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Summary 

Information about a socio-economic variable of interest (usually, one or a group 

of time series) often originates from several sources none of which is complete and/or 

accurate. A stepwise approach is developed here for predicting the variable of interest 

by using the data from source to source focusing on minimizing the variances of 

prediction errors. This paper also reviews some BLUP (the best linear unbiased 

prediction) theory and shows that the stepwise approach proposed here can give 

better predictions than BLUP for nonlinear models. As an important application, a 

nonlinear benchmarking formula for a multiplicative model is derived. 

Résumé 

L'information sur une variable socio-économique (géneralement une ou un ensemble de series 

chronologiques) provient souvent de sources différentes, incomplétes ou inexactes. Le present 

document présente une approche pas a pas qui prédit La variable en question, en incorporant les 

donnéees d'une source a la fois, en minimisant La variance des erreurs de prediction. Cet article 

passe également en revue la théorie BLUP (meilleure prediction linéaire non biaisée) et démontre 

que, pour des modêles non linéaires, l'approche échelonnée proposée peut donner de meilleures 

predictions que le BLUP. Un cas détalonnage (calage) non linéaire multiplicatif illustre La 

méthode. 
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1 Introduction 

Suppose that a is the variable of interest and either itself or its functions are observed 

by different measures with different frequencies and accuracies; that is, several sources 

of data are available for predicting the values of a. Quite often, we consider situations 

where the values of a form a time series, {a(t)}, or a group of time series. 

We use the term "prediction" (rather than "estimation") from the literature of 

estimating random effects (see e.g. Henderson, 1975; Robinson, 1991) that distin-

guishes estimating random variables from estimating fixed parameters. However, for 

convenience, when both fixed and random parameters are involved, we will use "pre-

diction". We will also adopt the acronym BLUP (best linear unbiased prediction; 

in the sense of minimizing the mean square error of predictions). The BLUP of a 

random vector, say a, from a random vector, say y, is denoted by E(a I y), i.e. the 

projection of a on the linear space spanned by y. We reserve the notation E(a I 
for the conditional expectation of a given y, i.e. the best unbiased prediction (BUP) 

of a by y. 

Predictions could vary wildly depending on the choice of the sources providing 

observations for prediction. A good prediction should use data from all available 

sources. 

This paper proposes an approach for deriving such predictions which for non-

linear models may even be better than the BLUP (using data from all sources). Some 

practical examples where our approach can be applied are those of benchmarking and 

reconciliation. 

In the case of benchmarking, let a(t) denote the monthly total value of a certain 

product in month t. From the first source, we have monthly observations y  (t) of a(t) 

which are contaminated by survey errors u1  (t) either additively, i.e. 

y 1 (t) = a(t) +u i (t), t = 1 1 2 1 ...,n 1 , 	 ( 1.1) 

or multiplicatively, i.e. 

y 1 (t) = a(t)u 1 (t), t = 1,2,...,n 1 . 	 ( 1.2) 
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In the latter case, u1 (t) represents percentage error; so, the value of u 1  (t) should be 

around 1. Equation (1.2) is an important practical example where the relationship 

of {a(t)} and {y j (t)} is nonlinear. 

Assuming that we have some annual indicators or aggregated measures of (t) 

from the second source: 

y2(k) - tEk(t)+U2(k), k= 1,...,n2, 	(1.3) 

where the notation t E k means the month t is in the year k, and the annual obser-

vation errors u2(k) are much smaller than ui(t), then y2 (k), k = 1,. . . ,n 2 , are called 

benchmarks. A benchmark, y2 (k) is said to be binding if u2(k) = 0 (without error), 

which is often interpreted as a constraint; otherwise, it is said to be non-binding. 

Traditionally, benchmarking consists of using benchmarks to adjust the original 

measurements or some preliminary predictions of a = (c(1),.. . , a(n 1 ))'. But it can 

also consists of using all Yi  (t) from the first source and all y2 (k) from the second 

source to predict a jointly. 

Other example is that of reconciliation. Suppose that c(t) are the values of a 

certain industrial product of province j in month t, where j = 1, ..., J. At month 

t, each province has its own observation y,(t) of c,(t). However from a different 

source, we have yo (t), the observation of the national total of this industry, c o (t). 

Naturally, ao (t) = FJ=l  a,(t). But, the corresponding equality does not necessarily 

hold for y,(t),j = 0, 1,..., J. The problem is how to give a balanced prediction of the 

provincial and the national total from these observations so that the equality holds 

for the predictions for all t. If there are several industries with provincial and national 

total observations, then balanced predictions are required along two dimensions. If 

the resulted predictions have also to conform to the annual benchmarks which are 

from another source, then this problem may be regarded as a three dimensional 

reconciliation. In the system of national accounts and financial flow areas, statistical 

agencies often face such problems. 

The theory on BLUP is already well developed. To point out some of its limitations 

in solving the kind of problems mentioned later, we give next a brief review of its 
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state in the current literature. 

Suppose that the linear regression model is as follows, 

y(t) = x1 (t)'/3 + Xr (t)'7l + e(t), t = 1, . . . , no; 	(1.4). 

where @ is a p unknown vector of fixed numbers (fixed effects), while i, is a q unknown 

vector of random variables (random effects) with Eii = 0; x1 (t) = (x 11 (t) . . . 

and xr (t) = (Xr(t) . . . Xrq (t))' are constant vectors; the subscripts f and r stand for 

"fixed" and "random" respectively. If both 0 and rj exist, the model is called mixed. 

We may write the combination of (1.1) and (1.3) as (1.4) if(t) = xj (t)'/3+ij(t), i.e., 

if the mean of c(t) can be written in linear form xj (t)'f3. The prediction of a(t) is 

then obtained directly from the predictions of 0 and 71(t). 
Using matrix notation, (1.4) can be written as 

y=X113+XrT1+e. 	 (1.5) 

In the following, the variance matrix of the random vector 17 is denoted by V; simi-

larly, for the notation Ve and so on. 

For model (1.5), if p + q < n0 , then a linear prediction of j3 and 'q is obtained by 

using either "joint likelihood" (e.g. Henderson, 1950) or a Bayesian approach (e.g. 

Dempfie, 1977) under the assumption of normality for the joint distribution of 77 and 

e (or prior normality for 'i).  The solution is obtained from the following equations: 

XV'X1 I3 + X1''Xr 1 = XV 1 y, 
(1.6) 

X11 	13 + (X11 	+ l'ç,- ') ii = X11  

The variance matrix of the prediction errors can also be obtained (see, e.g. Robinson, 

1990, p.16). Other authors (e.g. Goldberger, 1962; Harville, 1990) showed directly 

that this prediction is the BLUP of the parameters without assuming normality. If 

the assumption of normality holds, then it is the best unbiased prediction (BUP). A 

good review with application examples are given in Robinson (1991). 

When t  is absent, the solution of (1.6) and the variance matrix of the prediction 

error coincides with the well-known results of generalized least squares (GLS) esti-

mation. When 13 is absent, or 3 is known, the solution of (1.6) and error variance 
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matrix coincides with the result of the well-known formulae of projection (see, e.g., 

Whittle, 1963, Section 4.3): 

E( 77IYXfP)=VX(XrVX,+Ve)'(y_Xj/3) 

= (XV 1 X + 	 - X1/3); 	 (1.7) 

E( - 	- 71)' = 147 - Vi X,(Xr l4,X, + Ve ) 1 Xr  = (X,V'Xr + %/_1)1 (1.8) 17 	
-

Here, notice that y - X1 3 = Xrrj + e. In general, f3 is unknown; the solution for 

(1.6) is (1.7) but with 3 replaced by (see, e.g. Robinson, 1990, p.21) 

/ = [Xfl 	+ Ve ) 1 Xi1 1 X(XrVy,X + Ve)'y. 	 (1.9) 

The development of the theory and applications of the method of estimating 

function has a great impact to the problems of estimating and predicting parameters. 

In this theory, the criterion for deriving targeted estimates, proposed by Godarnbe 

(1960), is to minimize a specially defined non-negative matrix. This method of es-

timating fixed effects (Godambe and Thompson, 1989) can be easily generalized to 

predict the mixed linear model (1.4) giving the same results as those from (1.6) (see 

Singh, 1995). The method of estimating function may also be used to more general 

linear models and even nonlinear models. Singh (1995) provided a good review on 

this topic and pointed out that, for linear models with bounded number of parame-

ters (in the above case, it meaus p + q bounded when no  - oo), Godambe's criterion 

can be interpreted as the minimization of the mean square error of the estimation 

(prediction) within the class of linear unbiased estimating (predicting) function. For 

nonlinear models with bounded number of parameters, it is the minimization of the 

asymptotic mean square error within the class of linear unbiased estimating (predict-

ing) function. Hence, estimating (predicting) function leads to BLUP or asymptotic 

BLUP for either linear or nonlinear models. 

Our approach is not restricted to linear predictions: the minimization of the mean 

square error of the prediction is within a much larger context. So, it may give better 

predictions than BLUR This "better" holds strictly for nonlinear models, such as the 
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combination of (1.2) and (1.3). Moreover, we do not require the number of parameters 

in the model to be bounded, it can be as large as the number of observations. 

The outline of this paper is as follows. Section 2 states the basic theorem, explains 

its features and the general procedure for application. Section 3 addresses the multi-

plicative benchmarking problem where nonlinear benchmarking formulae are derived 

(providing better predictions than the BLUP). Finally the proof of the basic theorem 

is presented in the Appendix. 

2 The Basic Theorem and the General 
Procedure 

Denote the values of the variable of interest by a = ( c(1),.. . , c(n))' (random vector). 

Suppose a data system is made up of two sources which offer vectors of observations 

Yi = (yi(i),. . . , y 1 (n 1 ))' and Y2 = (y2(1),... ,y2 (n2 ))' respectively. 

Sometimes, for the first source, a linear model like (1.1) is good to describe the 

relationship between a and Yi  which in general can be written as 

Yi = X1 cx + U1; 
	

(2.1) 

where u 1 , the error vector, with mean zero is uncorrelated with a. Notice that, unlike 

(1.1), n 1  is not necessarily the same as n. In general, the relationship between a and 

Yi is allowed to be nonlinear, such as in (1.2), which is the case when data have a 

stable coefficient of variation (CV) rather than a stable standard deviation (SD). 

For the second source, we always assume that a and Y2  follow 

Y2 = X2a + U2, 	 (2.2) 

where u2  has mean zero and is uncorrelated with a, and also with u 1  if (2.1) holds 

(the assumption for more general situations is stated in Theorem 2.1). Here we do 

not have to specify the distributions of u 1  and u2 , and we allow the variance matrix 

of u2  to be degenerate, even 0 (the case where all benchmarks are binding). For 

convenience, by extending the terminology in benchmarking, we call the kth row in 

(2.2) a binding constraint if u2 (k) = 0, otherwise, non-binding constraint. 



In the following, the dimension of a is always denoted by n; if there are more 

sources, the dimension of y 2  (the observations from ith source) is denoted by ii,. The 

notation ":=" means "defined by" or "denoted by". 

Definition 2.1 We call a a feasible unbiased prediction (FUP) of a from a source 

which offers y, the vector of observations (or we call it a FUP of a from y), if a is 

a measurable function of y, Eê = 0 (e & - a), and V can be obtained. 

A BLUP or a BUP is not necessarily feasible because, sometimes, V can not be 

obtained either by analytical expressions or by numerical approaches (say, a recursive 

procedure). 

Theorem 2.1 (1) Let &' and ët' be two FUPs of a from the first source, and 

assume u2  has mean zero and is uncorrelated with ct, à(1)  and &(1).  Denote the 

prediction-error vectors by = &' - a and = - a. Suppose that we have 

the inequality 

V(I) 	 (2.3) 

and that 

X2V(l)X + V, 2  > 0, 	 (2.4) 

holds. Let 

à(2) 	&' + V l)X2 (X2V(l)X + V, 2 )'(y2  - X2à 1 ), 	(2.5) 

and a similar formula for &(2)  from &' and V(i). Let 	= a(2) - a and e2 = 

à(2) - a, then 

V(2) 	- V(l)X(X2i/( l)X + VU2 )'X2Ve(1), 	(2.6) 

similar relationship for V(2)  and Vl) holds, and 

< 	 (2.7) 

(2) Assume a third source which offers observations Y3 = X3a + u3  is available, 

where u3  has mean zero and is uncorrelated with u2 , a and &(1).  Let 

Y3 = Y2 
	

-k3 	X2  ), ii3 	
U2 

( Y3 	 X3 	 U3 
(2.8) 
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then 

X3V(l)X3  + V 3  > 0. 	 (2.9) 

holds if and only if both (2.4) and 

X3V (2)X + V 3  > 0 	 (2.10) 

hold. Under condition (2.9), 

+ 1(l)X(.3%'(l) 	+ V3)'(3 - 9&1)) 	(2.11) 

(2)  + 1/(2)X(X3 V(2 ) X + V 3 )'(y3  - X3à 2 ), 	(2.12) 

and the variance matrix of its prediction-error vector e3 = 	- a is 

=- V(l)X3 (X3t'(l)X 3  + Vj3 )'Xs14(l) 

= V (2 )  - 1/ (2 ) X3 (X3 V (2 ) X3  + V 3 ) 1 X3V(2). 	 (2.13) 

If 	= E(a I yi), the BLUP of a from y,  is also a FUP of a and (2.4) 

holds, then &(2)  given by (2.5) is E(cx I y1,y2), the BLUP of a jointly from Yl  and 

Y2. As %'(2) is given by (2.6), it is also a FUP. 

Suppose that &1) = E(a I yi), the BUP of a from Yi,  is also feasible 

with variance matrix of prediction errors %'(1), and that u2  has mean zero and is 

independent of a and y. If (2.4)  holds and &(2)  is given by (2.5). Define the set 

A = {à: a = a(y1 ) + A2y2 1, 	 (2.14) 

where a(y 1 ) is a vector of dimension n of measurable functions of y, and A 2  is 

an n x n2  matrix of constants. Then V ( 2 )  given by (2.6), the variance matrix of 

= a 2  - a, minimizes V among all ê = a - a, a E A. 

Remark 2.1 Suppose that &(1)  is a FUP from the first source and there are 

more sources available which give y1  = Xa + u, i = 2,.. . , m. All u 1  are mutually 

uncorrelated and uncorrelated with a and a' (equivalently, e(')). Let m, Xm  and 

tim  be defined similar to (2.8), and a condition like (2.9) holds; then we may obtain 

&" directly from (2.5) with X2  and V 2  replaced by Xm  and Vm•  However, the 



second part of the theorem tells that, rather than pooling all these sources together as 

one, a more preferable way is using (2.5) with (2.6) as a recursive formulae (replacing 

1 by i - 1 and 2 by i, i = 2,.. . , m), inputting data from source to source. We 

finally get the same result which is independent of the order followed by the sources 

entering in the recursive procedure. The dimensions of the matrices for inversion in 

the recursive procedure may become much smaller. 

We can even split some originally defined sources into a series of newly defined 

"sources" provided that the new u i  are uncorrelated with each other (binding con-

straints, ui  = 0, automatically fulfill this condition). This is particularly useful when 

there is a huge number of constraints (e.g. national account systems). 

Another advantage is that we can monitor whether a new single constraint or a 

group of constraints is redundant. Chen and Dagum (1998)show that there are no 

redundant constraints until step j if and only if Xj Ve()X + V > 0 holds for all i < j. 

Notice that redundant constraints may turn to be conflicting such that there is no 

solution for the problem under investigation if no measure of rectification is taken. 

Remark 2.2 For classical linear regression models (with fixed effects only), several 

recursive procedures have been developed under different assumptions. These pro-

cedures can be classified as follows: adding a new observation (maybe, a vector) in 

each step (e.g. Odell and Lewis, 1971; Chambers, 1971), adding a parameter in each 

step (for the purpose of selecting regressors; see, e.g. Chen and Ni, 1989), and the 

combination of both (e.g. Jones, 1970). 

If the first source is also linear and the global model (using information from all 

sources) can be written as (1.5) [c is re-parameterized to (a', 77')'], then to obtain the 

BLUP of ct using (2.5) with (2.6) (starting with a BLUP from a source) and using 

(1.7) with (1.9) for predicting (f3', n')' should lead to equivalent results. The first 

procedure corresponds to adding new observations; the second procedure corresponds 

to adding new parameters. All of these can be regarded as some extensions of the 

recursive approach for classical linear regression models (now, for the random effect 

models or mixed models). 

It seems that there are no special advantages by using (1.7) and (1.9) for multiple- 



source data systems. 

On the other hand, the format of (25) and (2.6) is well-known (the format is also 

similar to the Kalman filtering formulae), and as we mentioned above, the idea of 

recursion based on entering new observations is fundamental in linear regression and 

the Kalman filtering theory. However, it had been ignored in the literature that (2.5) 

with (2.6) can also be used as recursive formulae for entering data, group by group. 

Such use is more meaningful and powerful when dealing with data systems made from 

multiple sources. 

Noticing the special feature of such data systems, Singh and Kovacevic (1996) pro-

posed segmented Kalman filtering to additive multiple-source benchmarking models. 

These authors' procedure should lead to an equivalent prediction obtained by recur-

sively using (2.5) and (2.6). However, we believe that the avenue of applying (2.5) 

and (2.6) as recursive formulae is more direct and has more flexibility for modelling 

data in practice, especially, when the linear model is not appropriate for the data 

from the first source. 

Remark 2.3 In the literature, some authors have derived formulae such as (2.5) 

and (2.6) based on different criteria. A typical derivation is based on conditional 

expectation under the assumption of normality and also of linearity for the first 

source (e.g. Hilimer and Tabelsi, 1989; Durbin and Quenneville, 1997). In this case, 

the BLUP and the BUP are the same. Other authors derived the formulae (many 

of them only discuss the special case V 2  = 0) based on constrained maximization of 

likelihood function (e.g. Weale, 1992). Cholette and Dagum (1994) got their formulae 

aiming at minimizing the variances of estimation errors under the assumption that a 

is a vector of constants (fixed effects). 

In Theorem 2.1, we directly adopt (2.5) and (2.6) rather than derive them on the 

basis of a given criterion. According to this theorem, our theoretical goal is to derive 

the BUP of a from Yi,  where their elements can be nonlinear functions of Yi.  If 

this BUP is also feasible, then we use (2.5) and (2.6) to revise this predictions from 

further sources, and finally obtain the BFUP of a which is defined as follows. 
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Definition 2.2 If &(1) = 	I Yi) is feasible and the propeTty of independence 

about Urn, as u2  in Theorem 2.1 (4), holds; also, condition (2.9) (with 3 replaced by 

rn) holds; then (m)  initiated from this obtained either in one or in several steps 

using (2. 5) and (2.6), is called the best feasible unbiased prediction (BFUP) from. all 

the sources. 

As an important example, we will demonstrate, in the next section, how to obtain 

a BFUP. The BFUP is the best among the class of predictions defined by (2.14) [with 

Y2 replaced by y, and A2  is an n x (n2  +... + flrn) matrix], and is strictly better 

than the BLUP from these m sources when a is nonlinearly related to yi). 

On the other hand, in the case that we can not obtain the BLUP, then the optimal 

choice from the first source (under the given circumstance) together with the recursive 

procedure lead to the best prediction from all the sources for this situation. 

Remark 2.4 A key step in the procedure suggested by this paper is to obtain a 

preliminary prediction, &(1),  from the first source with as small Vi) as possible. 

When the relationship of a and Yi  is linear, usually we are satisfied with &(1)  being 

the BLUP from Yi.  When the number of observations (the dimension of y)  offered by 

the first source is at most the same as the number of "parameters" (the dimension of 

a or the dimension of its re-parmeterization), some special procedures are developed 

to obtain the BLUP of a from yi.  These procedures are called signal extraction. 

Put (1.1) in the vector form, i.e. Yi = a+u 1 . Under the assumption of normality, 

Hilimer and Trabelsi (1987) derived &' = E(a I Yl) as follows 

( &' = V(l)(V 1 1 yl + V'Ea), 
(2.15) 

Ve(l) = (V + V- ) - 1  

It can be shown that (2.15) is E(a I Yi)  provided that the first and the second 

moments exist (see Chen, Cholette and Dagum, 1996); i.e. when normality holds, 

(2.15) yields E(a I y1) = E(a I Yi) and the covariance matrix of the prediction 

error. 

For implementing a signal extraction formula such as (2.15), often, a model for c(t) 
is assumed. In other words, a(t) is "re-parameterized". (The number of "parameters" 
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is even larger than the number of observations.) 

A very general scheme of model setting is 

a(t) = /L(t) + ij(t). 	 (2.16) 

\Vhere the 'st.o-hastic component' 77(t) follows 

	

= —((t), 	 (2.17) 

where V and V are ordinary and seasonal differencing operators respectively and 

{((t)} is a stationary series with mean zero. The "deterministic part" is expressed 

liv 
k 

= 	z3 (t)/3, = z(t)'/3 	 (2.18) 
1=1 

with known vector-function z(t) = (zi(t)... z,,(t))' and unknown parameters 3 = 

(fl . . . fl)'. For some practical considerations of (2.18) in the case of benchmarking 

and repeated survey, see Chen, Cholette and Dagum (1997). 

For 14t) = 0, (2.16) reduces to a difference stationary (DS) model, and for rj(t) = 

((t), i.e. d = d= 0, to a trend stationary (TS) model (Nelson and Plosser, 1982). In 

model (2.16) through (2.18), the "parameters" are . . , fik, 17( 1 ),... ,ii(n)) to be 

predicted from Yi 

We may also cast c(t) in a state space model (see, e.g., Durbin and Quenneville, 

1997), and then we have more "parameters" to predict. Kalman filtering and smooth-

ing then can be applied to do the signal extraction. 

In model (1.1) if we assume a(t) to be given by (2.16) through (2.18), where 

denote d* = d+ sd, 77 = ((1) . . . i(n))', = (((dt +1)... ((n))', Z = (z(1) .. . 

and D being a (n_d*)  xii matrix which transfers 77 to - (see Chen et al, 1997), then 

model (1.1) can be expressed by Yi = c + u 1  and put into matrix form as follows: 

f\ 	(z 1\(+(ui). 	 (2.19) )o D)) 

The covariance matrix V 1  > 0 and Vc > 0 are assumed to be known and Coy (u 1 , C) = 
0. Let 9 = ()3' rj')', etc, we may simply express (2.19) by 

y=X9+u; 	 (2.20) 
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where X is assumed to be of full rank. 

Notwithstanding that (2.20) is not a standard regression model (because we im-

pose zeroes on the second part of y, and C is correlated with ), Dagum, Cholette 

and Chen (1997) show that, the GLS formulae, 

9 - V vlv1y,  V_ 0  = ( X'V'X) 1 , 
- 

(2.21 

give the BLUP of 8 and the covariance matrix of prediction error respectively; and 

those of a follow directly from (2.16) and (2.18). Then, the recursive formulae (2.5) 

and (2.6) can be used for revising the prediction from further sources. 

Given the covariance matrix of the survey error, V,, by survey experts, a method 

of estimating V(  has been developed by Chen et al (1997), so, an estimate of V,, can 

be obtained from the data. 

Remark 2.5 In some cases, due to the nature of the first source, some fixed effects 

are not predictable by Yi  alone. For example, if the survey error ui (t) in (1.1) has 

a bias b, then we can not distinguish b from the level of a(t). A way to overcome 

this difficulty is as follows. First, we reduce the original "parameters" to a smaller 

number of new "parameters". For the above example, we regard b as a part of the 

level of c(t) (e.g., see Durbin and Quenneville, 1997). We can thus get a prediction 

of these new "parameters" from Yi  with variance matrix of prediction error as small 

as possible. Second, we obtain a preliminary prediction of the original parameters by 

combining this prediction of new "parameters" and some observations from further 

sources with the original "parameters" [see (2.22)] in a linear regression model and 

carrying out the estimation procedure. 

Symbolically, let a = (a a'2 )' and suppose that the linear combination & = 

X11a 1  + a2  has a FUP from Yi  (for example, a 1  = b and X11  is a column of elements 

of 1); i.e., from the first source we may obtain an unbiased prediction a' = X 1 c + 

a2  + ê' of a' and Vi..  Pooling this prediction with Y2  (it can be part of observations 

from a further source), we have 

	

/ a' \ 	I X 1  I, \ (a1 + ( 
	. 	(2.22) 

	

Y2) 	0 Xn )a2 ) \U2) 
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If u2  is uncorrelated with êt and a, and the condition X22V.X 2 +V, > 0 holds, then 

based on (2.22), we may apply GLS to obtain the prediction of a and the covariance 

matrix of the prediction. For the details on the formulae, see Dagtirn et al (1998). 

After getting a preliminary prediction of a (denoted by since a second source 

is involved) and the covariance matrix of the prediction error, the recursive formulae 

(2.5) and (2.6) can be used for further improvement on the prediction from unused 

sources. 

For two preliminary predictions of a*,  ã and à, if V. < V. holds, then (2.7) 

holds for the corresponding two preliminary predictions of a, ã 2  and 2).  The proof 

is similar to that of part (1) in the Appendix and, therefore, is omitted. However, 

notice that, if à is the BLUP of a*  from the first source, the approach in the 

Appendix does not enable one to prove that &(2)  is the BLUP of a from both sources. 

3 Multiplicative Benchmarking Models 

The survey error series, {u 1  (t) }, in the first source of an additive model [the more 

frequent one, i.e., (1.1)], usually can he written as 

u i (t) = o(t)ü(t), 	 (3.1) 

where c(t) is the standard deviation of ui (t) and {ü(t)} is a stationary series of mean 

zero and variance one with either the autocorrelation function or a model for it known. 

In practice, c(t) estimated from a survey is not constant. Although heteroscedasticity 

apparently does not affect the application of signal extraction formulae like (2.15), it 

causes problems in modelling (c(t)}: it is very difficult to estimate V,, from the data. 

Sometimes the heteroscedasticity is due to the estimation error in survey process. Bell 

and Hillmer (1990) suggested that when the fluctuation of these estimated values of 

ci(t) is small, cr(t) may be regarded as a constant and they recommended to use the 

average of the estimates of o(t) for practical purposes. 

However, often heteroscedasticity is intrinsic in the sense that a(t) depends strongly 

on the level of a(t). In such case, we can put 

u i (t) = a(t)c(t)ü i (t), 	 (3.2) 
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where c(t) = o- (t)/a(t) is the CV. Then, the observations can be written in a multi-

plicative form as (1.2): 

yj (t) - o(t)(l + c(t)ü i (t)), 	 (3.3) 

where c(t)ü i (t), the series of percentage errors, is independent of {(t)}. 

For most socio-economic series, y  (t) and (t) are positive. Taking logarithm in 

(3.3) and denoting 

y.(t) = log yi (t), c.(t) = log c(t), u.(t) = log(1 + c(t)ü(t)), 	(3.4) 

we obtain an linear model 

y.(t) = a.(t) + u.(t). 	 (3.5) 

Usually, the distribution of the logarithm transformed series can be assumed normal. 

Under this assumption, (3.5) is a standard additive model for signal extraction. Let 

t run from 1 to n. Then we may put (3.5) in vector form as y. = ci. + u. If 

we assume that Va., V0  and Eo, are known, then (2.15) may be used to obtain 

the extracted signal and the variance matrix of errors [correspondences: Yi -' 

Cr -' a, u 1  b-' u., &'(t) - à, and 'v - V.I. i.e., we obtain 

E(a. I 	V. := E{(à. - a.)(à. - a.)'}. 	(3.6) 

Since a, y. are jointly normal, V. given by (3.6) is also the conditional variance, 

i.e. V. = Var (a. I y4. In other words, given y., the conditional distribution of a,. 

is N(à., V.), then given y1 (equivalent to "given y."), the conditional distribution of 
a = (e' ( ' ) ... e ( ' ) )' is lognormal and from the established result (see Johnson and 

Kotz, 1972, p.20), we have 

à'(t) := E{Q(t) I yi I = exp{&.(t) + v.(t)/21, 	 (3.7) 

Coy {c(s), (t) I yi} = E{(& ( ' ) (s) - cx(s))(à'(t) - a(t)) I v' } 
= (exp{V.(s, t)} - 1) exp{&.(s) + â,(t) + (v.(s) + v.(t))/2}, 	(3.8) 

where V.(s, t) is the (s, t)th entry of V. and v.(t) = V.(t, t) which do not depend 
on yl;  however &.(s) and â.(t) do depend on Yi.  In the following, the meaning of 

V(s, t), VQ (t), etc, are the similar. 
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Thus, we have the BUP of a from the first source, given by (3.7), which can be 

used as the initial value of the recursive procedure for obtaining the BFUP. However, 

to implement recursive formulae (2.5) and (2.6), we also need 

Vew := Var (a(1) - c) = E{E[(aW - 	- 	I yil} = E{Var (c I y)} (3.9) 

where the (s,t)t.h entry of Var (a I Yi) is given by (3.8). Hence, for obtaining V(a), 

we have to calculate E(e(3)e&0(0).  Putting ct. - E = (* - a) +(à. - EQS) 

and observing that E{(c - &) (a - Eo)'} = 0, we have 

Var(&) = Va. - V.p. 	 (3.10) 

Since & defined by (3.6) is also normal with mean zero and variance matrix Va., 
the random vector (e ( ') ... e' ( ' ) )' is lognormal. By the same established result 

mentioned above and noticing E&(t) = Eo.(t), we have 

= exp{Ec(s) + Ec,(t) + (va.(s) + v.(t))/2 + Vajs, t)}. 	(3.11) 

Finally, (3.8) through (3.11) lead to 

= (exp{V.(s,t)} - 1)x 

exp{Ec,(s) + Ec.(t) + (Va.(S) + v0.(t))/2 + V0.(s,t) - V.(s,t)}. 	(3.12) 

According to the above discussion, for the model given by (1.2) and (1.3), the 

procedure to obtain the BFUP of cr from Yi  and Y2  (the benchmarked values) can 

be summarized in 4 steps as follows. 

Take logarithm as (3.4). Assume u 	N(0, Vs.), where u. is approximated by 

(3.13), below, with known c(t) and covariance function of {ü(t)}, so 	is known. 

Assume cc. is normal and independent of u. Use signal extraction formulae, 

(2.15), with indicated correspondence above (3.6) to obtain & and V. in (3.6), where 

Ea and V, are assumed to be known. 

Using obtained à and V. as well as the known values of Ea1  and Va , (3.7) 

and (3.12) give 	the BUP of ci from y, and Ve(1), the covariance matrix of its 

prediction error. 
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4. Placing the obtained values of &' and 'w  in (2.5) and (2.6) (in one step or 

recursively if the benchmarks, Y2,  can be regarded as from more than one source). 

Since c(t) > 0 in (3.4) is small, so approximately, 

u.(t) = c(t)ü(t). 	 (3.13) 

The autocovariance of ü(t) can be given by survey experts. As far as c(t) is concerned, 

in fact, statistical agencies usually publish CV rather than o(t), so these c(t) are 

known (estimates are obtained during the survey process), and then, we may have 

Similar to what was mentioned at the beginning of this section, if the fluctuation 

of c(t) is small, we would suggest using their average c to replace c(t). In fact, most 

of the statistical agencies design their surveys in order to have c(t) c for all t, where 

c is a small positive constant; so, this condition usually fuffihls. 

A problem was posed in the implementation of Step 2, as well as of step 3: For 

obtaining & and V, except V,', we also need V and Ea [again, cf. (2.15)], and 

in (3.12), V, and Ea are directly used. But all these are usually unknown. 

As we have mentioned at the end of Remark 2.4, given the estimation of V4  
and Ect. from data, y.(t), has been discussed by Chen et al (1997), where a(t) can 

be modelled as a TS or a DS series. A remark is that, in this case, the TS model is 

preferable rather than the DS model chosen to model a(t), because Va . is not unique 

under the DS model assumption. Although, we may choose V' [corresponding to 

V 4  in (2.15)] resulting from the diffuse assumption for the early values of a(t) 

which can lead to very nice results for predicting c.(t) (signal extraction), however, 

as we also directly apply V0  in (3.12), the diffuse assumption is improper for Va .,. 

Moreover, in (3.12), we need Ea(t) which is not easy to be estimated from data under 

the DS model assumption because the mean is hidden polynomials and seasonality 

and the series is also nonstationary in variance. [This mean is eliminat.ed in (2.15), 

i.e. V'Ea = 0, under the DS model assumption, as it was pointed out by Chen et 
al, 1997, around (22).] 

Appendix Proof of Theorem 2.1 
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Put y2 — X2&' = —X26'+u2 . Since u 2  is uncorrelated with a and 	so 

it is uncorrelated with 	Then from (2.5) one can verify that (2) = Var (a(2) - a) 

is given by (2.6). Note that (2.3) and (2.4) imply X2Ve(2)X+ V 2  > 0. The same 

formulae as (2.5) and (2.6) hold for à 2  and %'. 

Let 6> 0, 

\ 	
. 	 ( In  \ 

) 	( 

 e1 
Y2=( Y2 

) 

X2=x7 u2= 	
U2)' 	(A.!) 

and let the block diagonal matrix 

V 2 (6) = diag((l)(5), V 2 (6)) 	diag(%'(I) + bIn , V 2  + 61fl2 ) 	(A.2) 

be the variance matrix of ü 2 . Formally using the variance formula of GLS for model 

Y2 = X20 + 62 , i.e. letting 

Ve(2)(t5) 	[XV, 2 (6)X2]' 	[17 i(6)' + XV 2 (6)'X2]', 	(A.3) 

the well-known identity from the partitioned inverse of a matrix leads to 

Ve(2)(6) = %'W(6) - 	I)(6)X2 [X2 V ( I ) (6)X2  + V, 2 (6)]'X2Ve(1)(8). 	(A.4) 

Similarly, let V 2 (6)= diag(1'(l)(ö), V 2 (6)) we have l'(z)(6) defined as in (A.3) 

which can be expressed as in (A.4) with V(i)(ö) replacing 1'(I)(6). From (2.3), 

V 2 (6) 15  V(6) holds. Then (A.3) gives 

1'(2)(6) !~ Ve(2) (6). 	 (A.5) 

Let 6 -+ 0, then l'('5) -i Vi and V(ö) -' V, and hence by (A.4) and (2.6), 

- %'c. Similarly 1'(2)(6) - 	 Then (2.7) follows from (A.5). 

First, we show that (2.9) is equivalent to (2.4) and (2.10). Put the left side 

of (2.9) as 

( X21'1X + 	X2 %'(l ) X 	\ 	/ B22  B23  \ 

	

B. 	(A.6) X3%'1X 	X3Ve(1)X + V, 
) 	

B3  B33 
) 

Then (2.4) implies B22  > 0. Let 

B 
= ( 	

'?12 	0 

 ) 

B 

 ( 

'fl2 — B' B23  \ 	/ B' 	022 
—B32B' I 	0 	1fl3 	

) = 	0 B - B32 B 1 B23 ); 22 	fl3 	 22 

(A.7) 

EI1 



from (2.6) and (A.6), it is easy to verify that B - B32B' B23  = X3 %' ( 2 ) X, so both 

(2.4) and (2.10) hold if and only if B* > 0, or B > 0, or (2.9) holds. 

Keep the notations in (2.8) and let k3,  X3  and u3  be similar to (A.1), (by adding 

y3, X3  and u3  to the bottoms of k2  and so on, correspondingly). Similarly, let 

V 3 (6) = diag(V(I)(5), V 3 (6)), 	V 3 (6) = diag( V 2 (c5), V 3 (S)) 	(A.8) 

be the covariance matrix of ü3  and U3 ; let 

1X'V. (5)x3 } -1  = [1'(l)(8y' + 1 	3 tL3 

= {V(2)(ö) 1 + XV 3 (6)'X3]'. 	 (A.9) 

From the middle expression of V(3)(6) in (A.9) and due to the similar identity which 

links (A.3) and (A.4), we get the first expression of (2.13) by letting 6 - 0. Applying 

the same procedure to the last expression of (A.9), we see that its limit is the last 

expression of (2.13). As both expressions in (2.13) are the limit of Ve(3)(ö), they are 

identical. 

Formally, using the estimation formula of GLS for model y3 = X3o + 63  with 

V 3 (6) as the variance matrix of 63  and defining 

& (3 ) (b) 	'V(3)(5)X6Vu3 (45) 1 y3 

+ 1"ê  (o)..V 3  (5)'i3, 	(A.l0) 

then the middle expression of V(3) (6) in (A.9) and the similar identity which links 

(A.3) and (A.4) lead to 

= 	- 	 + V 3 (6)jX3a'+ 

/(i) (6)T{J - [3(6). 	+ Vus (ö)J'..s%'(I) (5)V 3 (5)3. 	(A.11) 

The last term in (A.11) can be simplified to 1'I)(6)X [X3V(I)(6)+ fC3 V 3 (6)]'3. 
Let 6 - 0, &(ö) - à be defined as (2.11). 

Let &(2) (6) := V(2)(6).k2  Vu2 (6) 1 5'2. When 6 - 0, by the same discussion as 

above, we have &2)(6) &(2) defined as (2.5). Expressing &(3) (6) defined in (A.10) 

alternatively by 

(6) = V(3) (ö)V(2) (6) 1a(2)(6) + V(3) (6)XV 3  (6)y3 , 	(A. 12) 
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and at this time using the last expression of %'(ö) in (A.9), the same discussion 

concludes that, when a -+ 0, à 3 (ö) converges to (2.12). So, (2.12) and (2.11) are 

identical. 

The property of the BLUP can be proved by using the formulae of projection 

(see Chen et a!, 1996; Durbin and Quenneville, 1997). However it may also be proved 

by a similar method given below in (4) by defining A = {a a = A 1 y 1  + A2y2 1 1  
where Ai  is any n x n- matrix of constants (i = 1,2). Obviously, &(2)  is a FUP. 

Since 	is a vector of measurable functions of Yi,  so 	given by (2.5) is 

in A defined by (2.14). For proving the minimization of V(2) it is sufficient to show 

that 

E[(á 2 > - a)à'] = 0 for any de e A 	 (A.13) 

due to the following reason. Temporarily denote &(2)  by a and (a - a) 2  

a)(à - a)' etc. For any a e A, let a = - &. Obviously, a E A. Now 

E(ã - a)2  = E(à - a)2 + E(& - a)2  + E[à(à - a)'] + E[(à - a)a']. (A.14) 

The cross terms disappear due to (A.13) and hence, for all a E A, (A.14) is minimized 

atà=à. 

From (2.5), 

&2) a =[I - 	 2  %'(I)X2 (X2V(l)X + V2)-'X2](&.' - a) 

+1(I)X2 (X2%'(I)X2  + V 2 )'u2. 	 (A. 15) 

Since &(1) = E(a I yi), so for any vector of measurable functions a(y 1 ), E[(a' - 

a) a(y 1 )' = 0. Since Eu2  = 0 and u2  is independent of y, so E[u2  a(y 1 )'] = 0. 

Then from (A.15) we have 

E[(& 2  - a) a(y 1 )'] = 0. 	 (A.16) 

On the other hand, again due to the fact that u2  is independent of Yi  and a, and 

hence independent of &(1) - a, we have 

E(u2y) = V,22 , E[(&' - a)u] = 0, 	 (A.17) 
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Then 

- a)y} = E[(&.' - c)o'JX = —V(I)X. 	(A.18) 

From (A.15), (A.17) and (A.18), making use of the formulae from partitioned inverse, 

we may check that 

E[(à2) - a)yJ = 0. 	 (A.19) 

Then (A.13) does hold due to (A.16), (A.19) and (2.14). That completes the proof 

of the theorem. 
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