m  

where ctj  are the weights of the filter and w is the frequency in cycles per unit of time. 

In general, the frequency response functions can be expressed in polar form as follow, 

H(w) = A(w) + iB(w) = G(w) e1" 	 (6.2) 

where G (w) ={A2  ((a) +B 2  (w) }IA  is called the gain of the filter and 0 (w) =arctan {B (z) /A (w) } 

is called the phase shift of the filter and is usually expressed in radians. The expression (6.2) shows 

that if the input function is a sinusoidal variation of unit amplitude and constant phase shift 't,t' (CJ 

the output function will also be sinusoidal but of amplitude G () and phase shift ' (w) + 0 (w) 

The gain and phase shift vary with w. For symmetric filters the phase shift is 0 or ± 7t, and for 

asymmetric filters take values between ± 7c at those frequencies where the gain function is zero. For 

a better interpretation the phase shifts will be here given in months instead of radians (the phase shift 

in months is given by 0 (c) / 27Tw for *0). 

The gain function shown should be interpreted as relating the spectrum of the original series to the 

spectrum of the output obtained with a linear time-invariant filter. For example, let 	O)  be the 

estimated seasonally adjusted observation for the current period based on data xi., t = 1 , 2, . . . 

I 
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then the time series {)} is obtained from {x } by application of the concurrent linear time invariant 

filter h ° (B) . The gain functions discussed below relate the spectrum of {x } to the spectrum of 

{y(o)} not to the spectrum of the complete seasonally adjusted series produced at time t (which 

includes 	a first revision of time t-1, a second revision of time t-2, and so on). 

6.1 	Properties of Symmetric (Central) Filters 

The gain functions of three different seasonal adjustment cascade filters are shown in Figure 1. The 

gain function of the cascade filter resulting from the convolution of the shortest moving averages, ie. 	- - 

(3x3)(3x3) [H-91 has broader dips around the fundamental seasonal frequency w = 0.083 and its five 
'1 

harmonics 0.167, 0.250, 0.330, 0.417 and 0.50. Therefore, this combination is more appropriate for 

	

I.. 	series affected by rapidly changing seasonality. - 

(Place Figure 1 here) 

On the other hand, the gain function of the cascade filter corresponding to the convolution of the 

longesfilters, i.e., (3x3)(3x9)EH-231 shows narrower seasonal dips, therefore, being more appropriate 

- for series with an underlying stable or regular seasonal pattern. The gain of the cascade filter for the 

standard combination (3x3)(3x5)[H-13] falls between that of the shortest and longest filters. It will 

be seen that this middle position for the standard cascade filter is always present irrespectively of the 

filter convolutions. 

Figure 2 shows the gains of the trend-cycle cascade filters for the same combinations discussed above. 

The shortest and standard cascade filters modify slightly the variances of the low frequency 

components; i.e., 0 < w :5 0.055 which correspond to cycles of periodicities equal to and longer than 

13 
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18 months. 	- 	- 

On the other hand, the longest cascade filter reflects the pattern of the long Henderson filter (H-23) 

decreasing fast to zero at the fundamental seasonal frequency and hovering around zero for the 

remaining higher frequencies - - 

The total variance of the trend-cycle cascade filter as shown by the area under the gain function clearly 

indicates that it is smallest for the longest combination which makes this combination suitable for 

series with an underlying stable (more rigid) trend-cycle. 

On the other hand, the shortest cascade filter passes about 75% of the variance associated with the 

frequency band 0.08 < w < 0.16 and 25% for 0.16 < & < 0.25, which makes it more appropriate 

for series affected by rapidly changing trend-cycle variations. 

(Place Figure 2 about here) 

Finally, Figure 3 gives the gain of the cascade filters for the irregular component. The variance of the 

irregulars is largest for the longest combination and smallest for the shortest cascade filter. The gain 

of the standard combination falls between those two. 
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Fig. 2 
	TREND-CYCLE SYMMETRIC CASCADE FILTERS 
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* 

It is also apparent the negative autocorrelation of the irregulars for lags 1, 2 and 12. In fact for the 

standard option, the autocorrelations of the residuals (assuming the irregulars affecting the series are 

white noise) are as follows: 	 I 	 (In 

IA (.: 
p1 = -0.34 p8 	= -0.03 

p 2  = -0.21 p 9 	= 0.02 

p 3  = -0.06 p 10  = 0.07 

p4 = 	0.05 p = 	0.11 

p 5  = 	0.08 p12 = -0.32 

P6 = -0.03 p 13  = 0.11 

p7 = -0.05 

and the variance a = 0.55 (Dagum, Chhab and Solomon, 1991). 
'I 

For the shortest cascade filter the autocorrelations of the residuals show a similar pattern but being 

higher at lags 1 and 12. 

p1 = -0.47 p 8  = -0.04 

p2 = -0.17 p 9  = -0.04 

p 3  = 	0.08 p 10  = 	0.07 

p4 = 	010 p 1  = 	0.20 

p5 = -0.03 P12 = -0.43 

P6 = -0.01 p13 = 0.21 

p7 = 	0.01 

and the variance a I  = 0. 36. 
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For the longest cascade filter, the autocorrelations of the residuals are smaller at lags 1 and 12 than 

those of the previous combinations. The autocorrelations follow, 

p1 = -0.19 p8 	= 0.05 

P2 = -0.17 p9 = 	0.05 

p3 = -0.13 p10 = 0.04 

p4 = -0.08 p11 = 0.03 

p5 = -0.04 P12 = -0.15 

P6 = 	0.00 p13 = 	0.02 

p, = 	0.03 

and cr = 0.73. 

(Place Figure 3 about here) 

6.2 	Properties of the Asymmetric Cascade Filters 

6.2.a Concurrent Cascade Filters without ARIMA Extrapolations 

To analyse the effects of various asymmetric seasonal and Henderson filters on the concurrent cascade 

filter for seasonal adjustment (the concurrent filter is applied to last available observation) we selected 

three combinations as follows: 

(1 .a) Short seasonal moving averages combined with each one of the three Henderson filters; that 

is, (3x3)(3x3)[H-91, (3x3)(3x3)[H-1 3) and (3x3)(3x3)[H-23] 

(2.a) Standard seasonal moving averages combined with each one of the three Henderson filters, 

that is, (3x3)(3x5)[H-9); (3x3)(3x5)(H-13] and (3x3)(3x5)[H-23]; 

11 
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* and 

(3.a) Long seasonal moving averages combined with each one of the three Henderson filters, that 

is, (30)(3x9)[H-91, (300x9)[H-1 3] and (30)(30)EH-231. 

Figures 4, 5 and 6 give the corresponding gain and phase shift functions for each case respectively. 

We can see that if the seasonal filters are short (Figure 4), the short Henderson filter amplifies very 

much the variance at frequencies near the fundamental seasonal as well as those frequencies between 

the fundamental seasonal and its first harmonic. On the other hand, short seasonal filters combined 

with the long Henderson do not amplify the gain but increase the phase shift. 

As we enlarge the seasonal filters from (3x3) to (3x5) to (3x9), the influence of the Henderson filters 

diminishes. In fact, as plotted in Figure 6 the combinations (3x3)(3x9)[H-91 has reduced very much 

the amplification observed in the shortest cascade filter. Furthermore, it has also improved the results 

from the other two combinations, i.e., using [H-i 31 and EH-231 by reducing the variance amplification 

and also the phase shift for the combination with [H-231. 

All of the above seems to indicate that if ARIMA extrapolations are not used, the longer seasonal 

moving averages are to be preferred for concurrent seasonal adjustment, at least, from the view point 

of the linear properties of the Xli ARIMA method. 

(Place Figures 4, 5 and 6 about here) 

Combinations 0 .a), (2.a) and (3.a) are applied to obtain the gain and phase shifts of the trend-cycle 

concurrent cascade filters plotted in Figure 7, 8 and 9 respectively. The Henderson filters significantly 

increase the variance and phase shift at the frequencies near the fundamental seasonal and between 
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ig 	SEASONAL ADJUSTMENT CONCURRENT CASCADE FILTERS 
Standard Seasonal ma. Combined with Three Henderson Filters 
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ig. 6 SEASONAL ADJUSTMENT CONCURRENT CASCADE FILTERS 
Long Seasonal ma. Combined with Three Henderson Filters 
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the fundamental seasonal and its first harmonic. This clearly supports the common practise among 

statistical agencies of not publishing the trend estimates of the last available observation. It is also 

obvious that the trend-cycle concurrent cascade filter passes a significant amount of noise at high 

frequencies. 

The relationship between the Henderson filter's length and the trend-cycle cascade filter's length is 

similar to that observed for the seasonal adjustment filters although less pronounced. Long seasonal 

filters seem to reduce the variance amplification introduced by the short Henderson filter while 

producing similar phase shifts (see Figures 7 and 9). 

(Place Figures 7, 8 and 9 around here) 

Figures 10-1 2 give the gain and the phase shifts of the concurrent irregular cascade filter for the same 

combinations (1.a), (2.a) and (3.a). 

The variance of the concurrent irregular cascade filters are systematically larger than the corresponding 

symmetric filters at low frequencies and between the fundamental seasonal and its first harmonic but 

smaller at the remaining frequencies. Among the various irregular concurrent filters the variance is 

largest for the longest which agrees with the fact that its complement (the trend-cycle concurrent 

filter) smooths more than any other combination. The opposite can be observed for the shortest 

irregular filter. 

(Place figures 10, 11 and 12 about here) 
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ig. 7 	TREND-CYCLE CONCURRENT CASCADE FILTERS 
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TREND-CYCLE CONCURRENT CASCADE FILTERS 
Standard Seasonal m.a. Combined with Three Henderson Filters 
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ig. 9 	TREND-CYCLE CONCURRENT CASCADE FILTERS 
Long Seasonal m.a. Combined with Three Henderson Filters 
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Fig. 10 
IRREGULAR CONCURRENT CASCADE FILTERS 

Short Seasonal m.a. Combined with three Henderson Filters 
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Standard Seasonal M.A. combined with Three Henderson Filters 
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Fig. 12 
IRREGULAR CONCURRENT CASCADE FILTERS 

Long Seasonal m.a, combined with Three Henderson Filter 
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6.2.b Concurrent Cascade Filters with ARIMA Extrapolations 

To discuss the impact of the ARIMA extrapolations on the concurrent cascade filters analysed in the 

previous section we selected the following combinations: 

(1.b) 	Shortest cascade filter (3x3)(3x3)[H-91 extended with ARIMA forecasts from a (0,1.,1)(0,1,1) 

model with parameter values 0 = .30 8 = . 30. 

(2.b) Shortest cascade filter (3x3)(3x3)[H-9] extended with same ARIMA model as in (1) but 

0 = .80 8 = .80. 

(3.b) Standard cascade filter (3x3)(3x5)[H-13) extended with same ARIMA model as in (1) but 

0 = .40 8 = .60. 

(4.b) Long cascade filter (3x3)(3x5)[H-23) extended with same ARIMA model as in (1) but 0 = .30 

MENWO 

The (0,111)(01111)12  ARIMA model may be expressed by, 

(1—B) (1—B' 2 ) Z = (1-0B) (1-8.B 12 ) a 	(6.2.1) 

with invertibility conditions 101 < 1 and I1 < 1 (Box and Jenkins, 1970). 

The extrapolation filter of the (0,1,1) (0,1,1) ARIMA model implies an instantaneously straight-line 

trend and an instantaneously constant zero-sum seasonal pattern, both changing their level and slope 

in a stochastic fashion, proportional to the value of innovation a. 

e 
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The parameters ).. = 1- 0 and A = 1- 9 can be interpreted as representing the extent to which the 

trend level and the seasonal pattern respond to new innovations. Thus a low value of 0 corresponds 

to a fast-changing trend, and a high value to an underlying stable trend. Similarly, a low value of 9 

corresponds to a rapidly changing seasonality, and a high value to a stable underlying seasonal pattern. 

The sets of parameter values chosen are those discussed by Dagum (1983) which have been observed 

in empirical cases. The parameter values for combination (1 .b) are often encountered in some retail 

trade series, those of combination (2.b) have been found in industrial employment data and those of 

combination (3.b) correspond to the classical international airline passengers series discussed by Box 

and Jenkins (1970). 

For the combinations (1 .b) and (3.b) the ARIMA parameter values conform to the assumptions implied 

by the corresponding symmetric cascade filters. For example, the shortest combination will be 

appropriate for a fast changing trend-cycle and fast changing seasonality which agrees with the low 

parameter values of the ARIMA model. On the other hand, combinations (2.b) are (4.b) are selected 

to assess the impact of using extrapolations from an ARIMA model not consistent with the 

assumptions of the corresponding symmetric cascade filter. 

Figures 13-15 exhibit for combination (1 .b) the gains and phase shifts of the seasonal adjustment, 

trend-cycle and irregulars with and without extrapolations, respectively. 

It can be seen that the effects of the ARIMA extrapolations on the gain functions are the following: 

a significant reduction of variance amplification at low frequencies and between the 

fundamental seasonal and its first harmonic; and 

broader seasonal dips. 

-c J 
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Fig. 14 	TREND-CYCLE CONCURRENT CASCADE FILTERS 
(3x3) (3x3) [H-9] 

gain 
2 

1 .8 

1 .6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

1 

0 

frequency 

phase shift (in months) 
3 

2 

1 

0 

-1 

-2 

-3  I- 
 
- 

0 

frequency 

-- With Consist. Extrap. — Without Extrapolations 

Model (0,1,1)(0,1,1) e=.30 €=.30 



IRREGULAR CONCURRENT CASCADE FILTERS 
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Fig. 16 SEASONAL ADJUSTMENT CONCURRENT CASCADE HLTERS 
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Fig. 17 	TREND-CYCLE CONCURRENT CASCADE FILTERS 
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Fig. 18 	IRREGULAR CONCURRENT CASCADE FILTERS 
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As a consequence, the gain functions of the seasonal adjustment and trend-cycle filters resemble more 

their corresponding symmetric cascade filters. Since the concurrent trend-cycle filter still passes a 
14 

significant amount of noise, the gain of the irregular concurrent filter has smaller variance compared 

• 	 to the corresponding symmetric filter. As per the phase shift, there is a systematic increase of about 

one month at the low frequencies. 

(Place figures 13, 14, 15 here) 

All the above observations are valid for combination (3.b) and, in general, whenever the ARIMA 

parameter values are consistent with the implicit assumptions of the corresponding symmetric cascade 

filters. 

(Place figures 16, 17 and 18 about here) 

The gain and phase shift functions of the shortest cascade filters extended with inconsistent ARIMA 

extrapolations in the sense that assume underlying stable trend-cycle and seasonality (combination 2.b) 

are plotted in Figures 1 9-21 for the various components. 

Figures 19 and 20, show a major reduction of variance over all frequency. This is attributed to the 

high value of the trend-cycle parameter 0 which plays a crucial role in determining the shape of the 

gain function. On the other hand, a high value of 8 has not affected the seasonal dips which continue 

to be broader as in the previous combinations (1 .b) and (3.b). 

We can also observe a substantial increase in phase shift at low frequencies, being largest for the 

trend-cycle cascade filter than the seasonal adjustment one. 
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Finally Figure 21, shows the distortion introduced in the gain function of the irregular, mainly at IQW 

frequencies. 

(Place Figures 19-2 1 about here) 	 * 

Figures 22-24 exhibit the gain and phase shift functions of combination (4.b). 

• 	 A. 

The effect of the a 0 = 0.30 is clearly seen in Figure 23 where with the exception of the low 

frequencies, the variance and phase shift have been greatly increased at all the remaining ones. 

The irregular concurrent cascade filter (Figure 24) shows a decrease of variance over all the 

frequencies together with a high increase in phase shift. 

Finally, the long seasonal adjustment concurrent filter (Figure 22) seems not to be affected by the 

extrapolation model parameters except by a small increase in phase shift. 

(Place Figures 22-24 about here.) 

7. 	Conclusions 

- 	We have introduced and analysed the cascade filters for seasonal adjustment, trend-cycle estimation 

and the estimated irregulars (residuals) resulting from the convolution of; (a) very short seasonal and 

trend-cycle moving averages; (3x3)(3x3)EH-91; (b) standard (most frequently applied) seasonal and 

trend-cycle moving averages; (3x3)(3x5)[H-1 31 and Ic) long seasonal and trend-cycle moving averages 

(3x3)(3x9)[H-23]. 
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The shortest symmetric seasonal adjustment filter is characterized by broad seasonal dips which make 

it more appropriate for series affected by rapidly changing seasonality. Its corresponding trend-cycle 

cascade filter also seems more adequate for fast changing trend-cycle since the gain function passes 

all the variance at low frequencies and about 75% of the power at frequencies between the 

fundamental seasonal and its first harmonic. Consequently, the gain function of the corresponding 

irregular cascade filter exhibits small variance at all frequency and its shape indicates the presence of 

negative autocorrelations at low and seasonal lags. 

The opposite is concluded by looking at the gains function of the long symmetric cascade filters. 

These filter convolutions seem to fit better series with underlying regular trend and stable seasonality. 

The gain of the corresponding irregular cascade filter shows higher variance and lower autocorrelations 

at low and seasonal lags. Finally, the gain of the standard symmetric cascade filters fall between the 

above two cases. 

We also analysed the asymmetric cascade filters applied to the last available point (also known as the 

concurrent filter), with and without ARIMA extrapolations. If there are no ARIMA extrapolations, the 

phase-shift for the short concurrent cascade filter is nearly zero at low frequencies but the gain 

function is highly amplified. On the contrary, the convolution of the long filters shows phase-shifts 

of about one month at low frequencies and practically no amplification of variance at these 

frequencies. Finally, the phase shift and variance amplification produced by the concurrent standard 

- 	cascade filter fall between the above two cases. 

To analyse the impact of the ARIMA extrapolations on the concurrent cascade filters we discussed four 

cases as follows; (1) shortest cascade filter (3x3)(3x3)[H-9] extended with ARIMA extrapolations from 

a (O,1,1)(O,1.1) 12  model where 0 = 0.30 and 6 = 0.30; (2) same as (1) with 0 = 0.80, 

6 = 0.80; (3) standard cascade filter (3x3)(3x5)LH-13) extended with (0,1,1)(O,1.1) ARIMA 

a 

extrapolations where 0 = 0.40, 6 = 0.60; and (4) long cascade filter (3x3)(3x5)IH-231 with 
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0 = 0.30, 8 = 0.30. 

Combinations (1) and (3) have ARIMA parameter values that agree with the assumptions implied by 

the corresponding short and standard symmetric cascade filters concerning the behaviour of the trend-

cycle and seasonal variations. 

On the other hand, combinations (2) and (4) have ARIMA parameter values not consistent with the 

implicit assumptions of the corresponding symmetric cascade filters. In fact, 0 = 0.80, 8 = 0.80 

assume a series with underlying regular trend-cycle and stable seasonality whereas (30)(30)[H-9] 

implies rapidly moving seasonality and trend-cycle. The opposite occurs for combination 4. 

The results show that the use of extrapolated values highly improved the gain functions of the 

concurrent cascade filters if the parameter values of the ARIMA extrapolation model are consistent 

with the assumptions of the corresponding symmetric cascade filters. 

On the other hand, extrapolations from ARIMA models where the parameter values are inconsistent 

with the implicit assumptions of the symmetric filters produce contradictory results summarized as 

follows: 

(a) 	the gains of the short cascade filters are mainly affected by high values of 0 and practically 

nothing by 8. Furthermore, the phase shifts are increased up to 2 months for the concurrent 

trend-cycle filter; 

4 
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(b) 	the gain and phase shift of the seasonal adjustment long filter with low values of 0 and 9 are 

slightly affected but those for the trend-cycle are completely distorted, being dominated by the 

low parameter values of the ARIMA model. 

In general, ARIMA parameter values not consistent with the symmetric cascade filters mainly affect 

the trend-cycle gain and phase shift functions, an indication that the value of 0 is more dominant than 

that of 9. The inconsistency slightly affects the gain function of the seasonal adjustment filter but 

increases, in general, the phase shift at low frequencies. 

Although not discussed in this study, the discrepancies between the asymmetric and symmetric 

cascade filters is related to the problem of revision of seasonally adjusted data. Longer asymmetric 

filters have gain functions that change little as they approach to the symmetric ones, an indication that 

the seasonally adjusted values will be slightly modified when some observations are added to the 

series. On the other hand the convergence of the preliminary estimates to the final takes a long 

number of years. For shorter filters the opposite can be concluded. 

I. 
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Fig. 20 
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Fig. 21 	IRREGULAR CONCURRENT CASCADE FILTERS 
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Fig. 22 SEASONAL ADJUSTMENT CONCURRENT CASCADE FILTERS 
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Fig. 23 	
TREND-CYCLE CONCURRENT CASCADE FILTERS 
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Fig. 24 	
IRREGULAR CONCURRENT CASCADE FILTERS 

(3x3) (3x5) [H-23] 

I 	 gain 

/\/.. 
0 	0.05 	0.1 	0.15 	0.2 	0.25 	03 	035 	0.4 	0.45 	05 

phase shift (in months) 
100 

80 

60 

40 

20 

C) 

* 2ñ 

0 	0,05 	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5 

frequency 

-- With Inconsist.Extrap. — Without Extrapolations 
Model (0,1,1)(0,1,1) e=.30 ®=,30 

1 .6 

1.4 

1.2 

1 

08 

0.6 

0.4 

0.2 

C.) 



References 

Box, G.E.P. and Jenkins, G.M. (1970): Time Series Analysis Forecasting and Control, San Francisco; 	 * 
Holden Day. 

Burridge, P. and Wallis, K.F. (1984) "Unobserved Components Models for Seasonal Adjustment 
Filters", Journal of Business and Economic Statistics, 2, 350-359. 

Dagum, E.B. (1978): "Comparison and Assessment of Seasonal Adjustment Methods for Labour Force 
Series", Background Paper No. 5, U.S. National Commission on Employment and 
Unemployment Statistics, Superintendent of Documents, U.S. Government Printing Office, 
Washington, D.C.. 

Dagum, E.B. (1980): The Xl 1AR/MA Seasonal Adjustment Method, Ottawa: Statistics Canada, 
Catalogue No. 12-564E. 

Dagum, E.B. (1982): "The Effects of Asymmetric Filters on Seasonal Factor Revisions", Journal of the 
American Statistical Association, Vol. 77, No. 380, pp.  732-738. 

Dagum, E.B. (1983): "Spectral Properties of the Concurrent and Forecasting Seasonal Linear Filters 
of the Xli ARIMA Method", The Canadian Journal of Statistics, 11, 73-90. 

Dagum, E.B. (1985): "Moving Averages" in Encyclopedia of Statistical Sciences (Kotz, S. and 
Johnson, N., Editors), John Wiley and Sons Inc., Vol. 5, pp. 630-634. 

Dagum, E.B. (1988): The X11ARIMA188 Seasonal Adjustment Methods - Foundations and User's 
Manual, Ottawa: Statistics Canada. 

Dagum, E.B. and Laniel, N. (1987): "Revisions of Trend-Cycle Estimators of Moving Average Seasonal 
Adjustment Method", Journal of Business and Economic Statistics, Vol. 5, No. 2, pp.  177-189. 

Dagum, E.B. and Chhab, N. and Solomon, B. (1991): Autocorrelations of Residuals from Xl 1ARIMA 
Method", JournalofOfficia/Statistics, Vol.7, No. 2, pp.  181-1 94. 

Henderson, R. (1916): "Note on Graduation by Adjusted Average, Transactions of the Actuarial 
Society of America, Vol. XVII, pp.  43-48. 

Laniel, N. (1985): "Design Criteria for the 13-Term Henderson End-Weights", Working Paper, 
Methodology Branch, Ottawa: Statistics Canada. 

Shiskin, J., Young, A.H. and Musgrave, J.C. (1967): "The X-11 Variant of Census Method II Seasonal 
Adjustment", Technical Paper No. 15, Bureau of the Census, U.S. Department of Commerce. 

Wallis, K.F. (1974): "Seasonal Adjustment and Relations between Variables", Journal of the American 
Statistical Association, 69, 18-31. 

Wallis, K.F. (1 982): "Seasonal Adjustment and Revision of Current Data: Linear Filter for the 
Xli -Method", Journal of the Royal Statistical Society, Ser. A, 145, 74-85. 

Young, A.H. (1968): "Linear Approximations to the Census and BLS Seasonal Adjustment Methods", 
Journal of the American Statistical Association, 63, pp. 445-471. 

PEI 





s(SC A A t'A I IAP 
A S IQUE CAcADA 

lI 	Iu II IIl II 	II II 

	

1010770294 	is 


