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Abstract 

This paper compares two benchmarking methods, one based on regression modelling 

by Cholette and Daguin (1994) and the other based on ARIMA modelling signal 

extraction by Hilimer and Trabelsi (1987). The difficulties in the latter method 

of finding ARIMA models for the target series and the resulting implementation 

problems are discussed. A nonparametric approach to circumvent this problem is 

proposed, and more general models for estimating and benchmaking repeated survey 

data are introduced. Simulations show the proposed method and models are efficient 

and easy to implement. 

Résumé 

Le present document compare deux méthodes d'étalonnage, l'une fondée 
sur Ia regression par Cholette et Dagum (1994), l'autre sur l'extraction 
de signal avec modèle ARIMA par Hilimer et Trabelsi (1987). Les 
difficultés liées a cette dernière, au niveau de Ia determination du modèle 
ARIMA suivi par le signal et les problèmes d'application resultant, sont 
examinées. Une approche aparamétrique contournant le probléme est 
proposée, et des modèles plus généraux pour l'estimation et l'étalonnage 
de données d'enquetes périodiques sont présentes. Les simulations 
montrent que Ia méthode et les modèles proposes sont efficaces et facile 
d' application. 





1 Introduction 

Benchmarking is an important problem faced by statistical agencies. For a target 

socio-econornic variable, say i, two sources of data from repeated survey with different 

frequencies and precisions may be available. For example, one set of data is its 

monthly observations 

lit = 1t + et, 	t = 1,. . . , fl,  

and the other set of data is annual: 

+ e 2 , 	i = 1,... ,m.. 	 (1.2) 
tEi 

where et and , are the monthly and annual survey errors respectively, and t E i means 

month t is included in the time period covered by ;. Usually, the "monthly" survey 

error is much larger than that of the "annual", so the "annual" data are referred 

to as benchmarks. Benchmarking is the process of estimating il t  from all "monthly" 

observations and "annual" benchmarks. When E 1  0. stE' = becomes a con-

straint and the benchmarks considered is called binding: and non-binding otherwise. 

Traditionary, benchmarks have been considered as binding (e.g. Denton, 1971). 

Flow and stock series are already taken into account by the notation used in (1.2). 

For index series, (1.2) becomes (in case of monthis' data) 

1 
zi = ii i 11t + f i . 

tEi 
(1.3) 

The model defined by (1.1) and (1.2) (or (1.3)) can be written in matrix form as 

y=17+e, 	 (1.4) 

z=Lij±€. 	 (1.5) 

where y = (lii 	y)', z = ( z1 . . . zm )' and similarly for i, e and € with suitable 

dimensions, and L is a rn x n matrix. For example, corresponding to (1.3). the (i, t)th 

entry l it  of L is lt = 1/12 if t 6 i and li t  = 0 otherwise. 

In some situations, there are no benchmarks ((1.5) is absent), but with (1.4), some 

statistical information about series {llt}  or {e t } is available. e.g. their covariance 

structures, then one can still obtain an estimate of 17 from y alone, which is more 

precise than y. Such a procedure is often called signal extraction (e.g. Whittle, 

1963). However the availability of benchmarks makes it possible to further improve 

the estimate. 
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The benchmarking approaches most widely used by statistical agencies are of the 

Denton (1971) type, where 77 is estimated by minimizing the penalty function 

P.4(y, Ti) = (y - )'A(y - 'i) 	 (1.6) 

under the restriction (1.5) with € 0 (binding benchmarks). By a suitable choice 

of the symmetric n x n matrix A, one may obtain a benchmarked value i of Ti with 

some desired properties, such as continuity between consecutive years. This type of 
benchmarking is easy to apply, and no preliminary statistical information is required. 
But, because no information on the nature of the time series is used (when available), 

the estimation error, i.e. Var ( - r) = E{(I - - 'i)'} is not necessarily 

minimized. 
Cholette and Dagum (1994) combine (1.4) and (1.5) in the following regression 

model 
(1.7) 

assuming that Ti  is the vector of unknown parameters, where 

y 	X  = ( 1_ 	 (e(OE)  
zJ 	 L)' 	U=\€j 

and u 	(0, E,) means that the random vector u has unspecified distribution with 

mean 0 and covariance matrix E. Assuming e and € are mutually uncorrelated, then 

E can be written as 
0 

0 E 

Given E, the generalized least squares estimate of Ti  is used as the benchmarked 

value: 

TlR = (X'E 1 X 1 X'E 1 r = y + EeL'(LE eL' + E)'(z - Ly). 	(1.10) 

	

The covariance matrix of the estimation error, Var (iR - 	is 

QR = (X'E'X) 1  = (E' + L'E 1 L) - ' 

	

= E e  - Ee L'(LEe 11 + E€Y1LEe, 	 (1.11) 

Under the criterion of minimizing the variance of the estimation error, the regression 

benchmarking method produces the best linear unbiased estimates (BLUE), provided 

that 17 is considered as a vector of fixed parameters. 

Hilimer and Trabelsi (1987) consider that Tlt  follows an ARIMA model and et 

follows an ARMA model. Under the assumption of normality, they derive their 

(1.9) 



benchmarking formulae via signal extraction. Section 2 introduces their method 

and shows that, benchmarking via signal extraction produces estimates with lower 

variance and that the assumption of normality may be relaxed. Section 3 extends 

signal extraction methods and models and provides corresponding formulae. Section 4 

proposes a nonparametric procedure to implement t.hese formulae: Section 5 presents 

some simulation results which show the proposed approach is feasible, reliable and 

efficient. Section 6 summarizes the results. 

2 Benchmarking via Signal Extraction 

This section summarizes the signal extraction benchmarking method of Hillmer and 

Trabelsi (1987) and compares it with the regression method of Cholette and Dagum 

(1994). 

2.1 The signal extraction method for benchinarking 

Hilliner and Trabelsi (1987) assume that qt,  the target series, follows an ARIMA 

model 
- JA) = 9(B)b, 	 (2.1) 

while Ct, the survey error, follows a stationary ARMA model (with zero mean) 

e (B)et = 
	 (2.2) 

Assuming that the white noise shocks {b} and {c t } are mutually uncorrelated, then 

Ut = 71t + e t  also follows an ARIMA model 

- p) = 9(B)a. 	 (2.3) 

In our opinion, the more important contribution of Hilliner and Trabelsi is the 

following formulae which are valid whether or not, i and e follow ARIMA models. 

Under the normality assumption 

	

E,7 ), 	e 	N(O.). 	 (2.4) 

	

tlie' obtain the conditional expectation 	of i given r = (y '  z')': 

= 

	

E(77 I y) = 	+ 	 J.L) 	 (2.5) 
17 

lc = cl0 L'(Lc0L' + E'(z - Li 0 ). 	(2.6) 



= E(i I r) = iio + 	(2.7) 

where 
= Var 	- 	= (E + E'Y'. 	 (2.8)

77 

The covariance matrix of the error of the benchmarked estimate i is 

= Var (,j - i) (cli' + 	 + = (E' 	+ 

= 	- l0L'(thoL' + E) 1 LQo. 	(2.9) 

The extracted signal i O is the best unbiased estimate of ij given y alone and the bench-

marked estimate is the best unbiased estimate of ri given y and z. The correction 

originating from the benchmarks z is 1 c• 
The normality assumption (2.4) can be generalized to 

	

ii '. (, E n ), e 	(0, Ee). 	 (2.10) 

It is well-known that the projection of 77 on the linear probability space generated by 

y or by 'r, denoted by fl o  = E(ij  I y) or = E(71 I r), are the BLUE of 17 from y or 

from i-  respectively. Appendix A shows that formulae (2.5) through (2.9) still hold 

when E is replaced by E. 

2.2 Comparisons with the regression method 

To compare benchmarking via signal extraction with the regression method of Cho- 

lette and Dagum (1994) the following inequality will be used. Suppose A and B are 

symmetric matrices of the same dimension, A > 0 (i.e. positive definite), B > 0 (i.e. 

non-negative definite), then 

	

(A + B)' 
	

(2.11) 

The signal extraction method is now compared to the regression method. Denoting 

the last term of (1.10) as 
	 S 

1?RC = E e L'(LE eL' + E)'(z - Ly), 	(2.12) 

and examining (1.10), (1.11) and (2.5) through (2.9), the following correspondence is 

observed 

y 4- #io, ?JRC 	#1c' T1R 	#1; 	 (2.13) 

cz, RR 	 (2.14) 
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Obviously, the last expressions of (111) and of (2.9) yield 

1 R < E e , ci 	ci0 . 	 ( 2.15) 

The first inequality in (2.15) means that the variance of the error of the benchmarked 

estimate based on the regression method (ciR) is smaller than that of the survey 

error (se);  and the second inequality means that the variance of the error of the 

benchmarked estimate via the signal extraction method (ci) is smaller than that of 

the extracted signal (cio). So, benchmarking reduces the error in both methods. 

• 	 Applying inequality (2.11) to (2.8), (2.9) and (1,11) yields 

ci< Ee , ci —_{(E +L''L)+E'}' <(E 1  +L'E'L' =ciR. 	(2.16) 

This means that, the variance of the error of the extracted signal is smaller than that 

of the survey error; and the variance of the error of the benchmarked estimate via 

the signal extraction method is smaller than that of the regression method. So, if the 

first and the second order moments of both the survey error and the target series are 
known, then benchmarking via signal extraction is better than the regression method. 
The reason is that the regression method does not use . the information about 

{ 

3 Implementation of Benchmarking 
via Signal Extraction 

Survey experts can provide, sometimes, model (2.2) for the survey error e 1  from which 

the autocovariance function (ACVF) of {e t } ( Eet  = 0) 

	

'ye(k) = r(k) = E(ee1+k) 	 (3.1) 

may he obtained (an algorithm is given by McLeod. 1975). In other cases, survey 

experts can provide directly 'ye (k) without a model (e.g. Lee. 1990). In reality, 'ye(k) 
is obtained first and then an ARMA model is fitted (e.g. Scott et al., 1977). In 

both cases, the Toeplitz matrix Ee is obtained by setting its (i.j)t.h entry equals to 

- —j). The regression benchmarking method can then be applied without difficulty. 

However, benchrnarking via signal extraction requires the knowledge of JL = E77 = Ey 

and of which are usually unknown. These two difficulties in the implementation 

are now addressed in this section. 
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3.1 The difference stationary model 

Hilimer and Trabelsi (1987) assume that r7t follows the ARIMA model (see (2.1) 

- (2.3)). This can be generalized by assuming a difference stationary (DS) model 

(Nelson and Plosser, 1982), that is 

VdV 11t = (t, 	 (3.2) 

where s is the period of seasonality, say 12 for monthly data; V = 1 - B, V 3  = 1 - B 3 ; 

( t  is a stationary series with mean zero not necessarily following an ARMA model. 

First, let us consider E T  The ACVF for a series following a nonstationary model 

like (3.2) is not well defined, it depends on the distribution of the initial values. For 

instance, if Vy t  = Xt, xt is stationary, Yt = Yi + >.2 x3 , and the ACVF Coy (I/si lit), 

s, t = 1,. . . , n, depends on Var I/i  and Coy (I/i,  x,) which can be defined in various 

ways. Cleveland and Tiao (1976) assume that the ARIMA series {t} started from 

—co which results in the variances of initial values i = ( hi ... 7d+)' converging to 

00, then a formula for E' is derived. Instead, we directly assume that 77 

Var i, = 	h - oo; 	 (3.3) 

Coy (in, (t) = 0, t = d + ds + 1,. . . , n. 	 (3.4) 

which leads to the same results as those of Cleveland and Tiao. 
Assumption (3.3) can be explained in a Bayesian framework: in the absence of 

prior knowledge about the distribution of the initial values of the series, their variance 
is set to oo, and (3.3) is a standard representation for that. Another terminology for 
(3.3) is "assuming the initial values are diffuse". Assumption (3.4) means that the 
covariance structure of further development of the series does not depend on the initial 
state (the level and the variation of the initial values). This is again a commonly used 

assumption. 
Denoting ñ. = n - d - ds, from (3.2), the ñ x 1 vector C = ((d+c1s+l . (,)', may 

be written 
(3.5) 

where D is ñ x n matrix. For example, d = 1 and d = 1, then its first diagonal 

has all elements equal to 1; those in the second diagonal (on the right), equal to —1; 

the (s + 1)th and the (s + 2)th diagonals, equal to —1 and 1 respectively; all other 

elements are zero. 
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Since {() is stationary, the ñ x ñ Toeplitz matrix E (  is well defined. Appendix 

B shows that is then D'E'D. A nonparametric method is proposed in the next 

section to estimate E(. 
Now turn to the problem of j.z. For 77t satisfying (3.2), say, with d = 1, let 

= o + a 1 t +... + adtd  + 	.3j(t .j}. 	 (3.6) 

with a i  and 	constants and 

f 1, 	t = j(mod s), 
0, 	otherwise, 	

(3.7) 

then also i - 	satisfies (3.2), because p t  as in (3.6) is eliminated by VV S . In other 

words, the mean of i7 t  has the form as in (3.6) (but the specified value is unknown). 

Appendix B proves that, under model assumptions (3.2), (3.3) and (3.4), 1A having 

elements as in (3.6) cancels in (2.5), i.e. 

(3.8) 

only depends on the data, and that (2.8) becomes 

= (E e  + D'E'Dy'. 	 (3.9) 

These are answers to the questions about the difficulties of implementation for the 

DS model. 

3.2 The trend stationary model 

An alternative to the DS model is the trend stationary (TS) model (Nelson and 

Plo.sser. 1982), i.e. 

11t = At + (t. 	 (3.10) 

We here aSSUme that the target series {q} has a deterministic component {.z 1 } ( the 

mean of the series), and a stationary stochastic component {(} with mean zero and 

autocorrelated. This model has been used in earlier works. e.g. Pierce (1978), Jones 

(1980). 
Usually, the deterministic component Lt is assumed to follow a linear model 

=xtiOt = x3.  
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which can represent a polynomial trend plus a stable seasonality as in (3.6), an 

abrupt changes caused by interventions (e.g. Box and Tiao, 1975), outliers (e.g. 
Tsay, 1986), trading-day variations (e.g. Bell and Hillmer, 1983; Dagum. Quenneville 

and Sutradhar, 1992) and so on. 
Assuming the model for m is given by (3.10) and (3.11), we define 

Wt = ( + et, 
	 (3.12) 

where {Wt} is stationary, because {(} and {e t } are uncorrelated with each other and 

both are stationary. Then (1.1) and (3.10) lead to 

lit = At + Wt, 	 (3.13) 

which is again a TS model with At specified by (3.11) and can be estimated without 

difficulty. 
For the moment, assume that 1j  is known, then w = (w 1  . . . 	= y - ji can be 

considered as data; and ': = (( 1 ... (a)', as the signal. Since {() is stationary (then, 

its ACVF is well defined) and EC = 0, the benchmarking formula (2.5) through (2.9) 

are applicable. The formulae of signal extraction (2.5) and (2.8) become 

= E(C I w) = ( E e  + E') 1 E 1 w 	 (3.14) 

and 
Var 	- C) = no = (_ 1 + 	 ( 3.15) 

Letting 	= /.L+Co, I follows from (2.6) and (2.7). Since {i} and {e t } are mutually 

uncorrelated with each other, (3.10) implies that {77t}  and {(}, and  {yt}  and {Wt}, 

have the same ACVF, i.e. 

y( (±k) = E((t(t+k), 	 (3.16) 

= y(±k) = E(wtw t+k) = ye (+k) + 'y(±k), 	(3.17) 

which implies E,, Ee  + E. Using identity (A.6) in Appendix A, (3.14) and (3.15) 

can be written as 

t0 = E(E 1 w, 	 (3.18) 

no = 	 ( 3.19) 

which require less matrix inversion and again E and Ew  can be estimated by the 

method proposed in the next section. 
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4 A Nonparametric Procedure 

This section focuses on the nonparametric estimation of 	. In view of (1.1), it 

seems possible to get a model for {1)t} from the model of {e,}, which is known, and 

a model of {yt}  fitted to the data; from the model of {77t},  an estimate of E,, may be 

obtained. Indeed, assuming that {m} and {e t } are uncorrelated with each other and 

that their ARIMA models are known or can be adequately fitted, it is relatively easy 

	

• 	 to derive the model of {yt}, Yt = 77t + et. However, what we face is the reverse, the 

so-called modelling errors-in-variables problem: to obtain a model for {1)t} given data 

• of {yt}  and the model of {et}. This is difficult even in the case that both series follow 

stationary ARMA models, because {Yt}  is correlated with {e, }. The most recent 

results only deal with the case where {e t } follows a MA model and where the orders 

of the ARMA model of ?It are known (Chanda, 1995). 

In fact, we may avoid deriving a model for {r}, because in the benchxnarking 

formulae (2.5) through (2.8), only E, is necessary. This shortcut is also observed 

by Jones (1980), who points out that, with repeated survey data, the number of 

observations is often quite low, and fit of an ARMA model will lead to unstable 

parameter estimates. We will develop a nonparametric method to estimate ETI. 

4.1 Estimation procedure for the TS model 

Let us consider the TS model and assume IA is known for the moment. As {(} and 

{e} are mutually uncorrelated with each other, (3.12) implies 

(4.1) 

All these theoretical covariance matrices are positive definite. 

• 	 Since Ee is known, an estimate t w  of Ew  can be obtained from w = y - tt, and 

an estimate E of E<  follows. However, this solution does not guarantee that matrix 

	

- 	 is positive definite: 
= tw  - Ee  > 0. 	 (4.2) 

Our simulation in Section 5 shows that, without this property, the benchmarked 

estimates become very unstable. A method for producing J)ositi\e definite estimate 

of is now proposed. 
We first present the theoretical underpinning of the method assuming 11 is known 

and then state the steps of the benchmarking procedure. 

Assuming both {e t } and {() have no deterministic component in their Wold 

decomposition (see, e.g. Doob, 1953), so does {Wt}, then the spectral densities of 



these series exist. Denote them by fe), fA) and f(A) respectively, then (3.17) 

leads to 
f(A) = fe (A) + f(A), 	< A < ir. 	 (4.3) 

The most common estimator for (—k) = -y(k) is 

	

= - WtWt+k, k = 0,... ,n —1. 	 (4.4) 

Its direct transformation to the frequency domain 

	

1 '',(0) 	-' 
f(A) = ;{ 2 + 	(k)coskA}, -it < A <it 	 (4.5) 

k= 1 

is the periodogram. As an estimate of the spectral density f(A) of {Wt}, f(A) is 

ragged and not consistent. A consistent estimate f,,M)(A)  is obtained by smoothing 

the periodogram, i.e. by correspondingly using 

	

{ 	(k)u(k/M), k = 0, . . . , M, 	 (4.6) 
M<k<n. 

in (4.4), where u(s) is a commonly used lag window function, such as Tukey-Hanning 

window, Parzen window (e.g. Priestley 1981). The Toeplitz matrix 	is formed 

from (M) (k). However 	= E) - E. > 0 may not hold, so we introduce the 

following revised procedure. 

As e (k), or equivalently fe (A), is given and in view of (4.3), we may take f(A) = 

f(A) - fe (A) as an estimate of f((A). Because a spectral density is always non-

negative, 
f(A) = max{J(A) - fe (A), 01 	 (4.7) 

is a more reasonable estimate of f(A) than J(A). The corresponding estimate of 

y(k) is 
y( (k) = 210  f(A)coskAdA, k = 0,... ,n - 1. 	 (4.8) 

 

ir 

Like f( ( A), /(A) is again ragged and not consistent, a better estimate jM)(k)  is 

produced by using 

_(M) 	I 'i((k)u(k/M), k = 0,. . . , M, 	 (49) 'y (k)=10 	M<k<n. 

in (4.5). The estimate of -y(k) is set to 

;y (wM)(k)= ,.ye (k)+; M) (k), k=0,...,n. 	 (4.10) 
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We call 	and . y M)(k) the revised window estimates of -y( (k) and -y(k) respec- 

tively. The Toeplitz matrix E 	and E' obtained from 	'(k) and 	k) are 

used as the estimates of 	and E. w . 

It, is easy to show that, if f() 	0, and f( ( A) > 0 holds in a subinterval of (—ir, irl, 

then 	> 0 (and hence E' = E e  + 	> 0), so (4.2) is satisfied with this 

estimator. In view of (4.7), f(A) 0 always holds. Theoretically, it can be proved 

that with probability as close to 1 as we wish, the strict inequality f( (A) > 0 holds 

in the mentioned manner provided that n is large enough in fact. in our simulation, 

it always holds for n as small as 28. 

The proposed benchmarking procedure is as follows. 
1 Apply OLS to the model (3.11) and (3.13) to obtain an estimate $ and then 

. (We will comment on this estimator later.) 

2 Set Wt = yt  - A t  (the rigorous notation should he tht = Yt - ), obtain 

and J(.) from (4.4), (4.5) and (4.7). Calculate (k) from (4.8) using a 

numerical method, and then 	and 	from (4.9) and (4.10). 

3 Calculate 	and Q0  from (3.18) and (3.19), with 	and 	replaced by E 

and 	respectively. Set i = TL + , and obtain i and i by (2.6) and (2.7). 

For obtaining an estimate 3 of /3 from model (3.13) and (3.11) (and hence an 

estimate A t  = x/3 of 11t follows), Jones (1980) suggests using the GLS estimator 

which is theoretically more efficient than the OLS estimator. However the unknown 
' required in the GLS estimation procedure complicates the problem. In fact, 

the OLS estimate is simpler and consistent, moreover, it can be shown that, under 
certain conditions, for At obtained through the OLS avenue, the sample covariance 

of 'th e  = yt - 	and that of Wt = Yt - it are asymptotically the same (Chen and Ni, 

1989, Theorem 4.1). That means if n is not too small, we can use w = ( ti'1 ... 

to replace the unknown w in estimating E and 	without affecting the results very 

much. Our simulation in Section 5 confirms this conclusion even for n as small as 28 

(compare the rows labelled "linear" with rows labelled "known" in Table 5.3). 

4.2 Estimation procedure for the DS model 

Now we consider the DS model where {} follows (3.2) with d = 1 and d = 1 for 

simplicity of notation. Denoting 

	

Wt = VV 3  Yt 	t = VV s  e. 	 (4.11) 

11 



then the ñ. x 1 vector w = (w,+2 ... w,.)' is obtained from y = (yi,...,yY. From 

(1.1) and (3.2) we have 
Wt = ( + 6e, 	 (4.12) 

where {j} is still stationary, but overdifferenced with known spectral density: 

f6 (A) =1(1 - e)(1 - e isA) 1 2  fe(A). 	 (4.13) 

From formulae as (4.4) through (4.10) with Ee  and fe replaced by 	and f, we 

obtain (M)(k) and then 

From (3.9) with E replaced by E, an estimate of 0 0  is obtained; then j 

follows from (3.8); and ij, from (2.6) and (2.7). 

5 Simulation 

5.1 TS models and the data 

The simulation involves benchmarking quarterly series to annual benchmarks. The 

following two models are used to create (t  and et 

(1 - 0.7B)( = (1 - 0.4B)b, ab = 5.0 	
(5.1) 

1 (1 - 0.5B)et = ct, 	ac  = 2.5, 

and 	
((1 - 0.9B)( 1  = ( 1 - 0.6B 4 )b, 0 b = 5.0, 	

(5.2) 
( (1 - 0.7B + 0.49B 2  )e t  = Ct, 	Oc = 4.0, 

where {b} and {Ct} are independent Gaussian white noise with mean zero and stan-

dard deviations (SD) as indicated. We generate b t  and Ct by SAS, then (t  and Cj are 

obtained from the corresponding difference equations by recursion. For every set of 

(t  and e t , the first 100 values were abandoned to eliminate the effect of initial values. 

In the following, model 1 will refer to (5.1) and model 2 to (5.2). For model 1, 

both spectral densities f(A) of {} and fe X) of {e t } have very similar patterns (a 

peak at the origin then damping out on both sides). Consequently, any linear filter 

cannot extract (t  from Wt efficiently, so we do not expect a significant improvement 

over the regression method for this model. 

For model 2, f(A) has a sharp peak at the origin and has troughs at ±ir and 

±7r/2, while fe (A) has peaks at ±7r/3. Consequently, the signal extraction procedure 

should bring in a remarkable improvement over the regression method for this model. 

Our simulation results will show such a difference for these two models. 

12 



The following model is used to create A t  (refer(3.6) and (3.7)) 

At = 100 + t - 106{t,1} + 56{t,3} + 56{t,4}. 	 (5.3) 

that is a linear trend plus a seasonal variation {- 10,0, 5, 51. 

Every data set is created for 7 years (n 	28). Then we have "data" Yt = 

A t  + ( + e (t = 1,... , 28). We keep all three underlying components of Yt  in our 

records, so we know nt = A t  + , and then the "data" ZI = 17413 + 741.2 ± 1741.1 + 14 

(1 = 1,... , 7) (binding benchmarks), are created. Using only z,. . . , as annual 

benchmarks (leaving the last year without benchmark, this could happen in practice 

because of reporting delay), we carried out benchmarking, 50 replications were done 

for each case (data are created by the same models with indicated parameters and 

using the same indicated method). 

5.2 The mean in TS models is known 

At first, we assume that the At are known, so we know the true values of w t  which can 

be obtained from "data" y t  by Wt = yt — lit (t = 1,..., 28). Table 5.1 and 5.2 show the 

"root mean square error" (denoted by RMSE) both for the extracted signal i O  and 

the benchmarked value i. For example, for i, the RMSE (if over all 50 replications) 

Is 50 28 

50 x 28 	
(i) - 2))2}1/2 	 (5.4) 

)=1 t=1 

where j denotes the jth replication. 

For a method, in 3th replication, we would expect 

F'Ot- ,(
i)21/2 < 	1(•) - 1U)21/2 	 (5.5) 

• 	 Temporarily, both sides of (5.5) are called the standard deviation (SD) of i1 and 

respectively, which means that, after benchmarking the error should be smaller than 

before. We say jth replication is valid if (5.5) holds. The reality is that, if a method 

is bad, the correction term 	may even explode (beyond hundreds, thousands in 

our simulation), so a higher number (close or equal to 50) of valid replication may 

indicate the stability of a method. These numbers are in the columns "valid no." of 

• Table 5.1 and 5.2. The RMSEs in "valid i" and "valid ij" columns of these tables 

have similar definitions as (5.4) but the average is only over the valid replications. 

For all these methods, the true value of E e  is always given. 
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Method 1 refers to the regression method (1.11), according to (2.13), we put RMSE 

of y in the place of i O  in Tables 5.1 and 5.2. In every case and all 50 replications, 

benchmarking reduces the SD, i.e., the SD ofis always less than the SD of y (j ) . 

Method 2 refers to using Hilimer and Trabelsi's formulae (2.5) through (2.8) and 

assumes that E,, = E is known (so does E. = E n,). We see that the signal extraction 

reduces RMSE of y, on average, by (2.8426 - 2.6137)/2.8426 = 8.1% for model 1 and 
25.1% for model 2 respectively. All 50 replications are valid. Comparing with method 
1, the RMSEs of benchmarked values are reduced by 7.6% for model 1 and 29.2% for 

model 2 respectively. 
Methods 3 through 10 are variants of method 2 where E, and the corresponding 

are replaced by different estimates. Method 3 uses (4.4) for y(k) and 	k) = 

- ye (k) for y(k); method 4, 5 and 6 use Tukey-Hanning window in (4.6) for 

-y(k) with M = [n/3), [2n/31 and n - 1 respectively ([xl denotes the integer part of 

x); and, M)(k) = (M)(k) - 'ye(k) for yc(k). We see that, none of methods 3 to 6 

are satisfactory, only method 4 (corresponding to the smoothest spectral estimate) 
performs the best among them. In all these methods, the estimates of E may be not 

necessary positive definite as no revision procedure has been made. 

Method 7 uses (4.8) to estimate 'y(k); method 8, 9 and 10 use (4.9) to estimate 

y(k), again with Tukey-Hanning window and M = [/31, [2n/3] and n - 1 respec-

tively. Then the corresponding estimates for 'y(k)  are obtained as (4.10). From 

these results, we can see that methods 8 and 9 are quite satisfactory, and method 8 

(M = [n/3]), the one corresponding to the smoothest spectral estimate is almost as 

good as method 2. 
Defining the signal to noise ratio by 

S/N = 'y(0)/ye(0), 	 (5.6) 

then for model 1, S/N = 29.41/8.33 = 3.53; for model 2, S/N = 75.53/27.02 = 2.79. 

Now, in both models, we keep all the same parameters, except for o. For model 1, 

is changed to 4.0 and 1.0; for model 2, o is changed to 6.0 and 1.5, respectively. The 

corresponding S/N are listed under Table 5.3 (A larger ac  makes S/N lower, a smaller 

a makes S/N higher). By the same way as before, for each value of o, we obtained 

a set of tables as Table 5.1 or 5.2, (not shown for space reason) again method 8 was 

the best among the methods 3 through 10. 
In Table 5.3 (the rows of mean is "known"), we summarize the most important 

results: only the RMSEs of i of method 8 are listed to compare with method 1 
(the regression method) and method 2 (knowing the true value of E,). The cells in 

14 



columns with heading "no." give the number of valid replications among 50 for each 

case. The "%" column shows the percentage reduction of the RMSE of the indicated 

methods to compare to method 1. For example, for model 1, low S/N, method 8, 47 

replications are valid; the RMSE of is 2.7953, which reduces 3.2960 by 15.2%. The 
number 3.0213 in the brackets is the RMSE of all 50 replications, that means, in this 
case, even those 3 invalid replications are included for comparison, method 8 is still 

bet.ter than method 1. 
From Table 5.3, we can see that the signal extraction benchmarking method per- 

forms more efficiently as the S/N goes down; for high S/N cases, using signal extrac-

tion does not bring in very much benefits (for model 1. it makes no difference with 

regression method). 

5.3 The mean in TS models is unknown 

We now turn to a situation closer to reality: where jis given by (5.3) but we do not 

know the parameters, so we get the LSE of the parameters from "data" y. Using these 

estimates to replace the true values of the parameters in (5.3), A t  and lb t  =yt - At 

are obtained. Then following Step 2 and Step 3 in Section 4. we carry out the same 

simulation as before, the main results are listed in Table 5.3 (the rows of mean is 

•'Iinear"). 
Notice that, method 1 does not need any assumption about p t , so the result is 

the same as in the "known" part, which we do not repeat. 
In this situation, although method 2 uses the true second moments E, E,, and 

hence Q0 , but since ' replaces the true value of w in (3.19), method 2 is now not as 

good as in the situation of "mean is known", but only slightly worse. 

For method 8, w and the second moments in the benchmarking formulae are 

all estimated, but the results show that this method is only marginally worse than 

• 	 method 2. 
The most realistic situation is that we do not know the type of the function 

which 11t follow. Assuming ji t  is a piece-wise smooth trend plus seasonality, trading-

day effect and so on, we may at first look at that if there are abrupt changes in 
the trend and identify the changing points; then use a linear or quadratic function, 
or more generally, a spline to model the trend in each interval between consecutive 
changing points. For testing this approach, we designed the following simulation: /.Lt 

are generated as (5.3) plus an extra quadratic term 0 . 04( 2 . The choice of the coefficient 

0.04 makes this term contributing a variation as large as the linear term tin the range 
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of t from 1 to 28. Data were generated with this new model of the mean, but we still 

specified the mean tit as (5.3) and then applied the LSE. This mis-specification almost 

did not affect the results as shown in the "quad." part of Table 5.3 compared to those 

of the "linear" part (no model mis-specification, parameter estimation error only). In 
other words, the model specification of smooth trend is not so crucial. The reason 

is that, the signal extraction benchmarking method uses the correlation structures of 
the target series and the survey error series which are the features of "short-memory" 
of the series, while the selection of a smooth function mainly affects the features of 

"long-memory" of the series. 

5.4 DS models 

The target series {} is given by (3.2) with d = 1 and s = 4, {(} in (3.2) and the 

series of the survey error {e t } follows model 

( 	(1 - 0.5B)(1 - 06B4)b, 	
(5.7) 

(1 - 0.7B + 0.49B 2  )e t  = Ct, 

which will refer next as model 3. The properties and how to generate b t  and Ct, and 

then ( t  and et, are stated in subsection 5.1. Thus, tlt  may be obtained from by 

recursion using (3.2) given 0 as initial values of i, and then we may have "data" 

Yt = 77t + e, but Yt  has mean 0. Since "data" should represent more general and more 

practical situations, after the recursion step from ( t  to i, we add p t  as (5.3) to create 

final 11t  (so, r1 t  have mean like (5.3)), but this time, we use 400 to replace 100 and 

use 2t to replace tin (5.3), since now {llt}  is not stationary, qt often runs wildly, this 

replacement keeps the data positive as they are in practice. Adding jut as (5.3) is also 

for confirming that (3.8), which excludes the involvement of non-zero ti like (3.6), is 
a valid formula. The main purpose of the simulation aims to verify that the diffuse 

assumption for initial values which leads to = D'E 1 D (see (B.9) in Appendix) 

is reasonable. 
In (5.7), we keep 9b = 5.0 which gives 'y(0) = 42.50 (the variance of (i),  but take 

Orc  = 5.0, 3.0 and 1.0 consequently, then correspondingly, the signal to noise ratios 

S/N are 1.01, 2.80 and 25.16. Again n = 28 (7 years), z (benchmarks) is generated 

from m as in subsection 5.1 and we leave the last year without benchmarks. For each 

level of S/N, 50 replications have been done and the RMSEs of i O  and i1 defined as 

(5.4) for different methods are listed in Table 5.4. 
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We know already that for estimating E ( , the revised procedure is absolutely nec-

essary and a good choice of M for smoothing is between n/3 and 2n/3, so, we no 

longer investigate what happens if the spectral window estimation without revision 

and/or without proper smoothing, M = [n/21 and Parzen window are chosen for 

smoothing. The results given in NP (stands for nonparametric) rows of Table 5.4 are 
obtained by using the estimation procedure described in subsection 4.3 for E. The 
numbers in the TRUE rows of Table 5.4 are results by using the true values of y(k) 

for E c . In the rows, the results are obtained by using smoothed (the same Al 

and the same window) '(k) = (1/n)j_1k  (tt+k (cf. (4.6)) to estimate -y(k) for E. 

In practice this is also impossible since ( t  is unknown. Our intention of doing that is 

to give another standard for monitoring our NP procedure. We were expecting that 
using would be better than NP but less efficient than TRUE. To our surprise 

using 'k) is better than using the true -y(k) (perhaps this is due to adaptive-

ness). This outcome indicates further potential power of nonparametric approaches: 
more efficient estimates rather than one given by this paper may be developed in the 

future. 
The numbers in REG row are the benchmarking results by using the regression 

method. As before, the percentages in other rows indicate the RMSE reduction to 
compare to the regression method. From Table 5.4, we have similar conclusions as in 
the case of TS models: benchmarking via signal extraction performs efficiently than 

benchmarking via regression when the S/N goes down. 

For DS models, we always come across to the situation that the patterns of spectral 

densities of {(} and of {t} are quite different, since {t} is overdifferenced (see (4.11)) 

with spectral density (4.13), but {(} is not. 
row of Table 5.4 shows the theoretical standard deviations of et, while 

the numbers in " e
(0)" row are the sample standard deviation of et = yt - 

i.e.. the RMSEs of Ye (in (5.4),replaced by 
3)). In comparing re (0)'"2  with any 

other of the remaining rows, we see that either signal extraction or benchmarking 

dramatically reduces the survey error when S/N is low. 

Using 
1 	50 28 

50 x 28 	
- 773)), 	 (5.8) 

and a similar formula forto indicate the bias of an estimation method, our ot 
simulation shows that, smoothing by signal extraction does not, reduce the bias in all 

cases, but benchmarking does. Table 5.5 shows the results. In this table, the last row 
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is the sample bias of et = yt -  77t We have similar results for TS models but are not 

shown in this paper. 

TABLE 5.1 RMSR.S of io and for model 1 

Method 	valid i O  valid ii valid no. 	all 1c 	all i1 

1 2.8426 2.0600 50 2.8426 2.0600 
2 2.6137 1.9082 50 2.6137 1.9082 
3 2.8599 2.0835 40 2.8941 10.8079 
4 2.6668 2.0052 48 2.6984 5.0063 
5 2.6709 1.9812 41 2.7717 2.5804 
6 2.7906 2.0920 46 2.8129 3.6217 
7 2.6913 2.0844 46 2.7084 409.9062 
8 2.6389 1.9423 49 2.6366 2.0743 
9 2.6482 1.9961 48 2.6646 2.7197 
10 2.6664 2.0206 47 2.6819 3.5931 

TABLE 5.2 RMSEs of io and z3 for model 2 

Method 	valid , 	valid fj valid no. 	all , 	all 7) 

1 5.2062 4.1746 50 5.2062 4.1746 
2 3.9011 2.9569 50 3.9011 2.9569 
3 4.6293 3.6423 30 4.8124 43.3872 
4 4.2195 3.3336 44 4.3006 17.4169 
5 4.3204 3.3244 35 4.5012 45.9034 
6 4.4382 3.4146 32 4.6059 2793.1038 
7 4.3216 3.3495 48 4.3359 3.8291 
8 4.1426 3.1640 50 4.1426 3.1640 
9 4.2148 3.2077 49 4.2262 3,4747 
10 4.2654 3.2590 49 4.2778 . 	3.6134 



TABLE 5.3 Some RMSEs of i1 for models I and 2 

model I model 2 	- 
mean S/N meth. RMSE { % no.ft RMSE no.  

k 

low 
1 3.2960 0 50 6.2616 0 50 
2 2.6899 18.5 50 3.6226 42.1 50 
8 - 2.7953 

(3.0213) 
15.2 47 4.0626 

(4.0861) 
35.1 49 

n 
o 
w 
n 

mid 
1 2.0600 0 50 4.1746 0 50 

" 2 1.9082 7.6 50 2.9569 29.2 50 
8 1.9423 5.7 

(2.0743)  
49 3.1640 24.2 50 

high 
1 0.8240 0 50 1.5655 0 50 
2 0.8207 0.4 50 1.4588 7,5 50 
8 0.8253 -0.2 50 1.4797 5.5 50 

n 
e 
a 
r 

low 
2 2.7734 15.9 4.0791 34.5 50 
8 

_______ 
2.9034 

(5.2093) 
11.9 4.3497 

(5.0732)  
30.5 49 

mid 
2 1.9279 6.4 

d49 
3.1912 23.6 50 

8 1.9904 
 (2.1800) 

3.4 3.3085 
(3.3964) 

20.7 49 

high 2 0.8212 0.3 1.4921 4.7 50 
0.8203 0.5 1.5033 4.0 50 

q 
u 
a 
d 

low 
2 2.7981 15.3 50 4.0888 34.7 50 
8 2.9554 

 (3.5026) 
10.3 46 4.3944 

(5.5082)  
29.8 49 

mid 
2 1 	1.9325 6.3 50 1 	3.1924 23.5 50 
8 1.9878 

(2.0617) 
3.5 49 3.3274 

(3.9527)  
20.5 49 

high 2 0.8212 0.3 50 1.4913 4.7 50 
8 6.8232 0.0 50 1.5059 3.8 50 

Note: S/N, the signal to noise ratio, for the two models are as follows 

model I 	model 2 
low 	1.38 	1.24 
mid 	3.53 	2.79 
high 	22.11 	19.83 

19 



TABLE 5.4 RMSEs of ,) O  and,) for model 3 

_S/N low (1.01) mid.(2.80) high (25.16) 
- TRUE 3.9496 2.8154 1.1941 

(M)  3.9041 2.7453 1.1675 
NP 4.3616 2.9216 1.2002 

= REG 5.1347 3.0808 1.0268 
TRUE 3.0370 

(40.9%) 
2.2015 

(28.5%)) 
0.9529 
(7.2%) 

(M)  3.0159 
(41.3%) 

2.1480 
(30.3%)) 

0.9345 
(9.0%) 

NP 3.4170 
(33.5%) 

2.3464 
(23.8%)) 

0.9670 
(5.8%) 

(0)1/2 T 	6.34 3.80 1.27 
6.50 3.90 1.30 

TABLE 5.5 Bias of ,)O  and,) for model 3 

_S/N low (1.01) mid.(2.80) [high (25.16) 
- TRUE -0.2975 -0.1819 -0.0623 

-0.3002 -0.1829 -0.0624 
- NP -0.3054 -0.1862 -0.0633 
- REG -0.0420 -0.0252 -0.0084 

TRUE -0.0265 -0.0164 -0.0070 
-0.0318 -0.0189 -0.0071 

- NP -0.0764 -0.0478 -0.0102 
e t  -0.3126 -0.1876 -0.0625 

6 Conclusions 

In this paper we analyzed the properties of the regression and the signal extraction 
methods for benchmarking repeated survey data (the signal extraction may also be 
used for the purpose of smoothing only) and proved that the corrections originating 
from the benchmarks reduce the variance of the survey error and the error of the signal 
extraction, respectively. Furthermore, when the first and the second order moments 

of the survey error {et} and the target series {17t}  are known, the variance of the error 
of the benchmarked estimate via signal extraction is smaller than that of using the 
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regression method because the regression method does not use the information on the 
nature of {i} given by its covariance matrix . 

We also discussed the limitations of the ARIMA model based approach in imple-

menting the signal extraction benchmarking. In order to overcome some difficulties 

associated with the ARIMA modelling of {71t}1  we proposed a nonparametric approach 
based on spectral estimation techniques and derived the formulae for two types of 

models, the TS models and the DS models. The DS models are more general than 

ARIMA models. A TS model for {llt}  is assumed to have a deterministic component 
{j} which reflects the trend (allowed to have abrupt changes), stable seasonality, 

outliers, trading-day effects and so on. The stochastic component {(} of a TS model 
is assumed to be stationary. For DS models, we assume that the differenced series 
{ç} of {i}  is stationary and allow a hidden polynomial plus stable seasonality to 
exist in {ih}.  For both TS and DS models, the stationarity of {} is in wide sense, no 
distribution specification, e.g. normality and no parametric model assumption such 

as ARMA are required. 

We carried out a simulation to compare the efficiency of the regression method 

(RM),. the signal extraction (SE) assuming E,7  is known (not available in real life 
cases) and the signal extraction method where is estimated by the nonparametric 

(NP) approach proposed in this study. 
In the simulation, for a TS model {tt}, is given as a linear or a quadratic trend 

plus a stable seasonality, and {} and {e t } are created following ARMA models. For 
a DS model, {)t}  is obtained by recursion from a stationary ((} then adding a linear 
trend plus a stable seasonality. For all these models, the effects of the levels of the 

signal to noise ratio are considered. For the TS type, two models (1 and 2) are chosen 
to distinguish two different situations: the spectral densities f(A) and fe(A), of {(} 
and {et } respectively, have similar or very different patterns. The results show: 

(I) A smooth spectral estimate, from which we may obtain an estimate of the 

covariance matrix E, is needed, and this estimate of must be positive definite for 
finally obtaining an estimate of 'i  close to that by using the true value of E ( . The 
proposed NP approach satisfies these requirements. 

Using the RMSE as a measure of efficiency, SE is always better than RM, NP 
is close to SE and better than RM. 

If the signal to noise ratio S/N = 7(0 )1ye(0 ) is small, the gains in efficiency 
of SE and NP to compare with RM are large. When the S/N is very high, there is 
almost no lost in efficiency by using simpler RM rather than NP in practice. 

For TS models, if the patterns of f,7 (A) and f(\) are similar, the gains in 
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efficiency of SE and NP with respect to RM are small; and if the difference between 
these two patterns is big, then the gains are larger. 

(5) For TS models, the only parametric model used is to estimate p. The NP 

method is robust to smooth trend mis-specifications and to the estimation error of 
the parameters. 

Appendix A. A derivation of the signal extraction 
benchmarking formulae via projection 

Lemma Denote the projection of ,' on the linear probability space generated by 
(y' z')' by E (77 I y, z). Similar notation for E(r I ) and so on. Then 

	

y,z) = E(?7 I ) + 	z - E(z I y)] - E 	 (A.1) 

Proof For simplicity of notation, we will denote E. = Var y, 	j = Coy (z, y) and 
so on. The well-known general formula of projection (see e.g. Whittle, 1963, Section 
4.3; Brillinger, 1981, Section 8.2) z on y, is 

	

E(z I ) = Ez + 	- Ey). 	 (A.2) 

Denote 

v = z - E(z I ) = (z - Ez) - 	- Ey), 	 (A.3) 

then 

Ev = 0, E[(y - Ey)v'] = Ey,, - E y E 1 Eyz = 0. 

Since (y' z')' and (y' v') 1  generate the same linear probability space, so 

ii = 	I y , z) = t(77  I y , v) 

= Er + ('71d  E17) (% 
( E 	0 

0 E ) 	) 	
(A.4) 

 _' 

which is the right hand side of (A.1). The lemma is proved. 

Now we prove the same formula as (2.5) through (2.9) for model (1.4) and (1.5) 
under the meaning of projection. The distribution assumption is (2.10) Again, 
formula (A.2) is repeatedly used in the following but y and z in (A.2) may be replaced 
by other vectors. Also, the general formula for the variance matrix of projection error, 
for example that of 77 on y, is 

Var [E(77  I ) - 	= 	- 	 ( A.5) 
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will also be used. 

From (1.4), Env  = E,7  = E., and E. = E,7  + E, so (A.5) gives 

Var (i - 'i) = 	- (E,7  4- Ee)'E,71 = (E' + EY = 

that is (2.8). Here and in the following, the identities I = (E,i+Ee)_t (+e)  and 

Ee) =  Ee (E 77  + EeY'E, = (E' + 	= 	(A.6) 

ar very useful. 

	

Lsitn the genera] formula (.\.2) for E(i 	y), (1.4) and (2.11 lead to 

(.4 7) 

that is 	2.. 	. 	.4 . 	I .. 	(2.1 	and 

v 	- 	- 	-. L:,7( V, 4. 	- / 1. 	z -- Li1, 	(.1,) 

fl 	inid&Ih' expression of (.\ ) also leads to 

v = L(i - iz) 1- € - LE,1 (E,7  ± >)_'[(ij - /L) ± e, 	(A.9) 

which gives 

- 	+ Ee)'L' = QoL l , 	 (A.1O) 

	

E= LL'+EL(+E e )'L'=LcloLY 	(All) 

and hence 

v) = Eij 4- 1loL'(LoL' + E'(z - L 0 ). 	(A.12) 

Using (A.l), (2.6) and (2.7) follow. 

Using the general formula (A.5) for 77 on (y' z')', and referring (A.4), then (A.10) 
and (A.11) gives 

( 0 E" )'(:) 

=E,7 - E,7 ( 	+ >I e ) - ' E 17  - I10L'(LQ0L' + 

and the last expression in (2.9) follows immediately by identities (A.6) and the one 
above (A.6). 
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Appendix B. The derivation of the special signal 
extraction formulae for the DS model 

Put 
j 

= ( 
'd+ci 	..... 0). 	 (B.1) 

then 

	

" ) = Jq, 
	 (B° 

and hence, E( . = JE l? J' (at this moment, in (3.3), h is still a fixed large number), 

El?  

From (A.7) and referring (A.6), we have 

= (E' + E') 1 E'y + [I,, 	+ >i 	 1: 1 

Now, the y term already has the form of (3.8) and (3.9) except that 	has not leen 
specified yet 

Using 1,, 	/. 	he ji t (11 111 :u 

(I + EeE'Y'EeE'/.L = (I ± EeE'Y'E eJ'E.'J(Erj). 	(B.5)17  

From (3.3) and (3.4) and letting h -+ oo yields 

0 0 
E' 

On the other hand, notice that It = Ei7 t  is a function as (3.6) and E( 	0, then 
E(Di) = D/A + EC = 0 and from (B.1), 

J(E77) = E(Ji) = (Erg 0 ... 0)'. 	 (B.7) 

Then (B.6) and (B.7) gives 
= 0. 	 (B.8) 

i.e., (B.5) is zero. 
From (Bi), (B.3) and (13.6), 

(B.9) 

that completes the derivation of (3.8) and (3.9). 
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