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ON THE TREATMENT OF INFLUENTIAL OBSERVATIONS 

IN HOUSEHOLD SURVEYS 

Jean-François Beaumont and Asma Alavi 2  

Labour Force Survey Methods Section 

Household Survey Methods Division 

Methodology Branch, Statistics Canada 

ABSTRA CT 

Household expenditure or income surveys often deal with highly skewed distributions, which 

potentially lead to samples with some extreme observations. The problem is aggravated by the 

fact that there usually is a low amount of useful auxiliary information available at the design stage 

and that the sampling design is complex most of the time, leading to widely dispersed design 

weights. Therefore, it could happen that a large value be associated with a large design weight 

and that this combination have a great influence on the estimates produced by the survey. Design 

consistent estimators, such as the Generalized REGression (GREG) estimator, are usually highly 

variable in the presence of influential observations but they have a low bias whereas model-based 

estimators are more stable but they are generally not consistent and more biased. In this paper, a 

compromise between these two types of estimators is proposed and a simulation study shows that 

it performs well with respect to the bias and mean squared error (MSE) criteria in comparison 

with some other robust estimators. Conditions under which the compromise should have a small 

design bias are also given. 

KEY WORI)S: GREG estimator: Synthetic estimator: Model-based estimator; M-estimator; 

Robust estimator. Outliers. 
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RÉSUMÉ 

Les enquêtes sur les dépenses ou sur Ic revenu des ménages font souvent face a des distributions 

très assymétriques, ce qui conduit potentiellement a des échantillons avec des observations 

extremes. Le problème est amplifié par le fait qu'il n'y a généralement qu'une faible quantite 

dinformation auxiliaire utile disponible lors de la conception du plan de sondage et que le plan de 

sondage est Ia plupart du temps complexe, ce qui conduit a des poids de sondage très disperses. II 

pourrait donc arriver qu'une grande valeur soiL associée a un grand poids de sondage et que cette 

combinaison ait une grande influence sur les estimations produites par l'enquete. Les estimateurs 

convergents par rapport au plan de sondage, tel que l'estimateur par la REGression Généralisée 

(REGG), sont généralement très variables en presence dobservations influentes mais ont un 

faible biais tandis que les estimateurs bases sur un modèle sont plus stables mais ne sont 

generalement pas convergents et plus biaisés. Dans cet article, un compromis entre ces deux 

types d'estimateurs est propose et une étude de simulation montre que ce compromis donne de 

bons résultats en regard du biais et de lerreur quadratique moyenne (EQM) en comparaison avec 

dautres estimateurs robustes. On donne egalement les conditions pour lequel ce compromis 

devrait avoir un faible biais par rapport au plan de sondage. 

MOTS-CLES: Estimateur REGG Estimateur synthétique: Estimateur base sur un modèle; 

Estimateur-M; Estimateur robuste: Données aberrantes. 

Jean-François Beaumont et Asma Alavi, Section des mdthodes de l'Enquéte sur Ia population active, 
Division des méthodes dcnquêtes auprès des ménages, Statistique Canada, Ottawa, Ontario, K I A 0T6. 



1. INTRODUCTION 

Household expenditure or income surveys often deal with highly skewed distributions, 

which potentially lead to samples with some extreme observations. The problem can be 

aggravated when such extreme observations are associated with large design weights. In 

business surveys, there are often some useful (well correlated with the variables of 

interest) auxiliary variables available at the design stage that can be used to reduce the 

effect of such extreme observations. In fact, the survey methodologist would like to 

assign a large selection probability (therefore, a small design weight) to Units with large 

values of the variables of interest and vice-versa. This can be achieved with proper 

stratification or with probability proportional to size sampling when the available 

auxiliary variables are well correlated with the variables of interest. In household 

surveys, however, it is generally more difficult to assign a large selection probability to 

units with large values of the variables of interest because of the low amount of useful 

auxiliary variables available at the design stage. Moreover, several variables are usually 

collected in the same survey and appropriate auxiliary variables for one variable of 

interest may not necessarily be appropriate for another. Also, complex sampling designs 

are more frequent in household surveys (for example, stratified multi-stage designs), 

leading to widely dispersed design weights. It may thus well happen that a large value be 

associated with a large design weight and that this combination have a great influence on 

the estimates produced by the survey. 

In this paper, an observation is defined as being influential if its exclusion or inclusion in 

the sample affects the estimates greatly. Therefore, an observation can be influential 

because of a large design weight, a large value or the combination of both. An influential 

observation has to be distinguished from an extreme observation, which is an observation 

isolated from the bulk of the data. An extreme observation is often associated to a large 

value of the variable of interest (or a large regression residuals if a regression estimator is 

used). Note that an extreme observation is not necessarily influential in a large sample. 

The term outlier is also frequently seen in the literature and it usually refers to either an 

extreme or an influential observation. These definitions are very closely related to those 



of Lee (1995) and are suited to survey sampling. They may differ from those seen in the 

statistical literature not related to survey sampling. It should be noted that the focus of 

this paper is on influential observations. No matter how the term influential observation 

is defined, the identification or detection of influential observations in a given sample still 

remains somewhat arbitrary. Although it is not a main issue in this paper, detection of 

influential observations is briefly discussed in section 3. 

Design consistent estimators, such as the Generalized REGression (GREG) estimator, 

may be highly variable in the presence of influential observations. Of course, using 

auxiliary variables that are well correlated with the variables of interest at the design 

stage as well as at the estimation stage is always recommended and helpful to reduce the 

variability of any estimator, including the GREG estimator. However, such useful 

auxiliary variables are often not available and, as a result, more robust (to influential 

observations) estimators may be needed. Modifying the value (for example, the 

Winsorization technique) or modifying the weight (see, for example, Hidiroglou and 

Srinath, 1981) of an influential observation are the two traditional approaches that have 

been used in sample surveys to obtain robust estimators. More recently, the M-

estimation technique has been considered to form robust estimators (see, among others, 

Chambers, 1986; Gwet and Rivest, 1992; Lee, 1991, 1995 and Hulliger, 1995). 

In the second section, the notation is introduced along with the usual estimators, such as 

the GREG estimator. In the third section, some robust estimators, including the 

Winsorized estimator, are described. These estimators require two steps: a detection step 

and a treatment step. In the fourth section, other robust estimators, which do not require 

a detection step, are presented and proposed. Some of them are based on the M-

estimation technique. In the fifth section, a simulation study comparing different 

estimators is described and the results are shown in section 6. Finally, a brief conclusion 

is found in the last section. 
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2. BACKGROUND 

Let us first assume that we want to estimate the total of a variable of interest y for a 

population U and denote this unknown population parameter by t, = Y-k.0 y. Because it 

is usually not feasible to observe the variable y for all units (households) in the 

population, a random sample s is drawn. Let us also assume that we have a vector of 

auxiliary variables, Xk,  available for all units of the sample s and for which the population 

totals, t kEU Xk, are known. The GREG estimator can then be used to estimate the 

unknown total t: 

	

i 
G  =i 	+.'(t,, 	HT) 

 , 	 (2.1) 

where 1IT  and jHT  are Horvitz-Thompson estimators given respectively by 

= kEc t'kY and jHT 
= 	WX , Wk is the design weight obtained by the inverse of 

the selection probability 7Ck and 

= 
k 	

Xk Yk 

	

s Ck 	kes 	
(2.2) 

Ck 

In most practical cases, a k  = Wk and c k  = 'Xk, where 	is a vector of known constants. 

In these cases, it can easily be shown (see Sämdal, Swensson and Wretman. 1992, p.231) 

that (2. 1) reduces to the synthetic estimator 

(2.3) 

In fact, I can be justified through the following model m: 

Yk jIXk +Ek 
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where fI is a vector of unknown parameters, Ek  is a random error with E, (e ) = 0, 

E m (Ek EI )=O, for k :t-1, Emefl= O 2 Ck, and C2  is an unknown parameter. The 

determination of Ck  in (2.2) can therefore be justified through the assumed model 

variance. It will be assumed in the following that c is a known function of Xk.  Also, 

throughout this paper, all expectations under the model are conditional on the observed 

values of the auxiliary variables. For instance, we have used E m  (ek ) = 0 instead of 

E m  (ek I X ) = 0 to simplify the notation. - 

Regarding the determination of ak,  the usual choice a = Wk makes B a design 

consistent estimator for the population parameter 

-I B J l 
 kCU Ck 

= 

whether the model holds or not. Note that this population parameter would be the best 

linear unbiased estimator for 3 under the model, if every household in the population 

could be observed. On the other hand, the choice a k  = I will make B the best linear 

unbiased estimator for the vector of parameters P under the model, provided that 

condition (c.2) of section 4 is satisfied (which is basically equivalent to say that the 

sampling mechanism is ignorable). It is also interesting to note that 1 G is design 

consistent whether the model holds or not and no matter how a is specified. 

An important and useful feature of jG is that it can be expressed as the following 

weighted sum: 

1 _-WYk , 	 (2.4) 
ke s 
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where 

a
I  

= Wk 	 XX  J (t 	jHT) 	 (2.5) 
Ck 	ksCL 

Once the estimation weights w have been calculated, they can be provided to data users 

who can thus obtain estimates for any variable of interest just by the means of a simple 

weighted sum. It is also worth mentioning that when these estimation weights are 

applied to the auxiliary variables, we get the known population totals 

W; X = 	X v ). The last equation is called the calibration equation because the  IkEU 

estimation weights are calibrated to get the known population totals. 

If the objective is to estimate the population mean, p, = 	y IN, where N is the 

population size, then the following estimator can be used: 

= 	Y, 
/ 	

; 	 (2.6) 
kEs 	 kES 

If we are interested in estimating a domain total or a domain mean, we may just replace 

the sums over all units of the sample s in (2.4) and (2.6) by sums over all units of the 

sample s which belong to the domain of interest. 

Although estimators (2.4) and (2.6) are design consistent, they may be highly variable in 

the presence of influential observations. So, data users may well be willing to use 

slightly biased estimators in order to significantly reduce the variance. In the next two 

sections, such robust estimators, which are less affected by influential observations, are 

studied. Modifying the estimation weight or modifying the value of an influential 

observation are the two approaches that are considered. These two approaches are very 

easy to implement in practice and very appealing to users, especially the former. 
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3. DETECT-AND-TREAT ESTIMATION METHODS 

All estimation methods described in this section require two steps: a detection step and a 

treatment step. Subsection 3.1 briefly discusses detection of influential observations and 

subsection 3.2 describes methods treating observations that have been identified as being 

influential. 

3.1 Detection of influential observations 

There exist several techniques to detect outliers. For example, Lee (1995) discusses a 

number of them, including the quartile method, which is often used in practice. Although 

the quartile method may be very efficient for finding extreme observations, it may not 

necessarily be the most appropriate method for finding influential observations even if a 

weighted version of the quartile method is used. In a large sample, for instance, an 

extreme (weighted or not) observation may not have a great impact on estimates and thus 

may not be considered as being influential. However, extreme observations are likely to 

have a great impact on estimates for small domains and are of interest even if the 

emphasis is on influential observations. But, for reasons of simplicity and also because 

the interest of this paper is more on treatment than detection of influential observations, 

we rather preferred the following simple rule: a unit I is identified as being influential 
when 

w , 1 	
(3.l) 

k€s 

where p is a predetermined cut-off value and w is given in (2.5). An unweighted 

version of (3.1) can also be used if the interest is in identifying observations that are 

influential uniquely because of their value. RUle (3.1) can be useful to detect influential 

observations for positive variables of interest. For a variable y that can take negative 

values, it may be preferable to take the absolute value before applying the rule. 

10 



Rule (3.1) is usually applied within a large domain such as province. This may cause a 

problem for smaller domains since an uninfluential observation in a large domain may 

well be influential in a smaller domain. Ideally, this rule should thus be applied within 

each domain of interest known in advance. However, it could result in the identification 

of too many influential observations for larger domains, and therefore large biases if all 

these identified observations are treated. 

3.2 Treatment of influential observations 

In this subsection, methods for treating influential observations identified in the detection 

step are described. For all these methods, estimates of totals or means are obtained by 

using (2.4) or (2.6) with a modification of either the value of the variable of interest y or 

the estimation weight of the identified observations. If the estimation weights are 

modified then the calibration equation is not satisfied anymore. To avoid this 

inconvenience, a new set of estimation weights can be obtained using (2.5) and replacing 

the design weights by the modified weights. 

The first method considered is Winsorization. This method consists of replacing the y-

value of the I largest observations by the y-value of the (I + 1)th  largest, where 1 is the 

number of influential observations detected (using an unweighted version of rule 3.1, for 

example). This technique can be useful if influential observations mainly occur because 

of large values of the variables of interest and not because of large estimation weights. 

If the estimation weights have a great impact on the estimates, the weighted 

Winsorization technique, described in Tambay (1988), may be more appropriate. It 

consists of replacing Yk  for the 1 influential observations (detected using rule 3.1) by 

C/w, , where C is the value of the (1 + 1)th largest weighted y-value. Tambay (1988) 

shows with an empirical study the slight superiority of the method of Dalén (1987) over 

the weighted Winsorization technique. The Daléns method consists of replacing yk  for 
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the I influential observations by c/w + (Yk - c/w; )/ 	. In fact, when the estimation 

weights are large, both methods will generally produce similar estimates. In the 

simulation study described in section 5, these two methods have been tested and they 

have given very similar results. We therefore report only the results of one of them, 	- 

namely the weighted Winsorization technique. 

The methods that have been discussed so far in this subsection are based on a 

modification of the values of the variable of interest. They can be applied separately for 

each variable of interest (as in section 5). They could also be transformed such that we 

modify the estimation weight instead of the y-values. However, this would require a 

different weight for each variable of interest, which is not very appealing to data users 

(especially users of a public use microdata file). To avoid the production of more than 

one weight, these methods can be applied to only one key variable or to some linear 

combination of the key variables. The resulting modified weight can then be used for 

every variable of interest. 

A very simple method for reducing the effect of influential observations is the unit weight 
reduction method. It consists of giving a weight of one to all influential observations. To 

detect influential observations with rule (3.1), one key variable has to be chosen or some 

linear combination of the key variables. A multivariate outlier detection method could 

also be used. The important point here is that the detection step must be based on only 

one variable if a unique estimation weight per household is desired. This feature is 

extremely desirable in practice, especially if a public use microdata file is produced. 

The unit weight reduction method can be too drastic in practice, especially if most of the 

estimation weights are large. Survey methodologists usually prefer methods modifying 

the estimation weight of influential observations such that it is between one and its 

original value. One such interesting method is used by a few household surveys at 

Statistics Canada and is described in Tremblay (1998). This method requires knowing 

population totals for a certain number of categories, say ncal '  of an auxiliary variable. 

-8- 



Note that this auxiliary variable may also be used to detect influential observations (as in 

section 5). The modified weights can be obtained through the following procedure: 

I. 	Arrange the categories (c = 1,2..... n 3 ) in decreasing order of the auxiliary 

variable; 

Start with c = I (the highest category of the auxiliary variable); 

While there is no influential observation in category c and c :5 n do c = c +1; 

If c> ulcat  then go to 8; 

Modify the estimation weights of influential observations in category c by an 

adjustment factor such that the sum of the modified weights over all units of 

categories higher than or equal to c (1, 2,..., c) equals the sum of the known 

population totals over categories higher than or equal to c; 
If the modified weight of an influential observation is less than one then this 

observation is assigned a weight of one and if it is greater than its original weight 

then this observation keeps its original weight; 

Do c = c + I and return to 3; 

End of the procedure. 

This method is very similar to a poststratification with the constraints that the final 

weight be between one and the original weight, and that only the weight of influential 

observations be modified. The only difference is that the adjustment factor within a 

category c is not necessarily calculated independently from the previous adjustment 

factors. In the following, this method will be called constrained pos:szratzfl cation. 

4. OTHER ROBUST ESTIMATION METHODS 

In this section, methods that do not need the detection step are considered. These 

methods avoid the arbitrariness introduced by choosing a cut-off value above which 

observations are treated. They have the major advantage of dealing naturally with 

-9- 



domains since each observation receives the same treatment. With detect-and-treat 

methods, an influential observation in a domain is not necessarily treated unless this 

observation is also influential in the larger domain used at the detection step. 

Ghangurde (1989) and Pelletier and Rancourt (1998) have studied the determination of 

the variance structure of the random error e. Although these approaches are different, 

the idea in both papers is to give a reduced weight to outliers (or in our case, influential 

observations) when estimating P. In fact, this is also equivalent to giving a smaller value 

of a to influential observations. As mentioned in section 2, iG is design consistent no 

matter how a  is specified. However, it can be highly variable even when a k  is 

appropriately chosen. An alternative to iG is the following composite estimator: 

(4.1) 

where 0 is an unknown parameter to be estimated from the data or to be chosen 

subjectively and B is given in (2.2). In fact, estimator (4. 1) is a weighted average of the 

design consistent estimator jG and the usually more stable (but not necessarily design 

consistent) synthetic estimator I (11C  =8I +(l-0)I). So, I reduces to I when 

0 = 0 and it reduces to jG when & = 1. Therefore, a choice of 0 between 0 and 1 will 

usually yield a compromise between the desire to have a low bias and the opposite desire 

to have a low variance. However, it should be noted that there is no compromise possible 

when a k  = w*  and Ck = 'Xk since in that case we have seen in section 2 that 

= 	= 1. Lee (1991, 1995) also proposed an estimator with the same form as 1. 

A nice property of ic is that it can still be written as the weighted sum (2.4), but with the 

following estimation weights: 

!DI! 



• 	a. 
Wk =OWk  +Xk 	

XkXk)-'(t.  9ju1) 	 (4.2) 
Ck 	LEX Ck 

Estimator (2.6) can again be used if the interest is in the estimation of a population mean 

rather than in the estimation of a population total. 

An important issue with the composite estimator (4.1) is the determination of ak.  The 

idea is to give a smaller value of ak  to influential observations, that is, those having a 

large design weight, or those having a large regression residual. Several options are 

possible to achieve this. For example, Pelletier and Rancourt (1998) used the Cook's 

distance to reduce the effect of extreme observations on estimates. In this paper, we 

study the following form for a k : 

a k  = w exp(-5 zk) , 	 (4.3) 

where a and 5 are unknown non-negative parameters to be estimated from the data or 

to be chosen subjectively and z is a variable to be appropriately chosen. The exponential 

function is used to avoid having some a  :5 0. 

The variable z in (4.3) should be positive with large values associated to extreme 

observations since large z-values have a smaller value of ak.  The Cook's distance could 

be used. In this paper, we rather considered, as the variable z, the absolute value of the 

standardized regression residuals. To calculate the standardized regression residuals, an 

initial estimate 	of l is required, which can be obtained in replacing a by 

a °  = w in (2.2). The absolute value of the standardized regression residuals can then 

be given by 

I 	(0)1 
(0)_  

Zk - 



where e° =- 
	

Xk is the regression residual for unit k and 

a °  e° 2 /ck , 

	 (4.4) - = 
	—q 

kEs 

where q is the dimension of Xk.  Of course, it would be possible to do an iterative 

procedure calculating alternately a, B and Zk  until some convergence criterion is 

reached. The estimator B of i obtained after convergence could be viewed as an M- 

estimator since it can be shown that it is the solution of the following system of 

equations: 

YkP 'Xk 	Xk 
= , 	 (45) 

kes 

where v(t) = rxexp(—S t ). This function is known as a redescending ip function. For 

positive values of t (and S > 0), the function v(t) is approximately equal to t for small 

values of t, is increasing for t < 1/5 and is decreasing toward 0 after that point. The 

situation is reversed for negatives values of t. 

The iterative procedure that has just been described to solve (4.5) is known as the 

iteratively reweighted least squares (IRLS) algorithm (Beaton and Tukey. 1974). Note 

that an estimating equation for the unknown parameter a 2  is also required to solve (4.5). 

	

This estimating equation (which is not explicitly defined here) is solved simultaneously 	— 

with (4.5). This can be seen from equation (4.4), which is recalculated at each iteration 

of the IRLS algorithm. 
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In fact, if z is any function of the regression residuals and if a sufficient number of 

iterations are completed then B is an M-estimator for J. M-estimators are usually 

obtained through an iterative procedure and this may be very time-consuming, especially 

if a replication technique, such as the jackknife or the bootstrap, is used for variance 

estimation. However, it has been empirically shown that a one-iteration procedure, 

starting with reasonable initial values, is often as good as the fully iterated procedure 

(Lee, 1991). For practical reasons, only one-iteration procedures have been considered in 

this paper. Therefore, estimation weights of the composite estimator are obtained in 

replacing ak  by a' > = w' exp(—ö z ° ) in (4.2). 

Gwet and Rivest (1992) considered a generalization of M-estimators called GM-

estimators. These estimators can be used to reduce the influence of extreme values in the 

residuals as well as in the auxiliary variables. However, most auxiliary variables are 

categorical in household surveys and extreme values in the auxiliary variables are usually 

not a problem... This is the reason why GM-estimators have not been considered in this 

paper. 

The parameter a in (4.3) and (4.5) controls the impact of the design weights on B. This 
parameter should normally be between 0 and 1. The closer to zero is a, the smaller is 

the impact of the design weights on B (and inversely). If influential observations are not 

due to the presence of large design weights, then a should be close to 1. The extreme 

case of a = I is usually preferred by design-based survey statisticians. In the other 

extreme case (a = 0), the design weights are not involved in the estimation of P . This is 

the case that model-based survey statisticians usually prefer. A value of a between 
these two extreme cases can be viewed as an interesting compromise for both types of 

statisticians. The parameter 5 controls the impact of the variable z on B and must be 
greater than or equal to 0. If there are no or few extreme observations in the sample, then 

S should be close to 0 and it should be larger when there are many extreme observations 

in the sample. 

-13- 



The parameters 9, a and S can be estimated from the data for each variable and 

domain of interest. However, if these parameters depend on the variable and the domain 

of interest, then having a unique estimation weight per household becomes impossible. 

We therefore suggest to determine a compromise value for each of these parameters 

based on several variables and domains, and then use these compromise values for all 

variables and domains of interest. This will yield a unique estimation weight per 

household. Similarly, it is also suggested to define only one variable z to be used for 

every variable and domain of interest. 

Let us now find the conditions under which the design bias of t^,c should be small. To 

achieve this, it is interesting to evaluate the anticipated bias of I, E m E p (I .-t,), where 

the subscript m refers to the model and the subscript p refers to the sampling mechanism. 

The order of the expectations can first be changed. Then, if the sampling mechanism 

does not depend on the error term of the model (which is basically equivalent to say that 

the sampling mechanism is ignorable), the anticipated bias can be written as: 

E p E m (I —zj. It is also easily shown that E m (I C  —tj=o if E 	The last 

condition will be true when a  is not correlated with Ek.  Therefore, the anticipated bias 

E rn E P (1  _t) will be equal toO if the following three conditions are satisfied: 

(c. I) The relation between the variable of interest y and the auxiliary variables x is well 

specified by model m; 

The sampling mechanism does not depend on the error term of model m; 

a k  is not correlated with Ek. 

Condition (c.l) does not mean that the model is perfect, that every possible explanatory 

variable has been included into it or that it has a good predictive power but only that 

Em(Yk) is well specified. In other words, if the true (superpopulation) relationship 

between y and x is linear, then the linear model m is well specified. For instance, if the 

auxiliary variables can be expressed as binary variables each associated to a different 
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group of units (or poststratum) then a linear model is appropriate and condition (c. 1) is 

respected even if the predictive power of the model is poor. For auxiliary variables that 

are treated as continuous, the relation between y and x should be examined before 

choosing a model. To verify if condition (C.!) is respected, the plot of the regression 

residuals versus the predicted values may be useful. Any trend in this plot may indicate 

that Em(Yk)  is not well specified. 

The sampling design generally involves design variables, such as stratum indicators, used 

to improve the efficiency of estimates produced by the survey. Condition (c.2) will be 

respected if these design variables are not correlated with the error term of the chosen 

model. In other words, condition (c.2) will be respected if the design variables add 

nothing more to the chosen model, which often seems to be the case in household surveys 

due to the low amount of useful auxiliary information available at the design stage. If 

this condition is not satisfied then the design variables could be incorporated into the 

model in order to make the condition true. A simple way to evaluate the validity of 

condition (c.2) is to plot the regression residuals versus the design weights or the 

selection probabilities. When condition (c.2) is valid, the design weights are not 

con-elated with the errors and this plot should not show any particular trend. 

Condition (c.3) is not respected if a is defined as in (4.3), 5 # 0 and Zk  is a function of 

the regression residuals. Therefore, unless 0 is very close to 1, it is important to choose 

a S close to 0 if a low bias is desired. However, if 5 = 0 and condition (c.2) is respected 

then condition (c.3) is automatically respected. To verify the validity of this condition, a 

plot of the regression residuals versus ak  may be useful. 

It should be noted that the design bias is approximately 0 for large populations if the 

anticipated bias is 0 (or, at least, approximately 0). Of course, the conditions for which 

the anticipated bias is 0 (conditions c.l, c.2 and c.3) have to be satisfied. This is so 

because, under the model, the variance of the design bias, Vm E,, (i - t v ), should be 
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small for large populations and, therefore, the design bias should be close to its model 

expectation, which is 0. 

For large samples, it is also easily shown that the design bias of i,c can be approximated 

by: 

E(I' -) (O_l)(t, .-.E(B')t) 

where 

	

_____ 	"1-I  _____ E p(B ) 	 F 	____ 

	

€u W Ck 	) kU Wk C 
XkXk 	 XkYk 

Therefore, the design bias of Fc is approximately 0 for large samples when 0 = I or 

when a = wk  and c = Xk. In other cases, it is straightforward to show that the 

anticipated bias of ic is approximately 0 if condition (c. 1) is respected as well as the 

following condition: 

(c.4) 	a. /Wk is not correlated with E. 

Therefore, only conditions (c. I) and (c.4) are necessary to show that the anticipated bias 

is approximately 0 for large samples. When a k  = w, it is clear that condition (c.4) is 

respected. In fact, if 5 = 0 and the design weights are not correlated with the errors of 

the model then condition (c.4) is respected. Again, it is not satisfied when 8 # 0. To 

verify this condition, a plot of the regression residuals versus a may be useful. 

Under strictly model-based considerations and when conditions (C.!), (c.2) and (c.3) are 

satisfied, the choice 0 = 0 (synthetic estimator) and a k  = 1 (a = 8 = 0) minimizes the 

model variance of 1, Vm (I'). Also, if these three conditions are satisfied, the 

anticipated bias is 0 with this choice and the design bias should be negligible for large 
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populations. Therefore, this choice is very attractive since it yields a reduction in 

variance without increasing the bias significantly. However, for domain estimation, the 

anticipated bias is not necessarily 0 (even if conditions ci, c.2 and c.3 are respected) 

• 

	

	unless population totals associated with the auxiliary variables are known at the domain 

level. Because it is usually impossible to have auxiliary information at the domain level 

for all domains of interest, it is thus suggested to choose 0 = 0 with a 	w, where 

0 < a < I. When c, = 'Xk, this choice is a compromise between the model-based 

estimator obtained with a = 0 and the design consistent estimator obtained with a = 1. 

It also has the advantage of requiring only one parameter (a) to determine. The 

following simulation study shows that this compromise gives good results even for 

domain estimation and that the design bias remains relatively low. 

5. SIMULATION STUDY 

In order to compare different estimators in the presence of influential observations, we 

performed a simulation study. We used data from the Statistics Canada's 1998 Survey of 

Household Spendings (SHS) to serve as the population. The survey had a stratified 

multi-stage design and contains information about 15,457 households on several 

variables. We also looked at a domain of interest from the population, namely: the 

domain of households with size equal to 1. We looked at four key variables from the 

survey, namely: Inco,ne, Total Expenditure. Food and Renovation/Repair. The last one 

was considered for its potential of having extreme values. Table 1 gives the summary 

statistics (in dollars) for the chosen variables. 

Table 1: Summary Statistics for Key Variables 

Variable Mean Standard Deviation Skewness Domain Mean 

income 48102.70 39362.62 4.06 25263.73 

Total Expenditure 47341.23 35296.93 3.25 26207.00 

Food 5607.69 3285.32 1.47 3018.29 

Renovation/Repair 367.24 1124.28 12.60 188.14 
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From the population of households, 1000 samples of expected sample size 300 were 

selected using Poisson sampling. In Poisson sampling the sample size is a random 

variable with expected value equal to the sum of inclusion probabilities over the 

population and each unit is selected independently. We wanted to give households quite 

dispersed probabilities of selection, that would result into diverse weights. We assigned 

probabilities of inclusion for households such that they were proportional to the inverse 

of the SHS design weights (which include a nonresponse adjustment factor). The 

inclusion probabilities were calculated as 

1300 
k —71 k 	,; I, 

kEU 	J 
where 7rk , k = 1, 2, ..., 15,457, is the reciprocal of the design weight (including a 

nonresponse adjustment factor) from the SHS data. 

As discussed earlier, we had different estimators to compare. We assumed that only one 

population total was known, which was the total number of households in the population 

(X4 = Ck = 1, for all households k). Table 2 gives the names and notations for the detect-

and-treat estimators considered. 

Table 2: Detect-and-treat Estimators and Respective Notations 

Estimator Notation 

I. Winsotization WIN 

Weighted Winsorization WWIN 

Unit Weight Reduction UWR 

Constrained Poscstratification CP 

We used two versions of rule (3.1) to detect the influential observations. The weighted 

version was used in WWIN, UWR and CP, while the unweighted version was used for 

WIN. The estimator UWR used Total Expenditure as the key variable for detection of 

influential observations because it is one of the most important variables of the SHS. For 
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CP, Income was used as auxiliary variable (with 12 categories) and for the detection step, 

in order to have a strategy similar to what is used in practice for the SHS. For WIN and 

WWIN, the detection step was carried Out separately for each variable of interest. We 

specified a cut-off value at 3% level. The choice of the cut-off point was purely 

subjective. We looked at various values and picked the one that resulted in neither too 

few nor too many influential observations. 

For the composite estimator, we used various combinations of 0, a and 6 values. Table 

3 gives the combinations we used in our simulation study as well as the corresponding 

notation. Note that, when 8 = 0.5, the variable z is chosen as the absolute value of the 

standardized regression residuals obtained in using the key variable Total Expenditure. 

This variable z is used for every of the four variables of interest. Also, only one iteration 

is performed to obtain an M-estimate for P (when (5 = 0.5). 

Table 3: 0, a and ö Values and Notation for the Composite Estimator 
Notation 	I 6 	a 	c5 

GREG-M 1 0 0 

GREGM-M I 0 0.5 

GREG-C 1 0.5 0 

GREGM-C 1 0.5 0.5 

GREG-D I I 0 

GREGM-D I I 0.5 

SYN-M 0 0 0 

SYNM-M 0 0 0.5 

SYN-C 0 0.5 0 

SYNM-C 0 0.5 0.5 

SYN-D 0 I 0 

SYNM-D 0 I 0.5 

In this simulation study, we subjectively chose predetermined combinations for 0, a and 

5 rather than using any optirnality criterion. Other combinations might produce better 

results. We also tried the case 0 = 0.5 although the results are not shown in section 6. 

The results for that case were generally in between the cases 9 = 0 and 9 = 1. 
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For each of the 1000 samples of expected size 300, the population mean estimates and 

population domain mean estimates for each key variable were calculated. The estimated 

relative bias (RB), expressed as a percentage of population mean, was calculated using 

the formula 

r 1 K 	p)lixl00% 
1000 

est(RB)=[J() 1  _  

where /1, is the population (or domain) mean estimate for the ith  sample, andp is the 

population (or domain) mean. An estimate of the relative root mean squared error 

(RRMSE) expressed as a percentage can be calculated as: 

F01est(RRMSE) = 	xl l-  x100%. 
00 

An estimate of the relative standard error can be calculated by the relationship: 

est(RSE) = JRRMSE2 - 

We also looked at the distribution of the number of detected influential observations in 

the 1000 samples for all four variables. On average, for the Income and Total 

Expenditure variables, respectively 4.1 and 4.2 influential observations per sample were 

detected using the weighted version of rule (3.1). The RenovationlRepair variable was 

on one extreme with 7.0 influential observations on average detected per sample. The 

Food variable had the lowest number of influential observations detected on average; 

only 3.7 per sample. For the unweighted version of rule (3.1), almost the same type of 

pattern with smaller values was observed, except for the Renovation/Repair variable, for 

which the unweighted version had about the same average number of influential 

observations detected than its weighted version. The smallest average was for Food (at 

zero) and the largest average was for Renovation/Repair (at 7.0). 
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These results are consistent with summary statistics presented in table I. 

RenovationfRepair was the most skewed and was the most receptive to both versions of 

the detection method. The Food variable was the least skewed and hence no extreme 

• 	observation was detected (for all samples) when weights were not taken into account in 

* 	rule (3.1). Income and Total Expenditure were moderately skewed and had moderate 

number of extreme observations detected on average. The unweighted version (with the 

cut-off value of 3%) resulted in far fewer influential observations than the weighted 

version. This phenomenon was consistent with the intuition that the weights play a major 

role in making an observation influential in household surveys. 

6. RESULTS 

In this section, we present the results of the simulation study. We discuss the results for 

the estimation of the population mean first, which are shown in table 4. A special 

attention should be given on the Total Expenditure variable. This variable has been used 

to detect influential observations for the UWR estimator and has also been used to form 

the variable z for the GREG and synthetic estimators. 

For the RenovationlRepair variable, all estimators have larger RRMSE and RSE values 

than the other variables. This is not surprising since it is the most skewed variable. It is 

interesting to note that the different estimators did not perform consistently across 

variables. Also, if a particular estimator resulted in a low relative bias, it often had a 

higher relative variance. Overall, among the detect-and-treat estimators, CP performed 

well for all variables. The synthetic estimator with certain parametric combinations for a 

and ô represents a potential alternative. 

It is evident from table 4 that all GREG estimators perform similarly. They all have low 

RBs and relatively large RRMSEs and RSEs. These estimators provide a basis for 

comparison since they are asymptotically unbiased and design consistent, but volatile in 

the presence of influential observations. Considering the detect-and-treat estimators, 
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UWR results in large bias, especially for the Income and Total Expenditure variables, as 

it gives unit weight to influential observations. The GREG estimators and WIN are 

performing similarly for the Income, Total Expenditure, and Food variables since very 

few influential observations were detected using the unweighted version of rule (3.1). 

For the Renovation!Repair variable, WIN has a much larger RB but relatively low 

RRMSE and RSE as compared to the GREG estimators. For all four variables, WWJN 

has a large RB and RRMSE, but a low RSE. The distinction between WIN and WWIN is 

obvious from table 4. The WWJN estimator uses the weighted version of rule (3.1) and 

resulted in far more detected influential observations than for WIN (which uses the 

unweighted version), hence the RB and RRMSE of WWIN are higher than those of WIN 

for all four variables. Among the detect-and-treat estimators and for the Income, Total 

Expenditure and Food variables, CP stands out as the most reasonable with respect to the 

RB, RRMSE and RSE criteria, between two extremes of GREG and WIN, and, WWIIN 

and UWR. For Renovation/Repair, the results are not that straightforward. Overall, CP 

always performs well with respect to RB and RRMSE. This is not surprising since CP 

uses more auxiliary information (population totals are known for 12 categories of 

Income). 
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Table 4: Results from the Simulation Study: Estimation of the Population Mean 
Income Total Expenditure Food Renovation/Repair 

Estimator RB I RRMSE I 	RSE RB RRMSE I 	RSE RB  j RRMSE I 	RSE RB I  RRMSE RSE 

Detect-and-Treat Est mators 

WIN -0.02 9.06 9.06 0.13 8.21 8.21 0.22 6.16 6.16 -17.10 27.31 21.30 

WWIN -9.69 11.55 6.29 -8.64 10.58 6.11 -6.29 8.11 5.12 -38.47 40.81 13.62 

UWR -10.73 12.44 6.28 -10.55 12.04 5.81 -5.39 7.46 5.17 -11.19 27.36 24.96 

CP -3.87 7.28 6.16 -2.91 6.98 6.34 -1.03 5.83 5.74 -1.06 32.91 32.89 

iRE(i Estimator (U = 1) 

GREG-M 0.36 9.30 9.30 0.32 8.28 8.27 0.34 6.31 6.31 2.80 39.04 38.94 

GREGM-M 0.31 9.38 9.38 0.28 8.31 8.30 0.37 6.42 6.41 2.81 39.00 38.90 

GREG-C 0.29 9.30 9.30 0.26 8.29 8.29 0.27 6.17 6.17 2.79 38.89 38.79 

GREGM-C 0.27 9.40 9.40 0.24 8.33 8.32 0.28 6.18 6.17 2.79 38.87 38.77 

GREO-D 0.23 9.29 9.29 0.23 8.31 8.31 012 6.16 6.16 2.77 38.91 38.81 

GREGM-D 0.24 9.35 9.34 1 	0.22 8.32 8.31 1 	0.22 6.17 6.16 1 	2.77 38.91 38.82 

Synthetic Estimator (0 = 0) 

SYN-M 5.75 7.30 4.50 4.74 6,33 4.19 12.84 13.39 3.79 -10,20 17.87 14.67 

SYNM-M 4.11 5.73 4.00 -2.86 4.81 3.87 17.05 17.53 4.11 -6.62 18.04 16.78 

SYN-C 0.21 5.56 5.56 -0.11 5.14 5.14 3.36 5.20 3.97 -3.26 22.55 22.31 

SYNM-C -5.34 7.21 4.85 -4.37 6.44 4.74 4.72 6.21 4.05 -1.42 24.28 24.24 

SYN-D 0.23 9.29 9.29 0.23 8.31 8.31 0.22 6.16 6.16 2.77 38.91 38.81 

SYNM-D -2.20 8.67 8.39 -1.50 8.08 7.94 0.63 6.24 6.21 3.55 40.14 39.98 

For the synthetic estimators, we have very interesting results. As mentioned in section 4, 

synthetic estimation has been proposed as a way to reduce variance (while keeping the 

bias reasonably low). However, the strictly model-based estimator, SYN-M, can be too 

much biased even if it performed very well with respect to RSE. On the other hand, the 

design consistent estimator SYN-D has a low RB, but relatively high RSE. As mentioned 

in section 2, SYN-D is in fact identical to GREG-D. It seems that SYN-C, which is a 

compromise between the model-based estimator (SYN-M) and the design consistent 

estimator (SYN-D), is an interesting alternative with respect to all criteria considered. It 

resulted in RB values for all variables that were less than 5%, even for domain estimation 

(see table 5). Although other estimators (for example, CP) had this property too, the 

RRMSEs and RSEs were higher than those obtained with SYN-C. In general, the RB of 

the synthetic estimators has a lower bound equal to that of the GREG estimators, and the 

RRMSE and RSE of the synthetic estimators have upper bounds equal to those of the 

GREG estimators. When ö = 0.5, the RB was still in general reasonably close (but 
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slightly larger) to the case 9 = 0, which indicates that the value of this parameter was not 

set too high. For example, SYNM-C performed comparably to SYN-C for all four 

variables. 

In this simulation study, the simple mean model, Yk = 3+ ek , has been used. Because 

all units have the same value of the auxiliary variable (x k  = 1, for all k), they have 

necessarily the same expectation under the model. Therefore, E m  (yk) is well specified 

by this simple mean model (given the available auxiliary information) and condition (c.l) 

is respected. As mentioned in section 4, when ö = 0 and condition (c.2) is respected, 

then condition (c.3) is also respected. If all three conditions are satisfied then the design 

bias of the model-based estimator, SYN-M, should be small. However, the relatively 

large biases observed in SYN-M are an indication that condition (c.2) is not completely 

satisfied and that the design variables are correlated (to a certain extent) with the error 

term of the chosen model. Adding useful auxiliary variables to the model would 

certainly reduce the bias of SYN-M. However, the validity of condition (c.l) should then 

be verified, especially if Continuous auxiliary variables are added. It is also interesting to 

note that the difference between SYN-M and the design consistent estimator, SYN-D, 

will diminish as the fit of the chosen model increases. If the fit of the model is perfect 

(Yk = B'x k , for all k), then SYN-M will exactly be equal to SYN-D. 

The results shown in table 5 for the population domain mean were somewhat similar to 

those for the population mean. The GREG estimators and WIN are producing identical 

results for all variables except Renovation/Repair, where the GREG estimators have 

lower RB, while WIN has lower RRMSE and RSE values. An important difference 

between table 4 and table 5 was for the detect-and-treat estimators. The RRMSE and 

RSE values were consistently slightly lower than those obtained by the GREG estimators, 

and RB values were also close to the GREG estimators RBs. The reason for this 

phenomenon is that the influential observations were detected at the population level and 

carried through for the domain mean estimation. It is possible that very few or even no 

influential observation at all were detected in the domain of interest for a given variable. 
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but some or many were detected in the whole population. For the synthetic estimators, 

the RBs are slightly higher than in the preceding table. Again, SYN-C and SYNM-C are 

interesting alternatives with respect to all criteria considered. 

Table 5: Results from the Simulation Study: Estimation of the Population Domain Mean 

r I Income Total Expenditure =Food Renovation/Repair 

Estimator RB  J RRMSE RSE RB RRMSE J 	RSE I 	RB I  RRMSE RSE I 	RB I  RRMSE J 	RSE 

1.)etect-and-'l'reat Estimators 

WIN 1.17 19.53 19.49 0.73 17.90 17.88 0.47 12.76 12.75 -13.90 59.36 57.71 

WWIN -2.40 14.93 14.73 -2.36 14.95 14.76 -0.73 11.24 11.22 -36.64 47.59 30.37 

UWR -4.55 15.34 14.65 -5.05 14.70 13.90 -1.26 11.67 11.60 .574 80.89 80.69 

CI' -0.12 17.15 17.15 -0.10 16.88 16.88 0.28 12.54 12.53 0.52 94.00 94.00 

(iREG Estimator (0 = I) 

GREG-M 1.30 19.51 19.47 0.88 17.94 17.92 0.59 12.67 12.65 0.34 93.55 93.55 

GREGM-M 1.33 19.53 19.48 0.89 17.88 17.85 0.61 12.69 12.67 0.35 93.56 93.56 

GREG-C 1.20 19.46 19.42 0.80 17.87 17.86 0.51 12.68 12.67 0.44 93,67 93.66 

GREGM-C 1.20 19.43 19.39 0.78 17.81 17.79 0.52 12.68 12.67 0.45 93.69 93.68 

GREG-D 1.17 19.53 19.49 0.77 17.91 17.90 0.47 12.76 12.75 0.61 94.13 94.13 
GREGM-D 1.16 19.50 19,46 0.76 17.88 17.87 0.47 12.77 12.76 1  0.62 94.15 94.15 

Synthetic Estimator (0 = 0) 

SYN-M 14.30 18.71 12.07 13.03 19.34 14.29 11.46 14.20 8.38 -12.44 39.02 36.98 
SYNM-M 20.28 22.92 10.67 15.96 18.90 10.12 13.45 16.12 8.89 -9.84 40.24 39,02 

SYN-C 3.31 13.46 13.04 2.93 13.77 13.46 2.89 9.37 8.91 -4.84 55.64 55.43 
SYNM-C 5.04 12.68 11.64 3.28 11.87 11.40 3.60 9.81 9.13 -3.49 57.66 57.56 

SYN-D 1.17 19.53 19.49 0.77 17.91 17.90 0.47 12.76 12.75 0.61 94.13 94.13 

SYNM-D 1.66 18.54 18.47 0.97 17.17 17.15 1 	0.69 12.88 12.86 1.16 95.65 95.65 

7. CONCLUSION 

In this paper, a number of estimators have been proposed and discussed to deal with the 

problem of influential observations, which occur because of extreme values, large design 

weights or the combination of both. All these estimators can take advantage of useful 

auxiliary information at the design stage and at the estimation stage. In fact, alternatives 

to the GREG estimator may not be needed when such useful auxiliary variables are 

available. However, in household surveys, useful auxiliary information is often not 

available, especially at the design stage. Therefore, large design weights are not 
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necessarily associated to small values of the variables of interest and more robust 

estimators are needed. 

If the presence of influential observations can be justified, at leastin part, by the presence 

of large design weights, then a model-based estimator may be useful under some 

conditions. In this paper, a compromise (SYN-C) between a strictly model-based 

estimator (SYN-M) and the design consistent estimator (SYN-D, which is identical to 

GREG-D), has been shown to be very attractive through a simulation study using real life 

survey data. Finally, whatever estimator is chosen, it is always a good idea to verify 

empirically the relationships between the variables of interest and the auxiliary variables 

used at the estimation stage, even if a design consistent estimator is preferred. 
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