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Abstract 

Economists have developed their theory of long-wave cycles since the 1920s. How-

ever, the theory is not well-accepted in modern macroeconomics as these cycles are 

hardly posited to the real data and consist of too few episodes to be testable, es-

pecially in production. The stochastic modelling or nonparametric approaches are 

currently used to detrend the series to obtain business-cycle movements. 

Using newly developed approaches of detecting and estimating hidden periodicities 

in time series analysis, this paper proposes a new way to deal with the hidden long-

wave cycles in macroeconomic series such as the gross domestic product (GDP) series. 

The analysis shows strong evidence of the existence of these cycles. The detrending 

approach offered by this paper has many advantages for analysing economic situations 

and for forecasting. 

Les éconornistes ont developé la thorie des cycles de longue durée depths 1920. Cette 

théone n'est pas acceptée clans Ia macro&onomie moderne parce que ces cycles ne se produisent 

pas beaucoup clans les sries r&lles et il y a pci' d'examples disponibles pour tester leur 

presence. La modélisation stochastique et les approches nonparamétriques sont presentement 

utiiisés pour enlever Ia tendance d'une série et obtenir les mouvements du cycle d'economique. 

En utilisant les approches developpes récemment pour identifier et estimer les 

périodicités cachées en série temporelles, cet article propose une nouvelle facon de traitcr les 

cycles de longue durée des sénes macroéconomiques commes Ia série de produit intérieur 

brut(PIB). L'analyse montre une forte évidencc de I'existence de ces cycles. L'approche 

d'enlever Ia tendance clans une série, développé clans cet article, offre plusieurs avantages pour 

analyser les situations économiques et pour faire de Ia prevision. 
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1 Introduction 

In Inacroecononucs, problems of the business cycle (with respect to durations, turning 

points, amplitudes, patterns, etc.) and forecasting (in terms of model identification, 

estimation, adjustment, etc.) have caught the attention of economists and statisti-

cians for a long time. However, these problems interact with the trend, on which the 

salient business cycles stand. Different detrending approaches may result in different 

business cycle movements and the forecasts of a series depend on the forecasts of the 

trend and of the detrended series (namely the business cycle-movements). Meaningful 

trends may indicate the situation of long-term developments in the economy; inap-

propriate trends could be very misleading. Therefore, proper modelling of trends is of 

primary interest in macroeconomics. The term "trend" is commonly understood but 

difficult to define in general. Every approach offers trends with its own properties and 

features. Some literal definitions of "trend" are discussed in Harvey (1989, Section 

6.1.!). 

Assume that a series of observations Yt  can be decomposed as 

Yf  = Tt  - C?, 

where series {c} represents the business-cycle movements which is usually assumed 

to be a stochastic series, say, follows an ARMA model. Series {T} represents the 

trend, 

If Tt  is a deterministic function of time, and {C} is a stationary series, Nelson and 

Plosser (1982) called (1.1) the trend-stationary model and is known as the TS model. 

The most simple deterministic functions for trends are linear or polynomials of higher 

degree. However in most practical cases, such trends are far from satisfactory and 

most current research does not follow this direction. 

Various stochastic models have been used for modelling the trends of macroe-

('oliornic series in the current literature such as the unobserved component models 

also known as the UC models (see Watson 1986), the structural models (e.g., see 

Crafts et al. 1989), etc. were proposed Additional references are cited by the papers 

mentioned above and there are more in Zarnowitz (1992). A general introduction to 



stochastic trend-modelling may be found in Harvey (1989). Once the models of series 

{T} and {C} in (1.1) are specified, Tt  and Ct may be estimated by a filter or a signal 

extraction procedure. 

Alternatives to stochastic modelling of Tt  are some moving average procedures 

(nonparametric smoothing). The National Bureau of Economic Research (NBER) 

in the United States developed a procedure called the phase-average method which 

combines moving averages and interpolations between mean values of the series in its 

successive business-cycle phases. This method has been adopted by the Organization 

for Economic ('o-operation and Development (OECD) to produce trends of data for 

the major industrialized countries in their monthly published journal Main Economic 

Indicators. 

An application of the linear trend, the UC trend and the phase-average trend with 

the logarithm of real CNP data of USA are compared in Zarnowitz (1992). A copy of 

his Fig.6. I and Fig,6.2 is attached at the end of this paper for the reader's convenience. 

The linear trend is certainly not satisfactory and is used only for comparison PUrPoSeS, 

to explain the advantages of modern stochastic trends. The UC trend follows the 

data closely, but it is too irregular and too flexible. As Zarnowitz (1992, p.187) 

discussed. "the stochastic trend flattens in several recessions (1953-54, 1973-75. 1981-

82) and even declines in some (1957-58, 1960)." Phase-average performs the best in 

keeping the right sizes and pLtterns of the business cycles. Unfortunately there are 

no analytical formulae or built-in models to describe the trend, so from this trend 

it is difficult to produce some general and concise conclusions concerning long-term 

developments in the economy and it cannot be used directly for forecasting. 

Diverging from the main stream of current research techniques which obtain 

stochastic trends, this paper advocates a regression model and uses Canadian C DP 

series as an example to show that the regression residuals may represent the business-

cycle movements and prove to be satisfactory in comparing with the phase-average 

detrended series. The advantage of this approach is that it offers a trend described by 

an analytical function and allows us to investigate the existence of long-wave cycles. 

In fact, early in the 1920s, the Russian economist Kondratieff (1984, translation) 
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discovered the existence of long-wave cycles of 50-60 years duration in the western 

economy. His theory was recognized by western economists and further developments 

are summarized in Stocken (1978). However, the developments along this direction 

are basically in the domain of economics and lack convincing statistical analysis. As 

Zarnowitz (1992) pointed out, the Kondratieff's swing of 50-60 years are hardly gen-

eral as posited, for they show up mainly in prices and not production, and consist of 

too few episodes to be testable. The proposed long-wave hypothesis is not supported 

by the data in any clear and consistent way. Some growth rates in the United States 

between 1840 and 1914 show 15- to 20-year fluctuations known as Kuznets cycles are 

now recognized as belonging to history. Commonly used statistical methods do not 

seem to easily verify the existence of long-wave cycles, so the research on long-wave 

cycles is currently in decline. Using the regression strategy offered by this paper, this 

"ancient" conclusion may be restored for some macroeconomic series. As a model is 

provided, these cycles 110W have new implications and the results are supported by 

data with statistical analysis. 

The specific model is 

- 

Yt   = a0 + a 1 t + a 2 t 2  + pcos(wot 4- ) + Ct 	 (1.2) 

In fact, this is a model of the TS type where the trend consists of a quadratic func-

tion and a sinusoid (amplitude p. fre(1UenCy oo and phase 0 are all constants). The 

substantial difference of (1.2) from other TS models discussed in the literature is the 

introduction of the sinusoid terni 

pcos(wot + p) = PcCOSWOt + Ps Sfl w0t 	 (1.3) 

where 

PC = pcos, 	p = —psin. 	 (1.4) 

This sinusoid term, if it exists, claims the existences of long-wave cycles. 

This paper will study three series of Canadian GDP data by fitting the model 

(1.2) and then compares the results with those in the literature. The data source is 

the CANSIM clatitbase of Statistics Canada. The three quarterly seasonally adjusted 
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series are G D P at current prices, CDP at constant prices (which is referred to as real 

CDP) and implicit price index. Each series contains 186 observations ranging from 

the first quarter of 1947 to the second quarter of 1993. Using quarter/year to indicate 

the actual quarter in a year, the data start from 1/1947 and end by 2/1993. The 

following correspondence between the numbering of the time axis (from 1 to 186) and 

the actual quarter will be usefel for reading the plots in this paper. 

20 	60 	100 	140 	180 
4/1951 	4/1961 	4/1971 	4/1981 	4/1991 

The other sections are arranged as follows. In Section 2, we discuss data trans-

formation. In Section 3, the concept of hidden periodicities is introduced, as well as 

it recently developed approach in detecting and estimating hidden periodicities which 

will be used in this paper. Section 4 explains how to transform model (1.2) to the 

form where the methods in Section 3 are applicable. Section 5 presents the results of 

the regression study with Caiiadiaii GDP data mentioned above, and the existence of 

long-wave cycles is confirmed. Section 6 analyses the business cycles from the resid-

uals of the regressions for the above-mentioned series .All the figures and tables are 

attached after the references. 

Some similar results for G DP data of USA and some results of intermediate cycles 

which may further improve the appearance of the business-cycle movements as well 

as other relevant results were obtained but are not presented here. 
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2 Data Transformation 

Data transformation is sometimes the key step in solving a practical problem. By 

changing the scale, we may change the properties of the data. Therefore, a proper 

choice of transformation can provide advantages. For example, the distribution of the 

transformed data may become normal or close to normal, so that many statistical in-

ference approaches can be applied. For time series analysis, a suitable transformation 

can make the data stationary or close to stationary. 

The most common transformation in macroeconomics is the logarithmic trans-

formation Yt  = log X, where X t  are the original observations of the series under 

investigation. Often the distribution of the data is much closer to normal after this 

t rans form ation and even more meaningful. 

Denote the forward differencing operator by A, then 

logX, 1  —logX 	log(1 + 	
X

Xt 

In practice, for cases such as CDP. X t , j  - X 1  is much smaller than X. Using Taylor's 

expansion, we have 

(X+1 - X)/X, 	 (2.1) 

i.e., the cliffereiice of the logarithm of X t  is approximately the percentage change of 

- 	xt. 
There is it family of transformations called Box-Cox transformations, defined by 

	

- 1)/A, 	0 . A < 1; 
(2.2) 

I, logX, 	)=0. 

When the logarithmic transformation is not satisfactory, i.e. the transformed data 

are still far from being normal or stationary, then we may use other transformations 

in this family. 

In fact, when A > 0, instead of (2.2) we may simply use 

	

= 	 (2.3) 

then in the case A = I, the original data are unchanged. (2.2) is motivated by the 

need to satisfy the continuity in A that is (X - 1)/A 	log X t  when A 	0. 

5 



The optimal choice of A depends on its purpose. Here, stationarity is our major 

concern. The theory to be used for detecting and estimating the hidden periodicities 

(in Section 3) is based on the assumption of stationarity. Moreover, once the trend 

has been removed, we would like to fit the residuals with stochastic models for the 

purpose of forecasting, where stationarity is again a good feature for modelling. 

If a series (apart from a linear trend) is stationary, then the differenced series is 

also stationary. Therefore, it is equivalent to trying A on the differenced series. In 

the following, we will also see that this aids our visual judgement. 

Now we discuss transformations of three Canadian CDP series mentioned in Sec-

Lion 1. Each series has been transformed with 3 different A and then differenced. 

Fig.2.1, 2,2 and 2.3 are the plots of these differeiiced series. The top plots of these 

figures are for A = 1, i.e., the differences of the original series X 1 : the bottom ones 

are for A = 0, i.e., the differences of Y -= log X the middle ones are the differences 

of Yt  V with "optimal" choice of A. We obtained these "optimal" values of A by 

using the maximum entropy criterion, which we will explain later in detail. Note that 

the three plots in each figure are of three different scales. 

From Fig.2. 1 for C DP at current prices, we see in the top plot that the stochastic 

fluctuation increases dramatically; that means {AXJ is strongly lionstationary. Such 

an increase is due to combined effects of expanding volume and inflation. The top plot 

of Fig.2.2 for CDP at constant prices shows a mild tendency of increasing stochastic 

fluctuation, where no inflation is involved. This series is still noiistationary but not 

serious. 

Both bottom plots of Fig.2. I and Fig.2.2 show that, for CDP at current prices and 

at constant prices, AY1  = A log X t  ShOW it decreasing tendency of fluctuation. This 

is conceivable as the size of the economy becomes large, more "inertia" is acquired, 

and hence the percentage change becomes more stable, i.e. less effected by impacts 

of stochastic shocks. Both plots suggest mild iionstationarity. 

The middle plots of Fig.2.1 and Fig.2.2 are obtained by choosing A = 0.35 for 

CDP at current prices and A = 0.68 for CDP at constant prices. These two show 

satisfactory stable fluctuation which suggests that, data transformed in this way are 

stationary (excluding, perhaps, a slight trend). Fig.2.3 shows similar results for the 

series of implicit price index, where the middle one is obtained by choosing A = 0.5. 
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An elaboration of the maximum entropy criterion follows. For a finite discrete 

probability distribution family {pl(.A),.. ., pk(A)}, A is the parameter of the distribu-

tion and y k= I pA) = 1. The entropy is defined by 

	

= —p3 (A)logp(A). 	 (2.4) 

If the uniform distribution belongs to the family, i.e. there is a A, such that Pi(  A) 

= pA) = 1/k, then the maximum of £(A) is achieved at this A. If the uniform 

distribution does not belong to this family, then the maximum of &(A) is achieved at 

a A, such that {m (A), . . . , p k (A)} is the "closest" to the uniform distribution. 

Now suppose the observations are X 1  ,..,X. For a fixed A. 0 < A < 1, let Yt  he 

defined by (2.2) or (2.3). Partition the time axis into k intervals of almost the same 

length with end points i0 = 1 < z ... < 1 k = N - 1. Consider the maximization of 

(2.4) with 

p(A) = v(A)/v(A), v(A) 	E Vj 	 (2.5) 

and 

v(A) 	 - AY) 2 	j 	L. . . , k, 	(2.6) 

that is the average of scivared variations of A iii the jth segment. Then the maxi-

mization of (2.4) suggests it value of A which makes the variation of AY [Ye  are given 

by (2.2) or (2.3)1 the most uniform in the whole period. Fig.2.4 is the plot of (A) 

for CDP at current prices of Canada with N = 186 and k = 7. The maximum of 

E(A) at A = 0.35 is 192916, which is very close to 1.94591, the entropy of the uniform 

distribution of k = 7. 

There are some other ways to dehne v(A) in (2.6), such as using the square 

root of the right, hand side of (2.6); or in (2.6). (AYe.. - A),,
) 2  can be replaced 

bY I A - A . Our calculation shows that there is not much difference in 

using these alternative measures. For example, for GDP at current prices, by using 

I AY 1  - , ( A) achieves a maximum of 1.94044 at A = 0.38. Moreover, the 

number k is not crucial .A comparison of the case k = 3 and 7 shows the results are 

very close. 

Notice that (A) is designed to measure the uniformity of stochastic variation, 

but is possibly affected by a hidden smooth trend in A, though very slightly. If 
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instead of AYE , we directly use Yt  in (2.6), then because Y contain a strong linearly 

increasing trend which is the main portion of Yt , j  - Yt, the resolution will be poor. 

3 Detecting and Estimating Hidden Periodicities 

Suppose a time series { W}, where t takes integer values, follows model 

Wt = pcos(wot +) + Ut, 	 (3.1) 

where p, w, 0 are constants and {U} is a stationary series (more strictly, a linear 

series, see e.g., Chen 1988a,b) with mean zero, i.e., {W} is a sinusoid interrupted by 

noise {U}. The sinusoid completes the periodic movement in the period of 271/wo, but 

we cannot usually see it without the help of statistical tools, so we say that { W} has a 

hidden periodicity. Correspondingly. wo is called a hidden frequency and p cos(wot +) 

is a hidden sinusoid. For example. in a series of quarterly observations there is a 

hidden sinusoid of periodicity 120 (120/4=30 years), so wo = 21r/120 = 0.05236, since 

cos(0.05236(t + 120) + ) = cos(0.05236t + 27r + q) 	cos(0.05236t + ). 

In fact, our general theory may cope with multiple hidden frequencies, i.e., several 

terms of sinusoids in (3. 1) with different values of p, wo and . Here we mention only 

the simplest case. 

Statistical theory and approaches developed for testing the existence of hidden 

periodicities have been around a long time. The traditional way in time series analysis 

is based on obtaining suitable test statistics from the periodogram. ordinates. 

Suppose W. . . W, are observations, then we may define their periodograrn by 

N 
coswt) 2  + (E W t  sinwt) 2 }. 	 (3.2) 

Theii the set of statistics. 1(w) at w = 27t3/N, j = 1,. . . , IN121, are defined as the 

periodogram ordinates. [N121 denotes the integer part of N12. If W1  follow (3.1) and 

p is relatively large (the amplitude of the sinusoid is not too small compared with 

the variation of U(t)), then 1(w) should have a peak around wo (in physics, this is 

the resonance phenomenon). Hence one of the periodogram ordinates with w closest 

to wo will take a larger value than others. 1-low large is this value to suggest the 
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existence of a hidden frequency wo in the vicinity of this 27rjo/N ? When {U} is a 

normal white noise, Fisher (1929) derived the distribution of 

IN/_i 
g == 1(21rjo/N)/{ 	1(27rl/N)} 	 (3.3) 

under the null hypothesis p 	0 (no hidden periodicity). Then, g exceeding the 

critical value of the test, say 0.05 upper percentile of the distribution, suggests the 

existence of a hidden frequency close to 27r jo/N. 

In practice, {U} is rarely normal white noise but more likely a series following 

an ARMA model. A general introduction to the further development along Fisher's 

approach may be found in Priestley (1980). The disadvantages of these type of 

proce(lures are discussed by ('lieu (1 988a,b). 

Based on the result of the divergence rate of maxo <<ir  1(w) (Ali et al. 1983), 

Clien (1 988a) proposed the following set of statistics 

2j --- 1(rj1N)1{f(irj1N) log N}, 	j = 1,2 	N. 	 (3.4) 

where f (irj/N) is it specially designed estimate of the spectral density f(w) of {U(t)} 

.11 i = 7rj/N. This estimator has the ability to eliminate the effect of a potential 

hidden frequency existing in the vicinity of irj/N. The advantages of using this set of 

statistics and the convergence or divergence properties are discussed in Chen (1988a); 

here we explain these in a pragmatic way and show how to use them. 

When j runs from I to N, nj/iV runs from nearly 0 to ir and uniformly scatters 

along (0, in. The larger the N, the denser the irj/N and the more irj/N fall in a given 

neighbourhood of w0 . Then Z, have the following properties: some 2, with irj/N 

inside a neighbourhood of w0  must be large; the one or two with irj/N being closest to 

W) could be as large as we wish provided that N is large enough. On the other hand, 

those Z. with inj/N outside the neighbourhood of w0 mentioned above are dominated 

hr 1 -f- E provided that N is large enough; where € > 0 is any small number given a 

priori. That means, if N is large enough, we may always detect a neighbourhood of 

wO  by using 1 + € as a "threshold". For more details of the procedure which has been 

)n)grarnmed, see ('heui (1988a). 

Now consider the following example. The top plot of Fig.3. I is a sinusoid, as the 

first term on the right of (3.1) has p -- 1/2, wo = 0.125664, 0 = 0. The middle plot is 



a stochastic series following an MA(2) model: Ut  = et - 0,75e t _ L  + 0.125e t_2, where 

{ e} is a normal white noise series of mean zero and variance 1. The bottom plot is 

{W}, the sum of the top two, from which it is difficult to see the hidden sinusoid 

with the naked eye. 

The upper plot of Fig.3.2 is the periodogram of { W} (plot of I (di) only at w 

nj/N, N = 200, j = 1, 2,. . , 200). There is a peak at j = 8 which is created by the 

mentioned sinusoid (w0 is in the vicinity of 8/200). But there is an even higher peak 

at j = 154 due to the irregularity of the periodogram of {U} (in this example, the 

spectral density of {U} is a higher level at high frequencies, so the periodogram is 

also more irregular on the high frequency side). Therefore, using statistics like (3.3), 

we may not reach the right conclusion. 

The lower plot, of Fig.3.2 is the Z-statistics defined in (3.4). Only Z8  = 7.55 and 

29  = 2.16 are much larger than 1, all other Z are less than or at most about 1. If we 

had chosen, say € = 0.1, i.e. a "threshold" of 1.1, then we may conclude that there 

is a hidden frequency in the vicinity of 7r8/200, and use 7r8/200 as an initial estimate 

of w0 . 
Having located a neighbourhood (i.e., the vicinity of 71j0 /N) of an apparent fre-

quency, there are some methods which can offer more precise final estimates of the hid-

den frequency than the initial estimate which will be used in this paper later. One is 

by 'maximizing periodogram 1(w) in this neighbourhood, i.e., calculate 1(w) in a much 

hner lattice, then find the w for the maximum and make this ' the final estimate. This 

method will be referred to as MP in this paper. Another method for obtaining a final 

estimate is called secondary anal y57.S (denoted as SA), which is quite an old method 

and has a hidden fault in the original procedure. ('hen (1988b) revised the procedure. 

It was proved by Hannan and Mackisack (1986) and by Chen (1988b), that for either 

M P or SA, the precioii could reach the order of (N 3  log log N) 1/2,  In practice, 

(log log N )1'2  is just slightly greater than I (say, even N = 1000, (log log N )h/2  is just 

1.39). So basically, the precisioll of these final estimates is of order N' 312 . This could 

be a great improvement over the initial estimate irj0/N which only guarantees an 

order of N'- ' (usually the error does not go beyond ir/N). For example, if N = 100, 

then MP or SA may offer estimates with an error as small as a few multiples of 0.001 

while the initial estimate usually has errors not beyond 0.017r. 
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4 The Model for Fitting the data 

As it was mentioned, we try to use model (1.2) to fit GDP data. It is true that, 

the regression on a specified family of analytical functions can often lead to worse 

results than stochastic modelling or smoothing procedures if the specification does 

not capture the right pattern of the trend or there is no pattern for the trend. This 

danger is mentioned by many authors. We certainly cannot guarantee that (1.2) 

works well for all macroeconomic data and for any given time duration. However, we 

will see that it does work well for the GDP data in our study. Once the regression 

fitting is good, the analytical function reveals the intrinsic structures and properties 

of long term movements of the series in a clear and simple manner which may be 

easily used in describing the economic laws and in forecasting. 

The major problem in fitting data with (1.2) is detecting the sinusoid term 

p cos(wot + ) and estimating wO after this sinusoid has been detected. We cannot 

directly apply the methods in Section 3 to (1.2) because there is an extra quadratic 

term ao 4- a1 t -1- a2f2 in (1.2), while in (3.1) the deterministic part is only a sinusoid. 

This indicates that some preliminary treatment is necessary for ?. 

Again let A denote the forward-differencing operator and apply it to (1.2). First 

consider the sinusoid term. Using 1Z{x} to denote the real part of a complex number 

x, we have 

A{pcos(wot -I- q)} = 7{A(pc b0t± )} = 	{pe 0t+)(el4J0 - 1)}, 	(4.1) 

formally, which can be writteti as 

A{pcos(wot + )} = p'cos(i0t + 0'), 	 (4.2) 

	

where p' and ' are constants, p' > 0, —it < ' 	it. We see that the differencing 

operator changes the amplitude and the phase, but keeps the same frequency. If there 

is a hidden periodicity of frequency w0 in a series, then a hidden periodicity of the 

suie frequency w 0  exists in the tliffereiiced series. 

When wo  is close to 0, then 	- I 	io= 	and from (4. 1) we have 

A{pros(ot 4- )} 	a.'0pcos(wot 4- 0 + 7r/2). 	 (4.3) 
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In this case the amplitude (p' wop) of the sinusoid is dramatically reduced by differ-

encing and hence if we can detect a hidden frequency wO close to 0 in the differenced 

series, then we are very confident of the existence of a hidden periodicity (of the same 

frequency Wo) in the original series and p should be much larger than the variation 

of the noise. Next, we will see the real reason of investigating the hidden frequency 

with {Y} rather than with {Y} itself. 

Sometimes there is a situation where we cannot detect the hidden frequency wo 

close to zero in the differenced series because p' ,ioP becomes too small. For 

Canadian GDP data we will also face such a situation and a method of how to deal 

with it will be provided. 

Differencing the qIl dratic term ni (1.2) with A t 2  = (t + 1)2 - t 2  = 2t -f I in mind, 

WC Ol)td.iII 

(ao ± a j t + a 2 t 2 ) = ( a 1  + a2) f 2a2t. 	 (4.4) 

Then (1.2), (4.2) and (4.4) give 

AY = (a 1  -i--  a2) + 2a2t -i- p'cos(ot + ) + AC E . 	 ( 4.5) 

Let 

(4.6) 

theii a 1  + a2 is eliminated from AYt  We may assume CE has mean zero, hence 

- 	
0, 	 (4.7) 

N 	1 	,  

and VVt  obtained in this way cali be approximately expressed as 

-= 	+ 2o + p'cos(..i0 t + ') + Ac t , 	 (4.8) 

w here 

= - N— 1 	
cos(w0t + /) - a2N. 	 (4.9) 

Comparing (4.9) with model (3.1), we see that there is still an extra linear trend 

1- 2a 2t in (4.8), Certainly It + 2a 2 t may have some effect on the sensitivity in 

detecting wo and on its final estimate when we use the methods described in Section 

3. Therefore one may try to reduce it further. Using the differencing operator to the 
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right of (4.8), i.e., difterencing Yt  two times, and ignoring 2a2 (since it is usually very 

small), we get p" cos('.iot + b")  + LX 2Ct, which is exactly like (3.1). Unfortunately, 

p" wp is too small, thus we cannot detect the hidden periodicity. 

It is difficult to transform (1.2) exactly to the form of (3.1) and also to be efficient 

in detectiiig and estimating the hidden periodicity. however in the next section we 

will see that by simply using W t  in (4.6), i.e., ignoring it + 2at in (4.8), we can get 

satisfactory results for GDP at current prices and for implicit price index. The error 

from estimating wo in this way does not affect the final results of the regression fitting 

and the residuals. 

For CDP at constant prices, we cannot detect any hidden periodicity from the 

differenced data I '. because p is already small and hence p' = p is almost 0. As 

a 0  + a 1 t + a 2 1 2  is now the dominant component of the trend (the sinusoid component is 

small), then initially remove this part by quadratic regression (denote the estima.te.l 

parameters by d, j = 0, 1, 2). Let 

Wt = 	- (a 0  + ã 1  I + a2t 2 ). 	 (4 10 

and apply the methods in Section 3 to Wt  to estimate o.  Now 

VV t = i + pcos(wt + ) + C 	 (4.11) 

and 

11t = (ao - a0 ) + (a j  - à 1 )t + (a2 - à0)t 2 	 (4.12) 

are small, like it -I- a2t in (4.8), and the effect of il t  on estimating aio is negligible. 

It is clear that when an estimate of WO has been obtained, then Y can be fitted 

by the regression model (1.2) using it lineai regression procedure, where the sitiusoid 

term in (1.2) should be expressed as (1.3) in order to avoid the nonlinear parameter 

41. 

5 Long-Wave Cycles in Canadian GDP 

Now we demonstrate the results of applying the previously mentioned methods to 

GDP for Canada. The details and the source of the data have been explained in 
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Section 1. First, let us look at what happens if the sinusoid term is not introduced. 

Fig.5.1 (a) is a fitted quadratic trend, i.e., aO + a1 + a 2 t 2 , to the logarithm of GDP 

at constant prices. At a glance, this trend appears acceptable, but if we observe 

the residuals of the regression Fig.5. 1 (b), i.e., the deviation of the data from this 

trend, we find that the level drifts. It would be very misleading if we attempted to 

use Fig.5. 1 (b) to investigate the business cycles: a "very severe" recession appears 

around the late 50s, but many really severe recessions are flattened. Certainly, the 

figure does not demonstrate the right pattern and amplitude of the business cycles. 

For simplicity of notation, from now on, we use CDPC to denote GDP at current 

prices, reserve GDP for GDP at constant prices (the real CDP) and use IPI to denote 

iml)licit price iiu.lex. Theii at time t, the relationship between them is 

(GDP) x (IPI)/lOO = (GDPC). 	 (5.1) 

The range of the data and the correspondence between t, (t = 1,2,... ,186) and 

actual quarter/year have been explained in Section 1. (IP!) t  is 100 in the middle of 

1986. (GDP) t  and (GDPC) t  are measured in millions of dollars. 

It is conceivable that the hidden periodicities as well as the quadratic functions 

depend on A, the parameter of the transformation (2.2) or (2.3), as the transforma-

tions dramatically change the plotting patterns of the data. Table 5.1 are the results 

using the methods introduced in Section 3 to = - Y. where Y = X for 

A = I or the "optimal choices referred to in Section 2, or Yt  = log X t  for A = 0, and 

X t  are the original GDP(' or IPI series. As was pointed out in Section 4, since the 

hidden periodicities of such low frequencies are found in the differenced series with 

maximum values 2j  sigiiilicaiitly greater than 1, we are extremely confident of the 

existence of hidden periodicities in all these cases. 

As a function of j, 2i reaches its maximum at Jo = 2 (when A j4 0) and Jo = 3 

(when A = 0), which gives the initial estimate of w 0 , i.e. n2/185 = 0.0340 and 

r3/185 = 0.0509 respectively (the corresponding periods are 46.20 and 30.86 years 

respectively). The columns of M = 3, A'! = 2 and MP in Table 5.1 list the different 

final estimates of wo and the corresponding periods p (in years) by using different 

methods. Those under IV! 3 (or M = 2) are the results of using SA and choosing 3 
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(or 2) for parameter M in the procedure, where M is an integer not less than 2 (see 

Chen 1988b) and small values are preferred. Those under MP are the results of using 

MP. 

From Table 5.1 we see that periodicities are not the same for different A, since data 

transformation changes the shape of trends. The periods become shorter as A 0 In 

the cases of A = 0 or A being "optimal", different methods give closer final estimates, 

while in the case of A = 1, the discrepancies between the estimates from using different 

methods increase, especially for CDPC. This was not a surprise, as from the top plot 

of Fig.2.1 we see that in this case AY are far from being stationary, and hence all 

the estimation procedures work under "difficult conditions". Nevertheless, we will see 

that in any case, the discrepancy between these estimates of wO does not affect the 

litial regression results and business cycles. 

Having an estimate for wo, the estimates of linear parameters ao,  a1,  a2,  pc  and 

p in model (1.2) with relation (1.3) can be obtained. The software package SAS was 

used to obtain OLS estimates for these parameters. Table 5.2 shows these estimates 

and further results of analysis which we will explain later. Here, all the estimates of 

wo are obtained by using SA with .1 = 3, except for GDPC where the results based 

on estimating Lo by SA with Al = 2 are also listed for the purpose of comparison. 

-  The OLS estimation procedure gives p, and p, by using SAS, but instead of listing 

them, the more meaningful p = (p + p) 112  and = arctan(—p5 /p) (see (1.4)) are 

listed in Table 5.2. a is the standard error of the regression which is given directly 

from SAS. If we use p/a as 'sigiial to noise ratio" to measure the size of the long-wave 

movement compare(1 with the size of business-cycle movement, then these numbers 

for (;DPC and for IPI are very large; this offers strong evidence for the existence of 

long-wave cycles in these series. 

As we use the quadratic function ao -I-- a 1 t + a4 to model the monotoiuically 

increasing part of the trend, then a 2 ( 2  represents the non-linearity of this part. Notice 

that the divergence of a 2  from the linearity should be a 2 t 2 —(a+at) for a line at-f-a 

which is chosen 'as close as 1)ossil)le" to a21 2  in the range of t from 0 to N (where 

N = 186). Defining the distance of a'0 +a'1  from a2t2 b y maxo<t<N a2t2—(a+at) , 

then the best a 0l  and a may be obtained by minimizing this distance. A simple and 
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approximate solution for that is "half way" between a 2 t 2  and the straight line which 

joins (0, 0) and (N, a 2 N 2 ), the two endpoints of a 2 t 2 , 0 < t < N. As this joint line has 

slope (a 2 iV 2  — 0)/(N - 0) = a 2 N, i.e., the straight line is a 2 Nt, then "half way" can 

be defined as 

q = max I a2 t — a2 Nt I /2 	 (5.2) 
O<tN 

The rows of q in Table 5.2 give these values. In fact, a 2 t 2  - (a -- ait) can also be 

regarded as a pattern modification to the sinusoid, i.e., we model the trend of the 

series as a line plus a long wave which has a pattern of sinusoid but modified by 

a2t 2  — (a + a'1 t). 

Using q to measure the scale of this modification, for CDPC and IPI, q is always 

much smaller than p, vlieii .\ = 0, q is negligible. This indicates that in this case the 

pattern of long wave cycles is almost exactly sinusoid. 

Fig.5.2 (a), (c) and (e). which correspond to .A = 1, 0.35 and 0, are the results of 

using model (1.2) to fit CDPC: while (h), (d) and (f) are the residuals to these fits 

(amplified tiny discrepancies of data from their regression curves); they are business-

ccle movements. The parameters for these regression fits are in the columns GDPC 

(Al = 3) of Table 5.2. To show how the sinusoid terms pcos(cot+) and the quadratic 

terms a2t  play a role in the regression, they are also overlayed in (a), (c) and (e) 

which can be easily identified. 

Fig.5.2 (a) and (b) show that, in the case of .'\ = 1, the fit is not satisfactory. When 

goes from 1 to about 100 (before 1970), we hardly see business-cycle movements 

from (b), and in (a) the data do not tightly twine around the regression curve as they 

do for t after about 100. This is because the variation of A X t  is very small for t from 

1 to about 100 (see the top plot of Fig.2. 1). In other words, the movement of X t  in 

this range is too smooth (compared with the movement later on) to show any evident 

peaks and troughs .A reason for not being tightly twined is that ordinary least squares 

regression treats all regression errors with the same weight; it does not pay attention 

to whether "the smoother part should fit better". This is a good example which 

shows the importance of data transformation. For .\ = 0.35 and )t = 0, the regression 

fits the data well and from Fig.5. 2 (d) and (f) we can clearly see the business-cycle 

movements over the whole period. 
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Fig.5.3 shows similar plots to those in Fig.5.2 but for IPI series with A equal to 1, 

0.5 and 0. The same situation occurs for A = 1 though it is not as serious as GDPC 

case. Again this is because of the large increase of the variation of AX t  (see top plot 

of Fig.2.3). For A = 0.5 and 0, the regression fitting is excellent. Again, in the case 

of A = 0, a2t 2  almost becomes a straight line, so the long-wave cycle is almost exactly 

a sinusoid. 

('omparing the corresponding items of CDPC (M = 2) with those of CDPC 

3), we see that for A = I and 0.35, many estimated parameters are quite 

different, e.g. a2 goes from negative to positive. However Fig.5.5 shows that despite 

the difference between these individual terms, the final regression fitting is almost 

the same as those in Fig.5.2 (a) and (c). If we graph the residuals corresponding to 

the plots in Fig.5.5, we obtain curves almost identical to Fig.5.2 (b) and (d). This 

demonstrates the important role of the "pattern modification" of a2t 2  - (a + at) 

to a sinusoid: for all reasonable estimates of wo,  the corresponding sinusoids can be 

modified to almost the same long-wave cycles. 

For GDP, when applying Z3 -statistics to the differenced series (Fig.2.2), no hidden 

periodicity is detected whether A equals to 1. 0.68 or 0. So, as was mentioned in the 

last section, first we fit Yt  with the quadratic regression model Yt  = ao+ait+a2t 2 +Ct, 

obtaiii preliminary estimates of a (j 0, 1, 2) as well as the residuals C (for A = 0, 

Fig.5.1 (b) is the plot), and then apply Z 3 -statistics to Ct . In this way, the hidden 

periodicity is detected for each A. The max inium values of Z, reached at jo =- 3 for 

all A = 1, 0.68 and 0, are 1.24, 1.82 and 1.84 respectively. They are greater than 1, 

but not as significant as those for C DPC. We substitute a final estimate (again 

by SA with Al = 3) in model (1.2) and then use it to fit Yt  to get other parameters. 

The results are listed in the columns of C DP (M = 3) in Table 5.2. 

Fig.5.4 are the plots of the regression fitting and the residuals of transformed CDP 

with A = 1. 0.68 and 0, where in (e), the plot of the regression fitting (not the curves 

of a4 2  and the sinusoids) has been rescaled downward by 12 for better appearance; 

the original range is between 11 and 14. 

A major difference between the regression results of GDP and GDPC is that the 

sinusoid COrnl)OIleIItS are much weaker. For different A, the value of p/a ranges from 
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only 1.38 to 1.48; the q value is no longer much less than p,  even larger than p in two 

cases. However by comparing Fig.5.4 (f) with Fig,5.1 (b), we can see a substantial 

improvement of the residuals since this sinusoid term is introduced in the regression 

model. Ale see that the drift of levels in Fig.5.1 has disappeared in Fig.5.4. 

Another difference between the regression results of GDP and GDPC is that now 

the periodicity p and the phase 0 of the sinusoid have almost the same values for 

different A. (i.e. p around 32 years and 0 around 0). The non-linear pattern change 

for different A is taken care of by a2 t 2 , which from a convex curve changes to a concave 

curve as A changes from 1 to 0. 

From the above discussion, we have the following conclusions: strong long-wave 

cycles extht M. the series of implicit price index; the real GDP series shows weak long-

wave cycle movements; hence. the main source of the strong long-wave cycles in the 

series of GDP at current pr.ces is zmplicit price index. 

6 Business Cycles 

We do not intend to be involved in arguing the general definition of business cycles: in 

this paper it only means, ignoring small fluctuations, the movement from one trough 

to the next trough in the plot of a detrended series of GDP. In our case, a detrended 

series is the regression residuals of GDP data (after a transformation). GDPC's 

plots may be used as references. We mainly consider the logarithm of original data 

(A = U), which most economists prefer, but here there is a more important reason: 

using A = 0 for all three series, a nice relationship. (6.1) below, exists. This will 

lead to a similar relationship for their residuals (see Fig.6.I), and from that we may 

get some interesting conclusions for business cycles. Also, for both CIDP and GDPC, 

A = 0 gives a better resolution of peaks and troughs over the whole period of data 

than using those "optimal" A. 

Four curves in Fig.6. 1, from top to bottom, are as follows: residuals of GDP from 

Fig.5.4 (f) and of IPI from Fig.5.3 (f), then the sum of the two above and residuals 

of GDPC from 5.2 (f). In fact, all horizontal lines should be at level 0.0, but they are 

rescaled in Fig.6. I for clarity by moving them up by 0.5, 0.3, 0.1 and 0.0 (no change 

for GDPC's) respectively, ignoring the constant (- log 100) which will not affect our 
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discussion at all, the logarithm of (.. 1) gives 

log(GDP) t  + log(IPI) t  = log(GDPC) t . 	 ( 6.1) 

Three of the plotted curves in Fig.6. I are the residuals of the series in (6.1) after 

regression on a very smooth function (quadratic +- sinusoid of long periodicity). From 

Fig,6.1 we see that the patterns of the GDPC's cycle movements are almost the same 

as the sum of CDP's and IPI's. Then we may analyse how the peaks and troughs 

of GDPC's cycles are generated from those of GDP's and IPI's as we will discuss 

later. This is one of the advantages of using such smooth trends in all these series. 

Stochastic trends cannot guarantee this property. 

The vertical hues in Fig.6. 1 indicate the locations of the troughs of the cyclical 

movement of C DP (the top curve); the dates (quarter/year) are marked on each 

line. Table 6.1 offers a clearer indica.tioii of the relationship of dates and phases 

between GDP, IPI and CDPC around the troughs of these cycles. The GDP columns 

and CDPC columns of Table 6.1 show the dates (quarter/year) of troughs of cycle 

movements. The corresponding uiumbers on the time axis of Fig.6. 1 are listed to the 

right of the dates. Those quarter/year in brackets indicate that they are not deep 

troughs of the cycle movements according to the plots, so these should not be the 

troughs of business cycles (at least not serious) but only of the growth cycles (i.e. a 

slow dowut in the growth). 

The middle column in Table 6.1 describes the phases of IPI's cycle movement 

around the correspondi hg troughs of C D Ps cycles. Ali evident conclusion is that 

I Pt's cycles do not coincide with the business cycles (or growth cycles), since the 

indicated phases could be very different. 

Muty occurrences of C D PC's troughs have moved from their corresponding CD P's 

troughs by 1 F1's deep troughs, perhaps quite far away (such as 1/49 and 1/71), and 

have been marked by m" in Table 6. 1 

When a trough of CDP's cycle is in a top area of IPI's cycles (such as 4/51, 1/68, 

2/75 and 4/2), the corresponding trough of C DPC flattens .A fast downward phase 

of IPI's cycle may pull down the right side (say, 1/68) and a fast upward phase may 

then pull down the left side (say, 3/80) of a CDP's trough. These flattened troughs 
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are indicated by "r' in Table 6.1.  

Not many troughs of IPI's cycles coincide with troughs of GDP's cycles. Only 

4/86 (a growth cycle in the CDP) is deepened, which in appearance is a "serious 

recession" from the CDPC's cycles (and is marked by "d" in Table 6.1). Certainly, 

some troughs of C DP's cycles are deepened and also moved by IPI's troughs (marked 

by "dm" in Table 6.1). 

From the middle 50s to the late 60s, IPI slowly goes up with mild fluctuations. 

During this period only, GDPC shows a similar pattern of cycle movement as those 

of CDP. Perhaps, this is an indication of a good economic period. 

Even though the plots in Zarnowitz (1992, Fig.6.2) are of the detrended series of 

the real GNP of USA, the CNP and GDP are quite similar (the difference consists of 

net interest and dividends paid abroad) and the economic situations in USA and in 

Canada are similar, therefore we may refer to those plots. From Fig.6. I we can see 

except for the troughs at 1/58 and 2/75, they are not as deep as we expected, whereas 

all other above mentioned recessions were picked up in the right size. In general, it 

is superior to the UC detrended series. 

A major difference of the to1) plot in Fig.6. 1 from the plot of the phase-average 

detreuded series in Zarnowitz, occurred during the 60s. In Fig.6. 1, it drifted up and 

hence several growth cycles are flatter than the phase-average detrended series. But 

perhaps one may explain it as indicating that there were no recessions during this 

period. 

Fig.6.2 shows the dates of peaks and troughs of business and growth cycles of 

Canada. The first rows of month: year which indicate either Peaks or troughs in this 

chart are from Zarnowitz (1992, Fig.7.1), while the second rows of quarter/year are 

from our regression residuals of c1DP. We see that they match quite well. Notice that 

it peak (trough) month nearby its corresponding peak (trough) quarter should still 

be recognised as "a good match". 

A remark should be made that for GDPC, IPI and GDP, the "optimal" choice of 

A gives the most uniform fluctuations of A (see Fig.2. 1, 2.2 and 2.3), but from the 

plots of the residuals in Fig.5.2, 51. and 5.4, it appears A = 0 (not the "optimal" 

A) gives the most uniform amplitude of the business cycles of Y. This phenomenon 
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is due to the change of the correlation structure in AY t . The positive correlation 

has become stronger in recent decades. So the fluctuations of the same levels in zY 

(with "optimal" .A) produce larger cycles of Y in recent decades. It seems that for 

GDP this skill of data transformation can he!1) only in dealing with the stationarity of 

the variance of ?; when the correlation structure is involved, we should be careful. 

For example, it may be better to use only the residuals of recent decades in fitting a 

stochastic model for forecasting instead of using all the residuals. We do not pursue 

this topic further in this paper. 

7 Conclusions 

In this paper, we use quadratic-sinusoid function to model trends of Canadian C DP 

data, where the sinusoid components are detected and estimated by newly developed 

statistical approaches and the regression coefficients are estimated by ordinary least 

squares estimator. The results show that strong long wave cycles of periods of several 

decades exist in C[)P at current prices and in implicit lrice index. Similar long wave 

cycles also exist in real CDP but theare much weaker. The periods of these cycles 

also depend on the data transformtion. 

Using regression residuals of real C D P to represent the business-cycle movement 

for indicating recessions and booms in the economy, the results match the conclusion 

of economists well, and are competitive with the phase-average method which is 

currently producing trends for economic indexes by an international statistical agency. 

,rhe methodological advantage of the approach offered by this paper is that analyt-

ical smooth trends are obtained which can easily be used for describing the long-term 

situation of economic development and for forecasting, .Also, we may analyse how 

implicit price index affects CDP at current prices through this approach. 
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Fig.5.4 Regression fitting and residuals of GDP 
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Fig5.5 Regression fitting of GDPC (M = 2, for comparision) 

Table 5.1 Final estimates of Wo for GDPC and the IPI 

M = 3 M=2 MP 
U)O p wa P W0 p 

CDPC 
1 4.35 0.0269 58.39y 0.0317 49.55y 0,0258 60.85y 

0.35 5.79 0.0320 49.09y 0.0354 44.37y 0.0328 47.93y 
0 2.45 0.0504 3117y 0.0509 30.86y 0.0515 30.53y 

IPI 
1 6.94 0.0294 53.26y 0.0342 45.92y 0.0292 53.78y 

0.5 4.70 0.0335 46.89y 0.0368 42.68y 0.0363 43.22y 
0 4.27 0.0452 34.75y 0.0499 31.48y 0.0487 32.23y 
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Table 5.2 Estimated parameters 

GDPC (M =3) GDPC (M = 2) 
A 1 0.35 0 1 0.35 0 

wO 0.0269 0.0320 0.0504 0.0317 0.0354 0.0509 
p 58.39y 49.09y 31.17y 49.55y 44.37y 
p 175450 12.9885 0.1874 103462 9.6042 0.1849 
0 0.1172 ir 0.1175 71 -0.311971 -0.0500 71 0.0272 71 -0.3608 ;T 

a0 -173347 13.9732 9.3597 -109398 16.5205 9.3663 
a 1  4841.42 0.67309 0.023762 2168.91 0.53522 0.023522 
a2  -2.6724 -0.001154 -4.372 x10 6  10.3870 -0.000361 -2.927 x10 6  
q 11556 4.9905 0.0189 44930 1.5611 0.0127 
or 11638 0.7097 0.0318 11358 0,7189 0.0321 

p/a 15.08 18.30 5.89 9.11 13.36 5.76 
IPI (M = 3) GDP (M = 3) 

A 1 0.5 0 1 0.68 0 
WO  0.0294 0.0335 0.0452 0.0479 0.0479 0.0494 
p 53.26y 46.89y 34.75y 32.79y 32.79y 31.80y 
p 31.4526 1.5005 0.2039 14646 179.40 0.03938 

0.1014 it 0.0521 it -0.2341 it -0.0886 it -0.0280ir 0.0154 it 

a0 -18.1550 2.2233 2.5554 66686 2033.6 11.3253 
a 1  1.13945 0.067039 0.011958 1690.60 29.025 0.014786 
a -0.002795 -0.000147 -1.84 x10 7  6.6027 0.033136 -2.153 x10 5  
q 12.0870 0.6357 0.0008 27688 143.30 0.09311 
a 1.8863 0.1025 0.0250 10107 108.20 0.02675 	- 

p/cr 16.68 14.64 8.16 1.45 1.38 1,48 
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Fig.6.2 Peaks and troughs of business and growth cycles 

Table 6.1 Troughs of business cycles 

GDP ]_IPI GDPC 
m 1/49 9 down fast, 2/50 up 2/50 14 

f 4/51 20 on peak area 4/51 20 
m 2/54 30 down 4/54 32 

1/58 45 fluctuating 1/58 45 
1/61 57 fluctuating 1/61 57 

* (3/63) 67 fluctuating (1/63) 65 
(4/64) 72 fluctuating (4/64) 72 

f 1/68 85 peak -. down fast (1/68) 85 
dm 1/71 97 down fast 3/72 102 

f 2/75 114 on peak area 1/75 113 
dm (3/77) 123 down fast 3/78 127 

f 3/80 135 up fast (3/80) 135 
f 4/82 144 on peak area 4/82 144 

d (4/86) 160 1 on trough area 4/84 160 

* The values of GDPC at 1/61 and 3/63 are very close. 

31 



STATISTICS CANADA LIBRARY 
BIBLIOTHI 

lI!!IIIJ I Ill f II II 	II 	II II 
10 1 0175537 

Appended figures from Zarnowitz (1992) 

	

I 	 I 	 I 

	

I 	 I 	 I  

	

I 	• 	 I 	 I 	I 

	

I 	I 	 I 	 I 

	

I 	 11 

II 

	

I 	I 	, 

	

- I 	- 

	

Ii
I 	 I 

	

I 	I 	I 	I 

	

I 	I 
-' I 

	

I 	I 	p 

	

I 	I 

und 

I. 	 II  

	

I 	 I 

I 	 i 

II 	I 	 I 

	

$ 	

I 	
I 

I 	 II 

	

I 	 I  

	

I 	 p 
I 	I 	 I p 	I 	 II 

	

I 	 I 

	

I 	 I 	 I 	 I 

48 	52 	56 	60 	64 	68 	72 	76 	80 	84 	88 	92 

FIg. 6.1 Siny .dJod kveb at reil GNP Specthc cydea aDd two trend eatlmatea. 1948-91 

Nce: nk wi'jcnj I 	 buseae cycle ps (fl sthd vcc*i kiwi epmenibesions ccic sruuh' 

M. Do.d cwvs rcpieI RGNP: iolid cer .ui OMWs in RGNP. Dosi .drni,k iwas end nneØl' o' 

ck cyclin In RGNP (eowa lot the p cwve 

PT ptP , PT '_!T 9  T_r T 	! 
— 

I 	I 
I 'I 

I 	I _ I  

hT _ 

	

II 	II 	I 

	

I 	I 	P 

	

I H 	 : 

Jrr -44 
I 

, 

	

III 	I 	
I 

	

I 	 I 	
I 

LI

•1  

I .v 

II  
III I 	Ii 	I 

	

' 	I 	
J 

	

I 	i 	I 

	

EL 	,. 

	

48 	52 56 	6064 	68 72 	76 80 84 	88 92 

FIg. 6.2 RcaI GNP DevIatIoni from Iog-Un.sr treid (A) and from phme. 
averqe trend (B). 1948-85 
Now flend Icvei - 100. Bioken v0=21 lime MIPIMMM g1000$I cycle peaks (P): oim vnIicsI 

lime lepresen gmwth cycle eougM M. 1s ideasàfy peiks and troughs of epecefic cycles; 

ceenes idneify thouc ig pointS him _ • punth cycle peaks or troughs. 

4.300 

3. 

IJ 

L.000 

4 

4 . 

3.300 

3.000 

2.300 

2 • 300 

2.000 

,00 

. • 230 

.00 

105 

100 

95 

1 

+ 

p 

110 

15 

100 

95 

105 

100 

95 

90 

I 

a 

32 


