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This paper compares the errors of two 
benchmarking methods, one based on 
regression by Cholette and Dagum 
(1989, 1991) and the other based on 
signal extraction by Hillmer and Trabelsi 
(1987). The difficulties of finding an 
ARIMA model in the later method and 
the resulting implementation problems 
are discussed. A non-parametric 
approach to circumvent this problem is 
proposed. Simulations show the 
proposed approach is efficient, robust 
and easy to carry out. 

€.. S UI 

Cet article compare les erreurs d'estimation 
de deux méthodes d'étalonnage, l'une 
fondée sur Ia regression de Cholette et 
Dagum (1989, 1991) et I'autre fondée sur 
l'extractiori de signal de Hillmer et Trabelsi 
(1987). Les difficultés de trouver un 
modèle ARIMA dans Ia dernière méthode et 
les problèmes resultants de mise en oeuvre 
sont examinées. Une méthode non 
parametrique, gui contourne ce problème, 
est proposee. Les simulations démontrent 
que l'approche proposee est efficiente, 
robuste et facile a appliquer. 





1 Introduction 

Benchmarking is an important problem faced by statistical agencies. For a target 

socio-economic variable i, two sources of data with different frequencies and precisions 

are available. For example, one set of data is monthly (or quarterly) 

lit 	11t +et, 	t 	1,. ..,n, 	 (1.1) 

and the other one is annual 

Z=?7t+f,, 	i=1,...,m. 	 (1.2) 
tEi 

where e t  and ei are the monthly and annual survey errors respectively, and t E i 

means: month t is in year i. Usually, ej  are much larger than f i . z1  are referred to 

as benchmarks. A benchmarking procedure estimates 77t , t = 1,... ,n using these y 

and ;. When all q 0, then the problem becomes estimating 77t from (1.1) under 

the restriction Et Ei ?7t = z1  and the benchmarks are called binding; and non-binding 

otherwise. 

For index and stock series, (1.2) becomes (in case of monthly data) 

(1.3) 

and (in case of benchmarks pertaining to December) 

	

Zi = 7712i + fk 
	 (1.4) 

respectively. In general, we may put (1.1) with anyone of (1.2) through (1.4) in the 

matrix form 

	

y=q+e, 	 (1.5) 

(1.6) 

where y = ( yi .  . . y,,) ' , z = ( z 1  ... Z) '  and similarly for i, e and E with suitable 

dimensions. L is a m x n matrix. For example, corresponding to (1.3), the (i,t)th 

• 	 entry 'it  of L is 'it = 1/12 if t E i and 'it = 0 otherwise. 

The benchmarking approaches most widely used by statistical agencies are of 

the Denton (1971) type, where rj is estimated by minimizing the following penalty 

function 

PA(y,q) = (y—i)'A(y—i) 	 (1.7) 

1 



under the restriction (1.6) with E 	0 (binding benchmarks). By suitably choosing 

the symmetric n x n matrix A, one may obtain a benchmarked value i7 of ij with 

some good properties, such as continuity between consecutive years. This type of 

benchmarking is easy to apply, and almost no preliminary statistical information is 

required. But, because no information on the natuture of the time series is used 

(when available), the estimation error, i.e., E{(i) - ij)( - )}' is not minimized. 

Cholette and Dagum (1989, 1991) combine (1.5) and (1.6) to the following regres-

sion model 

X 17 
	

(1.8) 

assuming that 17 is the vector of nukown parameters in this model. Where 

r_ ( - 	)' 	
(O 	 (1.9) u= (e)  

and u 	(0, E,) means that the random vector u has mean 0 and covariance 

matrix E,1  with an unspecified distribution. Assuming e and € are uncorrelated, then 

can be written as 
(E e  0 ) 

	
(1.10) 

In fact, Cholette and Dagum also allowed a bias in e, however, since it can be 

removed preliminarily, we will not discuss it here. 

Given E, we may use the generalized least squares estimate of ij (the uniformly 

minimum variance unbiased estimate among all the linear unbiased estimates) as the 

benchmarked estimate: 

TJR = (X'E'X)X'E1r = y + E e L'(LE e L' + E)'(z - Ly),  

which has covariance matrix (since #R is unbiased, so it is also the covarince matrix 

of the estimation error): 

= (X';'X)' = (E' + L'E 1 L) - '. 	 (1.12) 

The subscript R stands for "regression". This is a regression model, where the number 

of parameters (n) is so close to the number of observations (n + rn). So, one should 

be careful when trying to apply a classical theorem of regression estimates on this 

model, and the residual vector 

UT -  X?JR 	 (1.13) 
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has properties different from those of the error vector u. 

Hilimer and Trabelsi (1987) considered that, qj follow an ARIMA model, and 

then under the assumption of normal distribution, they derived their benchmarking 

formulae. 

This paper will discuss the implementation of Hilimer and Trabelsi's formulae and 

proposed a nonparametric procedure which does not use ARIMA modelling for {i}. 
Simulation results are presented. 

2 Benchmarking with Signal Extraction 

2.1 The models and the formulae 

Hilimer and Trabelsi (1987) assumed that i, the target series, follow an ARIMA 

model 

- t) = 8(B)b, 	 (2.1) 

while et, the survey error, follow a stationary ARMA model (with zero mean) 

= Oe (B). 	 (2.2) 

Assuming that the white noise shocks {b} and {Ct} are uncorrelated, then Yt = 

also follow an ARIMA model 

- L) = 9(B)a t . 	 ( 2.3) 

In fact, a more important contribution of Hilimer and Trabelsi (1987) is deriving 

the following benchmarking formulae whether 77 and e are model based [say, as (2.1) 
- (2.3)] or not. That is under the normality assumption 

'-' N(, E,7 ), 	e - N(O, E s ), 	 (2.4) 

knowing all the moments in (2.4), they obtained the conditional expectation of 77 

given r = (y' z')' (which is the best unbiased estimate of 77): 

= E(i I 3') = 1lo(Ey ' + E'.t), 	 (2.5) 

= Il0  L'(LIl0 L' + 	)(z - Li)0 ), 	 (2.6) 
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= E(77 I i-) = 	+ lic, 	 (2.7) 

where, 

Qo  = Var 	= (E' + E') 1 	 (2.8) 

The covariance matrix of the benchmarked estimate f, of 77 is (since is unbiased, so 

it is also the the covariance matrix of the estimation error) 

Il = (I'+ L'E'L) = (_ 1 + E 71 + L'E'L)* 	(2.9) 

is the signal extraction, which is the best unbiased estimate of 17  given yonly. 1ic 

is the correction originating from the benchmarks z. 

The normality assumption (2.4) can be generalized to [refer to the statement under 

(1.9)] 

17 	(.t, E,? ), e ' (0, E e ), 	 (2.10) 

then instead of the conditional expectation, using the projection on probability spaces, 

i.e., i 0  = E(q  I ) and i E(ij  I r) (the best unbiased linear estimate), the same 

formulae as (2.5) through (2.9) follow (see Appendix). 

2.2 Properties and comparisons 

Lemma 2.1 Suppose A and B are symmetric matrices of the same dimension, 

A> 0, B > 0, then 

(A + B) 1  < A' 
	

(2.11) 

Proof There is a non-singular P such that P'AP = I,P'BP = A, where A is 

diagonal with all its elements non-negative, then the lemma follows easily. 0 

We now compare the signal extraction method and the regression method. Ob-

serving (1.11), (1.12) and (2.5) through (2.9), and in (1.11) denoting the last term 

1JRC = E e L'(LEeL' + E) 1 (z - Ly), 	 (2.12) 

we have the following correspondence 

Y 110 	IRC 1lC' 	lR4l; 	 (2.13) 	 I  

1R11 	 (2.14) 
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In view of (1.12), (2.9) and Lemma 2.1, we have 

R:5e, 1lf10 . 	 (2.15) 

The inequalities in (2.15) mean that the variance of the error of the benchmarked 

estimate based on the regression method (fiR)  is smaller than that of the survey 
I 
 error (E e ); and that the variance of the error of the benchmarked estimate via the 

signal extraction method (fi) is smaller than that of the sigal extraction (fl0 ). So, 

the corrections originating from the benchmarks reduce the survey error or the signal 

extraction error in both methods. 

In view of (2.8), (2.9) with (1.12) and Lemma 2.1, we have 

fib  :5 E, Q < (E;' + L'> 1 L)' = R. 	 (2.16) 

This means that, the variance of the error of the signal extraction is smaller than 

that of the survey error; and the variance of the error of the benchmarked estimate 

via the signal extraction method is smaller than that of the regression method. So, 

if the first and the second moments of both survey error and target series are known, 

then the signal extraction method is better than the regression method. The reason is 

that, the regression method does not use E,,, the information about {i}. 

Note that, both (1.12) and (2.9) can be rewritten to allow E = 0, i.e., binding 

benchmark. Using the formula in the partitioned inverse of a matrix, we have 

OR = (E' + L'E'L) 1  = E, - E e L'(LEe L'+ E'LE e , 	(2.17) 

= (fl' + L'E 1 L' 1  = Do - fl0 L'(Lfl0 L + E)'Lfl0. 	(2.18) 

3 Implementation of benchmarking via 
model based signal extraction 

Often, survey experts can offer a stationary model as (2.2) for survey error e j  and 

hence we may obtain the autocovariance function (ACVF) of {e t } ( Ee t  = 0), 

= 7e (k) = E(ege+k). 	 (3.1) 
a .  

Then the Toeplitz matrix Ej, is obtained by setting 'Ye(I i - il) as its (i,j)th entry and 

the benchmarking procedure based on the regression model can be carried out without 
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difficulty. However, for the method via the signal extraction, we need 1A = E7J = Ey 

and Qo  (or equivalently, E,,), both of which are usually unknown. 

Hilimer and Trabelsi (1987) suggested using the ARIMA models [see (2.1) - (2.3)] 

in dealing with i and E. First, consider M. They suggested that ji = (1 .1)' if 

{ ,) is stationary; and p. = 0 if nonstationary. However, from (2.5) one sees that a 

non-zero p. may contribute a great deal to . Suppose, say, 

q(B) = V'V, 2 (B), d > 0 1 	 (3.2) 

where V = 1 - B, V 12  = I - B 12 , 	( B) has its roots all outside the unit circle. 

When ?7j satisfy (2.1), then 77t - A t  also satisfy (2.1) if 
12 

i =O+It+...+dtd+flj6{t,j}, 	 (3.3) 

where a i  and Oj  are constants and 

bf 	
fi, 	tj(mod 12), 

i,j} = 	0, 	otherwise. 	 (3.4) 

So, one cannot in (2.5) arbitrarily set its mean, say, p. = 0. 

Now turn to (l o  (or equivalently, En ). Based on ARIMA modelling assumption, 

Hillmer and Trabelsi (1987) gave formula (4.1) in their paper which in "the high 

signal to noise ratio" situation may lead to getting an approximation of 1 0  (see the 

example in Section 5 in the mentioned reference and also in Trabelsi and Hillmer, 

1990). However, for their formula (4.1) to be applied, in general, the model (2.1) for 

{'lt} should be known. 

At a first look, it seems we may get a model for {ij} from the model of {et} which 

is known and a model of {yt}  fitted to the data. Indeed, assuming that {} and {e g } 

are uncorrelated and the ARIMA models which they follow are known, it is relatively 

easy to derive the model of {yt}, yt = nt + et. However, the problem facing us is the 

reverse: deriving the model for {'i}  given those of {yj and {e j }. This is difficult as 

{ y} and {et} are correlated. 

In fact, we may avoid deriving a model for {i}, since in benchmarking formulae 

(2.5) through (2.8), only E,, is necessary. Assuming {'h}  and {e j } are uncorrelated, 

Yt = 71t + e j  implies 

=Ey E e . 

	 (3.5) 
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Obtaining E and E , from their ARIMA model and ARMA model respectively, E, 7  

then follows immediately. However, the ARIMA assumption still causes some prob-

lems. 

First, the AC\TF for a series following a nonstationary ARIMA model is not well 

• defined. Suppose Vyj  x, xt is stationary, i.e., yt = Yi + x,, then obviously, 

the ACVF of yt ,i = 1,... ,n, depends on Var Yi  and Coy (yi,Xj), which are unknown 

and can not be estimated from data. Cleveland and Tiao (1976) suggested an ap-

proximation E;' for E; 1  [see formula (A.7) therein], in fact by letting Var Yi = 00, 

which results in a singular ;I,  an hence E, does not exist. Then how to get an 

approximation of E,7  by (3.5)? 

Furthermore, comparing (2.9) with (1.12), we see that the benchmarked estimate 

via the signal extraction has smaller variance than that based on the regression, 

because of a term E being added to the operand of the inverse. Referring to 77 

Lemma 2.1 and its proof, we see that, the "larger" the E,, (the "smaller" the 

the "closer" the fl to fiR. The situation of "high signal to noise ratio", which Hilimer 

and Trabelsi discussed in their papers, is not the case for which the signal extraction 

method shows itself superior to the regression method. In fact, these authors deal 

with the situation by ignoring E'in the benchmarking process [see formulae (3.4) 

through (3.7) in Trabelsi and Hillmer 1990, compare it with our (2.12)], so it becomes 

the same as the regression method. 

Given E, even assuming {yg)  stationary, we still have a difficulty with modelling 

approaches (say, fit an ARMA model for {yt}),  since the parameter estimation pro-

cedure in modelling {yt}  should guarantee that 

Ey Ee >0, 	 (3.6) 

where, E, is the covariance matrix of y assuming Yt  follow the estimated model. Our 

simulation in Section 5 shows that, when this property does not hold, the benchmark 

- 	 estimate becomes very unstable. 

Further, in most practical situations, n, the number of observations is small. 

Say quarterly series of 5 to 10 years are very common, and the model identification 

procedure for such short data is often very unstable. Similarly, for monthly series. 

For all above reasons, we here propose a nonparametric approach to the signal 
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extraction benchmarking. Our approach benifits from using the statatistical informa-

tion given by data but wihout requiring explicit ARIMA models. 

4 A Nonparametric Procedure 
	 C 

4.1 The assumptions and the formulae 

Following some works, for example, Pierce (1978), we assume that the target series 

{ i} has a deterministic mean series {j} (which is the sum of a smooth trend and a 

stable seasonality) and a stochastic stationary component {} with mean zero, i.e. 

Tlt = I't + C. 	 (4.1) 

Then, {,} has the same ACVF as {(}: 

= 'y(+k) = E(((+k). 	 (4.2) 

Again {e j } is a stationary series, with mean zero and known ACVF (3.1) (a special 

case would be e g  following an ARMA model). {e j ) and {} are uncorrelated. Then, 

(1.1) can be written as 

lit = Pt + Wt, 	 (4.3) 

where 

W t  = Ct + e 	 (4.4) 

are also stationary, with mean zero, and their ACVF have the relationship 

= y(±k) = E(ww +k) = 'ye (±k) + y(±k). 	(4.5) 

Assuming both {e t } and {() are regular and without deterministic component 

(see, say, Doob 1953), so is {Wt}. Denote the spectral densities of these series by 

fe(), f(A) and respectively, then (4.5) leads to 

f(A) = f(A) + 	— r < A < ir. 	 (4.6) 

If pt are known, then from lit  (the data) Wj = y, - are obtained, then as (2.5), the 

estimate of ij = ( m 	')' by w = (w1  .. . w,)' is 

Co = E( w) = (Ei' + 	') 1 Ew. 	 (4.7) 



Notice that, Ec = E, is a Toeplitz matrix with -y( i - j ) as its (i,j)th entry. As 

(2.8), 

Var Co  = flo  = (E;' + E - ') - '. 	 (4.8) a 
Let i) = it + (, then j follows from (2.6) and (2.7). 

From (4.5), 

(4.9) 

and then we may easily put (4.7) and (4.8) as 

= EEw, 

110 = EE'E e . 

which require much less matrix inverse than (4.7) and (4.8). 

4.2 Estimation 

(4.10) 

(4.11) 

We assume Ee  is known. Suppose that we may get li t  such that {w}, Wt = y j  
is stationary, then from data w we may obtain the estimate E and Ec for E. and 

EC  respectively which obey relation (4.9). Replacing the true covariance matrices in 

(4.10) by their estimates, we have 

Co = 	= i + Co. 	 (4.12) 

For simplicity we use the same notation . Then , as a benchmarked estimate of 

, follows from (2.6) and (2.7) by using (4.11) and (4.12) [also, in (4.11), E C , Ew  and 
hence Do  are replaced by their estimated values respectively]. 

Now, the problem becomes: (1) How to get p, and (2) how to estimate E (or 
equivalently, Em ). 

The first problem may be solved by using the least squares estimation (LSE) 

to model (4.3), regarding pt as a spline plus a stable seasonality like (3.3). Our 

simulation shows that, although we can only obtain an estimate ft of JA, but using 
ji t  and tb t  = y j  - 	instead of li t  and Wt does not effect the final result very much. 

* 	
The intuitive reason would be that, the signal extraction (so does the benchmarked 

estimate) is sensitive to the "short memory" information, but not sensitive to the 
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"long memory" imformation that mostly has been taken away by LSE. That means 

the proposed procedure is robust to the choice of mean in practice, provided that the 

residuals can be regarded as a stationary series. 

Turning to the second problem. The most commonly used nonparametric estimate 

for 	(k) is 
1 n-k 

= - 	WtWt+k, k= O,...,n —1. 	 (4.13) 

Its direct transformation to the frequency domain 

= !{1v(0) +(k)cosk}, —  ir<A< 	(4.14) 

is the periodogram which is not a good estimate of 	To get a better estimate 

of f,,,(A), we smooth the periodogram or correspondingly we use 

- f 5'(k)u(k/M), k = 0,... ,M, 	 (4 .15)  M<k<n. 

as the estimates for y(k), k = 1,... ,n - 1. Where u(s) is a commonly used lag 

window function, such as Tukey-Hanning window, Parzen window and so on (see, 

say, Priestley 1981). 

However, the same problem as in Section 3 [see(3.6)] remains (the definition for 

Toeplitz matrix (M)  and E, ' is self-clear), for, 

E(M) = 	- E > 0 	 (4.16) 

maybe does not hold. For that we introduce the following revision procedure. 

As ye(k), or equivalently fe(.\), is given and in view of (4.6), f(A) = f(A) - 

fe(A) > 0 always hold, so 

= max{J(\) - f(A), 01 
	

(4.17) 

is a more reasonable estimate of f\) than f(A) J(A) - fe(A). Corresponding to 

f(A) the estimate of -y(k) is 

(k)=2ffc()coskAd\ k=0, ... ,n-1. 	(4,18) 

Since f(A) is again very ragged, we prefer a smoothed estimate r(k) which cor-

responds to 
- f 5(k)u(k/M), k = 0,... ,M, 	 (4.19) 

" I_ jO, 	M<k_<n. 

4 
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and the estimate of 7(k) is given by 

k) = ye (k) + 	M)(k), k = 0,. .. , i. 	 (4.20) 

We call M)(k)  and 	')(k) the rcvised window estirnatcs of y(k) and -y(k) respec- 

• 	 tively. 
- Make Toeplitz matrix E (M)  and ( 

,

M) from y (k) and y..(M)  (k) respectively. In 

view of (4.17), f(k) ~! 0, and usually f() > 0 holds in a subinterval of (—ir,ir}, 

then it is easy to show that M) > 0, and hence ) = E + > 0. 

4.3 The procedure 

Step 1: Carry out a LSE on model (4.3) to obtaino t  assuming an explicit model, 

e.g., a spline function plus a stable seasonality [see (3.3)] (The choice of degrees 

and knots for the spline is not so important). Denote the estimate of ju t  still by p 

(rigorously, should be denoted by ji g ). 

Step 2: Let Wt = yj -  p (rigorously, should be denoted by t), use (4.13), 

(4.14) and (4.17) to obtain '5(k),J(A)  and f(.\) consecutively. Then calculate 

5'(k) following (4.18) by using a numerical method, and finally (4.19) and (4.20) are 

used to obtain (M)(k)  and .(M)(k) 

Step 3: Calculate CO  and ci0  by using (4.10) and (4.11), where E C , E,, are 

replaced by M)  and respectively. Let o = + , 
obtain i c  and i by (2.6) 

and (2.7) consecutively. 

Note: In the above procedure, E, E are known (usually given by survey ex- 

perts), L is given by the model assumption and y and z are data. 

5 Simulation 

5.1 The models and the data 

The simulation involves benchmarking quarterly series to annual benchmarks. The 

following two models are used to create (t  and ej  

1 (1 - 0.7B)( = (1 - 0.4B)b, orb  = 5.0 
(5.1) 

I. (1 - 0.5B)e = Ct, 	 or, = 2.5, 



and 
((1 - 0.9B)( = (1 - 0.6B 4 )b, a = 5.0, 	

(5.2) 

1 (1 - 0.7B + 0.49B2 )e g  = c, 	c = 4.0, 

where {b} and {Ct} are independent Gaussian white noise with mean zero and stan-

dard deviations (SD) as indicated. We generate bt  and c, by SAS, then (t  and e t  are 

obtained recursively by the corresponding difference equations. For every set of ( 

and et, the first 100 values were abandoned to eliminate the effect of initial values. 

In the following, model 1 will refer to (5.1) and model 2 to (5.2). For model 1, 

both spectral densities fc() of  {() and  f(A) of {e j } have very similar patterns (a 

peak at the origin then damping out on both sides). Consequently, any linear filter 

can not extract from Wt efficiently, so we do not expect a significant improvement 

over the regression method for this model. 

For model 2, f(') has a sharp peak at the origin and has troughs at ±ir and 

±7r/2, while f(X)  has peaks at ±7r/3. Consequently, the signal extraction procedure 

should bring in a remarkable improvement over the regression method for this model. 

Our simulation results will show such a difference for these two models. 

The following model is used to create ji  [refer(3.3) and (3.4)] 

Pi = 100 + t - 105{ti} + 5 {t,3} + 58{,4 }, 	 (5.3) 

that is a linear trend plus a seasonal variation 1-10, 0, 5, 5). 

Every data set is created for 7 years (n = 28). Then we have "data" y j  = 

p t  + ( + e (t = 1,... ,28). We keep all three underlyiiig components of y j  in our 

records, so we know 77t = ft + , and then the "data" z1 = 74:-3 + 141-2 + p741-1 + 7741 

(1 = 1,. . . , 7) (binding benchmarks) are created. Using only z1,... ,Z6 as  annual 

benchmarks (leaving the last year without benchmark), we carried out benchmarking, 

50 replications were done for each case (data are created by the same models with 

indicated parameters and using the same indicated method). 

5.2 The mean is known 

	

At first, we assume that the Mt are known, so we know the true values of Wt which 	 . 

can be obtained from "data" y j  by Wj = y - ji (i = 1,... ,28). Table 5.1 and 5.2 
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show the "root mean square error" (denoted by RMSE) both for the extracted signal 

')o and the benchmarked value . For example, RMSE (all benchmarked) is 

50 28 

50 x 28 	
(i) - , i))2}1/2, 	 (5.4) 

)=1 i=1 

where j denotes the jth replication. 

For a method, in jth replication, we would expect 

{1 E(' - ,7W)2}I/2 < 	
28 	

- ,(i))2}1/2 	 (55) 

Temporarily, both sides of (5.5) are called the standard deviation (SD) of 	and 

respectively, which means that, after benchmarking the error should be smaller than 

before. We say, a replication is valid if (5.5) holds. The reality is that, if a method 

is bad, the correction term Ijc  may even explode (beyond hundreds, thousands in 

our simulation), so the high percentage of the valid replication means the method is 

stable. The first two columns in the Table 5.1 and 5.2 have similar definitions as (5.4) 

but only over the valid replications. For all these methods, the true value of E e  is 
always given. 

Method 1 refers to the regression method (1.11), according to (2.13), we put RMSE 

of y in the place of i,O  in Tables 5.1 and 5.2. In every case and all 50 replications, 

benchmarking reduces the SD, i.e., the SD of is always less than the SD of y(i) .  

Method 2 refers to using Hillmer and Trabelsi's formulae (2.5) through (2.8), given 

the true value of E, = E, so does of .1, = E. We see that the signal extraction 

reduces RMSE of y, on average, by (2.8426 - 2.6137)/2.8426 = 8.1% for model I and 

25.1% for model 2 respectively. All 50 replications are valid. Comparing with method 

1, the RMSE of benchmarked estimate is reduced by 7.6% for model 1 and 29.2% for 

model 2 respectively. 

Methods 3 through 10 are variants of method 2 where E,, and the corresponding 

are replaced by different estimates. Method 3 uses (4.13) for 7(k) and j(k) = 

y(k) - 'ye (k) for y(k); method 4, 5 and 6 use Tukey-Hanning window in (4.15) for 

y(k) with M = [n/3], [2n/3J and n - 1 respectively; and, M) (k) = .5.(M)(k) - 

for -y(k).  We see that, none of methods 3 to 6 are satisfactory, only method 4 

(corresponding to the smoothest spectral estimate) performs the best among them. 
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In all these methods, the estimates of E C  may be not positive definite as no revision 

procedure has been taken. 

Method 7 uses (4.18) to estimate c(k);  method 8, 9 and 10 use (4.19) to estimate 

7(k), again with Tukey-Hanning window and M = [n/3], [2n/3] and n - 1 respec.-

tively. Then the corresponding estimates for -y(k) are obtained as (4.20). From 

these results, we can see that methods 8 and 9 are quite satisfactory, and method 8 

(M = [n/31), the one corresponding to the smoothest spectral estimate is almost as 

good as method 2. 

Defining the signal to noise ratio by 

S/N = 7dO)17e(0 ) , 
	 (5.6) 

then for model 1, S/N = 29.41/8.33 = 3.53; for model 2, S/N = 75.53/27.02 = 2.79. 

Now, in both models, we keep all the same parameters, except for a_c.  For model 1, a 

is changed to 4.0 and 1.0; for model 2, o is changed to 6.0 and 1.5, respectively. The 

corresponding S/N are listed under Table 5.3 (A larger o makes S/N lower, a smaller 

o makes S/N higher). By the same way as before, for each value of o, we obtained 

a set of tables as Table 5.1 or 5.2, (not shown for space reason) again method 8 was 

the best among the methods 3 through 10. 

In Table 5.3 (the rows of mean is "known"), we summarize the most important 

results: only the RMSEs of ,) of method 8 are listed to compare with method 1 

(the regression method) and method 2 (knowing the true value of E, 7 ). The cells in 

columns with heading "no." give the number of valid replications among 50 for each 

case. The "%" column shows the percentage reduction of the RMSE of the indicated 

methods to compare to method 1. For example, for model 1, low S/N, method 8, 47 

replications are valid; the RMSE of is 2.7953, which reduces 3.2960 by 15.2%. The 

number 3.0213 in the brackets is the RMSE of all 50 replications, that means, in this 

case, even those 3 invalid replications are included for comparison, method 8 is still 

better than method 1. * 
From Table 5.3, we can see that the signal extraction method performs more 

efficiently as the S/N goes down; for high S/N cases, using signal extraction does 

not bring in very much benefits (for model 1, it makes no difference with regression 

method). 
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5.3 The mean is unknown 

We now turn to a situation closer to the reality: where a t  are given by (5.3) but we 

do not know the parameters, so we get the LSE of the parameters from "data" y. 

Using these estimates to replace the true values of the parameters in (5.3), A t  and 
tbt = yt -  are obtained. Then following Step 2 and Step 3 in Section 4, we carry 

out the same simulation as before, the main results are listed in Table 5.3 (the rows 

of mean is "linear"). 

Notice that, method 1 does not need any assumption about p, so the result is 

the same as in the "known" part, which we do not repeat. 

In this situation, although method 2 uses the true second moments Ec, , and 

hence 10,  but since * replaces the true value of w in (4.10), method 2 is now not as 

good as in the situation of "mean is known", but slightly worse. 

For method 8, w and the second moments in the benchmarking formulae are 

all estimated, but the results show that this method is only marginally worse than 

method 2. 

The most realistic situation is that where we do not know the type of the function 

which Pt  follow. The trend could be linear, quadratic or other kind of smooth curv. 

For testing our approach, we designed the following simulation: p t  are generatead as 

(5.3) plus an extra quadratic term 0.04i 2 . The choice of the coefficient 0.04 makes 

this term contributing a variation as large as the linear term I in the range of I from 

1 to 28. Data were generated with this new model of the mean, but we still specified 

the mean li t  as (5.3) and then applied the LSE. This misspecification almost did not 

affect the results as shown in the "quad." part of Table 5.3 compared to those of the 

"linear" part (no model misspecification, parameter estimation error only). In other 

words, the right model specification of p is not so crucial. 

A 
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TABLE 5.1 Simulation results for model 1 

RMSE (valid RMSE (valid no. of RMSE (all RMSE (all 
Method 	sig. extr.) benchmarked) valid rep. sig.extr.) benchmarked) 

1 2.8426 2.0600 50 2.8426 2.0600 
2 2.6137 1.9082 50 2.6137 1.9082 
3 2.8599 2.0835 40 2.8941 10.8079 
4 2.6668 2.0052 48 2.6984 5.0063 
5 2.6709 1.9812 41 2.7717 2.5804 
6 2.7906 2.0920 46 2.8129 3.6217 
7 2.6913 2.0844 46 2.7084 409.9062 
8 2.6389 1.9423 49 2.6366 2.0743 
9 2.6482 1.9961 48 2.6646 2.7197 
10 2.6664 2.0206 47 2.6819 3.5931 

TABLE 5.2 Simulation results for model 2 

RMSE (valid RMSE (valid 	no. of 	RMSE (all 	RMSE (all 
Method 	sig. extr.) 	benchmarked) valid rep. sig.extr.) benchmarked) 

1 5.2062 4.1746 50 5.2062 4.1746 
2 3.9011 2.9569 50 3.9011 2.9569 
3 4.6293 3.6423 30 4.8124 43.3872 
4 4.2195 3.3336 44 4.3006 17.4169 
5 4.3204 3.3244 35 4.5012 45.9034 
6 4.4382 3.4146 32 4.6059 2793.1038 
7 4.3216 3.3495 48 4.3359 3.8291 
8 4.1426 3.1640 50 4.1426 3.1640 
9 4.2148 3.2077 49 4.2262 3.4747 
10 4.2654 3.2590 49 4.2778 3.6134 

4 

•1 
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TABLE 5.3 Some RMSE of 4 for different models and situations 

p 

jJ 	model 1 model 2 
mean I S/N j meth. RMSE f 	% ]n RMSE no.  

k 
n 
o 
w 
n 

low 
1 3.2960 0 50 6.2616 0 50 
2 2.6899 18.5 50 3.6226 42.1 T10 
8 2.7953 

 (3.0213) 
15.2 47 4.0626 

(4.0861) 
35.1 49 

mid 
1 2.0600 0 50 4.1746 0 50 
2 1.9082 7.6 50 2.9569 29.2 50 
8 1.9423 5.7 

 (2.0743)  
49 3.1640 24.2 50 

high 
1 0.8240 0 50 1.5655 0 50 
2 0.8207 0.4 50 1.4588 7.5 50 
8 0.8253 L -0.2 1 	50 11 	1.4797 5.5 1 	50 

I 

n 
e 
a 
r 

low 
2 2.7734 15.9 50 11 	4.0791 34.5 50 
8 2.9034 

(5.2093) 
11.9 43 4.3497 

(5.0732) 
30.5 49 

mid 
2 1.9279 6.4 50 3.1912 23.6 50 
8 1.9904 

 (2.1800) 
3.4 49 3.3085 

(3.3964) 
20.7 49 

high 2 0.8212 0.3 50 1.4921 4.7 50 
8 0.8203 0.5 50 1.5033 4.0 50 

q 
u 
a 
d 

low 
2 2.7981 15.3 50 4.0888 34.7 50 
8 2.9554 

 (3.5026) 
10.3 46 4.3944 

(5.5082)  
29.8 49 

mid 
2 1.9325 6.3 50 3.1924 23.5 50 
8 

______ 
1.9878 

(2.0617) 
3.5 49 3.3274 

(3.9527) 
20.5 49 

high 2 0.8212 0.3 50 1.4913 4.7 50 
8 0.8232 0.0 50 1.5059 3.8 	1 50 

Note: S/N, the signal to noise ratio, for two models is as following: 

model 1 	model 2 
low 	1.38 	1.24 
mid 	3.53 	2.79 
high 	22.11 	19.83 

S.  

A 
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6 Conclusions 

In this paper we analysed the properties of the regression and the signal extraction 

methods for benchmarking survey data and proved that the corrections originating 

from the benchmarks reduce the variance of the survey error and the error of the 

signal extraction, respectively. Furthermore, when the first and the second moments 

of the survey error {et} and the target series {} are known, the variance of the error 

of the benchmarked estimate via signal extraction is smaller than that of using the 

regression method because the latter method does not use the information on the 

nature of {?7 j } given by its covariance matrix . 

We also discussed the limitations of the ARIMA model based approach in imple-

menting the signal extraction benchmarking. In order to overcome some difficulties 

associated with the ARIMA modelling of {i}, we proposed a nonparametric approach 

based on spectral techniques. In this approach we assume that {'h}  is the sum of 
a deterministic component {pt}  which is a smooth trend plus a stable seasonality 

and a stationary stochastic component {} which accounts for the presence of both 

stochastic trend-cycle and seasonality. 

We carried out a simulation to compare the efficiency of the regression method 

(RM), the signal extraction (SE) where the El,  is known (usually not known in prac-
tice) and the signal extraction method where E, is estimated by the nonparametric 
(NP) approach proposed in this study. 

In the simulation, {p} is created following a linear or a quadratic trend plus a 

stable seasonality, and {(} and {ej} following ARMA models. Two models (1 and 

2) are chosen to distinguish two different situations: the spectral densities f,(\) and 
fe(A), of {} and {et} respectively, have similar or very different patterns. Further-

more the effects of the levels of the signal to noise ratio are considered. The results 
show: 

A smooth spectral estimate corresponding to an estimate of the covariance 

matrix E, is needed and this estimate of E,, must be positive definite for the NP 

method to produce estimates close to the "true" values of 77 t . 

Using RMSE as a measure of efficiency, SE is always better than RM, NP is 

only slightly worse than SE. 	
- -a 

If the patterns of f\) and fe(\)  are similar, the gains in efficiency of SE and 
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NP with respect to RM are small; and if the difference of these two patterns is big, 

then the gains are larger. 

If the signal to noise ratio S/N = y(0)/ye (0) is large, the efficiency gains are 

small and conversely. 

The only parametric model we used is to estimate ji t . The NP method is robust 
S 

to model misspecifIcation and estimation error of the parameters. 

Appendix: Proof of (2.5)-(2.9) 

The projection of random vector q on the probability space spanded by y is 

= E( I 	= Ei + Coy (t,y)(Var y) 1 (y - Ey), 	(A.1) 

and the variance matrix of the error using i O  to estimate 17 is 

	

c20  = E[(i70 - ij)( - ii) '] = Var i - Coy (,y)(Var y)Cov (y,q). 	(A.2) 

Noticing 

	

Coy (,, y) = E,1 , E = Var y = E,1  + Ee, Ey = E?7 = IL, 	(A.3) 

(2.5) and (2.8) can be derived easily. 

We are now going to show 

c(X': 1 7- + ,7'p), 	(A.4) 

then the same derivation gives (2.6) and (2.7) as Hillmer and Trabelsi (1987) did. 

From (1.8) through (1.10) and (A.3), 

Coy ('i' r) = E,7 X', Var r = XE I,X' + E, Er = Xji, 	(A.5) 
0. 

then by the similar formula as (A.1), we have 

& 	
77 = t + E,,X'(XX' + ) 1(r - Xtt) 

	

= , + E,x'[E;' - E: 1 X(E' + X'E'X) - 'X'E](r - Xii). 	(A.6) 
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The sewnu quiiy u t-t.uj is due to the partitioned inverse of a matrix. Then 

(A.4) follows by some rearrangements and basic operations of metrices. Using similar 

formula as (2.2) to express E[(i - 11)(i - q)'} it gives Q. 
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