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Variance Estimation from Survey Data Under
Single Value Imputation

Hyunshik Lee', Eric Rancourt” and Carl-Erik Sirndal®
ABSTRACT

This paper reviews recent contributions to the theory of variance estimation in surveys when
single value imputation is used for missing values. Single value imputation, in contrast to
multiple imputation implies that a single imputed value is created to take the place of a missing
value. A number of contributions to this topic have appeared in the recent literature.

The topic is important since survey nonresponse often reaches high levels, and resources are
insufficient to renew contact with respondents or to obtain by other means the desired but missing
values. Imputation is then usually resorted to. It is a common practice to use single imputation
methods and use ordinary variance estimators as if imputed values were observed. However, this
approach could lead to a severe underestimation of the true variance. It is hoped to rectify the
situation to the extent possible by providing a review on the topic and useful recommendations.

The paper is developed around three aspects from which this variance estimation problem can be
examined: (1) the approach taken to variance estimation; (2) the imputation method(s) used to
complete the data set; (3) the sampling design and the prototype estimator used for point
estimation.  After a theoretical review of the various methods, some empirical results are
presented as well as a discussion with recommendations. '

KEY WORDS: Bias, Bootstrap, Jackknife, Mean squared error, Model-assisted approach, Two-
phase.
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Estimation de variance a partir de données d'enquétes sous
imputation d'une valeur unique

Hyunshik Lee', Eric Rancourt’ et Carl-Erik Sirndal’

RESUME

Cet article passe en revue les récentes contributions a la théorie de l'estimation de variance dans
les enquétes ou l'imputation d'une valeur unique est utilisée pour les données manquantes.
L'imputation d'une valeur unique, comparativement a l'imputation multiple, signifie qu'une seule
valeur est créée pour remplacer une valeur manquante. Récemment, il y a eu plusieurs
contributions a ce domaine dans la littérature.

Ce sujet est important car la non-réponse dans les enquétes atteint parfois un niveau élevé, et les
ressources pour renouer contact avec les répondants ou pour obtenir les valeurs manquantes par
d'autres moyens sont insuffisantes. Alors on utilise souvent I'imputation. Clest une pratique
courante d'utiliser des méthodes d'imputation d'une valeur unique et d'utiliser les estimateurs de
variance habituels comme si les valeurs imputées avaient été fournies par les répondants.
Cependant, cette approche peut mener a de sévéres sous-estimations de la vraie variance. Nous
espérons rectifier la situation le plus possible en fournissant une revue du sujet et en proposant
quelques recommandations.

L'article est développé autour de trois aspects a partir desquels on peut examiner le probléme
d'estimation de la variance : (1) l'approche d'estimation de variance; (2) la (les) méthode(s)
d'imputation utilisée(s) pour compléter l'ensemble de données; (3) le plan de sondage et
l'estimateur prototype utilisé pour l'estimation ponctuelle. Aprés une revue théorique des
différentes méthodes, on présente quelques résultats empiriques de méme qu'une discussion et
quelques recommandations.

MOTS CLEFS: Approche assistée d'un modéle, Biais, Bootstrap, Deux phases, Erreur
quadratique moyenne, Jackknife.

' Hyunshik Lee, Westat, Inc., USA.
2 Eric Rancourt, Division des méthodes d'enquétes auprés des ménages, Statistique Canada.
3 Carl-Erik Sarndal, Ottawa, Canada.



I. INTRODUCTION
1.1 Scope of the problem

Imputation is commonly used to fill in substitutes for missing survey data. When this step has
been completed. it is also common to treat imputed data as true observations and to use standard variance
estimators. However, this approach may lead to severe underestimation of the true variance. This
problem was recognized early on and multiple imputation was proposed as a solution in a Bayesian
framework (Rubin 1978). Multiple imputation implies that several imputed values are provided for each
missing value. This paper is about single value imputation, which implies that a single imputed value is
provided for a missing value. Single imputation is widely used, particularly by statistical agencies, for its
operational convenience. Therefore, there is a need to provide valid variance estimation techniques for
survey data with singly imputed values. In this paper, we focus on the problem of variance estimation of
a point estimator of a finite population parameter in the presence of single imputation. Merits and
demerits of single and multiple imputation are debated elsewhere (e.g.. Fay 1996; Rao 1996; Rubin
1996).

We are interested in estimation of a population parameter @. To facilitate our discussion, we first
introduce some notation. Let s be the probability sample that is selected from the target population U =
{L,2,...,k,..., N} using a given sampling design under which p(s) is the known probability of realizing
the sample s. The inclusion probability of unit & is denoted 7, and a, =1/7z, is the sampling weight.

Let € denote an estimator of 6 that would be appropriate in the ideal case of 100% response. We call it a
prototype estimator because it will be used to compute an estimate from the imputed data. For example.
consider #=Y , where ¥ =Y, y, is the population total of the survey variable y taking the value y, for

unit k. (If ACU isaset of nits, we write simply Y .y, for ¥y, )
For example, the prototype could be the Horvitz-Thompson (HT) estimator,

6=%,=3 ay ! (1.1.1)

Another general and widely used prototype estimator is the generalized regression (GREG) estimator for
the total (Sarndal, Swensson, and Wretman, 1992). It is given by

-

0=V =X, 0,8 - (1.12)
where
gy =1+ Ax, [v, x Bk
with A, = (X=X, )T,”, X=3,x,, X;(e =Y a,x, and T, = ¥ a,x,x, /v,. The v, are suitably

specified constants. Here g, . called the g-factor, modifies the sampling weight a, . For most units, g, is
not far from unity. The function of g, is to incorporate auxiliary information in the form of the known

population total X. The estimator f’GR can be given an interpretation with reference to the linear
regression model denoted ¢ and given by

Vi =X ¥ +90,, (1.1.4)



where ¥ is a x -dimensional column vector of regression coefficients, £, (8,)=0, E,(5;)=v,0°, and

E (6,6,)=0if k#/. The estimator in (1.1.2) includes many traditional estimators as special cases such

as the Horvitz-Thompson estimator with g, =1 for all k and the ratio estimator with g, = X/ X, for all

k.
Let r be the set of respondents realized from the sample s and let o =s-r be the set of
nonrespondents. We consider single imputation and denote by y, the imputed value for unit k€ 0. The

imputation procedure produces a completed data set, D, ={y, :k€ s} where y, =y, if ke r (observed

values) and y, =y, if k€ o (imputed values). We call D, the imputed data set or simply the imputed

data.
The usual estimation procedure is to compute the prototype estimator on the imputed data. This

results in an imputed estimator and it is denoted by é,. If the Horvitz-Thompson estimator is the
prototype, we have the imputed estimator

é/ =fH7‘,I =Esak}’; (1.1.5)

and if the GREG estimator is the prototype,

~

0, =};GR.I =2sakgky; . (1.1.6)

The total error of the imputed estimator is
6, -0=0-0)+, -6) (1.1.7)

The first term on the right hand side is the sampling error and the second is the imputation error.

A simplistic approach to variance estimation is to take the “‘usual variance estimator’” (the one
intended for use with 100% response) and compute it on the imputed data. This approach does not
account at all for the imputation error, and often it does not even completely cover the sampling error (see
Lee, Rancourt, and Sarndal. 1994).

In order to estimate the variance of an imputed estimator correctly, special approaches are
needed. In this paper we review various such approaches proposed for this purpose. The imputation
variance depends on several factors: the sampling design, the imputation method, the prototype estimator
in use, and the response mechanism. These factors are discussed in detail in the following.

1.2 Response mechanism

The approaches proposed for correct estimation of the total variance fall into two broad classes,
which differ in the probabilistic set-up governing the sampling and response processes. As in Fay (1991),
the two set-ups are depicted in the following diagram:

Population —L Complete sample
19 1 (L2

Census with nonrespondents —— Sample with nonrespondents

where p is a known sampling design and g is an unknown response mechanism. In order to proceed, one
has to make an assumption about the unknown response mechanism.



The upper (pq) path is more natural since nonresponse occurs after the sample s is selected
(Dalenius 1983). Under this path the response mechanism denoted by g(r|s) expresses the usually

unknown conditional probability that the response set r 1is realized, given s. This probability may further
depend on an auxiliary variable vector z, and the survey variable y, and thus, can be expressed by

q(rls) = g(r|s,z,.y,), where z_ ={z, : k€ s} is a sample auxiliary data set and y, ={y, :k€ s}. Such
auxiliary variables are usually used in imputation if available.
A response mechanism g(r|s) is said to be unconfounded when q(r|s,z_,y )=q(r|s,z,) and

Prob (ke r|s)>0 for all k€ s (see Lee, Rancourt, and Siamndal, 1994). Otherwise, it is confounded. As

the definition suggests, the response probability can depend on sample auxiliary data but not on sample y-
data. The unconfounded (confounded) response mechanism is closely related to the ignorable
(nonignorable) response mechanism (Rubin, 1987), in which the response probabilities can depend on
observed y-values but not on unobserved y-values.

A stronger one than the unconfounded is the wniform mechanism, which occurs when the
response probability is constant for all sample units, that is, Prob (k€ r|s)=c>0 for some constant ¢

and for all k€ 5. Sometimes it is possible to divide the sample into mutually exclusive and exhaustive
classes in such a way that the response probability is believed to be constant within each class. Imputation
is carried out class by class assuming the uniform response mechanism within each class and thus, these
classes are called imputation classes. This is a special and more restrictive case of the unconfounded
mechanism and it will be referred to as the uniform-within-imputation class (UWIC) to distinguish from a
more general case of the unconfounded mechanism.

Little and Rubin (1987) popularized another terminology, missing at random (MAR) response
mechanism to describe a “missing-data” mechanism that depends on the auxiliary variable for imputation
but not on the y-variable. The opposite is “not missing at random” (NMAR). If the mechanism is also
independent of the auxiliary vanable, it is called Missing Completely at Random (MCAR), which is
equivalent to the uniform mechanism for practical purposes. The weaker one, the MAR mechanism, is
equivalent or so treated in sample surveys to the UWIC when the imputation auxiliary variable is
categorical. In general, however, the MAR mechanism is closely related to the unconfounded
mechanism.

1.3 Imputation model

There are many imputation methods used in practice. A good survey is provided in Kalton and
Kasprzyk (1986) and a recent one for business surveys is given in Kovar and Whitridge (1995), with
which our imputation terminology is closely aligned.

Nearly all of the methods used in practice are based on a model even though the model may not
be explicitly specified. This model called the imputation model (referred to as £ in this paper) is

generally given as

Dp=a6 e, (13.0)

where z, is a @ -dimensional auxiliary column vector used for imputation, S is a @ -dimensional
column vector of regression coefficients, £,(¢,)=0 and Eé(s,f)zc,‘cr1 with suitably specified
constants ¢, , and E,(€,£,)=0,if /# k. Note that this model is in general different from the estimation
model ¢ given in (1.1.4) used to formulate the GREG estimator, where the totals of the auxiliary

variables x, are required at the population level as opposed to the case of z, , which is assumed to be
known only at the sample level.



Then, as Kalton and Kasprzyk (1986) pointed out, most imputation methods can be expressed as
a form of regression imputation as follows:

Ve =2,B, +é, (1.3.2)

A —1 . 0
where B, = (Er WHZLZ ; /ck) Zr w2, y, /¢, , with some weight @, . Some authors advocate to use the

sampling weight w, for w,. The term é, is a sort of error term, which can be set to zero. In this case,
the imputation method becomes deterministic regression imputation. If one uses randomly selected
estimated residuals ( y, —z/B ) for é, , the method becomes random regression imputation. By using a
dummy auxiliary variable in (1.3.2), we obtain the class mean imputation or hot deck imputation
depending on whether zero or random residuals are used for é,. The nearest neighbour imputation

method also fits in this expression, where the auxiliary vector of the donor is used instead of the
recipient’s.

1.4 Variance and Mean Square Error of an imputed estimator

In addition to the sampling variance, imputation generates some, sometimes appreciable.
variance. Moreover, the imputed estimator will usually be biased even though the prototype estimator
may not, particularly when imputation is carried out under a wrong assumption about the RM. Even under

“good imputation,” @, is not free of bias. We can hope that the bias be small, but since it is non-zero, the

mean square error (MSE) is a more relevant indicator of the quality of 0 , than its vanance.
We denote, by E, and ¥, the expectation and vanance operators with respect to p(s) . and the

corresponding operators with respect to g(r|s) are denoted by E, and V, . Here and in the following,
E () is to be interpreted as the conditional expectation E_(:|s), and E,E () or E, () in short as

E qu(-| s) . Using the pg-probabilistic path in (1.2.1), the MSE of the imputed estimator é, is given by
MSE,,(6,)=E, (6, ~8)* =V,(6)+ E, V.4, + E,(B?) + 2Cov ,(6.B,) (1.4.1)

Here V p(é) is the variance of the prototype @ . The sum of the last three terms of (1.4.1) measures the
increase in MSE caused by nonresponse followed by imputation. The first of these involves the
conditional variance V., =V, (é, [s); the last two terms contain the conditional bias,
B =E, (é, ls)- 6. The covariance term may be numerically unimportant, but £ p(Bf) can represent a

large addition to the MSE. If we set B, =0 for all s (which never holds exactly in practice), then (1.4.1)
becomes

Vior =Veams +Virp (1.4.2)

where Vo, =V,,(6,)=MSE , (6,). Vy, =V,(6) and E,V,,, =E,V, (6, |5) are, respectively, the total

variance, the sampling variance, and the imputation variance of €,. In the simulation section (Section

3.2), we evaluate the average performance of the different approaches to variance estimation (presented in
Sections 2.1 to 2.6) in relation to the MSE. Comparison with the MSE rather than with the variance is

more appropriate because: (i) it gives a reminder that an assumption of zero bias in é, (although usually



made implicitly by users) is usually untenable; (ii} the MSE is the appropriate indicator of accuracy. In
reality, however, there is no choice but to estimate the variance (1.4.2) since the bias cannot be estimated,
and this is what is estimated by the approaches that we consider. (The result is often an underestimation
of the MSE, as the simulation shows; by contrast, these approaches estimate the variance quite well, even

if é, is considerably biased.) Formula (1.4.2) represents the total variance as a sum of two components.

Estimating the total variance is essential in survey research, but, as explained later, to provide separate
estimates of the two components is also important from the survey management point of view.

2. APPROACHES TO VARIANCE ESTIMATION UNDER SINGLE IMPUTATION

Since Sirndal (1990), many approaches have been proposed to address the problem of variance
estimation for singly imputed data. Earlier, Ford (1983) suggested reimputation for the replication
variance estimators under hot-deck imputation, which Bums (1990) used unsuccessfully to address the
problem with the jackknife technique. In this section, we review all major approaches found in the
literature after 1990.

2.1 The two-phase approach

The probabilistic set-up given in Subsection 1.2 resembles the usual set-up for a two-phase
sampling design, where p(s) and q(r|s) respectively correspond to the first and the second phase

sampling procedures. The only difference is that in our case the distribution for the second phase is the
unknown response mechanism, q(r|s) , and we must make some assumption about it in order to proceed

with this approach. An often used assumption is that of a uniform response mechanism either throughout
the whole population or within subgroups of the population. In the two-phase approach, we need the pg-

expectation, E_ () =E ,,Eq(~|s) and the pg-variance,V, (:) to evaluate the bias and the variance of an
imputed estimator é, d

The pg-variance of é, , as given in (1.4.2), can also be written as
Voo (@)= Wnor Sl 't B (Pl ) Q.1.1)

where Vi, =V, (6) is the sampling variance and VC,MP=E4[(9, = é)zls] is the conditional imputation
variance, given s.

The objective of the two-phase approach is to find estimators, V,,, and V.., of the two
variance components in (2.1.1) such that,

EE (P )= Py ulamty foncpery &, BV 0)= Ky, @42

A pg-unbiased variance estimator of the total variance ¥, is then obtained by taking Vi, = Vg, +
v

s - The procedure is unbiased with respect to the two phases, that is, £, E,_( Vior) = Vyor -

An advantage of the two-phase approach is that it uses a rather simple probabilistic base
involving only two distributions: the sampling design and the response mechanism. A weakness is that
the results of the approach depend on how well the assumption made about q(r|s) describes the true,

unknown response distribution. The variance estimators will be biased when the assumption does not



hold. Another weakness is that it is not apparent how one should deal with certain types of frequently
used imputation methods such as nearest neighbour imputation.

Consider the case where the target parameter is the population total of the variable y, that is,
@=Y=Y,y, and the sampling design is any design with finite sampling weights, a, =1/z, and

~

a,, =1/r,, , and the prototype estimator is ¥, given in (1.1.2), with a specified auxiliary vector x, with

known population totals. In the case of full response, the usual variance estimator for };GR is given by

V¥s) = 23 4,8, -%,G g, (v, -x,G,) (2.1.3)

~

with 4,, = a,a,-a, and G, = T,'Y . a,x,v,/v, . The comesponding imputed estimator, Y., , . is
obtained by computing (1.1.6) on the imputed data set, that is, }"G,” =¥ a,g,y, . Assuming a uniform

nonresponse mechanism throughout the population, the sampling variance of ?GR. ; can be computed as
'}.le XY AuDygi(y, “";(A;r)gz(% “X;G,) (2.1.4)

where D, =n/m for all k=¢ and D, =n(n—1)/m(m—1) for all k# ¢, and m is the number of

respondents (the size of r), and G,= T,'Y a,x,y, /v, is the analogue of (A;J, based on the

respondents only. The technique is illustrated by an example later.

Note that (2.1.4) respects the restriction that y-values are available only for k& ». But we can use
auxiliary data known for the whole sample s to improve on (2.1.4) as we now describe.

Suppose that the imputation vector value z, and the auxiliary vector value x, are known for
every k€ s. Denote by u, = (x}, z;)" the combined predictor, after elimination of any variables that may

be common to x, and z,. Consider the regression of y,on u, for k€ s; let the resulting residuals
bey, — n;ﬁs. (This regression is conceptual only, because y-values are present for k€ r only.) Then
v —X,G, = w,H, + &, where &,= y, ~u,H, —x,G,. Now inserting v, ~x,G, = u,H_+ &, into
(2.1.3) and developing, we obtain one term that is strengthened by knowing u, for the whole sample s.
In the rest of expression, we must replace the sums over s by estimating counterparts over 7, since y, is
observed only for ke r.

-

To construct the imputation variance component V., consider deterministic regression
imputation given by (1.3.2) with é, =0 for all . Let ﬁs be the full sample analogue of B,. We can
choose @, and c,,sothat 3 w, (v, ~2z}B,) = 3 w,(y, —z,B,) = 0 (for example, by taking w, =w,

~ ~

and ¢, =Az, for any constant vector A). The imputation error is then given by Yor) ~Yor =
=Y wi(y = P)= Zip(B, ~B,), where Z, = > w,z, . The problem of estimating the conditional
imputation variance VC,M,, is thus reduced to that of estimating the variance of the regression coefficient

]3, . given s. Under a UWIC mechanism, this can be done, using Taylor linearization.

The two-phase approach for SRS and with the Horvitz-Thompson estimator as the prototype was
first studied by Rao (1990) and it was refined and extended to more complex situations by Rao and Sitter
(1995). The procedure that we have described extends their reasoning in two aspects: the sampling
design is arbitrary and the prototype is the GREG. The following example illustrates the technique in a
simple case.



Example 2.1.1. Consider the following conditions: the sampling design is SRS with » units drawn from ¥
sothat a, =1/ f =n/ N for all k; the prototype is the Horvitz-Thompson estimator Y =N7, (the special

case of f’(;,e with g, =1 and x, =0 for all k). response mechanism is uniform throughout the population,
ratio imputation is used. Then (2.1.4) becomes

Ve =N2(1/n-1/N) S}, (2.1.5)

where 2 =¥ (y, =¥,)* /(m—1). Rao (1990) suggested a better alternative, derivable with the

procedure outlined above, namely,

~

Veuy = N*(Un=1/N)Y{ B*S2 +2BS_+ S’} (2.1.6)

r=sar

where §2 =3 (z, =Z) Kn-1); S2 =Y el lm-1); S, =Y z.e, (m-1); e, =y, —z2,B, with
B,=Y, v,/Y,z, . Notethat S is computed on the values z, known for the entire s; all other terms
involve v, -values and, consequently, the sums appearing in these terms must be made over r.

We now derive the imputation variance. The ratio imputed values are y, =z, B,, where we have
used @, = N/n and ¢, =z,. The imputation error is then

~(NImE (=9 =(NIn Tz, B, -B,)

withB, =% y, /¥ z,. Consequently, given s the conditional imputation variance is ¥, =

N (Vm=1n) ¥ el l(n—1) with e, =y, -z, B,, which leads to the imputation variance estimator
Ve = N*(1/m =1/ n) (Z,1Z)'S;, @.1.7)

where S2 =Y el /(m~1) with e, = v, —z,B,. Standard sampling theory recommends to include the
factor (z, /z, )* but without any numerical consequence, it can be replaced by unity to obtain the formula
given in Rao (1990). The estimated total variance is then Vi = I}W+ I}dM,,, where I}W is given by
(2.1.5), or preferably by (2.1.6), and V;,M,, is given by (2.1.7).

2.2 The model-assisted approach

The probabilistic base for the model-assisted approach consists of three distributions: the
sampling design p(s), the response mechanism q(r|s) , and the imputation model £ given by (1.3.1). The

approach involving these three distributions is called model-assisted.
In this setting, the appropriate variance concept is the anticipated pg-variance, or the &pg-

variance, of the imputed estimator é, , denoted by £,V (é, ). Taking the model expected value of both
sides of (2.1.1), we obtain

EiVm(él)= EVior =Eng; ir EgE,,(Vde) 2



As in the two-phase approach, we seek estimators of the two components of the total variance,
Viwe and E_(V,,,.). The model serves as an instrument in deriving the component estimators, V,,, and

~

V. e » Such that,
E; {Equ(‘}.\CAM )= Vsus } =0; and for every s, E, {Eq(‘;c/.w’) ~Vour } =0. (22:2)

That is, we have E;{E,,Eq(’}mr)' Vior}=0. Then a {pq -unbiased estimator of the total variance is

obtained by taking V,,, = AW+ 17‘_,M,,.

Note that (2.2.2) is the model-assisted analogue of (2.1.2). It is assumed here that the response
mechanism is unconfounded (but otherwise unknown). This assumption allows changing the order of the
operators, E.E E into E E E,, and back, without affecting the value of the expectation. We construct

V. e in such a way that Eg(l;dw,):V,M,,f , where V.. = Eé[(é, —é)2|s,r] is the imputation variance
under the model, given s and ». Such a choice satisfies the second part of equation (2.2.2) since
E;(Vymp) = E, (Viyp ) - Although our notation, I}SAM and ‘}me , is the same as in the two-phase approach,
the computed variance component estimates will usually be different between these approaches.

To derive I;L.,M,, . we need a model unbiased estimator 67 of the unknown o in (1.3.1). This is

because the o will usually factor out when we take the model expectation Vispe = E;[(é, —0)s.r). If

[N

o satisfies E;-(c‘r:|s,r)=a'2. we can thus obtain a ‘;pr with the required property that

E, (l}t_,M,, )=V pe - for any fixed s and r.

in the following, we show how the variance component estimators Vs,w and V,,, are
constructed, when the target parameter is the population total, Y =Y, y, .

Example 2.2.1. Let the conditions be as in Example 2.1.1, except that we relax the assumption about the
response mechanism. We now assume it to be unconfounded, which is weaker than uniform. As derived
in Sarndal (1990, 1992), the estimated sampling variance is

n

‘}SAM = Nz(i -%)( ,;2‘-.7 i Coéz) with S,i-..- =Y, (y; =3 )2 /(n i l) (2.2.3}

where 3, =Y v, /n . Cp 1s a constant defined in terms of z,, of which a close approximation is given by
co =(l-mfn), with 7,=Y,z/(n-m), and @ =G, Bre 8 2, with

C, ={mf(m- l)}{l - 82 [(mz? )}_l and e, =y, —z,B,. The imputation variance estimator is given by
Voe= N2/ m=1/n)Z,3, 12,)6°. (2.2.4)

Note that the term Nz(l/n—l/N)S2

ey, I fSAM is the standard variance estimator (normally used
for the prototype estimator) applied to the imputed data. The correction N?(1/n—1/N)c,6° is needed

since there is not enough variability in the imputed data.
An alternative to adding a corrective term is an “amended data approach.” It entails changing the
imputed data so that they will contain sufficient variability to give a “‘corrective level” when the standard



formula 1s computed on the the amended imputed data. For deterministic regression imputation, this can
be achieved by adding a randomly selected residual to the imputed value. This procedure can be
implemented within imputation classes. Stochastic imputation methods usually do not require this type of
amendment to estimate the sampling variance by the standard formula. The same is true for nearest
neighbour imputation.

The amendment approach becomes especially important in statistical agencies that use a modemn
software package for variance calculation. Examples are Statistics Canada’s GES (see Esteveo,
Hidiroglou, and Sirndal, 1995) and Statistics Sweden’s CLAN (see Anderson and Nordberg, 1994).
These contain a “standard formula.” designed to give variance estimates at a correct level for the
prototype estimator in the case of 100% response. Applying the existing software to the amended
imputed data will then give an essentially correct estimate of the sampling vartance except perhaps for
very high rates of nonresponse.

This approach was first proposed by Samdal (1990, 1992). It was studied by Deville and Sarndal
(1991, 1994) for the regression imputed Horvitz-Thompson estimator, by Gagnon et al. (1996) for the
imputed GREG estimator, by Rancourt, Sarndal, and Lee (1994) for the nearest neighbour imputed
Horvitz-Thompson estimator.

For example. for the nearest neighbour imputed GREG estimator. we get under the ratio
imputation model the following estimator of the imputation variance:

~

Vamp = [E“’f"—’k +3¥.8/z, )52 (2.2.5)

ter

where S, =%,  a,g, with o, = {k: k€oand k uses ¢ asdonor}. Here 6° is as in Example 2.2.1. It

can be seen from this expression that multiple utilization of the same donor has a tendency to increase the
imputation variance.

It 1s an advantage of the model-assisted approach that even a relatively complex imputation
method such as nearest neighbour imputation is easy to handle (whereas it is unclear how the two-phase
approach would work for nearest neighbour imputation). A weakness of the model-assisted approach is its
sensitivity to the imputation model assumptions.

2.3 Replication approach: Jackknife and BRR

This section discusses the approaches based on replication techniques: jackknife and balanced
repeated replication (BRR). The adjustments required to apply these techniques to the imputed data are
explained. The linearized version of the jackknife is also presented.

2.3.1 Jackknife technique

The jackknife technique is a replication approach designed to obtain variance estimates without
having to derive a closed expression (see Wolter, 1985). A set of replicates is created by removing one unit
or a set of units at a time from the full sample and replicate estimates are computed by applying the
estimator @ to each replicate. A variance estimate of @ is obtained by computing the variance among the
replicate estimates. The technique is illustrated in the following with a stratified single-stage sampling
design where sampling is done with replacement. We assume that jackknife replicates are created by
removing one unit (rather than a set of units) at a time. In this case, a replicate can be identified by the unit
removed. Let there be H strata and », units selected from stratum 4. In this case, L replicates can be created,

where L= Z,'L] n, . Then the jackknife variance estimator is given by



v, = Zﬁli"———lz,ﬂ, 6 -6y’ (23.1)

h

where 6 is the replicate estimate analogously calculated as 0 using the replicate created by removing

unit j from the A-th stratum sample s,,h=1,2,3, ..., H.

When the jackknife technique is naively applied to imputed data, the variance is underestimated.
Burns (1990) tried to correct the underestimation for hot-deck imputation using re-imputation. In this
procedure, the missing values are re-imputed by the hot-deck method within each replicate using the
respondent data in the replicate and the replicate estimate is computed using the re-imputed replicate data.
However. he found that the re-imputation led to an over-estimation of the variance. Rao and Shao (1992)
proved this theoretically and proposed an adjustment approach as an alternative. Rao (1992) extended the
approach to mean and ratio imputation. The technique given in Rao and Shao (1992), Zanutto (1993) and
Rao (1996) is described below.

The basic principle is that when deleted unit j in a given replicate is a respondent, the imputed
values in the replicate are adjusted. Otherwise, they remain unchanged. If we let ;' denote the

adjustment, then the adjusted value for k€ s,, y,'“” is given by

M if ke r,
P =L+ if keo, and jer, (2.3.2)
Ve if keo, and jeo,

where r, and o, denote the respondent and nonrespondent sets within the stratum, respectively. The
adjustment is defined by a,” =E”(3,)—E,(7,), where E is the expectation with respect to the
imputation procedure applied in replicate j and £, is that for the full sample. For deterministic
imputation, £, (¥,) =y, and thus the adjusted value is equal to £/”(p,), which is the re-imputed value.
The adjusted jackknife variance estimator for the imputed data is then obtained by applying the jackknife
variance estimator to the adjusted replicates. namely,

Gl wn -l é(nj)_T(a) 2 233
J—Z Z,'E-‘h(l 0[ ) ()

h=1 nh

where 6 is the imputed estimator computed using the adjusted replicate and 6/* is the mean of 6" 's.

We may use é, instead.

Different imputation methods require different adjustments. However, according to the model
given by (1.3.1), the adjustment can be expressed in a unified form as follows:

al* =z,BY -z,B, for keo (2.34)

and B! is computed for replicate j analogously as ﬁ,. The adjustment is calculated within each

imputation class separately but for ease of notation the imputation class indicator is suppressed. Note that a
deterministic imputation method and its stochastic counterpart use the same adjustment (e.g.. mean
imputation and hot deck imputation). For nearest neighbour imputation, donor’s z, should be used in the

recipient’s place.
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The approach was studied by Rao and Shao (1992) for mean and hot-deck imputation, by Rao and
Sitter (1992) for ratio imputation, and by Sitter and Rao (1997) for ratio imputation in case the imputation
auxiliary variable is not available for the full sample. For nearest neighbour imputation, Kovar and Chen
(1994) used the same adjustment appropriate for ratio imputation, while Rancourt (1999) proposed the one
above.

Rao and Sitter (1992) developed a linearized jackknife variance formula for the Horvitz-Thompson
estimator as the prototype under SRSWOR as given in the following:

-
. =Nz(%_%1izfs; +25 z},sm)+ N[%—%I;—) 52 (2.3.5)

where S2, S .and S> are defined as in (2.1.6). The authors note that the formula can be viewed as a

lincarized variance estimator and in this form, it can be used directly, without replication.

In the linearized form given in (2.3.5), the finite population correction (fpc) for without-replacement
sampling is applied. However. the application of fpc is not trivial for the adjusted jackknife varance
estimator given in (2.3.3). The formula is valid for with-replacement sampling or when the {pc is negligible.
When it 1s appreciable, the variance estimator can overestimate substantially. However, if the fpc is applied
naively. the variance estimator underestimates because the fpc application reduces not only the sampling
variance but also the imputation variance, which does not need the fpc correction. One option may be to use
the correction proposed by Lee, Rancourt and Siarndal (1995) where the jackknife is replaced by

V' =V, -0 N,SI, . where S is an unbiased estimator of S7. such as S under uniform
response mechanism within each stratum. Also of note is an approach by Steel and Fay (1995), where two
nearest neighbours along with a model are used to obtain a corrected formula.

The versatility of the jackknife variance estimator is an advantage, which has been exploited by
Skinner and Rao (1993) to extend the jackknife technique to mwultivariate statistics in the presence of
imputation. It is also evidenced in Rancourt, Lee and Siamdal (1994), who applied the jackknife technique
for situations where more than one imputation method is used within a given data set. Further, Rao (1993)
presented the jackknife technique for complex sample designs as a tool that can be implemented into an
estimation system such as Statistics Canada’s Generalized Estimation System. A comprehensive account of
the jackknife approach for imputed data is provided in Rao (19906).

] |_.N|

2.3.2 Balanced repeated replication (BRR)

The BRR is another variance estimation approach that uses replication. It was originally
proposed by McCarthy (1969) for a special case of the stratified sampling design. where two first-stage
units are selected per stratum (i.e., n, =2, A= 1, 2,..., H). A replicate is created by choosing one unit

from each stratum and thus it results in a half-sample. A set of L replicates (half-samples) is said to be
balanced if pairs of two units from two different strata appear in the same frequency in the set. There are

2" possible half-samples and this set is balanced. However, a much smaller number of half-samples
(H +1<L<H +4) can satisfy this condition and this set of balanced half-sample is used. Generalizing
the same idea for a general case with n, =2, a set of B balanced replicates can be constructed by

choosing ¢, (<n,/2) units from each stratum but its construction is more difficult than the special case.

For a more detailed discussion, see Wolter (1985), and also see Gupta and Nigam (1987), Gumey and
Jeweltt (1975), Sitter ( 1993), and Wu (1991), Rao and Shao (1996).

Now consider a prototype estimator 8=Y) Y. Wiy - From each balanced replicate,

replicate estimate is computed by ' =¥/ <o, Wi ¥, using appropriately modified weights w},’,

¢£=1,2,..., L. Then the BRR variance estimator is given by

11



= - o o a =
Poa (6) =%2 @ -6y’ (23.6)
=

If, within stratum, sampling is with replacement, this variance estimator is consistent. Otherwise, it will
be somewhat conservative but the bias will be small when the sampling fractions are small.

Turning to the variance estimation problem for imputed data, when the approach is naively
applied to the imputed data, it underestimates the variance. Shao, Chen, and Chen (1998) proposed an
adjusted BRR approach to correct this problem by using similar adjustment as for the adjusted jackknife.

The adjustment proposed by Shao, Chen, and Chen (1998) under the uniform response
mechanism is

Hatnl.

}%l

{y,,, if y,, is observed 2.37)

't El(l)(j)hx)_El (¥, if y,, isimputed

where E, is the expectation under the imputation procedure for the full sample and E,” is that for ¢ th
replicate. This adjustment is similar to the one used for the adjusted jackknife approach described in the
previous subsection.

For deterministic imputation methods, E,(3,,)=,, and E[”(J,,) is the re-imputed value
(using the same imputation procedure) within the ¢ th replicate. In this case, the adjusted imputed value
becomes the re-imputed value. For example, with the ratio imputation method, the adjusted imputed
value is equal to the re-imputed value given by /= B{"x, where B =Y w Vi [ S Wht Xy -

For stochastic imputation methods, we can often compute the adjustment by a closed expression.
For instance, the adjustment for the weighted hot deck imputation method (Rao and Shao, 1992) is given
by

Y. if y, isobserved

*(at) _ ()
D" =104 W' Vi w ) (2.3.8)
A P + 2. Wi ,)’m L DRI if ,, isimputed.
Zr w:ll) Zr whl

Using the adjusted imputed data, the adjusted replicate estimate 6’ = ¥ Ses, W ¥ is obtained

and then the adjusted BRR variance estimator is computed as

. . ilans m
V aprr (9,)=22(9,“'" -6,). (2.3.9)
=]

The approach can be applied to a UWIC response mechanism by computing the adjustments within each
imputation class separately.
For the prototype estimator considered above, the adjusted replicate estimate can be written as

glaty _ G H (0)  Mat) _ A0 0
0/ - 2h=] €s, whl yhl = 0] e 5 (23; 10)

where 6 =Y ¥ wi{E\"(§,)~ E,(,)). Then the adjusted BRR (ABRR) can be decomposed as
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The first term on the left is the standard BRR estimator applied to the imputed data. The second term is a
variance due to imputation. The third term is the covariance between the first component and the second
component. As discussed in Shao, Chen, and Chen (1998), this decomposition can be viewed from the
multiple imputation perspective. The first term corresponds to the “within imputation variance™ of the
multiple imputation variance estimator and the second term corresponds to the “between imputation
variance.” The third term is missing from the multiple imputation variance estimator in the case of
improper imputation (see also Kott, 1995). Since the ABRR captures all these terms, the approach can be
applied to a multiply imputed data set whether the imputation procedure is proper or not. It is conjectured
that this is the case for all other vahd variance estimator for singly imputed data.

It was shown by Chen (1993) that the two replication approaches. jackknife and BRR, are
asymptotically equivalent up to the order of n*'*. The two approaches also require about the same
amount of computation and thus the choice between the two approaches depends on the ease of
implementation or avatlability of software. The adjusted jackknife approach, however, does not work
well for sample quintiles for which the adjusted BRR can be applied (see the paper for details).

2.4 Resampling approach: Bootstrap

Another popular but computer-intensive variance estimation approach is the bootstrap, which was
originally proposed for non-survey sampling cases (i.e., independently and identically distributed cases)
by Efron (1979).

The basic principle of the bootstrap approach mimics the sampling behavior of the prololype
estimator by simulating the conditional sampling behavior of the bootstrap prototype estimator 6.

From the estimated population distribution based on sample s, a number (say, L) of bootstrap samples s,

(I=1, .... L) are generated and then 8" is computed using the bootstrap sample s, . The variance of 6
is then estimated by the bootstrap variance

Vsoor(é)—zz(g © _§y 2.4.1)
=]

where 6 is the average of L bootstrap estimates 6.

When the standard bootstrap procedure is applied to survey data, the variance estimator given in
(2.4.1) can be inconsistent (see Shao and Tu, 1995, pp. 246-247). The procedure has been adopted for
various sampling designs typically used in surveys. These include the with-replacement bootstrap
described by McCarthy and Snowden (1985), the re-scaling method of Rao and Wu (1988). the mirror-
match bootstrap proposed by Sitter (1992a), and the without-replacement bootstrap of Sitter (1992b),
which is used in the simulation.

The Bootstrap variance estimator also underestimates the variance when applied to imputed data.
Shao and Sitter (1996) proposed a way to correct the underestimation. The basic idea is to use re-
imputation for each bootstrap sample applying the same imputation procedure used for the original
sample. The steps of the proposed procedure are given below.

1) Draw a bootstrap sample using the imputed data D, as normally done in the case of no missing
survey data. This bootstrap sample is a mix of observed values (the bootstrap response set, which
is denoted by r") and imputed values (the bootstrap nonresponse set denoted by o );
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2) Treat imputed values in the bootstrap sample as missing and impute them using the same
procedure used to produce the original imputed data D, but using r . Let the completed

bootstrap sample be denoted by D, ;
3) Calculate the bootstrap estimate @, by applying 6 to D, ;

4) Repeat above steps (1-3) L times and compute the bootstrap variance estimator using é, Sh

Assuming that the response indicator is a population characteristic, Shao and Sitter (1996)
showed the consistency of the modified bootstrap variance estimator for commonly used tmputation
methods under complex sample designs. It boasts of generality of the approach irrespective of the

sampling design, the imputation method. and the type of point estimate & . However, a drawback is its
huge computational burden. The bootstrap approach is already a computer-intensive method. Performing
imputation for every bootstrap sample increases the computational burden even more. One way of
reducing this burden is to use an adjustment, instead of performing re-imputation for each bootstrap

sample. The adjustment is added to the imputed value y, as follows:
P+ E(GO-E G (24.2)

where E, is the expectation under the imputation procedure and E;” is the expectation of the same

imputation procedure but performed using the ¢ -th bootstrap sample. This modified values are used in
variance estimation (only) instead of the original imputed values. The adjustment resembles the one used
for the adjusted jackknife and the adjusted BRR, and enables us to avoid re-imputation for every
bootstrap sample. In fact, for deterministic imputation, the adjusted bootstrap imputed value is exactly
the same as the re-imputed value, where no random number generation is necessary. For stochastic
imputations, the adjusted bootstrap imputed value can be calculated without random number generation.
The resuliing variance estimator is still asymptotically valid for estimating totals and a function of totals.
However, the adjusted bootstrap cannot handle the case of quantile estimation aithough the original
approach can. Other ways of reducing the computational burden under particular cases are discussed
more fully in Shao and Sitter (1996).

2.5 All cases imputation approach

The All Cases Imputation (ACI) approach was proposed by Montaquila and Jernigan (1997). The
idea of the approach is to apply the imputation method to the respondents and then the imputation
variance is estimated using both imputed and reported values of the respondents. The sampling variance
is estimated by directly applying the ordinary variance estimator to the original imputed data used for
point estimation.

The imputation variance is estimated using the residuals ¢, = y, — y, . k€ r. For the case where

the Horvitz-Thompson estimator is the prototype, the sample design is simple random sampling, and
missing data are imputed by hot-deck imputation, the imputation variance is estimated by

>

N2 - 2N21(1—1)
VIMP E(ek e,) 2 N Tl

m-1 Y S L6 -6)E, -¢,). (25.1)

(m 1) ker i.jer

1>

where m is the number of respondents, /=n-m, é, =Y. ¢, /m,and I is equal to 1 if respondent & is

k(. )
the donor for both respondents / and 7 in all case imputation, and is equal to O otherwise. The second term
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will be zero if donors are selected independently. The formula is valid under the uniform response

mechanism with S, defined in (2.2.3). The ACI variance estimator is then given by

yos

N> (Un=1N)SL, +V,p. (2.5.2)
The ACI approach 1s straightforwardly extended to the stratified simple random sampling design
for the stratified sample mean prototype estimator as shown in Montaquila and Jernigan (1997) if
imputation classes comncide with strata. This estimator for random regression imputation was studied by
Krenzke. Mohadjer and Montaquila (1998).
The approach implicitly assumes that the ordinary variance cstimator is unbiased for the sampling

variance Fgy =V, (él). This can hold when the nonresponse mechanism is UWIC and a stochastic

imputation method such as hot-deck is used. It works well also for nearest neighbour imputation as
demonstrated in the simulation study shown later. On the other hand, under deterministic imputation
methods such as mean, ratio and regression. it underestimates the variance. The underestimation can be
corrected by using amended imputed data explained in Section 2.2 to estimate the sampling variance by
an ordinary variance estimator.

Montaquila and Jernigan (1997) indicated that the approach can be extended to more complicated
situations in which a more complex sample design and a nonlinear prototype estimator are used.

2.6 Other approaches

Some authors used the gp-path depicted in (1.2.1) to formulate variance estimation procedure for
imputed data. The order of sampling and response mechanism is reversed in this path and the response
mechanism is no longer conditional on the sample.

Tollefson and Fuller (1992) used this path to derive a variance estimator for the Horvitz-
Thompson estimator with hot-deck imputed data. They assumed the MAR response mechanism under a
superpopulation structure.

Shao and Steel (1999) also used the gp-path for a complicated problem. Their approach is
reviewed in more detail in the following section.

2.6.1 Approach by Shao and Steel

Shao and Steel (1999) was motivated by the fact that some imputation used in practice is
composite in the sense that more than one imputation method is used and/or imputed values are in turn
used for imputation of other variables. The situation becomes more complicated when the sampling
fraction is not negligible. Some approaches can more easily handle the latter situation (e.g., the model-
assisted, two-phase, and ACI) and some other approaches are more adaptable for composite imputation
(e.g., the replication approaches). However. these approaches are difficult to apply when both conditions
hold.

Assuming that the imputed estimator is (nearly) unbiased, the total variance is given by

V6, -6)=EV,(6,)+V,E, @6 -6) 26.1)

Note that £, and V, are defined at the population level and no longer conditional on sample s. The
authors particularly considered the Horvitz-Thompson estimator for the population total assuming a
stratified multi-stage sampling. Thatis, 8, =Y, =Y a,y, .
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Let there be J variables (denoted by « ,) involved in imputation to obtain imputed data set D,
from the y-variable. Then, using resp:iise indicator variable ¢, for each variable u ., the imputed

estimator can be expressed as a smooth known function of estimated totals. In the case of deterministic
imputation, f’, =@(T) where 'i‘=(2) A Lol .. Zsakz“u“) and ¢ is known. Let

V, =V, () =V, lp(D)]. (2.6.2)

After conditioning on a set of respondents for variable u, defined for the whole population. the response
indicator ¢, is fixed for every unit and can be treated as a population characteristic. The conditional

variance given in (2.6.2) can be estimated using the usual variance estimation methods such as the Taylor,
jackknife BRR, etc. In the case of random imputation the random component should be included by

writing Y ¢7(T)+T where (p(T) B (Y) jia] Y =3 (Y) and E. is the expectation with respect
to the random imputation. Hence,

V, =V, Elo(DI+E V(T )=V, @)+ E V(T (2.6.3)

The first term on the right can be estimated as before. The second term can also be estimated according
to the particular imputation method employed. Let an estimate of V| in (2.6.2) or in (2.6.3) be denoted as

v, . Note that if the fpc is non-negligible, it can easily be incorporated in the estimation of v, .

E( }7, =7Y) in the second term of (2.6.1), regardless whether the imputation method is random

or deterministic, can be written as E,(,) =Y = g{E, (D)) -Y =¢(T). T=(V. 3, 1,04 0, T 1,501, ) for

a smooth function ¢ . Then its variance with respect to ¢ can be written using the Taylor expansion as

v, =, [, ) - v]= v [oD)= Vo, D) cvoce, T) (2.6.4)

where V¢ denotes a partial denivative of a vector variable and C is a (J+1)x(J +1) matrix of
covariances of components of ¢. The expression in (2.6.4) is a population quantity, which can be
estimated by substituting the population values by estimates. The evaluation and estimation of ( is easier
under the design-based approach than under other approaches. Let an estimate of ¥, in (2.6.4) be

denoted as v, .
The resulting variance estimator of the total variance is given by v, +v,. Its asymptotic

unbiasedness and consistency under the UWIC mechanism can be easily established since the two
variance components (¥, and ¥, ) are smooth functions of estimated totals.

Applying the approach to a simple case in which the sample design is SRSWOR and missing
values are imputed by ratio imputation. We obtain the following variance estimation formula for the
Horvitz-Thompson estimator using Taylor linearization technique:

& 5
po = Nz(i_i)sfs M[LAI_) (s2) 265)
n N m m nj)z

where S2 =Y (u, —u)’f(n=1), u, =B,z, + (nZ, | mZ,i,e,,and 1, is the response indicator variable.
Other terms in the formula are defined as in Example 2.1.1.
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This approach will be referred to as the POP approach later since it is based on a population level
response mechanism. It has some important advantages: (1) it can handle complicated situations as long
as the imputed estimator can be expressed as a smooth function of estimated totals; (2) the v, term is

robust since it does not depend on the response mechanism or the model; (3) ¥, /V | is O(n/N) where
n/N is the overall sampling fraction. Therefore, if the overall sampling fraction is small, the second term
can be ignored, which compensates the difficulty involved in getting v, ; and (4) incorporation of the
sampling fractions in v, is straightforward.

3. COMPARATIVE DISCUSSION OF THE DIFFERENT APPROACHES

All the variance estimation approaches presented in Section 2 provide a valid variance estimate
by taking into account the variance due to imputation. However, they have different characteristics and
some are more advantageous than others for a specific situation. In this section. we present a qualitative
comparison of the approaches with respect to various aspects that should be considered for variance
estimation.

3.1 Theoretical comparisons

Variance components In (1.4.2), the total variance was decomposed into two main components: the
sampling variance and the variance due to imputation. Not all approaches can provide these components
separately. The model-assisted approach provides the components rather naturally since the variance
formula is written in the form of (1.4.2). However, replication and re-sampling approaches (jackknife,
BRR, and bootstrap) do not provide them. All other approaches (two-phase. all-case-imputation (ACI),
linearized jackknife). except the POP approach can provide the two components as well. The POP
approach gives different variance components whose interpretation is different.

Minimization of the sampling variance is one of the key goals of designing an efficient survey.
However, the ultimate goal should be to reduce the total variance (that is, including the imputation
variance not only the sampling variance). If the imputation variance is a significant portion of the total
variance, then one should pay more attention to this variance component. Therefore, from the survey
management point of view, it is necessary to estimate the two variance components separately. It is then
possible to allocate the survey resources in a cost efficient manner. Not many authors realize this very
important point (see Gagnon et al., (1997) for more discussion).

Computational burden Even though computers are always becoming more powerful. the computational
burden is still an important consideration in many situations. For example, it arises when a data analyst
has limited computing power or has to handle a large data set with a large number of vanables.
Approaches based on explicit formulae such as the model-assisted, two-phase, linearized jackknife, and
POP are less burdensome in computation. Replication approaches (jackknife and BRR) are more
computer-intensive but the bootstrap approach is the most computer-intensive since re-imputation for
each bootstrap sample adds more burdens. As noted earlier, Shao and Sitter (1996) proposed an approach
for reducing the computational burden.

Some approaches (jackknife, BRR, and bootstrap) require or may use adjusted imputed values for
variance estimation. The ACI approach requires imputation for respondents. All these add computational
burden. If we order the approaches in term of computational burden from low to high, we get:

(Two-phase, model-assisted, linearized jackknife, POP) — ACI — jackknife — BRR — bootstrap
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A parallel can be made between the replication approaches and the multiple imputation approach.
The replication approaches do not have much computational advantage over multiple imputation unless
the number of multiple imputations is large, but they have the important advantage that they can be
applied to situations where imputation is not proper (see Rubin 1987 for a definition of proper
imputation). In fact, any single imputation variance estimator can be used for multiply-imputed data sets
regardless whether the imputation method is proper or not. This was pointed out by Shao, Chen and Chen
(1998) for BRR but applies for any other valid single imputation variance estimator.

Information needs for variance estimation Besides the usual information needed for the standard variance
estimators, all approaches require various pieces of information at the time of variance estimation. Most
of all, an imputation flag is necessary to indicate the response/nonresponse status of all records in that
data file. This crucial link between imputation and estimation is pointed out and discussed in Rancourt
(1996). Information on the imputation method and the imputation auxiliary variables is also necessary.
Information on donors (through 4 record identifier) in the case of nearest neighbour imputation is needed
as well. If imputation classes are used, information on the classes must be available.

All the approaches discussed in this chapter usually require the information described above;
some need more and others need less. For example, the ACI approach does not require information on
donors. The resampling and replication approaches (bootstrap, BRR, jackknife) may or may not require
information on donors depending on the imputation method and the way in which the approach is applied.
The jackknife approach requires it for nearest neighbour imputation but does not for hot-deck or other
random imputation methods. The BRR and bootstrap approaches do require it also if the same adjustment
as for the jackknife is used for nearest neighbour imputation but do not if re-imputation is used. There
have been some attempts to provide a valid variance estimator that does not require an imputation flag
(see. Shao and Sitter, 1996). However, to the best of our knowledge, no such method has yet been made
available for single imputation. Therefore, it is important to pass all the required information to the
variance estimator when single imputation is used.

Adaptability Any approach discussed here is based on some assumptions about various factors that affect
the variance. These factors include the sample design, prototype estimator, parameter of interest,
imputation method, and response mechanism. It would be very helpful to know which approaches are
available for a particular situation. We focus on the first three factors. Other factors are discussed under
separate headings.

In general, replication or resampling approaches are more flexible to different prototype
estimators. Most prototype estimators can be expressed as a smooth function of estimated totals by
Horvitz-Thompson type of estimators and those approaches can handle fairly easily the variance
estimation of such estimators. However, the jackknife technique is more sensitive to the smoothness of
the function than the BRR and bootstrap approaches. For example, the jackknife approach does not work
well for estimation of quintiles, while the other two approaches do. The latter two (BRR and bootstrap)
can also handle more easily a complicated situation where more than one imputation method is used for a
single variable. This flexibility comes from the re-imputation principle used in the approaches. However,
for these approaches, including the jackknife (except for simple cases), it is not always clear how to
incorporate the finite population correction (fpc) correctly and thus they can be seriously biased when the
fpc is non-negligible. This difficulty is due to their inability to decompose the total variance into the
sampling and imputation variances. Note that the fpc must be applied to the sampling variance
component only. The sample design can be quite general (i.e., stratified multi-stage sampling) as long as
the first stage sampling is with replacement or of a negligible fpc.

For all other approaches, a variance formula needs to be worked out for each prototype estimator
with respect to the sample design, the imputation method employed, and the assumed response
mechanism. This was done for simpler situations. For more complex situations, the derivation of the
formula can be quite involved. On the other hand, these approaches can incorporate the fpc easily.
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In this discussion, we have assumed that any value involved in imputation is observed. However,
imputed values are often used for imputation of other varables. This is referred to as composite
imputation. Currently, only the POP approach specifically addresses this situation. However, it seems
that the BRR and bootstrap approaches should be able to handle this case as well, at least in principle if
the composite imputation procedure can be replicated and the fpc is negligible. If the fpc is not
negligible. the BRR and bootstrap approaches are biased and need a correction. The POP approach can
handle both situations.

Response mechanism All approaches described in Section 2 have been designed to work at least for the
uniform (MCAR) case. In fact, the two-phase approach was originally developed under this mechanism,
but we show that this condition can be relaxed to the uniform-within-imputation-class (UWIC)
mechanism. In fact, all approaches are applicable under one form of the UWIC mechanism. The ACI
approach, however, uses a more restrictive form of the UWIC, where imnputation classes are defined
within the stratum boundaries. All other approaches except the two mentioned above are applicable under
a more relaxed unconfounded mechanism than the UWIC.

When the underlying mechanism is confounded (or NMAR), all approaches are vulnerable (not
robust) to the misspecification of the response mechanism and the variance estimators are not valid.
Moreover, the point estimators are biased and correction of the bias is a more pressing issue than
estimation of the variance as studied in Rancourt, Lee, and Sirndal (1994).

Imputation model All imputation methods assume a model. either explicitly or implicitly. The model-
assisted approach uses the model assumption explicitly in the derivation of the variance formula and
therefore. it is sensitive to the model assumption. On the other hand, if the model is correct, the approach
provides more precise variance estimates. Note that Hidiroglou (1989) had also used a model to explore
variance estimation under mean and ratio imputation. All other approaches are design-based or can be
applied under the design-based framework and are robust to the misspecification of the imputation model.
Rao (1992) proved that the jackknife is design and model unbiased (Zp-unbiased) under a linear

imputation model and the UWIC (MAR) mechanism.

Public use of the imputed data set If a survey data file with imputed values is made available for public-use,
some information required for variance estimation may not be available for confidentiality reasons. This
makes estimation of the total variance difficult. Without consideration of the imputation variance, Yung
(1997) used the bootstrap technique to produce confidentiality-protected public-use micro data files with
bootstrap weights. A similar approach could be considered for the creation of public-use imputed data. The
multiple imputation (Rubin, 1987) has an edge in this regard because it was conceived for the creation of
public-use micro data files, which does not require information on imputation for variance estimation.

Summary Table | below presents a summary of the discussion given above.

Table 1. Summary of the Characteristics of the Variance Estimation Approaches

Approach Var. Comp. Imputation | Adapta- | Response | Model
Comp. Burden Flag bility Mech.
Two-phase Yes Low Yes Medium UWIC No
Model-assisted YEs Low fifes Medium Unconf. Yes
Jackknife No Medium Yes Medium Unconf. No
Lin. Jackknife Yes Low Yes Low Unconf. No
Bootstrap No High. Lji. f Mes High Unconf. No
BRR No High Yes High Unconf. No
ACI Yes Medium Yes Medium UWIC No
POP No Low Yes Medium Unconf. No
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3.2 Empirical comparisons

In this section, the variance estimators presented in Section 2 are empirically compared with each
other through a simulation study. Twelve populations (of size N =100) were artificially generated, as
described in Lee, Rancourt and Sarndal (1994) for the simulation. Four different super-population models
were used for this purpose: ratio, simple regression with an intercept, and two nonlinear regression
models with a mild second-degree term. For each model type, three error variance structures were
considered. Then, a simple random sample without replacement of size n=30 was drawn and
nonresponse was simulated using an expected nonresponse rate of 30% and five different response
mechanisms (uniform, unconfounded with the response probability increasing or decreasing with =, and
confounded with the response probability increasing or decreasing with y). The prototype estimator is the

Horvitz-Thompson estimator Y, =(N/m)Y._y, for the population total. Finally, two imputation
methods were studied, namely. ratio and nearest neighbour imputation. The imputation model behind
ratio and nearest neighbour imputation is the ratio model as given in (1.3.1) with a scalar imputation
auxiliary variable z, and ¢, =z, . The variance estimation formulae presented below are those that apply
to the Horvitz-Thompson imputed estimator with ratio imputation.

1) Ordinary variance estimator (ORD): N*(1/n~1/N)S;, with S}, asgivenin (22.3).

2) Two-phase approach (2PH): I}sm . VclMP with components as given in (2.1.6) and (2.1.7).
3) Model assisted approach (MOD): Vsm + chp with components as given in (2.2.3) and (2.2.4)
4) Jackknife technique (JKNF): {(n—1)/n}Y (/" =¥y’ = NS} . which is the fpc-corrected

formula proposed by Lee, Rancourt, and Sarndal (1995).

5) Linearized jackknife approach (LINJ): The formula given in (2.3.5).

6) Balanced repeated replication (BRR): To implement this approach under SRSWOR. two pseudo
clusters were created by randomly dividing the sample into two equal-sized groups. Then the
adjusted BRR variance estimator (assuming / =1 and n, =2) with L =2 balanced replicates
was applied with repeating the procedure K (= 50) times to stabilize the vanance of the variance
estimator. An fpc»corrected estimator was then obtained as

WE)Y B B (7" =Y [0) - NS,

7) Bootstrap approach (BOOT): (I/L)¥!_ (¥, ):’;')2‘

8) All-case-imputation approach (ACI): Not 1mplemented since the formula as given in (2.5.2) is not
applicable for ratio imputation.

9) Approach based on the population level response mechanism (POP): The formula is given in
(2G5

10) Multiple imputation was carried out with Af =2 5and 50 for ratio imputation and A =2 for
nearest neighbour imputation in the same way as given in Lee. Rancourt, and Sirndal (1994).

Not all approaches provide a variance estimation formula for nearest neighbour imputation One
of those approaches is the model-assisted and the formulais N*(1/n—-1/N )S2, + Vo With V0 given

in (2.2.5). Rancourt (1999) proposed a method to use the JKNF approach for NN imputation, which was
implemented in the simulation not only for the JKNF but also for the BRR and BOOT approaches. The
ACI formula given in (2.5.2) is also appropriate for NN imputation. For other approaches, there is no
specific formula available for NN imputation but we used the same formulae used for ratio imputation as
given above.
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The sampling experiment was repeated 50,000 times. The performance of the variance estimators
was compared using three measures: relative bias (RB), root mean squared error (RMSE), and coverage
rate (COVR) of the 95% confidence interval. They are defined as follows:

RB[V(F,)]=100(,, (7) -V )V and RMSE [V (F))] = JE, (V - V)’ (3.2.1)

where E,, is the Monte Carlo average over all iterations and JV is the Monte Carlo variance of the

imputed estimator }A’, . The COVR is defined as the ratio of the number of times that the 95% confidence

interval };, i 1.9()\/17 contains the true population total V to the total number of iterations of the
simulation (50,000).

The purpose of the simulation was two-fold: (i) evaluate the approaches under the ideal situation
where both assumed imputation model and assumed response mechanism are correct; and (ii) observe the
sensitivity of the approaches to some violations of these assumptions.

Without affecting the conclusions, we present the results for only two populations (Ratio and
Concave) to save space. The super-population model used to generate these populations is given by

¥, Saeba, teal s TEN=0"2, )| BER)=0N k1. (3.2.2)

The ratio population was generated from this model with a=0, b=15, ¢=0, and 0 =13.78; for the
Concave population a=0, =3, ¢=-0.1. and 0=5.6 were used(see Lee, Rancourt, and Sarndal
(1994) for more detail). The value of o was chosen to have a correlation coefficient of 0.75 between the
z and y variables.

The three response mechanisms used in the simulation are: (1) uniform with 70 % response
probability for any sample umit; (2) unconfounded mechanism with a decreasing response probability
according to exp(—kz,) as z, increases with a constant x determined in such a way that the overall
response rate is 70%; (3) confounded mechanism with a decreasing response probability according to
exp(—ky,) as v, increases with a constant x determined in such a way that the overall response rate is
70%. Mechanisms (2) and (3) are non-uniform but (1) and (2) are unconfounded or MAR, while (3) is
confounded or NMAR.

The Ratio population is ideal for the ratio imputation model, while the Concave represents the
non-ideal populations. Table 2 presents the results and discussion of the results follows.

Under the Ratio population

Case RRI1: Ratio imputation under uniform response mechanism.

All variance estimators designed for ratio imputation work reasonably well with the RB contained
within 10%. As expected the ORD approach greatly underestimated the variance by about 30% and must
be ruled out under any circumstances when the nonresponse rate is appreciable. For the JKNF and BRR
approaches, the small positive RBs (4.6 and 5.2, respectively) could have been much larger if the fpc-
correction had not been used. The BOOT approach underestimated the variance slightly (-6% RB).
However, the negative bias is related to the fpc. The bootstrap procedure appropriate for simple random
sampling without replacement mimics the finite population sampling procedure and therefore, the fpc is
automatically incorporated in the bootstrap procedure. When the variance of imputed estimator is
estimated by the BOOT approach of Shao and Sitter (1996), the imputation variance is also affected by
the fpc incorporated in the bootstrap procedure, which results in a negative bias.

The RMSE's are fairly close for all approaches except the BRR which may be due to the way it
was implemented. The BRR approach is meant for stratified sampling. Nonetheless, we applied the
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approach by creating pseudo clusters for a single stratum design as described earlier. All the variance
estimators (except ORD) give fairly good coverage rates achieving close to the nominal 95%.

Case RR2: Ratio imputation under unconfounded response mechanism.

In terms of RB, all approaches have a limited bias within 10% range. All approaches also have
very good coverage rates. The JNKF and BRR approaches have somewhat larger RMSE.

Case RR3: Ratio imputation under confounded response mechanism.

All variance estimators are severely biased with RB ranging between —34% and -22% because
the point estimator is negatively biased (-7.7% of the population total). This is a confirmation of the well
known fact that the nonresponse methodology is very sensitive to the important difference between the
unconfounded and confounded response mechanisms.

Case RN1: Nearest neighbour (NN) imputation under uniform response mechanism.

The ORD approach is even more biased with -35% RB since a larger imputation variance than
for ratio imputation is missed. The variance formulae (MOD, JKNF, BRR, and, BOOT) designed
explicitly or implicitly for NN imputation worked well with a negligible negative bias except for the
BOOT approach. The bias of the BOOT is somewhat large with RB of -14% for the reason explained
before but in the case of NN imputation, the negative bias is larger because the variance is larger than for
ratio imputation. The 2PH and LINJ approaches have a moderate negative bias mainly because NN
imputation was treated like ratio imputation. The POP approach is also negatively biased for the same
reason but much less so than the 2PH and LINJ approaches.

The replication approaches tend to have larger RMSE. The COVR’s for all approaches including
those with a moderate bias are reasonable, even though they are a little bit on the low side.

Case RN2: NN imputation under unconfounded response mechanism.

The RB’s of three approaches (MOD, JKNF, and BRR) are small, maintaining good performance
under Case RNI. The magnitude of the RB’s for other approaches except the LINJ are substantially
increased. The ACI approach breaks down since it is designed for the uniform response mechanism. The
approaches with a small bias have a slightly too low coverage rate, but it is still acceptable. The BRR has
the largest RMSE despite its near unbiasedness.

Case RN3: NN imputation under confounded response mechanism.

Similarly as for Case RR3, all approaches are negatively and heavily biased. The overestimation
tendency of the MOD approach helps in reducing the bias although it is still severe at —21% RB.

Under the Concave population

Note that this population represents a mild violation of the assumed imputation model.
Case CRI1: Ratio imputation under uniform response mechanism.
The approaches (2PH, JNKF, LINJ, BOOT, BRR and POP) that are less dependent on the

imputation model performed well except BOOT. BOOT did not fare well because of the problem noted
above. The MOD approach has a moderate positive bias but excellent COVR. All other approaches also
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have an acceptable COVR with over 92%. Even the ORD has a COVR over 90%. The RMSE of BRR is
again strikingly large.

Case CR2: Ratio imputation under unconfounded response mechanism.

All approaches become more biased in this case than in Case CR2 except MOD, JNKF, and BRR.
The biases for LINJ. 2PH and POP are still moderate. The COVR’s are pretty good for almost all
approaches.

Case CR3: Ratio imputation under confounded response mechanism.

It is very interesting to observe that all approaches worked quite well under the unconfounded
response mechanism, which is a striking contrast with Case RR3. In this case. two wrong assumptions
(wrong response mechanism and wrong imputation model) combined together create an artificially
favorable situation. The COVR for the MOD is quite close to the nominal value and for other approaches
it is little bit short but still over 90%.

Case CN1: NN imputation under uniform response mechanism.

All approaches have a more visible bias, but it is still fairly moderate with the absolute RB less
than 15% (of course excluding ORD). Only the MOD approach has a positive bias. All COVR’s are over
90% but fall somewhat short of the nominal value of 95%, except for the MOD which has a COVR of
95%.

Case CN2: NN imputation under unconfounded response mechanism.

The bias deteriorates further in the same direction as under the uniform RM. Nonetheless, MOD
still has an excellent COVR and for others it is around or shightly lower than 90%.

Case CN3: NN imputation under confounded response mechanism.

All the approaches are unacceptably biased in the negative direction except MOD, which
performed surprisingly well with only 4% RB and 92% COVR.

Multiple Imputation (MI)

Given that the imputation is model-based. the simulation results for the multiple imputation
variance estimator are somewhat similar to those of MOD., in terms of RB. As the multiple imputation
theory suggests, COVR is good under uniform RM and unconfounded RM. Its RMSE is substantially
higher than those of the single imputation estimators when A =5 but becomes more or less the same
when Af = 50. Note that Af =2 is not sufficient as some authors suggested (Rubin and Schenker, 1986).

t9
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Table 2. Results of the Simulation Study for Two Populations (Ratio and Concave) and Two Imputation Methods (Ratio and NN)

Variance Ratic population Concave population
Zs;g?::;? Uniform Unconfounded Confounded Uniform Unconfounded Confounded

R8 IRMSE'[ COVR | RB |_RMSE‘| COVR [ RB |RMSE‘| COVR| RB [RMSE‘[ COVR | RB JRMSE’ [ COVR | RB |RMSE‘| COVR

Ratio Imputation
ORD -30.9 25.2 88.6| -39.8 35.4 86.7| -56.7 54.7 76.41 -22.0 322 90.7| -33.7 54.6 89.5( -30.0 415 87.7
2PH 2.0 225 94.2 -8.6 25.7 93.4] -33.7 38.1 84 5 -1.4 303 938 -15.2 43.2 93.5 -9.9 345 91.2
MOD 7.0 235 94.9 4.9 29.4 95.0 -24.3 33.8 86.6 12.8 Sl 952 1.9 473 95.8 8.9 421 93.6
JKNF 4.6 25.9 94.4 8.8 3515) 95.1 -22.7 36.0 86.6 1.0 36.9 93.7 -20 53.6 951 -0.1 44.4 92.0
LINJ 24 23.2 94.2 0.6 289 94.3| -283 36.2 85.7] -1.2 N2 938 -11.6 4438 94.0 -7.1 36.4 91.5
BRR 5.2 N7 93.5 9.4 41.7 94.3| -222 39.9 86.0 1.2 46.6 928 -1.3 63.8 94.2 04 53.2 91.4
BOOT -6.2 253 92.5 -8.1 315 92.9] -339 411 83.8 -8.7 36.8 922 -17.4 52.2 924 -137 42.2 90.0
POP 1.3 22.7 941 -1.8 283 942 -29.2 36.5 85.5 -1.7 30.8 93.7 -12.2 445 94.0 -7.7 36.0 QiES!
Mi (2) 10.4 67.1 93.2 1.7 98.7 92.9] -127 81.9 85.4 10.7 88.7 94.1 29 116.8 93.7 11.0 1049 92.6
MI (5) 121 376 94.8 124 53.2 94.8/ -13.0 471 87.7 1§E3) 52.0 95.1 -2.8 70.4 95.2 12.4 62.3 93.9
MI (50) 123 26.9 95.4 134 36.2 95.9] -139 327 88.5 1.7 395 95.6 -3.0 50.8 95.8 12.9 45.7 94.4
NN imputation

ORD -35.0 3.3 87.3] -448 48.8 84.3] -59.5 68.5 738 -31.9 44.0 87.7| -40.9 60.7 85.1] -476 69.8 81.1
2PH -13.0 24.8 923 -214 32.0 91.2] -43.4 52.4 81.8] -8.4 318 92.7 -8.8 39.2 9251 -23.7 459 88.5
MOD 6.6 33.4 94.7 123 53.6 9582 -20.6 47.0 87.3] 13.15 475 951 28.8 95.0 95.7 4.3 63.9 92.2
JKNF -2.5 33.4 93.4 -3.7 44.8 93.3] -30.1 49.4 84.7] 129 395 91.4] -143 50.4 90.9] -26.5 55.2 86.7
LINJ -12.7 25.4 92.3| -146 32.0 923 -389 49.4 83.3] -8.2 326 92.7 -5.0 42.2 93.0] -21.4 46.0 88.9
BRR -2.4 389 92.5 -3.3 49.8 92.7] -29.7 52.7 84.00 -128 47.8 90.5] -14.1 SAS) 90.1 -26.4 60.7 85.8
800T -14.3 32.4 91.3] -19.2 416 90.6 -40.8 54.8 81.5{ -19.9 422 89.9f -249 534! 88.5| -34.6 60.4 84.6
ACI -4.4 295 93.2| -214 376 90.6f -424 53.7 81.3 -8.6 338 92.4| -22.8 459 89.6| -31.3 53.4 86.0
POP 7.6 28.9 92.9] -122 38.0 92.4| -36.1 49.8 835 -13.0 35.2 918] -17.8 45.5 90.7| -28.7 52.6 86.7
Mi (2) -22.1 317 89.9] -30.1 43.0 87.4| -52.4 63.9 76.6{ -23.2 40.3 89.4| -31.2 5857 86.8] -42.2 67.3 82.3

' The RMSE's are in hundreds.




4. DISCUSSION AND RECOMMENDATIONS

In this section we discuss the different approaches and make some recommendations. These
recommendations are based on theoretical properties as well as limited but illuminating empirical results.
Because of its large bias. the ordinary variance estimator (ORD) must be ruled out when the survey data
set contains imputed values, unless the nonresponse rate is very small, say, less than 10% (the
nonresponse rate is not the only important factor in this consideration, though). Therefore, in the
following discussion we refer only to the other variance estimators discussed in the preceding sections.

Bias of the variance estimators. The variance estimators that we have studied have been shown to perform
well. As theory would lead us to expect. they onty have limited bias, under the conditions for which they
are designed. However, the approaches react differently when (some of) these conditions are violated.

All approaches seem to be robust to a mild violation of the model assumptions. The MOD
approach shows some sensitivity to the imputation model assumption. Nonetheless, the results for MOD
under the Concave population are acceptable. However, when the assumed response mechanism is
violated, all the approaches can totally fail, especially under the confounded mechanism. The variance
formulae, particularty the 2PH and ACI approaches, developed assuming the uniform response
mechanism show some sensitivity to the assumption. Therefore. when these approaches are used, the user
should be vigilant in choosing the response mechanism. The use of (2.1.5) would be helpful for
estimation of the imputation variance component by the 2PH approach.

If the imputation method is deterministic, the ACI approach may need some modification in order
to estimate the sampling variance correctly.

If computational burden is of concern, then the JKNF. BRR, and BOOT approaches are not the
most appropriate. When the sampling fraction is appreciable, the JKNF and BRR overestimate the
variance, and an fpc-correction should be applied if possible or some other approach (2PH, MOD, LINJ,
ACI and POP) should be used. If the prototype estimator is a non-smooth function of estimated totals,
then the BRR or BOOT approaches are prime candidates.

When the imputation method is composite in the sense that imputed values are used for
imputation of other variables, the POP approach may be suitable, since it was developed with this
scenario in mind. However. the BOOT and BRR approaches should also be able to handle this case (at
least in principle), unless the sampling fraction is appreciable. in which case an fpc-correction must be
worked out for the BRR.

For NN imputation. all approaches seem to be working well except the 2PH. LINJ, and BOOT
approaches, for which the formula for ratio imputation (2PH and LINJ) or an adjustment for ratio
imputation (BOOT) was used. Since it is donor imputation, the imputation error is larger than ratio
imputation and thus this increased variability has to be captured. The adjustment used for JKNF and
BRR worked very well.

The form of the BOOT approach that we have examined underestimates the variance because the
fpc is overcorrected.

Coverage rate. All approaches yielded a fairly good coverage rate, as long as the bias is not severe (say,
less than 20% absolute RB). However, the coverage rate is on the low side in most cases. Therefore,
improvement might be realized by the use of Student f-values instead of standard normal values in the
construction of the confidence interval.

Required information. All approaches require that imputed units be flagged in the data file and need
information on the imputation method. imputation auxiliary variables, and imputation classes. The donor
imputation methods sometimes require identification of the donor. The JKNF, BRR, BOOT, and POP
approaches do not need this information in the case of hot-deck imputation, but they (probably excluding
POP) do need it in the case of NN imputation, so that the adjustment in Subsection 2.3 can be used. It
may sound bizarre at first to say that the ACI approach, which is designed for donor imputation, does not
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require this information; this is so because the approach computes the imputation variance using imputed
values for respondents. In any case, it would be a good practice to include, as far as possible. the donor
information along with other necessary information. When this information is required but not available,
it outs a limitation on the choice of approach.

Software availability. Another important consideration is the kind of software currently available. If the
available software uses the jackknife techmque, then it would be natural to use JKNF with an appropriate
fpc adjustment. If, however, the available software is based on the Taylor method. then the replication or
resampling approaches (JKNF, BRR, and BOOT) are automatically ruled out. The calculation of the
sampling variance component can be done using the already available standard package if the imputation
method is stochastic or NN, provided that the response rate is not extremely low. For deterministic and
non-donor imputation, such as ratio or regression imputation, the choice would be between (i) adding
random residuals to the imputed values for variance estimation, or (ii) developing a new software
component for estimation of the sampling variance. To estimate the imputation variance component, a
new software module is needed. A point to consider in this case is the type of survey for which the
package will be used. If the package is intended mainly for business surveys, it is reasonable in many
situations to assume an unconfounded (non-UWIC) response mechanism with one or more continuous
imputation auxiliary variables, and thus. a approach (e.g., MOD and JKNF) designed for this mechanism
would be more appropriate. The ACI and 2PH approaches are particularly sensitive to a violation of the
assumption of a uniform response mechanism within imputation classes. If the package is intended
mainly for social surveys. it is often possible to create imputation classes that come reasonably close to
satisfying the UWIC condition, and then all the approaches are applicable. But since sample designs of
social surveys tend to be complex, replication approaches may be more appropriate.

Separate variance components. It is of a great interest to survey managers, for periodic surveys in
particular. to obtain separate variance components, one for sampling variance and one for imputation
variance. This will facilitate an efficient allocation of resources among sampling and data processing
activities. If this is the case, the approaches (2PH, MOD, and ACI) are recommended. When there are
strong reasons to use another approach, a breakdown into variance components may be obtainable in
some cases by estimating the sampling variance component separately (e.g., using the standard estimator
for stochastic imputation) and then subtracting it from the total variance estimated by the chosen
approach. If this is done, an fpc-correction can also be incorporated, as in Lee, Rancourt, and Sirndal
{11995).
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5. CONCLUDING REMARKS

In this paper. we have reviewed and compared, theoretically and empirically, various approaches
and techniques for estimating the vanance for survey data with single imputation. Based on this review,
we offered some recommendations.

The problem dealt with in this paper is an old problem, going back to the early days of survey
taking. But concrete solutions to the problem have only started to appear since 1990. It is thus a relatively
new field of research and development. Further significant developments have been presented and
published since we started writing this paper. Unfortunately, those very recent ones were not covered here
and more are expected in the near future.

To facilitate correct variance estimation and making correct inferences for data containing
imputations, not only theoretical solutions to the problem but also development of suitable software is
important. From the survey management point of view, it is of considerable interest to have the two
separate variance components (sampling and imputation), and thus, this aspect should be taken into
consideration in future software development.
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